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Introduction

The fur seal is a mammal with an unusual ability to turn its
milk production on and off without significantly altering
the gross morphology of the mammary gland. This atypical
lactation cycle is due to the fact that maternal foraging and
infant nursing are spatially and temporally separate
(Bonner, 1984). Maternal care involves the suckling of
offspring over a period of at least 4 months, but lactation
can extend to more than 12 months. Following a perinatal
fast of approximately 1 week, females depart the breeding
colony to forage at sea and, for the remainder of lactation,
alternate between short periods ashore suckling their
young with longer periods of up to 4 weeks foraging at sea.
Whilst foraging at sea, milk production in the fur seal
mammary gland either ceases or is reduced (Arnould &
Boyd, 1995b).

Gross composition of seal milk differs from that of other
mammals (Davis et al. 1995). For example, sealmilk is richer
in lipid than that of terrestrial mammals ( Jenness & Sloan,
1970; Bonner, 1984; Oftedal, 1984; Baker, 1990; Arnould
& Hindell, 1999). This feature allows the rapid transfer of
energy to the sucking young in order to build up an in-
sulating blubber layer, which also serves as an energy store
once themother begins to leave for foraging at sea (Trillmich
& Lechner, 1986). The lipid content of fur seal milk is related
to the duration of the proceeding foraging trip (Arnould &
Boyd, 1995b) suggesting that the fat content of fur seal milk
is adapted to satisfy the pups’ need for sustaining normal
activity duringmaternal absence (Arnold& Trillmich, 1985).
This pattern of lactation means mothers have long periods
with no sucking stimulus and can transfer high energy milk
rapidly while on land so as to minimize time away from
foraging grounds. This type of lactation is unique amongst
mammals owing to the extreme duration of inter-suckling
bouts and the rapid rate of transfer while suckling.

The composition of fur seal milk

Lipid

Gross composition of fur seal milk differs from that of other
mammals (Davis et al. 1995). For example, fur seal milk

has up to 50% lipid which is considerably more than that
of terrestrial mammals ( Jenness & Sloan, 1970; Bonner,
1984; Oftedal, 1984; Baker, 1990; Arnould & Hindell,
1999). This feature allows the rapid transfer of energy to the
sucking young in order to build up an insulating blubber
layer which also serves as an energy store once the mother
begins to leave for foraging at sea (Trillmich & Lechner,
1986). The lipid content of fur seal milk is related to the
duration of the proceeding foraging trip (Trillmich &
Lechner, 1986), suggesting that the fat content of fur seal
milk is adapted to satisfy the pups’ need for sustaining nor-
mal activity during maternal absence (Arnold & Trillmich,
1985). The fatty acid profiles of milk lipid have been de-
termined for a number of seal species, revealing changes
associated with either diet or stage of fasting (Van Horn &
Baker, 1971; Trillmich et al. 1988; Ochoa-acuna et al.
1999; Georges et al. 2001).

Protein

The protein concentration of fur seal milk ranges from 10
to 18% and is among the highest of any mammal
(Trillmich & Lechner, 1986; Arnould & Boyd, 1995b;
Davis et al. 1995; Arnould & Hindell, 1999; Goldsworthy
& Crowley, 1999; Georges et al. 2001). The proportions of
casein to whey protein vary considerably between species
(Anderson et al. 1985), including the pinnipeds (Ashworth
et al. 1966; Trillmich et al. 1988). A recent study (Cane
et al. 2005) shows that the average casein to whey ratios
for the Australian and Antarctic fur seals (1.2 and 0.69,
respectively) are similar to the ratio reported for the
Northern fur seal, Callorhinus ursinus (Ashworth et al.
1966), but lower than the ratio of 2.1 reported for the
Galapagos fur seal, A. galapagoensis (Trillmich et al.
1988).

Few milk proteins have been identified in pinnipeds
(Ashworth et al. 1966; Trillmich et al. 1988; Ronayne de
Ferrer et al. 1996). Our recent studies (Cane et al. 2005)
showed the casein micelle of the Australian fur seal is
composed of five caseins whereas Ronayne de Ferrer et al.
(1996) observed four casein bands after SDS-PAGE of milk
proteins from the Southern elephant seal. Their study also
described five distinct whey proteins, but only serum
albumin was identified according to its mobility in the gel
(Ronayne de Ferrer et al. 1996). Cane et al. (2005) reported*For correspondence; e-mail : jasharp@unimelb.edu.au
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(A)

                1        11         21        31        41        51 
  Canine β-LGI  IVVPRTMEDLDLQKVAGTWHSMAMAASDISLLDSETAPLRVYIQELRPTPQDNLEIVLRK
 Canine β-LGII  IVIPRTMEDLDLQKVAGTWHSMAMAASDISLLDSETAPLRVYIQELRPTPQDNLEIVLRK
  Feline β-LGI  ATVPLTMDGLDLQKVAGMWHSMAMAASDISLLDSETAPLRVYVQELRPTPRDNLEIILRK
 Feline β-LGII  ATLPPTMEDLDIRQVAGTWHSMAMAASDISLLDSETAPLRVYVQELRPTPRDNLEIILRK
Feline β-LGIII  ATVPLTMDGLDLQKVAGTWHSMAMAASDISLLDSEYAPLRVYVQELRPTPRDNLEIILRK
    Seal β-LGI  ------------------------------------------VQEIRPRPEGNLEIVLRK
   Seal β-LGII  -----------MRKVAGTWHSSAIAASDISLLDAKTAPLRVYVQELRPTPEGNLEIVLRK
 
                61        71        81        91        101       111       
  Canine β-LGI  WEDGRCAEQKVLAEKTEVPAEFKINYVEENQIFLLDTDYDNYLFFCEMNADAP..QQSLM
 Canine β-LGII  WEDNRCVEKKVFAEKTELAAYFSINYVEENQIFLLDTDYDNYLFFCMENANAP..QQSLM
  Feline β-LGI  WEDNRCVEKKVLAEKTECAAKFNINYLDENELIVLDTDYENYLFFCLENADAP..DQNL
 Feline β-LGII  RENHACIEGNIMAQRTEDPAVFMVDYQGEKKISVLDTDYTHYMFFCME.APAPGTENGMM
Feline β-LGIII  WEQKRCVQKKILAQKTELPAEFKISYLDENELIVLDTDYENYLFFCLENADAP..GQNLV
    Seal β-LGI  WEDGRCPEQKVVAEKTKVPAEFKINYLEENKIFVLDTDYKNYLFFCMENTDAP..EQRLM
    Seal β-LGII  WENSACVEGNIVAQKTEDPAVFTVDYQGQRKISVLDTDYTHYLFFCME.APVPTAESGMM
 
                121       131       141       151       161    
  Canine β-LGI  CQCLARTLEVDNEVMEKFNRALKTLPVHMQL.LNPTQAEEQCLI 
 Canine β-LGII  CQCLARTLEVNNEVIGKFNRALKTLPVHMQL.LNPTQVEEQCLV 
  Feline β-LGI  CQCLTRTLKADNEVMEKFDRALQTLPVHVRLFFDPTQVAEQCRI 
 Feline β-LGII  CQYLARTLKADNEVMEKFDRALQTLPVHIRIILDLTQGKEQCRV 
Feline β-LGIII  CQCLTRTLKADNEVMEKFDRALQTLPVDVRLFFDPTQVAEQCRI 
    Seal β-LGI  CQYLARTLKVDNEVMGKFNRALEILPVHMQIIPDLTQGKEQCHV 
   Seal β-LGII  CQYLARTLKVNNEVMGKFNRALETLPVHMQIIPDLTQGKEQCHV 
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Fig. 1. (A) Comparison of primary peptide sequences of fur seal, canine and feline b-lactoglobulins (b-lg). Fur seal b-lg nucleotide
sequences were translated and aligned with the sequences of canine b-lg I and II and feline b-lg I, II and III. Residues shaded in black
are identical between sequences aligned, while grey shading indicates conservative substitutions. Residues conserved in the
sequences of each species, but are different between the three groups are underlined. The italicized VAG at position 15 is
characteristic of all b-lg except the kangaroo b-lg-like protein. Residues printed in bold make up the proposed binding site of retinol
(amino acids are not conserved in all b-lg, but substitutions maintain the hydrophobic nature of the binding site, e.g., Val92Ile seen in
feline sequences also). Gaps (.) inserted to assist with alignment. (B) Phylogenetic relationship of the b-lg proteins, generated from
alignment of 121 amino acid region common to all species (aa 43–163 shown in (A)). Length of the lines from the nodes indicate
evolutionary distances. Bootstrap values are shown. (Acc. nos. Horse P02758, P07380; Cow P02754; Sheep P67976; Pig P044119;
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that ten distinct whey bands from the milk of the Australian
fur seal could be distinguished following electrophoretic
separation, and N-terminal sequencing showed the
majority of the protein to be b-lactoglobulin (b-lg), similar
to that reported for ruminant, canine and dolphin milks
(Bell et al. 1981; Hambling et al. 1992; Kushibiki et al.
2001). At least three isoforms of the protein appear to be
secreted in the milk.

Although the biological function of b-lg remains to be
determined, its presence in the milk of several mammals
has suggested a nutritional role, supported also by its ability
to interact with a great variety of hydrophobic ligands, such
as retinol (Futterman & Heller, 1972; Dufour et al. 1990;
Dufour & Haertle, 1991; Cho et al. 1994; Narayan &
Berliner, 1997; Lange et al. 1998), fatty acids and trigly-
cerides (Dufour et al. 1990; Frapin et al. 1993; Narayan &
Berliner, 1997; Wang et al. 1997; Qin et al. 1998; Wu
et al. 1999; Zsila et al. 2002) leading to speculation that
b-lg may enhance vitamin A uptake in sucking offspring
(Said et al. 1989; Kushibiki et al. 2001). The b-lg-retinol
complex is known to bind receptors in the intestine of
suckling calves (Perez et al. 1989) and may be involved in
lipid metabolism, possibly by enhancing lipase activity
(Perez et al. 1992). This proposed function of b-lg would
be of significance with regard to fur seal metabolism, given
that milk lipid accounts for up to 50% or more of the total
composition of fur seal milk (Oftedal, 1993; Arnould &
Hindell, 1999).

Carbohydrate

While carbohydrates are found in the milk of most phocids
(true seals) (Messer et al. 1988) only trace amounts are
present in the milk of otarrids (fur seals) (Dosako et al.
1983; Urashima et al. 2001). Lactose, the major carbo-
hydrate in the milk of most mammalian species (Oftedal,
1993) is either absent or present in extremely low con-
centrations in the milks of fur seals (Schmidt et al. 1971;
Dosako et al. 1983; Messer et al. 1988; Urashima et al.
2001). It has previously been suggested that lactose and
oligosaccharides are not found in the milk of the Australian
fur seal (Urashima et al. 2001). However, milk of this
species contains inositol, a sugar known to promote infant
growth (Arnould & Boyd, 1995b). In other mammals, milk
that is low in lactose has relatively higher concentrations
of sodium and potassium (along with chloride), in order to
maintain osmolality (Oftedal, 1993). The sodium and pot-
assium concentrations in the milk of fur seal species are
comparatively higher (Cane et al. 2005) than the concen-
trations in the milk of terrestrial species such as humans

and cows (Green et al. 1980; Schryver et al. 1986;
Nicholas & Hartmann, 1991).

It is interesting that while the milk of the Tammar
wallaby (Macropus eugenii) contains less than 1% (w/v)
carbohydrate in late lactation, and the carbohydrate moiety
is exclusively monosaccharides (Green et al. 1980). It is also
at this late stage of lactation that milk volume increases
and significant changes in sodium and potassium concen-
trations occur, whereby an increase in their concentrations
is evident as carbohydrate declines (Green, 1984). This is
consistent with the fur seal milk collected on shore
throughout lactation, where carbohydrate concentrations
are low, sodium and potassium levels in the milk are
higher than observed for other species, and the volume of
milk produced is greater than that at sea (Arnould & Boyd,
1995a). While sodium and potassium levels in the milk are
high, a major osmole in milk that regulates milk volume in
the fur seal and Tammer wallaby is yet to be identified.

Changes in milk protein during lactation/during
a suckling bout

Previous studies in the fur seal reported little variation in
total milk protein concentration as lactation progressed
(Arnould & Boyd, 1995b) consistent with findings in otariids
(Georges et al. 2001). However, a more recent study (Cane
et al. 2005) analysing the milk of the Australian fur seal
and the Antarctic fur seal (Arctocephalus gazella) during
the lactation cycle showed no significant change in either
the total milk protein or the individual proteins.

Several studies of otariid lactation have reported changes
in the concentration of milk components during a suckling
period ashore (Costa & Gentry, 1986; Arnould & Boyd,
1995a, b; Goldsworthy & Crowley, 1999; Ochoa-acuna
et al. 1999; Georges et al. 2001). Arnould and Boyd (1995b)
reported a decline in both milk lipid and protein content
during 1–2-d nursing periods of the Antarctic fur seal. Milk
protein content declined after 16–24 h ashore, and yet the
amount of protein in the milk initially was found to be
correlated with the duration of the previous foraging trip
(Arnould & Boyd, 1995b). Similar declines in milk protein
content for the subantarctic fur seal were reported by
Goldsworthy & Crowley (1999) and the Juan Fernandez fur
seal, Arctocephalus philippii (Ochoa-acuna et al. 1999)
after resumption of lactation following arrival back on land.

The b-lactoglobulin genes

Fur seal whey was fractionated by SDSPAGE and b-lg was
identified by N-terminal sequencing (Cane et al. 2005).

Donkey P13613, P19647; Cat P33687, P21664, P33688; Dog P33685, S33878; Goat P02756; Buffalo P02755; Dolphin Q7M2T0;
Possum Q29146; Wallaby P29614; Kangaroo P11944; Baboon O77511; Platypus, JA Sharp, unpublished observations). (C) Northern
blot analysis of milk protein gene expression in the mammary gland of pregnant and lactating on-shore and lactating off-shore fur
seals. Total RNA (10 mg) was electrophoresed in 1% agarose gels, blotted to Zeta Probe and hybridized with 32P-labelled cDNA for
a-casein and b-lg genes. Lower panel shows ethidium bromide stained gel prior to Northern blot for comparison of RNA loading and
integrity. The 18s and 28s RNA bands are indicated.
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Screening of cDNA libraries from fur seal lactating on-shore
and off-shore mammary glands (Cane et al. unpublished)
revealed the presence of two b-lg genes with significant
homology to two canine b-lg amino acid sequences (b-lg I,
Pervaiz & Brew, 1986; b-lg II, Halliday et al. 1993) and
three feline b-lg amino acid sequences (Halliday et al.
1990) (Fig. 1A). Phylogenetic analysis of fur seal b-lg I and
II sequences suggests fur seal b-lg II is more closely related
to feline b-lg II and groups with horse and donkey b-lg II,
while fur seal b-lg I is more divergent (Fig. 1B).

The fur seal mammary gland

The lactation cycle: morphology of the lactating
mammary gland during suckling and foraging

Like all mammals, the fur seal mammary gland undergoes
an intense period of lobulo-alveolar development during
pregnancy and, at lactation, the gland is almost entirely
composed of secretory epithelium (Fig. 2A and B).
Myoepithelial cells encase the luminal epithelial cells in
the ducts, and are in contact with a laminin and collagen
IV-rich basement membrane. Surrounding the ductal net-
work, and accounting for >80% of the mammary volume,
is a highly compartmentalized stroma. During lactation on
shore, the alveoli are engorged with milk containing a
large amount of lipid (Fig. 2B). During the mothers’
extended foraging trip, the alveoli appear less distended,
epithelial cells surrounding the alveoli appear more col-
umnar, and the lipid component within the milk is
decreased (Fig. 2C). The reduction of milk protein
secretion correlates with decreased milk volume (Arnould
& Boyd, 1995b) and histological observations suggest
that reduction of milk volume must occur quickly as the
mammary gland does not appear full or engorged whilst
foraging.

In most mammals during natural weaning, as alveoli fill
with milk owing to cessation of suckling, the mammary
epithelial cells start to down-regulate milk protein gene
expression and the epithelium regresses, and enters invol-
ution (Li et al. 1997). This process is characterized by
apoptotic cell loss and gland remodelling in readiness for a
subsequent pregnancy (Walker et al. 1989; Strange et al.
1992; Lund et al. 1996; Metcalfe et al. 1999). Study of
these processes has revealed that involution occurs in two
distinct phases (Lund et al. 1996). When experimentally
induced by forced weaning the mouse mammary gland
initiates the first phase of involution within a few hours of
pup removal, and is morphologically characterized by an
accumulation of milk in the alveoli and limited apoptosis
of epithelial cells (Walker et al. 1989; Strange et al. 1992).
This can be reversed up to 1.5 d after weaning when epi-
thelial cell apoptosis starts to dominate the process (Jaggi
et al. 1996). Three to five days after weaning the second
phase of involution is initiated. It is characterized mor-
phologically by the degradation of the basement mem-
brane, a collapse of alveoli, infiltration of macrophages

and restructuring of the gland to a virgin-like state. During
the second phase, apoptosis of epithelial cells continues
until 50–80% of the epithelial cells have been cleared
from the gland (Walker et al. 1989). Apoptosis associated
with involution in the mammary gland of the foraging fur

lipid 
milk protein 

alveoli

milk protein
lipid

A

B

C

Fig. 2. Histological sections of the mammary gland from (A)
pregnant, (B) lactating whilst nursing on shore and (C) lactating
whilst foraging at sea fur seals. Sections are stained with
Haematoxylin and Eosin. Immature alveoli in the pregnant gland
are indicated; lipid (white) and milk protein are indicated in
the on shore and off shore mammary glands. Magnification
r100.
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seal has been analysed using Apotag (Chemicon), and was
found to be barely detectable even after extended periods
where there is no sucking stimulus, the gland does not
regress (Sharp et al. unpublished).

The process by which the lactating fur seal reduces milk
production and avoids entering apoptosis whilst foraging
is unknown. However it is clear that through the process
of evolution and environmental selection, the fur seal
appears to have uncoupled the mechanism of milk re-
duction from involution completely in order to undertake
its lactation cycle.

Lactational pause following removal of sucking;
down-regulation of milk protein gene expression
in off-shore fur seals

The expression of the b-lg and b casein genes is barely
detectable in the mammary gland of pregnant fur seals and
the level of expression is significantly elevated in the
mammary gland of fur seals lactating on-shore (Fig. 1C).
However, expression of both genes is also reduced during
the foraging trip.

Local factors. A consequence of reduced nursing is that
putative factors responsible for regulating apoptosis are
retained in the mammary gland. Closure of a single gland
of a mouse provoked an accumulation of milk which
resulted in changes in gene expression and apoptosis
within the closed gland but not of the remaining glands
of the same animal (Li et al. 1997; Marti et al. 1997).

Studies in a variety of species indicate that a regulatory
mechanism of milk secretion involves a chemical inhibitor
(Wilde et al. 1987; Wilde et al. 1989; Wilde et al. 1988;
Knight et al. 1994; Peaker et al. 1998). Experiments using
in vitro models have identified a small whey protein,
termed FIL (feedback inhibitor of lactation), that fulfils this
role (Wilde et al. 1987; Wilde et al. 1988; Rennison et al.
1993; Blatchford et al. 1998). FIL is synthesized by the
secretory epithelial cells of the mammary gland and is
secreted into the alveolar lumen along with other milk con-
stituents and acts on the synthesis and secretory pathway
by binding a putative receptor on the apical surface of the
epithelial cells (Rennison et al. 1993; Blatchford et al.
1998). It is proposed that FIL blocks translation of milk
protein transcripts (Rennison et al. 1993) and inhibits se-
cretion of milk constituents. Earlier studies in lactating
goats subjected to a reduced frequency of milking for an
extended period of time showed longer term effects on
mammary cell differentiation and proliferation (Wilde et
al. 1995). An inhibitory effect of FIL on milk protein gene
expression has been demonstrated in tissue culture models
and, interestingly, the response of the cell to reduce milk
protein gene transcripts was delayed for 3 d after the
commencement of treatment (Blatchford et al. 1998).
Therefore, it is conceivable that FIL may play a role in
down-regulation of expression of milk protein genes in fur

seal the mammary gland during foraging. It may be pro-
posed that the fur seal secretes a molecule with a similar
action to FIL that could be present in milk at higher con-
centrations when the lactating mother goes to sea. This
proposal would find support in evidence that the mam-
mary gland of the fur seal has 80% less milk volume whist
the fur seal is foraging (Arnould & Boyd, 1995b), and in
the histological examination which shows alveoli are not
distended with secretory products in lactating mammary
tissue on shore. Our preliminary data (K Cane and KR
Nicholas, unpublished observations) indicate a FIL-like
activity in fractionated fur seal milk. However, the level of
inhibitory activity measured was similar to that reported
for other species (Blatchford et al. 1998) and did not differ
in the milk from fur seals arriving on shore after foraging at
sea and after they had been on shore suckling their pups
for 1–2 d.

a-Lactalbumin, secreted in milk and involved in the syn-
thesis of lactose, has also recently been implicated in the
process of involution (Hakansson et al. 1995; Hakansson
et al. 1999; Baltzer et al. 2004). It has been suggested that
milk from otariid pinnipeds contains little or no lactose
(Schmidt et al. 1971; Dosako et al. 1983; Messer et al.
1988; Urashima et al. 2001), prompting the suggestion
that this protein may be absent or cannot function cor-
rectly to produce lactose in the fur seal. Recent studies in
our laboratory suggest these fur seals do secrete a modified
a-lactalbumin (C Reich, JA Sharp, JPY Arnould and KR
Nicholas, unpublished observations). However, it remains
to be determined whether this a-lactalbumin has any
capacity to stimulate apoptosis. It is interesting to speculate
that the absence of biologically active a-lactalbumin in
milk may be consistent with the absence of apoptosis in
the mammary gland of lactating fur seals during foraging
and that loss of this protein has provided evolutionary
pressure to alter the lactational strategy of the Otarrid
family of seals.

Systemic factors. Several studies in mice have shown that
both systemic and local signals generated by the accumu-
lation of milk regulate the mechanism of milk reduction
and the involution process (Quarrie et al. 1995; Travers
et al. 1996; Li et al. 1997; Peaker et al. 1998). One
scenario speculates that, after weaning, the systemic
down-regulation of either prolactin or glucocorticoid
levels result in the inhibition of intracellular signalling
cascades (Travers et al. 1996; Hennighausen et al. 1997).
This is supported by findings that show prolactin treat-
ment following litter removal in mice delays mammary
apoptosis (Feng et al. 1995) and exogenously adminis-
tered glucocorticoids can suppress mammary apoptosis
when nursing ceases (Feng et al. 1995; Lund et al. 1996).
Plasma prolactin in the Antarctic fur seal, measured using
a human prolactin standard, was elevated from 1–2 d
before parturition and peaked during the perinatal period at
0–3 d post partum. It then declined slowly throughout the
remainder of the perinatal period and remained at a low
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level. There was also no significant change in the hormone
levels between the lactating mammary gland of nursing
fur seals (Boyd, 1991). Therefore, if prolactin levels were
either maintained or increased in the foraging fur seal, a
prolactin survival cascade may be protecting the epi-
thelial cell of the mammary gland in the foraging fur seal
and preventing the gland from entering involution while
a local mechanism inhibits milk synthesis and secretion.

A potential role for glucocorticoids and IGF, as possible
mediators of survival signals in the mammary gland
(LeRoith et al. 1995; Lund et al. 1996; Farrelly et al.

1999), has not been examined in the fur seal, but may
provide a mechanistic role in protecting epithelial cells of
the mammary gland from involution (Feng et al. 1995;
Hadsell et al. 1996) as milk production decreases.

Mechanical stress. Local signals resulting from engorge-
ment, causing stress between the interaction of the extra-
cellular matrix (ECM) and alveoli epithelial cells, may
initiate new and independent signalling cascades that
activate the apoptotic programme during the first phase
of involution (Boudreau et al. 1995; Clark & Brugge,
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Fig. 3. Development of fur seal mammospheres. (A) phase contrast images of mammospheres on tissue culture treated plastic showing
immature and mature mammospheres; (B) electron micrograph of whole mounted mammosphere; (C) Haematoxylin and eosin
stained 5-mm section (5 mm) of a mammosphere showing central lumen (L). (D) a section (5 mm) of a mammosphere stained with
DAPI showing epithelial cell organization. Cellular types are shown by arrows (M) myoepithelial cell, (E) epithelial cells, and the
lumen is indicated by (L). (E) Prolactin-responsive expression of the b-lactoglobulin and a-s2 casein gene in fur seal mammospheres.
RT-PCR analysis of total RNA from mammospheres was used for detection of expression of the milk protein genes, BLG-I and
as2-casein after 24-h and 48-h exposure to different combinations of insulin (I ; 1 mg/ml), cortisol (F; 50 ng/.ml), prolactin (PRL;
1 mg/ml), oestrogen (E2; 25 pg/ml) and thyroid hormone (T3; 6.5 ng/ml).
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1995). To overcome this, it is likely that the fur seal
reduces its milk production while going to sea to forage,
to ensure the alveoli are not engorged, so limiting the
stress on alveoli.

It is postulated that if the BM becomes stretched and
alters the molecular interactions with adhesion receptors,
it may lead to reduced ligand-binding interacting sites
(Banes et al. 1995). For example, the levels of ligand-
bound b1 integrin are significantly decreased during the
transition from lactation to involution in mice (McMahon
et al. 2004) and direct attachment of epithelial cells to
the ECM occurs through basally located integrins (Alford
& Taylor-Papadimitriou, 1996; Weaver et al. 1997). The
affinity modulation of integrin activity and, therefore, a
potential inability to respond to survival signals from the
basement membrane may contribute to the induction
of apoptosis at the onset of involution. We have found
evidence that b1 integrin is up-regulated in the foraging
fur seal mammary gland compared with the on-shore
nursing mammary gland, and we predict this would assist
in counteracting any effects of the loss of the b1 integrin/
epithelial cell interaction if the gland was under any form
of mechanical stress during foraging (JA Sharp, unpub-
lished observations).

Indeed, a candidate mechanism for avoiding alveoli
collapse and cell death is up-regulation of ECM compo-
nents thus avoiding degradation of the ECM, preventing
the transduction of apoptotic signals (Blatchford et al.
1999). In this context, it is interesting that we have found
that fur seal mammary epithelial cells when grown in
culture have the unique capacity to secrete significant
amounts of ECM, which in turn leads to formation of
hormone-responsive mammospheres.

Fur seal in vitro mammary model

Fur seal mammospheres; an in vitro model to
study mammary function

The study of mammary gland differentiation and lactation
in vivo is difficult in species such as the fur seal where
access to mammary tissue is limited. Mammary cells cul-
tured in 3D to form alveoli-like mammospheres (Barcellos-
Hoff et al. 1989; Blatchford et al. 1999) offer an attractive
system in which to identify local factors that control the
susceptibility of lactating mammary epithelial cells to
apoptosis. We have prepared a mammary epithelial cell-
enriched fraction from the gland of a mid-pregnant fur
seal and these cells initially grow as a mono-layer when
introduced to either plastic or a suspended pliable mem-
brane. However, fur seal mammary cells secrete an ECM
which subsequently initiates formation of mammospheres
(Fig. 3). In contrast, mammary cells of other species
such as the cow, human and mouse do not secrete their
own matrix and require exogenous Matrigel for mammo-
sphere formation (Li et al. 1987; Barcellos-Hoff et al.
1989; Stoker et al. 1990; Ackland et al. 2001). Over a

period of 14 d fur seal mammospheres undergo cavitation
to form a lumen, presumably by initiating regulated
apoptosis of the cells within the structure (Blatchford et al.
1999) leaving a thin layer of epithelial cell on the surface
to resemble the normal mammary alveolus (Fig. 3C and D).
The basolateral polarity of the cells is maintained within
mammospheres, and as for mammospheres derived from
other species, fur seal mammospheres are capable of
mammary gland-specific function such as expression of the
blg-I and as2 casein genes in response to lactogenic hor-
mones (Fig. 3E). The use of the mammosphere model will
allow characterization of local factors to elucidate further
the mechanism of uncoupling milk production and invol-
ution in the lactating mammary gland of the fur seal.
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