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A similarity reduction of the Navier–Stokes equations for the motion of an infinite
rotating disk above an air-bearing table yields a coupled pair of ordinary differential
equations governed by a Reynolds number Re = Wh/ν and a rotation parameter
S=√2hΩ/W, where h is the float height, W is the air levitation velocity, Ω is the
disk rotation rate, and ν is the kinematic viscosity of air. After deriving the small-
and large-Reynolds-number behaviour of solutions, the equations are numerically
integrated over a wide range of Re–S parameter space. Zero-lift boundaries are
computed as well as the boundaries separating pure outward flow from counter-flow
in the gap. The theory is used to model the steady float height of a finite-radius
air hockey disk under the assumption that the float height is small relative to the
diameter of the disk and the flow is everywhere laminar. The steady results are
tested against direct numerical simulation (DNS) of the unsteady axisymmetric
Navier–Stokes equations for the cases where the disk rotates at constant angular
velocity but is either at a fixed height or free to move axially. While a constant shift
in the gap pressure conforms closely to that found using steady theory, the interaction
of the radial jet emanating from the gap with a vertical transpiration field produces
vortex rings which themselves propagate around to interact with the jet. Although
these structures diffuse as they propagate up and away from the gap, they induce a
departure from the steady-flow assumption of atmospheric pressure at the gap exit,
thus inducing small irregular axial oscillations of the floating disk.

Key words: aerodynamics

1. Introduction

Any review of studies of the flow between rotating disks must commence with the
work of Lance & Rogers (1962), who considered both co-rotation and counter-rotation.
Continuing work on this problem in the absence of wall transpiration, Mellor, Chapple
& Stokes (1968) and Holodniok, Kubicek & Hlavacek (1981) reported multiple cell
solutions, and a review of the large body of work in this area has been given by
Zandbergen & Dijkstra (1987).

† Email address for correspondence: weidman@colorado.edu
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40 P. D. Weidman and M. A. Sprague

Of particular interest here is the effect of transpiration though one porous disk
to another impermeable disk. Terrill & Cornish (1973) looked at the limit of small
blowing and suction between stationary disks and also considered various large
suction limits. Hinch & Lemaître (1994) studied blowing through a stationary disk
in order to predict the float height of levitated disks. Their similarity analysis, valid
under the assumption of uniform blowing velocity W along the stationary lower
plate, assumes the flow is steady and governed by the Reynolds number Re=Wh/ν,
where h is the plate separation distance and ν is the kinematic viscosity of the fluid.
For application to finite levitated disks, the uniform blowing assumption fails for
reservoir pressures near to that necessary for lift-off, and an important contribution
of their study is a lubrication analysis for the float height at near-lift-off reservoir
pressures. In figure 2 of Hinch & Lemaître (1994), experimental and theoretical float
heights of disks of diameter 7.9 cm and 11.9 cm are compared with some success.
In a subsequent theoretical study, Cox (2002) showed that non-axisymmetric flows
levitating stationary disks are possible based on Howarth’s (1951) three-dimensional
stagnation point flow ansatz; Cox finds the interesting feature that disks so levitated
can float at heights greater than for axisymmetrically levitated disks.

The initial motivation for this present investigation was an attempt to find the fluid
analogue of results presented by Farkas et al. (2003) concerning the terminal motion
of a disk spinning and sliding on a horizontal table under the action of uniform
Coulomb friction. In that rigid body mechanics problem the coupling between
the frictional force and torque results in a terminal motion for which sliding and
spinning stop simultaneously, with a terminal value of v/Rω = 0.643, where v is
the translational speed, R is the disk radius and ω is the rotation rate. Weidman &
Malhotra (2005, 2007) extended this work to study the motion of composite disks, and
thereby discovered situations for which (i) sliding stops first and the disk spins down
to rest, or (ii) spinning stops first and the disk slides to rest. These studies piqued
our interest in the sliding and spinning motion of an air hockey disk, where the
Coulomb friction force is replaced by aerodynamic resistance. Wang (1974) showed
that a similarity reduction of the Navier–Stokes equations exists for a circular porous
slider moving laterally on a flat plate, and the current study shows that a similarity
reduction exists for a disk rotating above an air hockey table. Unfortunately, however,
no similarity reduction of the Navier–Stokes equation for a disk both translating and
spinning above an air hockey table is available, and therefore studies of this problem
would require full numerical simulation of the governing partial differential equations.

Nevertheless, we consider the problem of a disk rotating at angular velocity
Ω above an air hockey table to be inherently interesting. Such flows have been
considered, to varying degrees, by Dorfman (1966), Jawa (1971), Nguyen, Ribault &
Florent (1975), and Wang & Watson (1979). Nguyen et al. (1975) reported multiple
solutions for this configuration. While a few specific results have been presented
in these papers, particularly in Dorfman (1966) and in Wang & Watson (1979),
no complete survey of the steady similarity solutions for an upper rotating plate
has been reported. It is important to note that all these similarity reductions of the
Navier–Stokes equations assume the flow to be steady.

For infinite horizontal plates we now, in addition to Re, include the effect of rotation
through the dimensionless parameter S=√2Ωh/W. The ultimate goal of the paper is
to use the similarity results to model a disk of finite radius levitated above an air
hockey table. As noted by Hinch & Lemaître (1994), this model for a disk of radius
a is expected to be a good approximation under the proviso h/2a� 1, with the further
assumption that the pressure at the edge and on top of the disk is atmospheric.
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Float height of a rotating air hockey disk 41

However, we understand that the interaction of the radial jet, emanating from the
gap, with the wall transpiration probably renders the flow unsteady in the outer
ambient flow field. This possibility is of concern, and we therefore implement
direct numerical simulation (DNS) of the unsteady, axisymmetric, incompressible
Navier–Stokes equations with the ability to model fluid–structure interaction (FSI).
We examine solutions for an air hockey disk rotating at fixed angular velocity that
is either at a fixed height or free to move axially. Our limited results indeed show
that the flow outside the gap is weakly unsteady for the reason cited above, and
this imparts small axial oscillations of the disk, from which we can estimate the
statistical-steady-state disk float height to compare with the steady flow model.

The presentation is as follows. Section 2 gives the formulation and numerical
solution of the steady problem along with low-Re series solutions and high-Re
asymptotics and other solution results. An outline of the unsteady DNS code and
results derived therefrom are given in § 3. A summary and discussion of results are
given in § 4.

2. Steady-problem formulation and asymptotics
Dimensional cylindrical coordinates (r∗, θ , z∗) with corresponding dimensional

velocities (u∗, v∗, w∗) are employed to study the steady axisymmetric flow between
a porous stationary disk at z∗ = 0 and a rotating disk at z∗ = h. The lower disk
has spatially uniform transpiration velocity W and the upper disk rotates at angular
velocity Ω . Axisymmetry implies that the flow depends only on coordinates (r∗, z∗)
which are scaled with the fixed plate separation distance h to obtain dimensionless
meridional coordinates r = r∗/h and η = z∗/h. Inserting the similarity ansatz of von
Kármán (1921) satisfying the continuity equation

u∗(r, η)= W
2

rf ′(η), v∗(r, η)= hΩrg(η), w∗(η)=−Wf (η) (2.1a−c)

into the Navier–Stokes equations yields the coupled pair of ordinary differential
equations

1
2

f ′2 − ff ′′ − S2g2 = α
2
+ Re−1f ′′′, (2.2a)

f ′g− fg′ = Re−1g′′, (2.2b)

in which a prime denotes differentiation with respect to η. Note that w∗(0) > 0
corresponds to blowing, which is the case of interest in this investigation. The
pressure field for this flow is

p∗ = p∗0 − ρW2

(
1
8

r2α + 1
2

f 2 + 1
Re

f ′
)

(2.3)

and the dimensionless parameters appearing in (2.2) are

Re= Wh
ν
, S=

√
2Ωh
W

. (2.4a,b)

While Re is the Reynolds number based on the transpiration velocity through the
stationary lower plate, we shall have recourse to the Reynolds number ReΩ =
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42 P. D. Weidman and M. A. Sprague

ReS/
√

2 = Ωh2/ν based on the rotation rate of the upper spinning plate. Here S
denotes the rotation parameter.

As usual in problems of this type, the radial pressure gradient parameter α is
an eigenvalue that must be determined during the course of solution. The boundary
conditions prescribing blowing through the lower plate and rotation of the upper
impermeable plate are

f (0)=−1, f ′(0)= 0, g(0)= 0, (2.5a)
f (1)= 0, f ′(1)= 0, g(1)= 1. (2.5b)

Numerical integration of (2.2) obtained by shooting from the upper to the lower
plate requires variation of f ′′(1), g′(1) and α to satisfy the three conditions in (2.5a).
Following Cox (2002), α may be eliminated by differentiating (2.2a) to obtain

− ff ′′′ − 2S2gg′ = Re−1f ′′′′. (2.6)

Integration of this fourth-order equation requires a guess for f ′′′(1) in lieu of α;
evaluation of (2.2a) at η = 1 shows that the two parameters are related via the
equation

f ′′′(1)=−Re
(α

2
+ S2

)
. (2.7)

Numerical solutions are facilitated by accurate initial guesses for the shooting
parameters. These are obtained using the small-Re and large-Re behaviours determined
in the following sections.

2.1. Low-Reynolds-number behaviour
Extending the analysis of Hinch & Lemaître (1994) to include the effect of upper disk
rotation, we seek the low-Reynolds-number solution behaviour of (2.2) in the form

f (η)= f0(η)+ Ref1(η)+ · · · , (2.8a)
g(η)= g0(η)+ Reg1(η)+ · · · , (2.8b)

α = 1
Re
α0 + α1 + · · · (2.8c)

to obtain the O(Re−1) problem

f ′′′0 + 1
2α0 = 0, g′′0 = 0, (2.9a)

f0(0)=−1, f ′0(0)= 0, g0(0)= 0, (2.9b)
f0(1)= 0, f ′0(1)= 0, g0(1)= 1, (2.9c)

and the O(1) problem

f ′′′1 + 1
2α1 = 1

2 f ′20 − f0 f ′′0 − S2g2
0, (2.10a)

g′′1 = f ′0g0 − f0g′0, (2.10b)
f1(0)= 0, f ′1(0)= 0, g1(0)= 0, (2.10c)
f1(1)= 0, f ′1(1)= 0, g1(1)= 0. (2.10d)

The solution to boundary-value problem (2.9)

f0(η)=−(1− η)2(2η+ 1), g0(η)= η, α0 = 24 (2.11a−c)
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gives a linear azimuthal shear flow superposed on the stationary disk solution. At
this leading order there is no dependence on the rotation parameter S. Inserting
solutions f0(η) and g0(η) into boundary-value problem (2.10) and solving the O(1)
system gives

f1(η)=− 1
70
η2(1− η)2(2η3 − 3η2 − 8η+ 22)− S2

60
(2− η)(1− η)η2, (2.12a)

g1(η)= 1
20η(1− η)(4η3 − η2 − η− 11), (2.12b)

α1 = 3
5

(
36
7 − S2

)
. (2.12c)

The results for f0(η), g0(η), f1(η) and g1(η) are in agreement with Wang & Watson
(1979). The above results are used to obtain the low-Reynolds-number behaviours of
the relevant shear stress parameters and the radial pressure gradient given by

f ′′(1)∼−6− 1
5

(
13
7
+ S2

2

)
Re+O(Re2), (2.13a)

f ′′(0)∼ 6− 1
5

(
22
7
+ S2

3

)
Re+O(Re2), (2.13b)

g′(1)∼ 1+ 9
20 Re+O(Re2), (2.13c)

α ∼ 24
Re
+ 3

5

(
36
7
− S2

)
+O(Re). (2.13d)

The influence of disk rotation S on the radial pressure gradient parameter is now
apparent in (2.13d). For S = 0, the above results agree with the stationary disk
results of Hinch & Lemaître (1994) and Cox (2002). We note that Dorfman (1966)
normalized his variables differently to obtain an expansion in terms of ReΩ , so a
direct comparison with his low-ReΩ expansion results is not readily made.

2.2. High-Reynolds-number asymptotics
At large Re we are faced with matching the boundary layer flow on the rotating disk
to the outer inviscid flow which appears since the bottom plate does not rotate; see
Wang & Watson (1979). The boundary layer is intensified by the rotating disk which
centrifuges fluid radially outward, in what would be a von Kármán type boundary
layer of thickness O(Re−1/2

Ω ) if there were no transpiration through the lower boundary.
Both Dorfman (1966) and Wang & Watson (1979) performed the leading-order

matching of solutions between the boundary layer and the outer flow, but in a manner
different from Hinch & Lemaître (1994) which is followed here. We anticipate that
the solution outside the boundary layer will take the form

f (η)= f0(η)+ Re−1/2f1(η)+ · · · , (2.14a)
g(η)= g0(η)+ Re−1/2g1(η)+ · · · , (2.14b)

α = α0 + Re−1/2α1 + · · · . (2.14c)

This outer flow must satisfy all boundary conditions on the lower surface and
impermeability on the upper surface. With this in mind, insertion of expansions (2.14)
into the governing (2.2) gives the leading-order equations and boundary conditions
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1
2

f ′20 − f0f ′′0 − S2g2
0 =

α0

2
, (2.15a)

f ′0g0 − f0g′0 = 0, (2.15b)
f0(0)=−1, f ′0(0)= 0, g(0)= 0, f0(1)= 0, (2.15c)

and at next order we find

f ′0f ′1 − f0f ′′1 − f1f ′′0 − 2S2g0g1 = α1

2
, (2.16a)

f ′0g1 + f ′1g0 − f0g′1 − f1g′0 = 0, (2.16b)

f1(0)= 0, f ′1(0)= 0, g1(0)= 0. (2.16c−e)

The solution of (2.15) is readily obtained as

f0(η)= η2 − 1, g0(η)= 0, α0 = 4. (2.17a−c)

Equation (2.17) gives f ′0(1) = 2 and g0(1) = 0, so in order to satisfy the no-slip
conditions in (2.5b) we need an inner solution adjacent to the upper wall. With
stretched coordinate ξ pointing downward from the upper wall, leading-order inner
expansions

ξ = Re1/2(1− η), f ∼ Re−1/2F(ξ), g∼G(ξ) (2.18a−c)

are inserted into (2.2), using α0= 4. One thereby obtains the boundary-value problem

Fξξξ =− 1
2 F2

ξ + FFξξ + S2G2 + 2, (2.19a)
Gξξ = FGξ − FξG, (2.19b)

F(0)= 0, Fξ (0)= 0, G(0)= 1, (2.19c−e)

Fξ ∼−2, G→ 0, ξ→∞. (2.19f−h)

Behaviours (2.19f−h) are used to match the inner boundary layer solution to the outer
inviscid solution. Numerical solutions of (2.19) at selected values of S in the range 06
S 6 50 have been obtained using a fourth-order Runge–Kutta shooting routine, details
of which are given in § 2.3. This furnishes numerical values of Fξξ (0) and Gξ (0) and
further provides the far-field behaviour

F(ξ)∼−2ξ + δ(S). (2.20)

Plots of the variation of Fξξ (0), Gξ (0) and δ with S are provided in figure 1. The S=0
values are Fξξ (0) = −2.623875, Gξ (0) = −1.074496 and δ = 1.137804, the first and
last of which are in agreement with the stationary disk results of Hinch & Lemaître
(1994). Matching the outer solution f (η) as η→1 to the inner solution F(ξ) as ξ→∞
gives f1(1)= δ. Now inserting the solutions for f0(η) and g0(η) into (2.16a,c), we find
the boundary-value problem for f1(η) as

(η2 − 1)f ′′1 − 2ηf ′1 + 2f1 =−α1

2
(2.21a)

f1(0)= 0, f ′1(0)= 0, f1(1)= δ. (2.21b−d)
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FIGURE 1. Values of (a) Fξξ (0), (b) Gξ (0), and (c) δ as a function of rotation parameter
S for asymptotic matching to the outer flow.

It is evident from (2.16b) that g1(η) = Kf0(η) which must vanish in order to satisfy
(2.16e) so that K = 0. The solution of (2.21) is

f1(η)= δ η2, α1 = 4 δ (2.22a,b)

where δ = δ(S). Summarizing results to this point we have

f (η)∼ (η2 − 1)+ Re−1/2δ η2, (2.23a)
g(η)= o(Re−1/2), (2.23b)
α ∼ 4(1+ Re−1/2δ), (2.23c)

where now Fξξ (0), Gξ (0) and δ are functions of S.
The radial pressure gradient and shear stress parameters are then found to possess

the following asymptotic behaviours as Re→∞:

f ′′(1)∼ Re1/2Fξξ (0)+ o(Re1/2), (2.24a)
f ′′(0)∼ 2(1+ Re−1/2δ(S))+O(Re−1), (2.24b)

g′(1)∼−Re1/2Gξ (0)+ o(Re1/2), (2.24c)
α ∼ 4(1+ Re−1/2δ(S))+O(Re−1). (2.24d)
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2.3. Steady solutions
Numerical solutions of (2.6) and (2.2b) are obtained using multiple parameter shooting
of the Numerical Recipes (Press et al. 1989) code ODEINT for integration and
MNEWT for updating successive values of the initial guesses, setting TOLX and
TOLF in MNEWT at 10−6 and accuracy in ODEINT to 10−6. Values of the shooting
parameters f ′′(1), f ′′′(1) and g′(1) were estimated from the results derived in the
previous section and varied until boundary conditions (2.5a) were attained to better
than six decimal places. Decreasing the above tolerance parameters to 10−7 affected
final shear stress and α values to only one part in 105 or less. At low values of Re for
fixed values of S, convergence is readily obtained, even if the initial guesses are not
accurate. At high Reynolds numbers, however, it is imperative to have an accurate
initial guess for the shooting parameters. Note that estimates of f ′′′(1) are readily
calculated, at each value of S, using (2.7) and the high-Re asymptotic behaviour for
α given in (2.24d).

Solutions have been obtained over a range of Reynolds numbers sufficient to exhibit
matching to the low-Re and high-Re asymptotics for rotation parameters in the range
06 S6 12. In addition, we have calculated solutions for two special values of S. The
first is the Dorfman (1966) value Sd = 5

√
2 and the second is the critical value Sc =

7.6399, for which the α curve first touches down to zero at Rec= 1.950. In the plots
to be displayed, some solution curves at low and high S are omitted for clarity of
presentation. Figure 2 displays the radial pressure gradient parameter in which it may
be seen, at sufficiently high S, that regions of α<0 develop. The upper curve for S=0
is equivalent to that found by Hinch & Lemaître (1994) in the absence of disk rotation.
Results for the radial shear stress f ′′(0) on the bottom wall are shown in figure 3 along
with its low-Re and high-Re behaviours. Here again, for sufficiently large S, regions of
f ′′(0)< 0 develop. Results for the radial shear stress f ′′(1) at the upper wall are shown
in figure 4 along with its low-Re and high-Re behaviours. Of particular importance for
studying the spin-down behaviour of a rotating disk is the azimuthal shear stress g′(1)
at the upper plate displayed in figure 5, again with corresponding low-Re and high-Re
behaviours.

All solutions have g(η) > 0. Hence, in the nomenclature of Mellor et al. (1968),
these are regions of positive Re. In their parlance, regions of Re negative are those
for which g(η) has a change of sign somewhere between the disks. Thus one cannot
expect to find the effect of blowing on the 2-cell and 3-cell solutions found by
Mellor et al. (1968) since they occur only when g(η) exhibits a change in sign. An
investigation into these flows would be best undertaken using another normalization
of the governing equations that would have ReΩ appearing in (2.2) in lieu of Re,
which would account for the blowing only through the wall transpiration boundary
condition. However, exploration of multiple solutions of this problem, though certainly
interesting, is not the goal of this investigation.

The regions of negative α and f ′′(0) obtained from the similarity solution have
interesting implications. Lift-off is not possible for α6 0. For f ′′(0)< 0 there is radial
inflow near the lower boundary, whilst for f ′′(0) > 0 the flow is everywhere radially
outward; these will be called regions of counter-flow and outward flow, respectively.
Of course, this is just the motion in a meridional section, and one must bear in mind
that the flow is fully three-dimensional.

Additional computations were performed to accurately depict the boundaries α = 0
and f ′′(0) = 0. Numerical solutions in these regions were carried out at smaller
increments of S and the exploration was extended up to S= 20. The two boundaries
in question are shown in the Re–S plane in figure 6(a). The turning point of the
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FIGURE 2. Variation of radial pressure gradient parameter α with Reynolds number Re
for selected values of S. Sd = 5

√
2 is the value considered by Dorfman (1966) and the

solid circles are his computed results. The critical value Sc = 7.6399 is that for which α
first becomes zero at Rec = 1.950.

0

1

2

3

4

5

6

–1

–2
102 10310110010–1

Re

0

3.5

6.5

8

9

10

11

2

5

FIGURE 3. Variation of lower-wall radial shear stress parameter f ′′(0) with Reynolds
number for selected values of S. Asymptotics at low and high values of Re are shown
as dashed lines.

α = 0 boundary lies at Re = 1.950, S = 7.6399 and that for the f ′′(0) = 0 boundary
is at Re = 2.625, S = 9.603. It is a simple exercise to find the low-Re behaviours
of the lower branches of these curves by setting the expressions for α and f ′′(0) in
(2.13b,d) equal to zero to obtain

Re= 280
7S2 − 36

(α = 0) (2.25a)
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FIGURE 4. Variation of upper-wall radial shear stress parameter f ′′(1) with Reynolds
number for selected values of S. The low-Re and high-Re behaviours are shown as dashed
lines.

0

5

2

10

15

20

25

30

35

40

102 10310110010–1

Re

FIGURE 5. Variation of upper-wall azimuthal shear stress parameter g′(1) with Reynolds
number for selected values of S. The low-Re and high-Re behaviours are shown as dashed
lines.

and

Re= 630
7S2 + 66

(f ′′(0)= 0). (2.25b)

These are shown as the dashed and dot-dashed lines in figure 6(a). Both of these
boundaries emanate from the origin in ReΩ–Re parameter space. This is readily seen
by substituting S2= 2Re2

Ω/Re2 in the above relations and solving for ReΩ , an exercise
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FIGURE 6. Boundaries separating (i) positive and negative radial pressure gradient
parameter α and (ii) outward flow and counter-flow regions of radial velocity shown in (a)
the Re–S and (b) the ReΩ–Re planes; the small-Re asymptotics are shown as dashed and
dot-dashed lines, respectively. The turning point in (a) for boundary (i) is Re = 1.9225,
S= 7.631 and that for boundary (ii) is Re= 2.607, S= 9.594.

that leads to the expressions

ReΩ =
√

2Re
(

9
7 Re+ 10

)
(α = 0) (2.26a)

and
ReΩ =

√
3Re

(
15− 11

7 Re
)

(f ′′(0)= 0). (2.26b)

These results are compared with the numerically determined boundaries in figure 6(b).
The dimensionless meridional streamfunction ψ =ψ∗/Wa2 for the similarity flow is

ψ =− 1
2 r2f (η), (2.27)
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FIGURE 7. Meridional streamline plots at selected values of ψ showing examples of (a)
outward flow at Re= 2 for S= 5 and (b) counter-flow at Re= 2 for S= 15; the dashed
line at η= 0.390 is the height of zero radial velocity.

from which one can compute the non-dimensional radial and axial velocities (−r−1ψz,
r−1ψr), respectively. In our variables, Mellor et al. (1968) define a ‘cell’ as the flow
bounded by planes of constant η where f =0, and therefore includes only recirculating
fluid. Thus all the flows determined here are not ‘cells’ but rather may be considered
as ‘half-cells’, since when the flow is reflected about η = 0 one obtains a full cell.
However, these half-cells may or may not have reverse meridional flow as shown in
the two example streamline plots in figure 7. Figure 7(a) exhibits an outward flow at
Re= 2 and S= 5 while figure 7(b) shows a counter-flow at Re= 2 and S= 15. The
horizontal dashed line in figure 7(b) is the height η = 0.390 of zero radial velocity,
concomitant with the interior points of vertical streamline tangents.

3. Unsteady-flow numerical simulations
The steady theory is now tested with numerical computation of the axisymmetric

unsteady flow for hockey disks rotating at a fixed angular rotation rate. We begin with
the float height obtained from the steady flow model in § 3.1. The numerical method
described in § 3.2 is followed by a presentation of results in § 3.3 for a disk floating
at a fixed height. These results motivate our study in § 3.4 for a freely floating disk.

3.1. Steady float height
Using steady theory assuming h/2a� 1 so that the flow under a finite disk of radius
a approximates that under an infinite plate, the pressure (2.3) on the underside (η= 1)
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S α W (cm s−1) Ω (rad s−1) h (cm)

0 4.88824 24.98088 0.0 0.232178
1 4.85195 25.02746 76.36434 0.231745
2 4.75337 25.15622 154.30424 0.230599
3 4.61481 25.34297 234.90561 0.228860
4 4.45702 25.56347 318.70320 0.226878
5 4.29377 25.80395 405.88149 0.224772
6 4.13263 26.05189 496.46279 0.222633

TABLE 1. For fixed Re=40 and selected integer values of S, the values of α are computed.
From these dimensionless parameters the values of W, Ω and h at the chosen values of
m, a, ρ, ν and g are determined.

of the rotating disk where f (1)= f ′(1)= 0 is given as

p∗ = p∗0 −
ρW2

8
r2α. (3.1)

Evaluating this pressure at the corner of the disk r∗= a where the pressure is assumed
to be atmospheric, p∗a, and subtracting from (3.1) gives

p∗ − p∗a =−
ρW2

8

[(
r∗

h

)2

−
(a

h

)2
]
α. (3.2)

Assuming atmospheric pressure in the steady von Kármán layer above the disk
furnishes the pressure drop across the disk as

1p∗ =−ρW2

8h2
(r∗2 − a2)α. (3.3)

Integration of this pressure drop over the surface of the spinning disk provides the
aerodynamic lift; setting this equal to the disk weight mg furnishes the steady float
height

h=
√

πρW2a4

16mg
α1/2. (3.4)

Numerical computations are compared with some of the steady model results listed
in table 1 for a lightweight Lexan disk of mass m=18 g and radius a=6 cm levitated
in air of density ρ = 0.001225 g cm−3 and kinematic viscosity ν = 0.145 cm2 s−1

using gravitational constant g= 980 cm s−2.

3.2. Numerical method
For an investigation of unsteady flow in the gap and surrounding the disk, we
performed direct numerical solutions of the axisymmetric incompressible-flow
Navier–Stokes equations. For these computations, the disk thickness was taken as
0.12 cm. Simulations were performed with the open-source Nek5000 computational
fluid dynamics program, which is based on the spectral finite element method and
is described in detail elsewhere (Fischer 1997). The so-called PN/PN-2 formulation
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FIGURE 8. Mesh in the neighbourhood of the edge of the disk. Each element is composed
of 20 × 20 nodes, and element boundaries are indicated by clustering of horizontal and
vertical lines.

was employed, where the pressure field was solved with polynomial basis functions
that are two orders lower than those used for the velocity field. Time integration was
second-order accurate and semi-implicit.

For direct numerical solutions with FSI, the disk was modelled as a rigid body
with constant rotation rate but was free to move in the axial direction. An arbitrary
Eulerian–Lagrangian (ALE) approach was used in the fluid for the deforming mesh.
Axial motion of the disk was calculated with forward Euler time integration. The
total vertical force acting on the disk was calculated as that due to gravity plus the
integrated pressure over the top and bottom surfaces, and includes the vertical shear
force on the edge.

The computational domain was 0 6 r∗ 6 20 cm, 0 6 z∗ 6 20 cm. Mesh refinement
was chosen to provide grid-independent solutions. Figure 8 shows the fluid elements
in the vicinity of the edge of the disk. The spectral elements were employed basis
functions of 19th order, i.e. each element had 20× 20 nodes. The entire model had
about 3.9× 105 nodes.

All simulations were initialized with disk height h= 0.2317 cm, which corresponds
to the predicted steady-state height of the S = 1 case as described above. The fluid
and disk were initialized under quiescent conditions. The disk rotation velocity and
the bottom-boundary transpiration velocity were ramped up to their steady values over
the initial 10−3 s period. An outflow boundary condition was employed at the top
boundary. The lateral boundary had a vertical velocity condition. Table 2 shows the
time-step sizes employed in each calculation. For increasing values of S, the time-
step size must decrease in order to achieve numerically stable solutions. As discussed
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S 1t (s)

0 7.5× 10−7

1 3× 10−7

3 1× 10−7

5 5× 10−8

TABLE 2. DNS time step sizes employed for calculations at the indicated values of S.

below, the FSI calculations need to be evolved to at least t= 0.5 s for good statistics.
The small time steps required by the fluid solver can thus require millions of time
steps, which makes these simulations computationally expensive.

3.3. Unsteady results with fixed disk height
We first compare solutions from the unsteady DNS code with the steady-flow model,
taking the nominal case Re= 40 and S= 1 and keeping the disk height fixed at the
value obtained from the steady model shown in table 1. A comparison of steady
and DNS radial and azimuthal velocity distributions across the gap at mid-radius
r∗ = 3.0 cm is shown in figure 9; here the steady solutions are plotted as continuous
lines and DNS results are plotted as solid dots corresponding to nodal values. The
velocity distributions as calculated by the DNS code are steady over about 95 % of
the gap region. The excellent agreement between the solutions serves to verify our
methodology. A comparison of the radial pressure distributions on the bottom and
top surfaces of the rotating disk is given in figure 10, where the solid lines are
the steady-model pressures and the dot-dashed lines are a snapshot of the unsteady
DNS results. It is clear that the DNS pressures lie above those of the steady model
both underneath and on top of the floating disk. However, while the DNS pressure
distribution over the upper disk surface (lower dot-dashed line) is unsteady, the
corresponding pressure distribution over the lower disk surface (upper dot-dashed
line) is virtually time-independent, as verified by examining pressure snapshots
at multiple time instances. Further, the DNS lower-surface pressure distribution is
identical in shape to the pressure distribution obtained from the steady model. To
effect a comparison between these two pressure distributions, we have shifted the
steady-model pressure distribution up to match the DNS pressure distribution at r∗= 0
and plotted only the outer half of that shifted distribution. These two pressures are
identical up to r∗ ' 5.7 cm, beyond which the DNS pressure tends steeply to its
edge value of −13.4 dyn cm−1 (not easily visible in figure 10). These comparisons
support the conclusion that over 95 % of the gap the flow is accurately given by the
steady flow model.

Figure 11 shows the history of total lift L(t) on the disk for the Re = 40, S = 1
configuration (with fixed height) and is compared with the disk weight plotted as
the dashed line. The lift force reaches a statistically steady state (SST) of about
20 000 dyn – significantly greater than the disk weight. This disparity motivates our
DNS–FSI study to determine the correct disk height in unsteady flow.

3.4. Unsteady fluid–structure interaction results
FSI direct numerical solutions were performed for S = 0, 1, 3, 5. The associated
time histories of disk heights are shown in figure 12. As described above, all
computations were initiated with zero axial velocity at the initial height h=0.2317 cm
corresponding to the initial steady disk height for Re = 40, S = 1. After strong
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FIGURE 9. Comparison of radial and azimuthal velocities at r∗ = 3.0 cm for S = 1
obtained from the steady theoretical analysis (solid lines) and those computed from the
DNS code with disk height fixed (solid dots).
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FIGURE 10. Comparison of pressures under and above the disk at S = 1 for fixed disk
height corresponding to Re= 40 obtained from the steady theoretical analysis (solid lines)
and those captured from the DNS code (dot-dashed lines). The solid line superimposed on
the DNS pressure distribution on the lower disk surface is the steady pressure distribution
shifted up to match pressures at r∗ = 0.

initial rapid deviations from this initial height, the disk is seen to reach an SST.
The horizontal lines plotted in each panel in figure 12 are the average height and
the period over which the averaging was performed. The computational demands
associated with small time steps as described above, which increase with increasing
S, have limited the maximum simulated time in each case. However, in the four cases
shown, the maximum simulated time was deemed sufficient for capturing an accurate
average disk height.
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FIGURE 11. Evolution of the lift computed from the DNS code at Re= 40 and S= 1 for
fixed disk height. The simulation is compared with the disk weight (17 640 dyn) shown
by the dashed line.
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FIGURE 12. Evolution of floating-disk heights at Re = 40 for spin-rate parameters (a)
S= 0, (b) S= 1, (c) S= 3 and (d) S= 5 showing estimates for the statistically steady-state
heights as dashed lines. All computations were initiated with zero axial velocity at height
h0 = 0.2317 cm shown by the solid dots at t= 0.
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FIGURE 13. Comparison of the steady float heights (solid diamonds) with the statistically
steady-state heights (solid dots) found using the FSI code. Error bars for the unsteady
results are ± one standard deviation of the heights calculated during the periods indicated
by the horizontal lines in figure 12.

These SST heights estimated from the FSI simulations are compared with the float
heights obtained from the steady model in figure 13. Error bars for the unsteady
results are ± one standard deviation of the heights calculated during the periods
indicated by the horizontal lines in figure 12. The unsteady results from the FSI
computations give SST heights consistently above the steady-model heights with
deviations ranging from 6.6 % at S= 0 to 7.5 % at S= 5.

Colour snapshots of the flow are provided in figure 14 at times t=0.2,0.3,0.4,0.5 s.
The heights at these times are in the statistical steady-state region beyond the start-up
from the given initial height. A movie of the flow reveals the ejection of a vortex
ring on start-up composed primarily of vorticity in the jet shed from the lower disk
surface, but there is also a weak component of opposite-sign vorticity shed from the
von Kármán boundary layer that develops on the upper surface. A movie of the flow
shows that the start-up vortex propagates around to impact with the now developed
radial jet, thereby forming a vortex ring pair. As time evolves, other vortex–vortex
and vortex–jet interactions have occurred to produce the complicated flow field seen
at t= 0.2 s in figure 14(a). As the flow field evolves further, one has the impression
that the mean flow in the meridional plane resembles an anticlockwise circulatory
motion above the outer half of the disk.

4. Summary and discussion
A complete survey of steady solutions for an infinite disk rotating above an

air-bearing table is obtained using a similarity reduction of the Navier–Stokes
equations. Numerical integration of the coupled pair of ordinary differential equations
yields the radial pressure gradient and wall shear stress parameters as a function
of the Reynolds number Re for selected values of the rotation parameter S, which
are compared with their low-Re series approximations and high-Re asymptotics. It is
interesting to find that the present numerical values of the pressure gradient parameter
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(a)  (b)

(d )(c)

FIGURE 14. (Colour online) Snapshots of the meridional-velocity magnitude as calculated
using the fluid–structure interaction code at four times after the disc height has developed
to statistically steady state: (a) t= 0.2, (b) t= 0.3, (c) t= 0.4, (d) t= 0.5.

α compare remarkably well with three solution values on the curve S = 5
√

2 in
figure 2 computed long ago by Dorfman (1966).

A detailed analysis of the Re–S boundaries separating lift from no lift and regions of
outward flow and counter-flow is given. Meridional streamlines exhibiting an outward
flow solution and a counter-flow solution are presented. For application of these results
to a finite-radius air hockey disk, the Re–S region in which α 6 0 would imply that
the disk does not lift off. We speculate on the flow field in this event that the disk
remains attached to the lower wall: the upward propagating stream passing by the rim
of the disk would form successive like-sign vortex rings, which themselves interact
with each other and the top of the disk in a complicated manner.

The steady model for the float height of a finite-radius disk rotating at constant
angular velocity is predicated on four assumptions: (i) the float height is small
compared to the disk diameter so that the similarity solution is a good approximation
to the flow in the gap, (ii) the pressures at the edge of the gap and above the disk
are atmospheric, (iii) the flow is everywhere laminar and (iv) steady.

Concerning assumption (iii), whether the flow is laminar or turbulent above the
disk is rather a moot point for this study, where the disk is presumed to rotate at
constant angular velocity, since turbulence in the von Kármán boundary layer would
not seriously affect the pressure distribution there. According to experiments reported
in Schlichting (1960), the flow in a steady von Kármán boundary layer, presumed to
reside above the rotating disk, remains stable for Reynolds numbers Re< Rec where
Re= a2Ω/ν and Rec = 3× 105.
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Turbulent flow in the gap, however, is a concern and, although much is known about
the transition to turbulence in rotor–stator configurations, we are not aware of studies
of the transition to turbulence beneath freely floating disks. We believe that the gap
flow in the present numerical simulations the flow is laminar since the gap Reynolds
number Re = 40 is relatively small. Moreover, while turbulent flow in the gap is
expected to be important for determining the float height of a disk under constant
rotation, it is deemed even more important for studies of the spin-down of a disk
from some initial rotation rate Ω0 where one must take into account the unsteady disk
torque due to azimuthal friction both underneath and above the disk.

We now analyse the flow physics as deduced from the direct numerical simulations
of the unsteady axisymmetric Navier–Stokes equations performed for a finite-radius
disk rotating at constant angular velocity Ω . We examined in detail a DNS solution
where the disk was held at a fixed height at Re= 40, S= 1 as well as DNS solutions
from FSI calculations for S= 0, 1, 3, 5 where the disk is free to move axially. (Note
that at the highest rotation rate considered, Ω ' 406 rad s−1 at S= 5, one finds Reu
1× 105 < Rec so the flow in a steady von Kármán boundary layer remains laminar.)

The DNS fixed-height calculations indeed exhibit unsteady flow, which results in the
average unsteady lift force being somewhat greater than the height (equal to the disk
weight) predicted by steady theory; see figure 11. However, the velocity distributions
in the gap matched the infinite-disk steady-flow predictions over 95 % of the disk
radius. The same agreement in this region of flow in the gap was found between the
unsteady and steady pressure distributions to within a constant.

Fluid–structure interaction simulations were performed to understand the true
evolution of disk height in axisymmetric flow. While the unsteady vortical nature
of the flow causes the disk to undergo relatively small axial oscillations, the SST
height is found to be, on average, about 7 % greater than that predicted for steady
flow in each of the four cases considered. Snapshots of this flow obtained from a
movie for Re = 40, S = 1 (URL http://michaelasprague.com/s1_movie.avi) reveal a
complicated interaction of counter-rotating vortex rings with the upper surface of the
disk and the radial jet emanating from the exit of the gap. As shown by Saffman
(1978), the assumption of axisymmetry of the vortex rings will break down when
the vortex-ring Reynolds number (dependent on parameters forming a vortex ring by
the piston-in-cylinder method) is sufficiently large. In these instances, the ring will
break up into an integer number of waves around the ring circumference. This ring
instability feature, though perhaps an interesting detail of the flow, is not expected to
significantly change the SST heights calculated in the FSI numerical simulations.

The above numerical FSI calculations lead to the conclusion that the discord
between the SST float heights and the steady-model float heights owes its existence
to the disparity in pressure at the edge of the gap. We saw excellent agreement,
to within a constant, between the steady-flow similarity solution and unsteady DNS
calculation over a range of S. However, the vortex generation that occurs as the jet
impinges on the upward flow outside the gap induces a departure from the steady-flow
assumption of atmospheric pressure at the gap exit.
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