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This paper concerns the generation of large-scale flows in forced two-dimensional
systems. A Kolmogorov flow with a sinusoidal profile in one direction (driven by a
body force) is known to become unstable to a large-scale flow in the perpendicular
direction at a critical Reynolds number. This can occur in the presence of a β-effect
and has important implications for flows observed in geophysical and astrophysical
systems. It has recently been termed ‘zonostrophic instability’ and studied in a variety
of settings, both numerically and analytically. The goal of the present paper is to
determine the effect of magnetic field on such instabilities using the quasi-linear
approximation, in which the full fluid system is decoupled into a mean flow and
waves of one scale. The waves are driven externally by a given random body force
and move on a fast time scale, while their stress on the mean flow causes this
to evolve on a slow time scale. Spatial scale separation between waves and mean
flow is also assumed, to allow analytical progress. The paper first discusses purely
hydrodynamic transport of vorticity including zonostrophic instability, the effect
of uniform background shear and calculation of equilibrium profiles in which the
effective viscosity varies spatially, through the mean flow. After brief consideration
of passive scalar transport or equivalently kinematic magnetic field evolution, the
paper then proceeds to study the full magnetohydrodynamic system and to determine
effective diffusivities and other transport coefficients using a mixture of analytical and
numerical methods. This leads to results on the effect of magnetic field, background
shear and β-effect on zonostrophic instability and magnetically driven instabilities.

Key words: instability, MHD and electrohydrodynamics

1. Introduction
The aim of this paper is to analyse zonostrophic instability and transport in planar

forced magnetohydrodynamic (MHD) systems. The term zonostrophic turbulence or
zonation was introduced in Galperin et al. (2006), referring to the generation of
strong zonal flows or jets in two-dimensional turbulent flow driven by an external
body force. Srinivasan & Young (2012) discuss the interaction of mean flows and
eddies in forced fluid dynamical systems, and term the formation of jets ‘zonostrophic
instability’. Such jets are widely observed in the Earth’s atmosphere and oceans, in the
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laboratory and in simulations, and most famously in the banded structures of Jupiter;
see, for example, Vallis & Maltrud (1993), Heimpel, Aurnou & Wicht (2005), Rotvig
& Jones (2006), Read et al. (2007), Scott & Polvani (2007), Berloff, Kamenkovich
& Pedlosky (2009) and Galperin et al. (2014). With the identification of this robust
fluid dynamical phenomenon goes an ever-expanding literature which we can only
outline in what follows.

Instability of a forced fluid flow to large-scale zonal flows was first identified in
the classic work of Meshalkin & Sinai (1961), who considered Kolmogorov flow
u = (0, sin x) in the plane, with viscous dissipation balanced by an imposed body
force. Above a critical Reynolds number Rec = 2−1/2, the flow becomes unstable to
x-directed sinusoidal motion, whose scale diverges as Rec is approached from above.
Extensions incorporate the effect of nonlinearity in a multiple-scale framework, and a
β-effect corresponding to an imposed background vorticity gradient; see Frisch, Legras
& Villone (1996) and Manfroi & Young (1998, 2002). In the case of zonostrophic
instability of a Kolmogorov flow, the principal effect of nonlinearity is that the zonal
flows evolve to increasing spatial scales, a process that is then halted if the parameter
β is non-zero.

It became apparent that zonostrophic instability is widespread in rotating physical
systems, and in laboratory and numerical simulations, and is broadly independent
of the way in which the fluid is driven, for example an imposed body force in a
simulation, or convection in a giant planet. With this, further theoretical understanding
developed. One route is based on the conservation of potential vorticity (PV) in ideal
flows, leading to an understanding of the development of zonal flows in terms of
what is known as the PV Phillips effect (Dritschel & McIntyre 2008). Flow evolution
naturally leads to inhomogeneities as PV mixing tends to be suppressed in regions
of high PV gradient. This negative viscosity or anti-friction effect, maintaining
and sharpening gradients, is further studied in high-Reynolds-number simulations
(Dritschel & Scott 2011; Scott & Dritschel 2012) and variational principles used to
generate possible jet-like structures (Dunkerton & Scott 2008). In these studies there
is the assumption that, although the true system is forced and dissipative, these are
weak or lower-order effects, and it is the ideal evolution or at least the corresponding
conservation laws that determines the evolution of zonal flows. We will not discuss
these approaches further, noting that in MHD systems conservation of PV is lost, and
so these tools are not available in any case.

A second theoretical approach is based on a more detailed modelling of the
dynamics, mostly in the framework of the quasi-linear approximation. This incorporates
a mean zonal flow (independent of x, say) and forced waves (with zero average
in x) whose evolution is linearised about this mean flow. The waves exert mean
Reynolds stresses, and with these the mean flow can itself evolve, on a slower time
scale than that of the waves. What is neglected is the interactions of waves giving
smaller-scale waves, in other words the beginning of a turbulent cascade. In the
context of zonostrophic instability, these ideas and applications are developed in the
stochastic structural stability theory of Farrell & Iouannou (2003, 2006, 2008), Bakas
& Iouannou (2011, 2013, 2014) and Constantinou, Farrell & Iouannou (2014). Here,
coupled equations for mean flow and waves, with additional stochastic forcing, are
solved numerically in a variety of systems, showing robust jet formation, and the
quasi-linear theory is validated against direct simulations. Further approximations that
bring in higher-order corrections, so-called direct statistical simulation, are developed
in Tobias, Dagon & Marston (2011).

To obtain analytical results for zonostrophic instability, Srinivasan & Young (2012)
write the problem for forced flows on a β-plane in terms of correlation functions
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in the presence of a weak zonal flow. They then exploit translational symmetry
to obtain an exact implicit equation for the instability growth rate, which can be
solved numerically to give windows of y-wavenumbers K that can be destabilised.
Interestingly, they find that a destabilising effect linked to the parameter β acts as
a negative effective hyperviscosity for large-scale modes, in other words gives a
contribution to the growth rate proportional to K4 for wavenumber K � 1. This is
when the system is forced isotropically, whereas for an anisotropic driving, there can
be a negative effective viscosity effect, proportional to K2 and independent of β (as
per the original Kolmogorov flow above); see Bakas & Iouannou (2013), Srinivasan
& Young (2014), and references therein. We stress that these transport effects emerge
from the averaged equations for mean zonal flows. As such, we are referring only
to large-scale modes K � 1, and any K2 or K4 dispersion relation for the growth
rate as a function of K must be brought down by further terms as K increases (cf.
Sukoriansky, Galperin & Chekhlov 1999). It is worth noting that in these studies the
forced small-scale disturbances are damped (by bottom friction or viscosity): they
dissipate soon after being created and after depositing any Reynolds stress on the
mean flow. In this sense, the set-up is diametrically opposite to the theories based on
PV conservation in ideal flow. Extension of the quasi-linear theory to the case where
the waves are forced but only weakly damped raises new challenges. In particular, in
the equation for the small-scale waves, some quantities converge in the inviscid limit,
and others diverge (for example enstrophy). This is studied by Bouchet & Morita
(2010), Bouchet, Nardini & Tangarife (2013, 2014) and Bedrossian & Masmoudi
(2015) for β = 0, and it is established that the quasi-linear model is valid in the limit
of zero dissipation for the waves. The formation of zonal flows is further viewed
as a problem in pattern formation in Newton, Kim & Liu (2013) and Parker &
Krommes (2013, 2014), and studied by means of a Ginzburg–Landau equation which
incorporates further nonlinear terms.

Our principal focus is the MHD problem: how are processes of zonostrophic
instability on a β-plane modified in the presence of a magnetic field (taken to point
in the zonal direction)? Although our focus is not on applications, we mention
that in the Earth’s core as well as astrophysical bodies, magnetic fields interact
with turbulence, rotation and shear. An example is the solar tachocline, where the
interaction of magnetic field, shear and convection remains poorly understood (see,
e.g., Hughes, Rosner & Weiss 2007), while dynamo action in the presence of zonal
flows is studied in Aubert (2005), Yadav et al. (2015), and references therein. There
are few studies of the role of magnetic field in zonostrophic instability; however,
Diamond et al. (2007) argue that in turbulent regimes magnetic fields will have
the effect of suppressing any inverse cascade of energy that would result in zonal
flows, while Tobias, Hughes & Diamond (2012) find computationally that even a
weak magnetic field B0 can suppress the instability with a threshold B2

0 ∝ η, the
magnetic diffusivity. A similar suppression is found in the presence of ambient shear
Ω0 by Srinivasan & Young (2014) and Hsu & Diamond (2015). Although there has
been little work on zonal flow generation in the presence of magnetic fields, there
have been many studies on the modification of transport processes and subsequent
generation of magnetic fields, particularly by dynamo action in three dimensions (e.g.
Zheligovsky 2011), which we will not review here. Very relevant to us, however,
are studies of the modification of transport effects in forced two-dimensional flows
threaded by magnetic fields. Chechkin (1999) determines transport effects in terms of
the correlation properties of random small-scale fields, and shows that the effective
viscosity can change sign. In a series of papers, Leprovost & Kim (2008a,b, 2009)
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determine the effective magnetic diffusivity and viscosity in the limits of strong and
weak magnetic field and imposed shear flow; also identified is an additional coupling
term in the averaged Navier–Stokes equation related to the gradient of the zonal
magnetic field. Keating & Diamond (2008) determine transport effects for turbulent
MHD flow on a β-plane using weak turbulence theory and find that the combination
of these two effects can lead to an increase in the effective magnetic diffusivity.

Our goal is to present a study of transport and zonostrophic instability in MHD
flow on a β-plane, in which we go from the governing equations and forcing,
through calculations of transport coefficients, to plots of instability thresholds and
equilibrium profiles. We also incorporate ambient shear into the system we study,
given by a parameter Ω0. We work in the quasi-linear framework and additionally
assume a scale separation between the waves and the zonal flow, to allow analytical
progress. Although our study builds on earlier work, it is distinguished by, first,
a framework that easily allows different forms of molecular diffusive/viscous
terms, although we always use the Laplacian in our results (rather than molecular
hyperdiffusion/hyperviscosity), and, second, in the range of physical effects considered,
ultimately parameterised by B0, Ω0, β and a diffusion/viscosity parameter λ. With this
go two caveats: we do not attempt to verify the results by means of full simulations
in this paper, and we indeed recognise that quasi-linear theory may in many regimes
be only a qualitative guide to the behaviour realised in the full nonlinear fluid system.

The paper is structured as follows. In § 2 we set out the governing equations and the
quasi-linear system we will study. We take the driving of the flow, in the (x, y)-plane,
to be as basic as possible, a periodic excitation of a wave proportional to eimx with
a random phase; note that this driving is anisotropic, which has implications for the
transport effects that emerge. In § 3 we focus on the purely hydrodynamic problem,
and determine the feedback on the mean flow from a wave, both numerically and
analytically. We identify that zonostrophic instability can occur at large scales through
a negative effective viscosity term that emerges in the equation for large-scale zonal
flow. We also determine how the instability is suppressed by an ambient shear Ω0 and
solve for equilibrium profiles, in which a steady large-scale flow exhibiting a vorticity
step is maintained as a result of the varying effective viscosity. We then incorporate
a passive scalar field in § 4 and determine the corresponding modifications to passive
scalar diffusion and profiles. In these sections we make contact with related studies
by Srinivasan & Young (2012, 2014) and Hsu & Diamond (2015) with reference
to negative effective viscosity effects, ambient shear and passive scalar evolution,
as detailed in the text. Section 5 is devoted to the MHD problem, introducing the
Lorentz force to the framework developed in earlier sections. The problem becomes
much more complicated, but with a mixture of analytical development and numerical
evaluation, we produce thresholds for instabilities in the presence of magnetic fields,
shear and β-effect. Finally, § 6 offers conclusions and future directions.

2. Governing equations

Our starting point is two-dimensional MHD flow on a β-plane, with governing
equations

∂tω+ J(ω, ψ)= J( j, a)+ β ∂xψ + ν∇2ω+ s, (2.1)
∂ta+ J(a, ψ)= η∇2a, (2.2)
∂tσ + J(σ , ψ)= κ∇2σ . (2.3)
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Here, ψ is the stream function and a is the vector potential, with flow u =
(∂yψ, −∂xψ) and magnetic field b = (∂ya, −∂xa) (measured in units of velocity).
We have also included a passive scalar σ , which obeys the same equation as the
vector potential but with no Lorentz feedback term. The vorticity and current are
given by

ω=−∇2ψ, j=−∇2a. (2.4a,b)

All fields are functions of (x, y, t), and J denotes the usual Jacobian with respect to
the (x, y) coordinates. In (2.1) the flow is driven by the source term s, the curl of a
body force, which generates vorticity in the fluid, and which we prescribe below.

2.1. Non-dimensionalisation
To identify the parameters involved, it is helpful to write the governing equations in
a non-dimensional form. The external input to the system is the vorticity source term
s(x, y, t), and we take it to have magnitude S and act on a spatial scale L . We
choose to use the length scale L and the time scale T ≡S −1/2 to non-dimensionalise
the problem, rescaling quantities such as

ω=ω†/T , a= a†L 2/T , β = β†/L T ,

ν = ν†L 2/T , η= η†L 2/T , κ = κ†L 2/T .

}
(2.5)

This recovers (2.1)–(2.4) in a dimensionless form, adorned with daggers. The system
is then characterised by the dimensionless parameters, the Grashof number Gr and the
source Rhines number Rhs, given by

Gr−1/2 ≡ ν† = ν/L 2
√

S , Rh−1
s ≡ β† = βL /

√
S , (2.6a,b)

as well as Prandtl and magnetic Prandtl numbers giving the ratios of the appropriate
diffusivities, and the functional form of the source term s. It should be noted that
Rhs is here based on the source strength rather than on the actual flow velocities
realised, whereas the usual Rhines number Rh=U /βL 2, like the Reynolds number
Re=L U /ν, would be a diagnostic depending on the flow velocities U that emerge
in the forced system (Rhines 1975).

As a key simplification in this study we will take all the diffusivities to be equal,

ν† = η† = κ† ≡ λ†, say, (2.7)

so the Prandtl numbers are unity, and we use the neutral quantity λ† to denote any
diffusivity or viscosity in what follows. This is both to make analytical progress and
to reduce the number of parameters involved, making our study more manageable. For
ease of notation it is also convenient to use the dimensionless parameters {λ†, β†} in
what follows rather than {Gr, Rhs}. From now on we will also drop the daggers on
non-dimensional quantities, and so the key parameters at the outset are simply {λ, β},
with the source s taken of length scale and magnitude of order unity.

2.2. Quasi-linear approximation
We adopt the quasi-linear approximation in which we take a mean or background flow
and magnetic field independent of x, namely

ω=Ω(y, t), u1 =U(y, t), ψ =Ψ (y, t), j= J(y, t),
b1 = B(y, t), a= A(y, t), σ =Σ(y, t),

}
(2.8)
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Quantity Mean Fluctuating Quantity Mean Fluctuating

Vorticity Ω =−U′ ω ζ Current J =−B′ j γ

Zonal velocity U =Ψ ′ Magnetic field B= A′

Stream function Ψ ψ φ Vector potential A a α

Passive scalar Σ σ c

TABLE 1. Mean and fluctuating fields (the second of each pair has had the pure
advection term e−imU(y)t removed).

and assume that these are quasi-steady, varying on a longer time scale than that of
the fluctuating fields, namely those fields with a non-trivial x-dependence. We need
then to define the source term s that creates disturbances, evolving according to linear
dynamics, linearised about the background profile (2.8). We take first the specific case
of a delta-function (in time) source of vorticity that is a single Fourier mode in x,

s= δ(t)eimx + c.c. (m> 0). (2.9)

In the quasi-linear approximation we break fields into mean and fluctuating
components, as summarised in table 1,

(ω, ψ, j, a, σ )→ (Ω, Ψ, J, A, Σ)+ (ω, ψ, j, a, σ )(y, t)eimx + c.c.+ · · · , (2.10)

and retain only the leading harmonics shown. We refer to an evolving eimx disturbance
as a wave (even in regimes where it may be heavily damped), and this obeys linear
equations

∂tω+ imUω− imBj= im(β +Ω ′)ψ − imJ′a+ λ1ω, (2.11)
∂ta+ imUa− imBψ = λ1a, (2.12)
∂tσ + imUσ − imΣ ′ψ = λ1σ, (2.13)

ω=−1ψ, j=−1a, ∆≡−m2 + ∂2
y , (2.14a−c)

with initial conditions from (2.9),

ω(y, 0)= 1, ψ(y, 0)=m−2, j(y, 0)= a(y, 0)= σ(y, 0)= 0. (2.15a−c)

A prime here denotes the y-derivative of any mean field, these being related as shown
in table 1.

The feedback on the mean fields in (2.10) from the waves via the quadratic terms
in (2.1)–(2.3) is retained, and this can be written in terms of fluxes

FR(y, t)= im(ψ∗ω−ψω∗), FL(y, t)= im(a∗j− aj∗), (2.16a,b)

FM(y, t)= im(ψ∗a−ψa∗), FP(y, t)= im(ψ∗σ −ψσ ∗), (2.17a,b)

from Reynolds and Lorentz stresses in (2.16), and from advection of vector potential
and scalar fluctuations in (2.17). Over the lifetime of a wave, the feedback on the
mean flow from any one of these fluxes is given by the integral

FZ(y)=
∫ ∞

0
FZ(y, t) dt. (2.18)

Here and elsewhere we find it convenient to use Z as a place-holder: it can be R, L,
M or P as in (2.16), (2.17), or involve further symbols later on.
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We have (2.11)–(2.15) for a single wave launched at t= 0 and the feedback (2.16)–
(2.18) on the mean fields as the wave evolves and dissipates. As this effect must be
weak in any quasi-linear set-up, we now incorporate a stream of such waves, replacing
(2.9) by the renewing source

s=
∑

j

δ(t− j) eimx+iµj + c.c. (m> 0), (2.19)

in which at each unit of time vorticity is introduced into the flow with random
independent phases µj uniformly distributed over [−π,π]. Given the random phases,
in a time average (or ensemble average) all waves contribute independently to the
quadratic fluxes. The equations for the mean fields then become

∂tΩ + ∂yFK = λ ∂2
yΩ, (2.20)

∂tA+ ∂yFM = λ ∂2
y A, (2.21)

∂tΣ + ∂yFP = λ ∂2
yΣ, (2.22)

where it is convenient to combine Reynolds and Lorentz terms via

FK = FR − FL, FK =FR −FL. (2.23a,b)

It should be noted that the term FK would also appear in a mean momentum equation,
as per (3.18) below, but we usually prefer to remain within a vorticity–stream-function
formulation.

2.3. Summary and comments
The quasi-linear system that we will consider is well established in the literature and
consists of solving (2.11)–(2.15) for general mean profiles U, B and Σ , and then
determining the feedback on each mean field through the fluxes (2.16)–(2.18) that feed
into (2.20)–(2.22). Several comments are in order.

(i) Given the renewing source (2.19), (2.20)–(2.21) for the mean fields are only valid
on time scales t� 1, that is over many waves launched into the flow. Furthermore, the
quasi-linear approximation (as we use it) keeps the mean fields U and B steady while
we solve (2.11)–(2.15) and compute the integrated fluxes in (2.18). There is thus a key
consistency condition, that the time scale of evolution of the mean fields in (2.20)–
(2.22) be greater than that over which the waves contribute to the integrated fluxes
(2.18), as stressed by Bouchet & Morita (2010). This consistency condition needs to
be assessed as any quasi-linear model is developed.

(ii) One of the features of this study is keeping the source term (2.19) as tractable
as possible without too much loss of generality. Regarding this, we note that we could
have introduced a more general time dependence, for example involving a stationary
random process with a given correlation function (decaying on a time scale shorter
than that of the evolution of the mean fields), for example delta-correlated. However,
doing so would increase complexity for us without adding greatly to generality. In
fact, we can note that the problem as formulated in (2.11)–(2.15) gives the Green’s
function for waves, and the effect of a more general time dependence of the source
s could thus be obtained by integration.

(iii) Likewise, we have considered a single source mode with wavenumber m in
(2.19); we treat m as a parameter (though strictly it could be scaled to m = 1 in
our non-dimensionalisation). More generally, we could consider modes of the form
eimx+iny and arbitrary sums of such modes, for example forming an isotropic or ring
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forcing as used in many other studies. However, because of shearing in the gradients
U′ of the mean flow, a more general mode eimx+iny simply corresponds to a shift in
time of the mode eimx, and so our analysis could be extended, creating additional
complexity in integrating over angles but without any fundamental changes. We should
remark though that our forcing is anisotropic, in contrast to some other studies, and
this is known to enhance instabilities leading to zonal flows, by selecting a preferred
direction in the system, as discussed in Srinivasan & Young (2012) and Bakas &
Iouannou (2013).

(iv) We have not discussed the strength of the background flow U, scalar field Σ or
magnetic field B. In fact, the status of these is rather different. A background flow U
can grow from a seed through zonostrophic instability, and so we cannot set its scale
at the outset. For passive scalar transport, the magnitude of the background gradient
Σ ′ is a constant that can be set arbitrarily. The strength of a mean magnetic field (that
is, B averaged over the y-coordinate) is another constant that must be set initially and
will introduce a further parameter into the problem. It should be noted that given our
present non-dimensionalisation (2.5), the magnetic field strength B is measured relative
to the velocity strength, corresponding to an inverse magnetic Mach number.

(v) Our primary focus will be on ∇2 dissipation (we refer to this as molecular
dissipation) in the development from (2.1)–(2.3), but we will below remark briefly
on more general forms of dissipation, using −λr(−∇2)rω in (2.1), and likewise for a
and σ . The case r= 0 is bottom drag, r > 2 is hyperviscosity (or hyperdiffusion) and
r= 1, λ1 ≡ λ is standard viscous dissipation. We stress that these are the ‘molecular’
effects – in other words terms that we introduce into the governing equations, to be
distinguished from the ‘effective’ transport effects, for example νeff , κeff , that emerge
from our analysis below.

3. Hydrodynamic transport

Although the purely hydrodynamic problem has been well explored in the literature,
it is naturally a starting point for the MHD problem. In order to set the scene, give
a point of comparison, and establish scalings for the MHD problem, we sketch this
case. We need to solve for waves on a given profile U, from (2.11),

∂tω+ imUω= im(β +Ω ′)ψ + λ1ω, ω=−1ψ. (3.1a,b)

3.1. Multiple-scale formulation
We first apply a transformation to absorb the advective term,

ω(y, t)= e−imU(y)t ζ (y, t), ψ(y, t)= e−imU(y)t φ(y, t), (3.2a,b)

and obtain
∂tζ = im(β +Ω ′)φ + λL ζ , ζ =−L φ, (3.3a,b)

with L denoting the Laplacian operator,

ζ =−L φ =m2(1+Ω2t2)φ − imΩ ′t φ − 2imΩt ∂yφ − ∂2
yφ. (3.4)

The flux (2.16) may then be written as

FR = ∂y[2m2Ωt |φ|2 − im(φ∗ ∂yφ − φ ∂yφ
∗)]. (3.5)
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It should be noted that the leading-order term in ζ from (3.4), which is a purely real
multiple m2(1 + Ω2t2) of φ, does not contribute to the flux FR. This absence of a
phase shift between the two fields means that a vorticity disturbance on an exactly
linear shear flow Ω = const. cannot contribute a mean Reynolds stress: it is higher-
order terms that need to be included, involving gradients of Ω .

The development so far is exact (within the quasi-linear approximation), and to
make further progress we take the case when the mean or background flow varies
on a large scale Y , setting

Y = εy, T = εt, U(y)→U(Y), Ω(y)→ εΩ(Y), (3.6a−d)

with ε� 1. We now write Ω =−U′, using the prime to denote a Y-derivative of any
background field. Here and elsewhere we suppress the (slow) time dependence of the
background field, governed by (3.12) below. (It should be noted that the correlation
function approach of Srinivasan & Young (2012) does not assume scale separation.)

We now adopt the scalings

ω→ ε3/2ω(Y, T), ψ→ ε3/2ψ(Y, T),
ζ→ ε3/2ζ (Y, T), φ→ ε3/2φ(Y, T),

}
(3.7)

FR→ ε4FR(Y, T), FR→ ε3FR(Y), λ→ ελ, β→ εβ. (3.8a−d)

These give for the wave evolution on the T time scale

∂Tζ = im(β + εΩ ′)φ + λL ζ , (3.9)
ζ =−L φ =m2(1+Ω2T2)φ − iεmΩ ′T φ − 2iεmΩT ∂Yφ − ε2∂2

Yφ, (3.10)

with
FR = ∂Y[2m2ΩT|φ|2 − iεm(φ∗ ∂Yφ − φ ∂Yφ

∗)]. (3.11)

The equation (2.20) for mean fields takes the form

∂T Ω + ∂YFR = λ ∂2
YΩ, (3.12)

and these fields develop on the long time scale T = ε2T , where as a consequence of
the new scalings in (3.8), the equation

FZ =
∫ ∞

0
FZ dT (3.13)

now replaces (2.18) for any label Z.
Equations (3.9)–(3.13) are the ones we wish to expand and study asymptotically for

small ε. The rationale for the above choice of scaling in (3.7), (3.8) is to retain as
many terms at leading order as possible in (3.9)–(3.13). It should be noted that from
(3.7), the strength of the waves, and so the strength of the original driving force, is
being reduced as ε→ 0, to balance the viscous term in (3.12) for the mean fields. For
more general dissipation the scalings would be as above except for

T = ε2rT, ζ→ εr+1/2ζ , φ→ εr+1/2φ, FR→ ε2r+2FR, FR→ ε2r+1FR,
(3.14a−e)

and give rise to the same set of equations with only modifications to the definition
of L in (3.10). For r = 0 (linear drag) there is no separation of scales between T
and T , and so the consistency condition discussed in the first comment of § 2.3 would
not be satisfied: mean flow and waves would be damped on the same time scale (at
least, unless some further limit were taken, or perhaps some combination of damping
effects employed).
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FIGURE 1. (Colour online) Simulation of waves with β = 0, m = 1, ε = 0.1, λ = 0 and
U= cos Y . In (a) Reω, (b) Reψ and (c) FR are plotted in the (T,Y)-plane. In (d) FR(Y,T)
is shown as a function of Y for T = 0.1, 0.2, . . . , 1 (solid, innermost to outermost curve),
with U(Y) (dashed).

3.2. Numerical solution
Before undertaking further analysis, it is worth gaining some intuition by simulating
the system we have so far for the linear waves ω(Y, T), ψ(Y, T). The system may
be written as

∂Tω+ imε−1Uω= im(β + εΩ ′)ψ + λ(ε2∂2
Y −m2)ω, (3.15)

−ω= (ε2∂2
Y −m2)ψ, (3.16)

equivalent to (3.9), (3.10), with here

FR(y, t)= imε−1(ψ∗ω−ψω∗). (3.17)

A run with β= 0, ε= 0.1 and U= cos Y is shown in figure 1: (a,b) show the real part
of the vorticity ω and stream function ψ respectively, in the (T, Y)-plane. We have
taken zero viscosity, λ= 0; otherwise we would simply see a damping effect. Away
from the maxima of |U| at Y = 0, ±π (where Ω = 0) the vorticity gains finer scales
and the stream function is suppressed. The flux FR is shown in (c) and develops (red)
peaks and (blue) troughs for large T .
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The short-time evolution of flux FR(Y, T) is shown in (d) for T = 0.1, 0.2, . . . , 1
(solid), going from the innermost (smoothest) curve to the outermost one. Figure 1(d)
contains key information as we can write from (3.12) for the mean velocity

∂T U =FR + λ ∂2
YU, (3.18)

and here U= cos Y is shown dashed in figure 1(d). Thus, the short-time effect of the
flux FR (as it contributes to FR) is to reinforce the original flow U, which is precisely
the effect leading to zonostrophic instability. If there is sufficient viscous damping,
then only the short-time feedback is relevant, and below we will recover this effect,
which naturally is well documented in the literature (e.g. Srinivasan & Young 2012).

For greater times, the feedback from the flux FR becomes more oscillatory in Y ,
changing sign in places with respect to the original U = cos Y profile, as seen in
figure 1(c,d). This is investigated further below, but there is an indication that the
effect of the feedback is to sharpen any pre-existing profile, increasing the flow where
Ω=−U′=0 and flattening the flow profile where U=0 and |Ω| is maximal. It should
be noted that a tendency to sharpen shear profiles is found in weakly damped vortex
dynamics simulations by Dritschel & McIntyre (2008), and by Kim & MacGregor
(2003) in a study of gravity waves in stratified fluid, together with a bifurcation to
an oscillatory state.

3.3. Multiple-scale expansion
We now return to the development in § 3.1 and approximate. We expand quantities in
powers of ε, for example,

ζ = ζ0 + εζ1 + · · ·, φ = φ0 + εφ1 + · · ·, (3.19a,b)

and the leading-order equations (3.9), (3.10) take the form

∂Tζ0 = imβφ0 − λm2(1+Ω2T2)ζ0, ζ0 =m2(1+Ω2T2)φ0. (3.20a,b)

The accelerated decay through the T3 term in the exponential is known as the
shear–diffuse mechanism (Bernoff & Lingevitch 1994) responsible for flux expulsion
in kinematic magnetic field evolution (Weiss 1966). This gives a first-order ordinary
differential equation (ODE) with respect to T , with the solution

ζ0 = exp[im−1βΩ−1 tan−1 ΩT] exp
[−m2λ

(
T + 1

3Ω
2T3
)]
. (3.21)

The expansion gives us functions of ΩT rather than T , and so it is convenient to call
this τ and to try to reduce the number of parameters involved. We set

τ =ΩT, β̂ = β/mΩ, λ̂=m2λ/Ω, D(τ , λ̂)= exp
[
−λ̂ (τ + 1

3τ
3
)]
, (3.22a−d)

in terms of which we have the more compact form

ζ0 = exp[iβ̂ tan−1 τ ]D. (3.23)

We will for simplicity and without loss of generality consider points Y in the profile
where Ω > 0, so that τ ∈ [0,∞]; the final results are nonetheless correct also for
Ω<0. Behaviour at points where Ω=0 can be established by letting Ω→0; although
this need not detain us here, we make some further comments and qualifications in
appendix A.
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We then obtain the leading-order flux from (3.11) as a function of time,

FR = 2m−2∂Y[τ(1+ τ 2)−2D2] ≡−m−2Ω ′Ω−1 D2fR (3.24)

(we have simply dropped the term of order ε in (3.11), but not further complicated
the notation), with

fR(τ , λ̂)=−2τ(1+ τ 2)−2
[
(1− 3τ 2)(1+ τ 2)−1 − 4

3 λ̂τ
3
]
. (3.25)

The leading-order integral may be written as

FR =−νeffΩ
′, νeff =m−2Ω−2 hR, (3.26a,b)

where we set, for any label Z,

hZ =
∫ ∞

0
D2fZ dτ . (3.27)

It should be noted that hR = hR(λ̂) only, and in fact β̂ has dropped out of the
calculations. The large-scale equation is now

∂T Ω = ∂Y[νeff ∂YΩ] + λ∂2
YΩ, (3.28)

with an effective viscosity νeff (Ω, λ) identified and arising from the externally forced
waves. This term emerges from the two-scale analysis with the expected form, in
other words giving transport of the large-scale vorticity field Ω(Y, T ). It should
be noted, however, that although the underlying molecular viscosity λ is always
positive and so dissipative in effect, given that we have averaged over the vorticity
equation with an imposed body force present, there is no reason why the effective
(or ‘renormalised’) viscosity νeff need be positive, and generally it is not, this being
the origin of zonostrophic instability in this system.

To summarise, (3.24) gives the instantaneous feedback FR from the wave to the
mean flow, coded in the function fR(τ , λ̂) in (3.25) with the damping factor D2.
The integrated effect is found in hR(λ̂) and gives the effective viscosity in (3.26);
the parameter β̂ plays no role at this order (cf. Srinivasan & Young 2012, 2014).
Figure 2(a) shows D2fR as a function of τ in the inviscid limit, λ̂ = 0, and for
increasing values of λ̂. Focusing on the inviscid case (outermost curve), it is worth
noting that the feedback changes sign at τ = 3−1/2. The effect of increasing the
damping, λ̂ > 0 (inner curves), is primarily to suppress fR at ever earlier times.
Figure 2(b) shows hR(λ̂), which is the total integrated flux. We have hR(0)= 1 while
for small λ̂ the effective viscosity is positive, corresponding to the damping of the
mean flow. At λ̂ ' 0.95, hR changes sign, and for larger λ̂ it is negative and so
destabilising. For large λ̂ the integral (3.27) is effectively cut off at times τ =O(λ̂−1)

and we can expand the functions D and fR as power series in τ , giving

hR(λ̂)=− 1
2 λ̂
−2 + 15

2 λ̂
−4 + · · ·, νeff =− 1

2 m−6λ−2 + 15
2 m−10Ω2λ−4 + · · · (λ̂� 1),

(3.29a,b)
also shown in figure 2(b) (dashed curve).
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FIGURE 2. (Colour online) (a) Plot of D2fR as a function of τ for λ̂ =
0, 0.1, 0.2, 0.4, . . . , 3.2 (from outermost to innermost curve). (b) Plot of hR as a
function of λ̂ (solid) and the approximation (3.29) (dashed).

Let us now relate this detailed calculation back to the bigger picture, for example as
in the simulations in figure 1. For good scale separation, ε� 1, at each Y the flow is
locally shearing, as given by the value of Ω(Y). The subsequent evolution of a wave
is determined by the key parameter λ̂ and occurs on a time scale τ ; see (3.22). The
evolution on the τ time scale is damped by the factor D, which occurs at τ =O(λ̂−1)

for large λ̂, or at τ =O(λ̂−1/3) for small λ̂, by the shear–diffuse mechanism. For small
ε, this is all that is needed to recreate the evolution of FR in figure 1(c,d), and for
each Y good agreement can be shown between the evolution in time T in this figure,
and in the analysis above based on the local ODE (3.20).

It should be noted that in a profile with varying Ω , the local parameter λ̂ will also
vary. Taking Ω bounded, if λ� 1 then the waves are always in a viscous regime,
λ̂� 1, whereas if λ is small, at different locations Y the waves may effectively be in
a low-viscosity, λ̂� 1, or a viscous, λ̂� 1, regime. In a viscous regime we have

νeff =− 1
2 m−6λ−2 (λ̂� 1). (3.30)

This destabilising negative viscosity term corresponds to the instability of the original
steady Kolmogorov flow discussed in Meshalkin & Sinai (1961), and follows from
the anisotropy of the forcing as discussed, for example, in Srinivasan & Young
(2014). The inverse power of λ shows the effect of large viscosity in cutting off the
feedback on the mean flow, corresponding to capturing the short-time behaviour seen
in figure 1(d). This result is key to zonostrophic instability, in which Ω ' 0 initially
everywhere. No matter what the molecular value of λ> 0 is, the limit λ̂� 1 and the
result (3.30) are then appropriate, with the destabilising effect of a negative effective
viscosity arising from the negative values of fR for short times and so of hR for large
λ̂; see figure 2.

We remark that even if we applied molecular hyperviscosity (i.e. hyperdiffusion)
to the waves (end of § 2.3), which would lead to modified forms of D and L , we
would still recover effective viscosity for the large-scale fields, in other words via
a term of the form ∂Y(νeff ∂YΩ). Whereas negative effective viscosity leads to an ill-
posed problem if it is only balanced by weaker positive molecular viscosity, having
molecular hyperviscosity recovers a sensible problem for the large-scale fields, for
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FIGURE 3. (Colour online) Contour plot of m2P (3.32) in the (m2λ, Ω0)-plane. Contours
increase from m2P= 0 (outermost) in steps of 0.1 to m2P= 10 (bottom left corner).

example to integrate numerically. We leave this for future study, noting that molecular
hyperviscosity should only be introduced with considerable caution: see Sukoriansky
et al. (1999) in the case of turbulence and Zhang & Jones (1997) for rapidly rotating
convection.

3.4. Zonostrophic instability
At the end of the last section we indicated the origin of zonostrophic instability
through the negative sign in (3.30). We study this in the more general context of a
uniform background shear flow. Consider again (3.28) and think of νeff = νeff (Ω, λ)
in general. A solution is simply steady uniform vorticity Ω(Y,T )=Ω0= const., that
is uniform shear U = −Ω0Y , and we can investigate the stability of this solution to
perturbations.

We replace Ω→Ω0 +Ω in (3.28) with now Ω� 1 to give

∂T Ω = ∂Y[νeff ∂YΩ] + λ∂2
YΩ, νeff = νeff (Ω0, λ) (3.31a,b)

at leading order. Seeking a normal mode in Ω proportional to exp(PK2T + iKY) gives
the (scaled) growth rate P as

P=−νeff (Ω0, λ)− λ=−m−2Ω−2
0 hR(m2λ/Ω0)− λ. (3.32)

The last term −λ is the damping effect of molecular viscosity, and the nature of any
instability is again clear as the result of a negative effective viscosity, taking place if
νeff is negative and large enough. We first consider when Ω0 = 0, in which case we
insert the large-λ̂ expansion (3.30) to obtain

P= 1
2 m−6λ−2 − λ. (3.33)

We have zonostrophic instability if P> 0, which amounts to the condition m2λ< 2−1/3.
For the more general case of a uniform background vorticity distribution Ω0 6=0, the

relative size of Ω0 and λ is important through the value λ̂ = m2λ/Ω0 in (3.32). We
cannot evaluate hR analytically in general, but we can easily do so numerically, and
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figure 3 shows a contour plot of m2P in the (m2λ,Ω0)-plane. The outer contour gives
P= 0, and outside this P< 0. Along the horizontal axis Ω0= 0 the result (3.33) holds.
For increasing Ω0, zonostrophic instability is suppressed (Srinivasan & Young 2014;
Hsu & Diamond 2015), being restricted to a finite range of viscosities m2λ bounded
above zero, and turns off completely for Ω0 greater than approximately 0.25. It should
be noted that the suppression of instability by shear is also evident in the sign of
the second correction term in (3.29). The value of m2P diverges as λ→ 0, Ω0→ 0
(bottom left, where the contours accumulate), and in fact the contours accumulate near
the origin on the line given by m2λ/Ω0 ' 0.95, on which hR changes sign.

3.5. Equilibrium profiles
We cannot readily time step (3.28) numerically: as νeff can change sign this is
ill-posed without some additional cutoff for short wavelengths (on the Y scale).
Incorporation of a cutoff would not be unreasonable given that the theory is
based on scale separation and a threshold can be determined in related models
that allow zonostrophic instability on arbitrary scales (Srinivasan & Young 2012).
For example, negative effective viscosity at large scale can be cut off by positive
effective hyperviscosity at smaller scales (and Sukoriansky et al. (1999) argue that in
two-dimensional turbulence these effects also need to be time-dependent to simulate
subgrid-scale motion). We defer these considerations to future study, and here note
that although we cannot integrate (3.28) explicitly, we can seek equilibrium profiles,
that is, mean field profiles independent of the time scale T . Integrating (3.28) once,
we can write

m2(λ+ νeff )∂YΩ ≡ [m2λ+Ω−2 hR(m2λ/Ω)] ∂YΩ =C, (3.34)

with a constant C. To plot solutions it is convenient to reduce the number of
parameters by setting

Ω =m2λΩ̃, U =m6λ3C−1Ũ, Y =m4λ2C−1Ỹ, λ=m−2λ̃, (3.35a−d)

so that we solve

[1+ λ̃−3Ω̃−2 hR(Ω̃
−1)] ∂ỸΩ̃ = 1, ∂ỸŨ =−Ω̃, (3.36a,b)

to obtain a family of solutions depending on only one parameter λ̃.
Now we numerically integrate (3.36) over a range of Ỹ with Ω̃ passing through

Ω̃ = 0; this gives a family of profiles depicted in figure 4(a) for Ω̃ and (b) for Ũ. It
turns out that we cannot obtain sensible solutions unless the effective viscosity [· · ·] in
(3.36) remains positive, and this restricts λ̃−3<2. This is equivalent to being below the
threshold for zonostrophic instability (without background uniform shear) in (3.33). As
λ̃−3 is made closer to 2, we have a lower effective viscosity in a region close to Ω̃=0,
and so the scope to sustain larger gradients of Ω̃ . This is seen in figure 4(a), while (b)
shows the increasing sharpness of the Ũ profile and (c) shows the corresponding dip
in the total viscosity, i.e. λ+ νeff , to a small but positive value.

Using (3.29) we can also obtain the approximate form of the Ω̃ profile as an inverse
cubic,

5
2 λ̃
−3Ω̃3 +

(
1− 1

2 λ̃
−3
)
Ω̃ = Ỹ, (3.37)

and in the limit λ̂−3→ 2 we obtain profiles

Ω̃ = (Ỹ/5)1/3, Ũ =− 3
4 5−1/3 |Ỹ|4/3 (3.38a,b)

(up to appropriate additive constants).
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FIGURE 4. (Colour online) Plots of equilibrium profiles found by integrating the ODEs
(3.36). Here, 2− λ̃−3= 1, 1/2, 1/4, . . . , 1/16, and as λ̃−3 approaches the value 2, smaller-
scale structure is evident in the curves for (a) Ω̃(Ỹ) (reading up the curves), (b) Ũ(Ỹ)
(down) and (c) λ̃−3Ω̃−2 hR(Ω̃

−1)+ 1 (down, on the left-hand side).

4. Passive scalar and kinematic magnetic field transport
As a useful intermediate step before tackling the full MHD problem, but also of

interest in its own right, we consider passive scalar evolution; related work including
bounds on effective diffusivities may be found in Srinivasan & Young (2014), when
the vorticity is damped by a bottom drag term −λ0ω and likewise the passive scalar
field, i.e. via a term −λ0σ . Naturally, for us the passive scalar could be the vector
potential of a weak magnetic field, in a kinematic regime; see (2.2), (2.3) and below.

4.1. Multiple-scale formulation

We follow the discussion at the beginning of § 3 and set σ(y, t)= e−imU(y)t c(y, t). With
the scalings

Σ(y)→Σ(Y), σ→ ε3/2σ(Y, T), c→ ε3/2c(Y, T), (4.1a−c)

FP→ ε3FP(Y, T), FP→ ε2FP(Y), λ→ ελ (4.2a−c)

(and Y , T as before), we obtain from (2.13)

∂Tc= imΣ ′φ + λL c (4.3)

for the waves and
∂T Σ + ∂YFP = λ ∂2

YΣ (4.4)

for the mean field, from (2.22). The scalings for the fluxes in (4.2) differ from those
earlier in (3.8) because

FP = im(φ∗c− φc∗) (4.5)

does not have the same leading-order cancellation as that seen for FR, discussed below
(3.5). Although the equations for vorticity and a passive scalar have similarities, this
is one key difference, the other being that the vorticity equation includes an explicit
source term, the external forcing, where for a passive scalar there is no source, only
a background gradient.

The leading-order passive scalar problem is easily integrated, using (3.23),

c0 =Σ ′m−1Ω−1β̂−1D[exp(iβ̂ tan−1 τ)− 1], (4.6)

FP =−m−2Σ ′Ω−1D2fP, fP = 2β̂−1(1+ τ 2)−1 sin(β̂ tan−1 τ) (4.7a,b)
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FIGURE 5. (Colour online) Plot of (a) fP as a function of τ and (b) hP as a function
of λ̂. In each plot the values are β̂ = 0, 1, . . . , 5, reading down the curves on the left.

(with D defined in (3.22)), and we may write the integrated flux as

FP =−κeffΣ
′, κeff =m−2Ω−2hP, (4.8a,b)

with hP= hP(λ̂, β̂) from (3.27). This appears in the large-scale passive scalar transport
equation

∂T Σ = ∂Y[κeff ∂YΣ] + λ ∂2
YΣ. (4.9)

As in the previous section, with similar notation, the function fP gives the
instantaneous flux of the passive scalar (from a uniform background) in the presence
of a wave initiated by the external forcing at T = 0. Unlike in the previous section, fP

depends on the parameter β̂ as well as the rescaled time τ , but not on λ̂. Figure 5(a)
shows fP for varying values of β̂; as this parameter is increased the profile becomes
increasingly oscillatory and the integrated transport is reduced. This is shown in
figure 5(b) depicting hP as a function of λ̂ for various values of β̂, showing the
suppression of transport as the β-effect is increased (see, e.g., Srinivasan & Young
2014) and the flows become more wave-like in nature. We also note that

hP(0, β̂)= 2β̂−2[1− cos(πβ̂/2)], hP(λ̂, β̂)= 1
2 λ̂
−2 −

(
2+ 1

8 β̂
2
)
λ̂−4 + · · · (λ̂� 1).

(4.10a,b)

4.2. Equilibrium profiles

Although in figure 5 we see variation in the transport of the passive scalar as λ̂ and
β̂ are varied, the effect on the equilibrium passive scalar profiles turns out not to be
as dramatic as for the vorticity transport in § 3.5. The steady-state version of (4.9) is

m2[λ+ κeff ]∂YΣ = [m2λ+Ω−2hP(m2λ/Ω, β/mΩ)] ∂YΣ =CΣ , (4.11)

where the constant CΣ would be fixed by the overall gradient of the passive scalar
across the system. We rescale

Σ =m2λCΣC−1Σ̃, β =m3λβ̃, (4.12a,b)
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FIGURE 6. (Colour online) Plots of equilibrium scalar profiles by integrating the ODE
(4.13). Here, 2− λ̃−3 = 1/16. For values of β̃ = 0, 1, . . . , 5, in (a) Σ̃(Ỹ) (reading up the
curves) and in (b) ∂ỸΣ̃ (reading up) are plotted against Ỹ .

together with (3.35), so that we can write from (4.11)

[1+ λ̃−3Ω̃−2 hP(Ω̃
−1, β̃Ω̃−1)] ∂ỸΣ̃ = 1. (4.13)

To obtain a passive scalar profile we first fix λ̃−3 = 2− 1/16, giving the sharpest Ω̃
profile depicted in figure 4(a). We then integrate (4.13) for any value of β̃, and the
resulting values of Σ̃(Ỹ) are shown in figure 6(a) for β̃ = 0, 1, . . . , 5, reading up the
curves. There is little effect on sharpening the passive scalar profiles in (a), although
the plots of the gradient ∂ỸΣ̃ in (b) show more structure. It should be noted that if
the passive scalar is the vector potential of a kinematic magnetic field, then figure 5(b)
represents the field itself, reduced to approximately half the exterior value within the
step for β = 0. This may be thought of as a process of flux expulsion (Weiss 1966),
from regions of stronger motion corresponding to greater effective scalar diffusivity.

Somewhat paradoxically then, a step jump can be supported in the vorticity profile
of figure 4(a), whereas a passive scalar profile remains relatively unperturbed. Of
course, different types of transport are involved, and whereas the effective viscosity
can become negative and nearly cancel out the molecular viscosity to allow a jump,
the same is not true for the passive scalar (or vector potential). Further investigations
for the case of different values of the scalar diffusivity and viscosity in (2.7) would
be of interest, but the governing ODEs would need to be solved numerically.

5. Magnetohydrodynamic transport
We now return to the full MHD problem given in § 2.2, armed with the above

discussion of the hydrodynamic and passive scalar/kinematic magnetic field cases. The
scalings remain the same for the vorticity as in § 3, and for the vector potential the
development follows that for the passive scalar in § 4, though naturally we now have
the Lorentz force coupling. We will drop further mention of the passive scalar from
the discussion.

5.1. Multiple-scale formulation
We again remove the fast advection terms in (2.11), (2.12), by setting

(ω, ψ, j, a)(y, t)= e−imU(y)t (ζ , φ, γ , α)(y, t) (5.1)
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(as listed in table 1), to obtain

∂tζ − imBγ = im(β +Ω ′)φ − imJ′α + λL ζ , (5.2)
∂tα − imBφ = λL α, (5.3)

ζ =−L φ, γ =−L α, (5.4a,b)

with corresponding fluxes FR in (3.5),

FL = ∂y[2m2Ωt|α|2 − im(α∗ ∂yα − α ∂yα
∗)], (5.5)

FM = im(φ∗α − φα∗). (5.6)

For the large-scale expansion we replace

U(y)→U(Y), Ω(y)→ εΩ(Y), A(y)→ A(Y), B(y)→ εB(Y). (5.7a−d)

As before, we adopt Y = εy, T = εt, T = ε3t, as well as the replacements

λ→ ελ, β→ εβ, (ζ , φ, γ , α)→ ε3/2(ζ , φ, γ , α)(Y, T) (5.8a−c)

referring to the small-scale fields, and

(FR, FL, FM)→ (ε4FR, ε
4FL, ε

3FM)(Y, T), (5.9a)
(FR,FL,FM)→ (ε3FR, ε

3FL, ε
2FM)(Y, T) (5.9b)

for the fluxes. This yields, exactly,

∂Tζ − imBγ = im(β + εΩ ′)φ − imε2J′α + λL ζ , (5.10)
∂Tα − imBφ = λL α, (5.11)

with the large-scale equations

∂T Ω + ∂YFK = λ ∂2
YΩ, (5.12)

∂T A+ ∂YFM = λ ∂2
YA, (5.13)

recalling (2.23). The flux FR is given in (3.11); we gain a similar term from the
Lorentz force,

FL = ∂Y[2m2ΩT|α|2 − iεm(α∗∂Yα − α∂Yα
∗)], (5.14)

and FM remains as in (5.6).

5.2. Numerical solution
Again, before embarking on analysis, we present a simulation of the full wave
problem with β = 0, ε= 0.1, U= cos Y and a constant field B= 2. The exact rescaled
equations are

∂Tω+ imε−1Uω= imBj+ im(β + εΩ ′)ψ − imε2J′a+ λ(ε2∂2
Y −m2)ω, (5.15)

∂Ta+ imε−1Ua= imBψ + λ(ε2∂2
Y −m2)a, (5.16)

−ω= (ε2∂2
Y −m2)ψ, −j= (ε2∂2

Y −m2)a. (5.17a,b)

(The fluxes FR, FL are rescaled as in (3.17) whereas FP is not.) Figure 7 shows the
real parts of the fields ω,ψ, j,a as functions of (T,Y) in (a–d), with the corresponding
fluxes in (e–h). As well as the general decrease in scale as T increases, one can
clearly see the presence of oscillations, Alfvén waves, in which energy is transferred
between the fluid flow and the magnetic field in (a–d). With these are oscillations in
the instantaneous fluxes giving the feedback on the mean flow and field.
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FIGURE 7. (Colour online) Simulation of waves with β = 0, m= 1, ε = 0.1, λ= 0, U =
cos Y and B = 2. In (a) Reω, (b) Reψ , (c) Re j, (d) Re a, (e) FR, ( f ) FL, (g) FK and
(h) FM are plotted in the (T, Y)-plane.
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5.3. Multiple-scale expansion
To analyse the complicated picture emerging in figure 7, we again expand all small-
scale fields in powers of ε to yield the leading-order wave equations, from (5.10),
(5.11),

∂Tζ0 − imBγ0 = imβφ0 − λm2(1+Ω2T2)ζ0, (5.18)
∂Tα0 − imBφ0 =−λm2(1+Ω2T2)α0, (5.19)

ζ0 =m2(1+Ω2T2)φ0, γ0 =m2(1+Ω2T2)α0. (5.20a,b)

These are to be solved with initial conditions from (2.15) and the results fed into the
mean equations via fluxes (dropping the terms of order ε),

FR = 2m2∂Y(ΩT|φ0|2), FL = 2m2∂Y(ΩT|α0|2), FM = im(φ∗0α0 − φ0α
∗
0).

(5.21a−c)

Unfortunately, the above ODEs (5.18)–(5.20) are not soluble analytically in simple
terms (that is, without recourse to so-called Heun functions). They can be solved
approximately in the limit of strong and weak shear as measured by B̂ below
(Leprovost & Kim 2009) to obtain expressions for the effective transport coefficients
for the case of isotropic driving.

In the first instance we wish to proceed without approximation. We first rescale and
remove the diffusive decay by setting

(ζ0, φ0, γ0, α0)= (ζ̂0,m−2φ̂0, γ̂0,m−2α̂0)D, (5.22)

with the damping term D given in (3.22), to leave equations for sheared Alfvén waves,

∂T ζ̂0 − imBγ̂0 = im−1βφ̂0, ∂T α̂0 − imBφ̂0 = 0,

ζ̂0 = (1+Ω2T2)φ̂0, γ̂0 = (1+Ω2T2)α̂0.

}
(5.23)

Although we cannot solve the ODEs, we proceed for the moment as if we knew
the solution with all quantities expressed as functions of (T, Ω, B, β). We would
then evaluate the fluxes by differentiating these expressions, and could write the
instantaneous fluxes in the form

FR =−m−2Ω ′Ω−1D2fΩR −m−2B′B−1D2fBR, (5.24)
FL =−m−2Ω ′Ω−1D2fΩL −m−2B′B−1D2fBL, (5.25)

FM =−m−2BΩ−1D2fM. (5.26)

It should be noted that, crucially, the fluxes depend on Y not only through gradients of
the vorticity profile Ω ′ (as in the hydrodynamic problem earlier) but also through the
gradients B′ in the magnetic field profile. This feature, discussed by Chechkin (1999),
Kim (2007) and Leprovost & Kim (2009), creates additional complexity in the MHD
problem.

Following through with similar notation to § 3.3, the functions fZ encapsulate all
of the interesting time evolution of the fluxes, and this may be most conveniently
expressed by first extending the definitions in (3.22) to include

B̂=mB/Ω. (5.27)
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We may then write all of the functions in terms of τ and three parameters B̂, β̂ and
λ̂, with

fΩR =−2τ(1+ τ 2)−2[(1− 3τ 2)(1+ τ 2)−1 − 4
3 λ̂τ

3 +Ω∂Ω] |ζ̂0|2, (5.28)

fΩL =−2τ
[
1− 4

3 λ̂τ
3 +Ω∂Ω

]
|α̂0|2, (5.29)

fBR =−2τ(1+ τ 2)−2B∂B |ζ̂0|2, (5.30)
fBL =−2τB∂B |α̂0|2, (5.31)

fM =−(1+ τ 2)−1B̂−1i(ζ̂ ∗0 α̂0 − ζ̂0α̂
∗
0). (5.32)

Here, the functions fΩR and fΩL capture the effect of a vorticity gradient Ω ′ on the
Reynolds stress and Lorentz force, while fBR and fBL give the effect in the Navier–
Stokes equation of a gradient of background magnetic field B′. The transport of scalar
vector potential A is linked to B= A′ through the fM term.

We now extend the convention in (2.23), so that ZK = ZR − ZL for any quantity Z,
and express the integrated fluxes in terms of transport coefficients νeff , χeff and ηeff ,

FK =−νeffΩ
′ − χeff B′, FM =−ηeff B. (5.33a,b)

This leads to coupled large-scale equations

∂T Ω = ∂Y[νeff ∂YΩ + χeff ∂YB] + λ ∂2
YΩ, (5.34)

∂T A= ∂Y[ηeff ∂YA] + λ ∂2
YA, (5.35)

with (making use of (3.27))

νeff =m−2Ω−2hΩK, χeff =m−2Ω−1B−1hBK, ηeff =m−2Ω−2hM. (5.36a−c)

We have reached the end of an analytical development for the MHD problem
mirroring that for the hydrodynamic framework in § 3.3. If we could solve the ODEs
(5.23) explicitly to obtain ζ̂0, φ̂0, α̂0, γ̂0, taken as functions of (T, Ω, B, β), we
would then calculate the functions fZ in (5.28)–(5.32), differentiating quantities as
needed. Although we cannot solve these ODEs analytically in general, we can do so
numerically, and in fact we can add to these ODEs further equations for derivatives
such as Ω∂Ω |ζ̂0|2 or B∂B|ζ̂0|2. We relegate these uninspiring details to (B 1)–(B 6) in
appendix B.

With this set-up, figures 8–10 show the transport terms fZ as functions of τ for
λ̂, β̂ = 0 and values B̂ = 0.5 and 2. The results for fΩR (solid) in figure 8 may be
compared with fR (outer curve) in figure 2(a); it is clear how increasing B̂ gives rise
to oscillations in these fluxes because of Alfvén waves. Likewise, fM in figure 10 may
be compared with fP for a passive scalar in figure 5(a) (outer curve).

We now begin to suffer from the presence of too many parameters in the problem
and struggle to plot the dependence of quantities fZ(τ , B̂, β̂, λ̂). However, the quantities
λ̂2hZ(B̂, β̂, λ̂) (the prefactor chosen to show the clearest structure) are plotted as
functions of λ̂ for β̂ = 0 and different values of B̂ in figure 11. The values are B̂= 0,
1, . . . , 5, with the last curve dashed to mark it out. Where there are straight lines,
this reflects the lack of coupling in the non-magnetic case B̂ = 0. Some effects can
clearly be seen, for example the effect of magnetic field is to suppress transport of
A, via suppression of ηeff or hM, depicted in figure 11(g). These curves have been
carefully confirmed against analytical approximations (see appendix B) for varying
values of B̂, λ̂, β̂� 1 as a partial check on our analysis and coding.
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FIGURE 8. (Colour online) Plots of fΩR (solid), fΩL (dashed) and fΩK (dotted) as
functions of τ for λ̂= β̂ = 0 and (a) B̂= 0.5 and (b) B̂= 2.0.
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FIGURE 9. (Colour online) Plots of fBR (solid), fBL (dashed) and fBK (dotted) as
functions of τ for λ̂= β̂ = 0 and (a) B̂= 0.5 and (b) B̂= 2.0.
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FIGURE 10. (Colour online) Plots of fM as a function of τ for λ̂= β̂ = 0 and
(a) B̂= 0.5 and (b) B̂= 2.0.

5.4. Zonostrophic instability
Although any calculations become somewhat opaque at this point, as we can only
evaluate many quantities numerically, we can still press on to study zonostrophic
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FIGURE 11. (Colour online) Plots of (a) λ̂2hΩR, (b) λ̂2hΩL, (c) λ̂2hΩK , (d) λ̂2hBR, (e)
λ̂2hBL, ( f ) λ̂2hBK , (g) λ̂2hM , (h) λ̂2m3ΩB(ηeff +B ∂Bηeff ) (see (B 11)) and (i) λ̂2m3Ω2 ∂Ωηeff

(see (B 12)) as functions of λ̂ for B̂= 0, 1, 2, 3, 4 (solid) and 5 (dashed), with β̂ = 0.

instability for the MHD system, based on the large-scale equations (5.34), (5.35).
These are complicated as we have three effective transport terms, which themselves
depend on the local vorticity Ω and magnetic field B.

We therefore think of the coefficients νeff , χeff , ηeff as functions of (Ω, B, β, λ) and
linearise (5.34), (5.35) about a state of constant vorticity Ω0 and field B0. We thus
replace

Ω→Ω0 +Ω, B→ B0 + B, A→ B0Y + A, (5.37a−c)

where now Ω , B= A′ and A are small quantities. We then obtain

∂T Ω = ∂Y[(λ+ νeff )∂YΩ + χeff ∂YB], (5.38)
∂T A= ∂Y[(B0∂Ωηeff )Ω + (λ+ ηeff + B0∂Bηeff )∂YA], (5.39)

where the coefficients and their derivatives are evaluated at (Ω, B) = (Ω0, B0). In
general, the equations are completely coupled, and if we seek a mode with (Ω, B)
proportional to exp(PK2T + iKY) we find growth rates P satisfying

det
[(
λ+ νeff χeff
B0∂Ωηeff λ+ ηeff + B0∂Bηeff

)
+ PI

]
= 0, (5.40)

where I is the identity matrix.
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FIGURE 12. (Colour online) Contour plot of m2P (5.43) in the (m2λ,mB0)-plane for
Ω0 = β = 0. Contours increase from m2P= 0 (outermost) in steps of 0.1 to m2P= 10.

We wish to investigate instabilities as a function of (Ω0, B0, β, λ), and we
commence by setting β = 0 and Ω0 = 0, no background shear. This is a major
simplification, because for given λ, B0, we use the limiting expressions for Ω0→ 0,
that is for λ̂, B̂ � 1. We are again effectively in a viscous regime (on the τ time
scale) in which the exponential damping effect of the diffusion terms is dominant,
for τ =O(λ̂−1)� 1. On this time scale B̂τ =O(1) also and so we need to use

ζ̂0 = cos B̂τ = cos mBT, α̂0 = i sin B̂τ = i sin mBT (5.41a,b)

as leading-order approximations to solutions of (5.23) (see appendix B). (It should be
noted that a straightforward Maclaurin expansion in powers of τ is not satisfactory as
this series becomes non-uniform when B̂τ = O(1); our series is valid provided only
that B̂τ 2� 1.) This gives expressions for the hZ that we do not set out here, but that
have been used to check the numerical calculations in figure 11. More interestingly,
we obtain

νeff =− λ2 −m−2B2

2m6(λ2 +m−2B2)2
, χeff =ΩB

3λ2 −m−2B2

m8(λ2 +m−2B2)3
, ηeff = 1

2m6(λ2 +m−2B2)
,

(5.42a−c)
valid for fixed λ and B with Ω→ 0, at leading order.

Turning to (5.40), at Ω =Ω0 = 0 both diagonal entries vanish, and in addition for
the bottom right entry ηeff +B∂Bηeff =−νeff at this order. Thus, we are left with explicit
expressions for the growth rates,

P=−λ− νeff , P=−λ+ νeff . (5.43a,b)

The corresponding growth rate contours for m2P > 0 are depicted in figure 12.
The lower set of contours, intersecting the horizontal axis, are for the first set of
eigenvalues in (5.43) and correspond to the hydrodynamic zonostrophic instability
in § 3.4, modified by the magnetic field. This has a suppressing effect, switching
off the instability for mB0 larger than approximately 0.34, in at least qualitative
agreement with the results of Tobias et al. (2012).
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FIGURE 13. (Colour online) Contour plot of m2P from (5.40) in the (m2λ,mB0)-plane for
β = 0 and (a,b) Ω0 = 0.1 and (c,d) Ω0 = 0.2. In (a,c) the real part of m2P is shown and
in (b,d) the imaginary part. Contours increase from m2P= 0 (outermost) in steps of 0.1
to 10.

The second set of eigenvalues in (5.43) gives contours intersecting the vertical
axis in figure 12. This is a magnetically driven instability, in which the variations of
diffusivity ηeff with B lead to the tendency of the field to segregate into regions of
weaker and stronger B. The effect of removing the field from regions of overturning
motion is known as flux expulsion (Weiss 1966); in such regions the Lorentz force
feedback is then reduced, increasing the fluid flows and so enhancing the flux
expulsion, giving a runaway effect. The zonostrophic instability is restricted to a
range of λ values for B0 = 0, whereas the magnetic flux expulsion instability occurs
for any B0 as λ→ 0. It should be noted that this latter instability does not correspond
to a sign change in χeff , which would be impossible as the effective diffusivity arises
from advection–diffusion of A, but is seen in (5.40) to emerge from the variation of
χeff with respect to changes in the magnetic field B.

From this calculation we can now include a background shear, linearising about
(Ω0, B0) with Ω0 > 0. As in § 3.4, we can no longer evaluate the quantities νeff ,
χeff and ηeff analytically to obtain values of P from (5.40), and so we compute
them numerically. Figure 13 shows the contour plot of m2P for (a,b) Ω0 = 0.1 and
(c,d) 0.2. The real parts of m2P are shown in (a,c), and these reveal that shear tends
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FIGURE 14. (Colour online) Contour plot of m2P (3.32) in the (m2λ,mB0)-plane for Ω0=
0 and (a,b) β = 0.2 and (c,d) β = 0.4. In (a,c) contours for the zonostrophic instability
are shown and in (b,d) contours of the magnetic segregation instability. Contours increase
from m2P= 0 (outermost) in steps of 0.1 to 10.

to suppress both types of instability. Interestingly though, there emerges near to the
line mB0 = m2λ a region of oscillatory instability, with a pair of complex conjugate
values of m2P, whose imaginary parts are depicted in (b,d). This suggests emergence
of a coupled instability through overstability. This can be seen to some extent in
our analysis: in (5.40), the product χeff B0∂Ωηeff is negative (near mB0 = m2λ) in our
analytical approximation, from (5.42), (B 10). It also corresponds to the product of the
quantities shown in figure 11( f,i) being negative, at least for small B. Therefore, if
the actual diagonal terms are small, the off-diagonal terms can give an imaginary part
in m2P. The oscillatory eigenvalue could be considered as resulting from a resonance
between the two instabilities in figure 12.

The other effect we can include is that of a background vorticity gradient, β 6= 0.
We turn off the background shear, Ω0 = 0, and reintroduce the parameter β̂. The
corresponding transport coefficients may be computed, as we are again in the limit
λ̂, β̂, B̂ � 1 as Ω0 → 0, and these are given in (B 14)–(B 16). The off-diagonal
elements are again zero (at this order) in the matrix (5.40), and so the problem
decouples to eigenvalues given by the diagonal entries only. Figure 14 shows
plots of the zonostrophic modes in (a,c) and the magnetic flux expulsion modes
in (b,d) for β = 0.2 and 0.4. The effect of increasing β is to suppress the magnetic
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instability, panels (b,d). However, the zonostrophic instability contours now embrace
the vertical axis. The combined effect of the magnetic field B0 and β is to enhance
the zonostrophic instability, particularly for small viscosity. This can be contrasted
with figure 12 for β = 0, where the zonostrophic contours remain below the line
m2λ = mB0. There is supporting evidence of enhanced instability in full numerical
simulations (Durston 2015).

Finally, we note that the effective terms νeff and χeff include contributions from both
the Reynolds stress and Lorentz force terms. These contributions can be expressed as

λeff R =−2λ4 +m−2λ2B2 +m−4B4

4m6λ2(λ2 +m−2B2)2
,

λeff L =−m−2B2(3λ2 +m−2B2)

4m6λ2(λ2 +m−2B2)2
,

χeff R =−χeff L = 1
2χeff .


(5.44)

Thus, whereas two terms contribute equally and additively to χeff , for the effective
viscosity there is a leading-order cancellation for large magnetic field B� mλ. The
effect of the Lorentz force in cancelling Reynolds stresses for strong magnetic fields,
and the overall suppression of transport for large B evident in (5.42) are discussed in
Leprovost & Kim (2009).

5.5. Equilibrium profiles
Finally, we consider steady equilibrium profiles in the full MHD system. For a steady
profile we have

m2(λ+ νeff )∂YΩ +m2χeff ∂YB=C, (5.45)

m2(λ+ ηeff )B=CB, (5.46)

∂YU =−Ω, ∂YA= B. (5.47a,b)

In addition to (3.35), (4.12), we rescale

B=CBm−2λ−1B̃, A=m2λCBC−1Ã, B̃0 =m−3λ−2CB; (5.48a−c)

here, A is analogous to the passive scalar in (4.12). Making use of (5.36), we obtain
the equations

[1+ λ̃−3Ω̃−2hΩK]∂ỸΩ̃ + λ̃−3Ω̃−1B̃−1hBK ∂Ỹ B̃= 1, (5.49)

[1+ λ̃−3Ω̃−2hM]B̃= 1, (5.50)

∂ỸŨ =−Ω̃, ∂Ỹ Ã= B̃, (5.51a,b)

with now the functions

hZ = hZ(B̃0B̃Ω̃−1, β̃Ω̃−1, Ω̃−1), (5.52)

which we have to evaluate numerically. It should be noted that here B̃(Y) gives the
magnetic field profile, but B̃0 is a constant, a measure of the average field strength in
the system. Given values for the parameters λ̃, β̃ and B̃0, integrating the differential
algebraic system (5.49)–(5.51) determines profiles for the fields.
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FIGURE 15. (Colour online) Plots of equilibrium profiles by integrating the ODEs (5.49)–
(5.51) with 2− λ̃−3 = 1/16. Panel (a) shows Ω̃ (reading down the curves) and (b) shows
B̃ (reading up on the left side) for β̃ = 0 and B̃0 = 0, 0.2, . . . , 1. Panel (c) shows Ω̃
(reading up) and (d) shows B̃ (reading up) for B̃0 = 1 and β̃ = 0, 1, . . . , 5.

We illustrate some profiles in figure 15. It should be noted that in the limit B̃0 =
0, we regain the decoupled hydrodynamic and passive scalar problem, with profiles
shown in figures 4(a) and 6(b). With this in mind, in figure 15(a,b) we show the
profiles Ω̃(Ỹ) and B̃(Ỹ) respectively, where we start with B̃0= 0 and λ̂−3= 2− (1/16)
(close to the threshold for zonostrophic instability). This gives the sharpest profiles for
Ω̃ and B̃ as in the earlier figures, and as the parameter B̃0 is increased we observe
smoother curves: the step in vorticity and the effect of flux expulsion are smoothed out
in the presence of increasing magnetic fields. This could also be viewed as the effect
of increasing magnetic field in moving the point in parameter space away from the
threshold for zonostrophic instability (see figure 12), and indeed if λ̂ is also adjusted,
the profiles can be steepened again for non-zero magnetic field (not shown).

We continue to fix λ̂−3 = 2− (1/16), take B̃0 = 1 giving the two sharpest profiles
in figure 15(a,b), and then consider the effects of increasing β̃ in figure 15(c,d).
Interestingly, the effect of increasing β̃ is to sharpen the vorticity profile again,
while the magnetic field profile becomes smoother. The behaviour of the magnetic
field profile is very similar to that of the analogous passive scalar gradient in
figure 6(b). However, the sharpening of the vorticity profile is not observed in the
purely hydrodynamic system, and in that case there is actually no dependence on β̃

for vorticity profiles. Therefore, we observe that the magnetic field has a catalysing
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effect: its presence allows the β-effect to sharpen the vorticity profile. This is in line
with the earlier discussion of zonostrophic instabilities: the combination of β-effect
and magnetic field can be destabilising, leading to the increased areas of zonostrophic
instability in figure 14(a,c).

6. Discussion

In this paper we have considered forced two-dimensional flows in the presence of
shear, β-effect, magnetic field and viscous damping. We have used a driving with
a very basic structure in the interests of the analytical development, and discussed
the hydrodynamic, passive scalar and magnetic field problems in turn. We have made
contact with results elsewhere in the literature for hydrodynamic and passive scalar
cases, although frequently other studies differ in significant aspects, for example in
the type of dissipation or type of forcing. In particular, the molecular dissipation used
here is always Fickian diffusion, i.e. controlled by a Laplacian, +λ∇2ω; this brings
in more subtle ‘shear–diffuse’ mechanisms than for the commonly used bottom drag
−λ0ω, but complicates analysis (and leaves some mathematical questions unresolved,
as indicated in appendix A). For future study, it would also be interesting to relax the
requirement that all diffusivities are equal in (2.7).

Key novel results that we have obtained in the MHD problem are (i) quantifying
the effect of the magnetic field in suppressing zonostrophic instability (discussed
in Diamond et al. (2007) and observed numerically by Tobias et al. (2012)) and
(ii) the presence of a further magnetic flux expulsion instability (figure 12), (iii) the
suppression of these instabilities in the presence of shear (figure 13), (iv) the
prediction of resonance leading to instability through overstability (figure 14) and
(v) that the combination of magnetic field and β-effect can be destablising in
situations where neither individually drives an instability (figure 15). This latter
effect is also identified in a study of transport by Keating & Diamond (2008). We
have also obtained a range of equilibrium profiles, representing steady-state solutions
in which the profile is governed by the effective transport coefficients, themselves
nonlinear functions of the fields. These show vorticity steps and related features in
passive scalar and magnetic fields.

In terms of the limitations and context of our work (and so directions for
future study), clearly a major consideration is that it is based on the quasi-linear
approximation, and while we have explored this in some depth, we have not in
this paper attempted to verify predictions by full numerical simulations; see Tobias
et al. (2012) and the preliminary results presented in Durston (2015). While there are
several studies that show the utility of the quasi-linear approximation (e.g. Srinivasan
& Young 2012; Constantinou et al. 2014), and while this approximation would
certainly be valid in some parameter regimes (as per our scalings in ε early in
the paper), we recognise that the approach may principally be useful as a qualitative
rather than quantitative guide to behaviour in full nonlinear simulations. We have also
assumed scale separation between waves and mean flows, and this can be relaxed
by using the correlation function formulation developed by Srinivasan & Young
(2012) and discussed by Bakas & Iouannou (2013). This remains to be explored in
the magnetic problem, together with the Ginzburg–Landau formulation of Parker &
Krommes (2013, 2014).

We also note that the forcing chosen is anisotropic, and it is known that in
the purely hydrodynamic problem the feedback on the mean flow is switched off
completely in the case of an isotropic driving with β=0. This is explored in a number
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of papers, most recently by Srinivasan & Young (2014) who discuss the effects of a
family of forcings going from isotropic to anisotropic. In our hydrodynamic set-up
we also gain feedback at leading order in our expansions which arises through the
anisotropy of the driving and which is independent of β. It would be interesting
to rework the study for an isotropic driving and pick up the effect of β, known
to be a term of the form β2Ω ′′′′ in the large-scale vorticity equation (Srinivasan &
Young 2012; Bakas & Iouannou 2013). This would involve taking our systematic
expansion down two further orders, a significant task. With this, though, we note that
the equilibrium profiles we obtain show only a single vorticity step (figure 4), and
so tell us nothing about the important question of the natural spacing between steps
in a periodic profile on a β-plane; perhaps bringing in a β2Ω ′′′′ term would give this
information. Although one can argue about whether the driving in a ‘real’ fluid system
would be isotropic or not, this is perhaps somewhat philosophical, and it would be
more interesting to explore systems driven by convection (e.g. Morin & Dormy
2004; Rotvig & Jones 2006; Read et al. 2015) or some other natural instability,
rather than an externally imposed body force. Finally, we acknowledge that the study
here is somewhat far from immediate application. Perhaps the most relevant zone
for the interaction of magnetic fields and waves in the β-plane setting is the solar
tachocline (e.g. Hughes et al. 2007). The tachocline includes other physical processes,
for example stratification, and its origin and persistence are not well understood, but
nonetheless Diamond et al. (2007) argue that understanding of β-plane MHD is
important for basic understanding of the interaction of forced Rossby and Alfvén
waves, and the present paper has aimed to elaborate such processes, albeit within the
quasi-linear approximation.
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Appendix A. Local analysis near Ω = 0

A.1. Non-uniformity as λ→ 0
In this appendix we pick up questions about the approximations we have used, at
points where Ω goes to zero. We focus on the purely hydrodynamic formulation,
where our starting point is the framework and exact solutions in § 3.3, but similar
remarks would apply for the MHD case. Our analysis in § 3.3 is based on Y , T , λ
and β all being of order unity. With λ> 0 taken of order unity, any wave is damped
on a time scale of T , and so we do not care about the expansions perhaps becoming
non-uniform beyond this point – there would be only a negligible contribution to
fluxes. With this, we note that references to the ‘inviscid’ limit in the text above must
be understood in these terms: one fixes λ > 0 to a value, however small, and then
the results are valid for that fixed value, as ε→ 0, i.e. in the limit of large scale
separation.

To confirm this, and to see what happens when we try to relax these conditions,
consider the key approximation, from (3.10),

−L φ=m2(1+Ω2T2)φ− iεmΩ ′T φ− 2iεmΩT ∂Yφ− ε2∂2
Yφ'm2(1+Ω2T2)φ. (A 1)
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Clearly, the main problem that could arise is at points, or in regions, where Ω = 0
(particularly given our scaling out of Ω in (3.22)). However (with T =O(1)), the term
εΩ ′T φ remains uniformly small compared with the right-hand side. It is perhaps more
revealing to substitute the leading-order solution φ0 taken from (3.21) into the third
term, with

εΩT∂Yφ0 = εΩT
[−2ΩΩ ′T2

1+Ω2T2
− 2

3
m2λΩΩ ′T3

+ iβ
m

(
−Ω

′

Ω2
tan−1 ΩT + Ω ′T

Ω(1+Ω2T2)

)]
φ0. (A 2)

As Ω tends to zero with T =O(1), this remains uniformly small with respect to the
right-hand side of (A 1). This is reassuring but not unexpected.

More interestingly, suppose that we imagine now reducing λ, being interested in the
inviscid limit for a fixed scale separation ε� 1. In fact, let us set λ= 0, and consider
the approximation (A 1). For definiteness we consider a locally quadratic profile

U(Y)= αY2, Ω(Y)=−2αY, (A 3a,b)

i.e. a generic zero-crossing of the vorticity profile. First, we take the term εΩ ′T φ0 in
(A 1): this becomes of comparable size to the right-hand side when

Y ∼ ε and T ∼ ε−1. (A 4a,b)

We can now revisit the terms in (A 2). The first term on the right-hand side of (A 2)
also becomes comparable to the right-hand side of (A 1) when (A 4) holds. Other
terms in (A 2) involve λ and β, and so we imagine increasing these from zero: given
the scalings (A 4) these terms begin to become comparable with the right-hand side
of (A 1) when

λ∼ ε and β ∼ ε. (A 5a,b)
To summarise, we have developed theory for λ = O(1) (λ > 0) and ε→ 0. If we

wish to gain a uniform approximation that includes λ = 0 for ε→ 0, then we need
to investigate regions of non-uniformity given by (A 4). At the same time we could
bring in λ and β with the appropriate scalings being (A 5).

A.2. Long-time expansion
We now develop some theory based on these new scalings. It is convenient to return
to the original equations (2.11) with (2.14) (and no magnetic field or scalar transport).
We replace

β→ ε2β, λ→ ε2λ, (A 6a,b)
corresponding to (A 5). Looking at (A 4) we see that this corresponds to using (y, T)
coordinates with y = O(1) (the original y) and T = ε2t. The quadratic profile (A 3)
becomes

U(y)= ε2αy2, Ω(y)=−2ε2y, (A 7a,b)
with α a constant; in this section α, a, b, f , g, h, T are recycled and have no
connection with these quantities in earlier sections. With these replacements the
governing equations are simply

∂Tω+ imαy2ω= imβ̃ψ + λ(−m2 + ∂2
y )ω, ω=−(∂2

y −m2)ψ, (A 8a,b)

with β̃ = β − 2α. This is the full inner problem, and may be solved numerically
(Durston 2015).
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For further analytical progress, though, we approximate −m2 + ∂2
y ' ∂2

y for large
gradients (as we will discuss later), giving

∂Tω+ imαy2ω= imβ̃ψ + λ∂2
yω, ω=−∂2

yψ. (A 9a,b)

Following Bajer, Bassom & Gilbert (2001), we seek a solution of the form

ω= g(T)M(a+ 1, b, s), ψ = h(T)M(a, b, s), s=−iy2f (T), (A 10a−c)

where the M are Kummer functions (see the NIST handbook, Olver et al. 2010)
with parameters a, b and argument s. Equation (A 9b) is satisfied provided that
(NIST 13.2.1, 13.3.17)

g= 4iafh, b= 1
2 . (A 11a,b)

The value of b indicates that we could instead express what follows in terms of
parabolic cylinder functions. Equation (A 9a) becomes

∂Tg M(a+ 1, b, s)+ gf−1∂T f sM′(a+ 1, b, s)−mαgf−1sM(a+ 1, b, s)

= imβ̃hM(a, b, s)− 4iλ(a+ 1)fgM(a+ 2, b, s). (A 12)

Now we express (NIST 13.3.17, 13.3.19),

M(a, b, s)= [1+ (a+ 1− b)−1s]M(a+ 1, b, s)− (a+ 1− b)−1sM′(a+ 1, b, s), (A 13)
M(a+ 2, b, s)=M(a+ 1, b, s)+ (a+ 1)−1sM′(a+ 1, b, s), (A 14)

for the terms on the right-hand side of (A 9) and gather terms in M, sM and sM′, all
taken as functions of (a+ 1, b, s). This yields three equations which may be simplified
using (A 11) to give respectively

g−1∂Tg= 1
4 mβ̃a−1f−1 − 4iλ(a+ 1)f , (A 15)

4a
(
a+ 1

2

)=−β̃α−1, (A 16)

∂T f =mα − 4iλf 2. (A 17)

Equation (A 16) fixes values of a with

4a=−1±
√

1− 4β̃/α, (A 18)

and we have (taking α > 0 for definiteness)

f =mαµ−1 tanhµT, µ= (1+ i)
√

2λmα, (A 19a,b)

and then
g= c(µ−1 sinhµT)−a−1/2(coshµT)−a−1, (A 20)

h= d(µ−1 sinhµT)−a−3/2(coshµT)−a, d/c= i
(
a+ 1

2

)
/mβ̃. (A 21a,b)

We thus obtain exact solutions of the partial differential equations (A 9) describing the
evolution of waves subject to the flow, β-effect and viscosity. It should be noted that
for small viscosity, µ� 1, and T � µ−1 (before viscosity acts), we have f ' mαT .
Using the large-s asymptotics for M, namely (NIST 13.7.2),

M(a, b, s)= essa−b

Γ (a)
+ e±iπas−a

Γ (b− a)
, (A 22)
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we obtain for large s

ω∝ y2a+1eimαy2T, ψ ∝ y2a−1T−1eimαy2T . (A 23a,b)

This should then be matched with the outer solutions in § 3.3, although it may be
that the terms neglected in going from (A 8) to (A 9) have to be reincorporated. It
should be noted that in the case β̃ = 0, when the β effect precisely cancels out the
vorticity gradient from the flow, ω evolves like a passive scalar, and the root a=−1/2
correctly gives |ω|2 constant in (A 23). We leave this topic for further investigation, the
aim being to obtain a complete (and useful) description of the evolution of waves and
feedback outlined in § 3.3, valid for good scale separation ε� 1 uniformly in λ> 0.

Appendix B. Magnetohydrodynamic formulation
In this appendix we give some of the less interesting calculations related to the

MHD problem in § 5. First, we use (5.23) to obtain a fourth-order real system written
symbolically as

(∂T −M )V = 0, (B 1)

where

V (T, Ω, B, β)=


|ζ̂0|2
|α̂0|2

i(ζ̂ ∗0 α̂0 − ζ̂0α̂
∗
0)

ζ̂ ∗0 α̂0 + ζ̂0α̂
∗
0

 ,

M (τ , B, β)=


0 0 mBS −1 0
0 0 −mBS 0

−2mBS 2mBS −1 0 m−1βS

0 0 −m−1βS 0

 ,



(B 2)

S = (1 + τ 2)−1 and τ = ΩT as usual. We consider V = V (T, Ω, B, β), and
differentiating gives supplementary ODEs for B∂BV and Ω∂ΩV ,

(∂T −M )(B∂BV )= (B∂BM )V , (B 3)
(∂T −M )(Ω∂ΩV )= (τ∂τM )V , (B 4)

which may be written, after a change of variable to τ , as

(∂τ −Ω−1M )(B∂BV )= (Ω−1B∂BM )V , (B 5)
(∂τ −Ω−1M )(Ω∂ΩV )= (Ω−1τ∂τM )V . (B 6)

To calculate the fluxes fZ in (5.28)–(5.32) numerically, we integrate the ODEs
(B 1) together with (B 5), (B 6) in terms of τ for initial conditions V = (1, 0, 0, 0),
independent of Ω and B. We then extract any information needed at time τ , for
example for the figures 8–10. The resulting numerical procedures were checked by
computing derivatives numerically, and against analytical approximations below. It
should be noted that quantities such as hZ were computed by incorporating in the
system further ODEs of the form dh†

Z/dτ = D2fZ with h†
Z(0) = 0 and evaluating

hZ = h†
Z(τ ) for τ large enough that D2 is sufficiently small.
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We now turn to the calculations involving instabilities in § 5.4 and outline parts
omitted from the main text. First, equations (5.23) may be expanded as

∂τ ζ̂0 = iB̂(1+ τ 2)α̂0 + iβ̂(1− τ 2 + τ 4 − · · ·)ζ̂0, ∂τ α̂0 = iB̂(1− τ 2 + τ 4 − · · ·)ζ̂0,
(B 7a,b)

and then solutions can be developed perturbatively by bringing in successively higher
powers of τ . This gives, for β̂ = 0,

ζ̂0 = cos B̂τ + 1
2 B̂−2[B̂2τ 2 cos B̂τ − B̂τ sin B̂τ ] + · · · , (B 8)

α̂0 = i sin B̂τ + 1
2 iB̂−2[(1− B̂2τ 2) sin B̂τ − B̂τ cos B̂τ ] + · · · . (B 9)

The leading-order terms have been presented in (5.41) and give rise to the formulae
(5.42) in due course; we omit the details. The second-order terms are interesting as
they determine ηeff to better accuracy, namely

ηeff = 1
2m6(λ2 +m−2B2)

−Ω2 8λ6 + λ4m−2B2 + 2λ2m−4B4 +m−6B6

4m10λ2(λ2 +m−2B2)4
, (B 10)

and so give values for B∂Ωηeff , which otherwise vanishes at leading order.
It should be noted that in the numerical calculations leading to figure 13(b,c), we

differentiate ηeff analytically before computing (5.40), with evaluation of the following
integrals numerically:

ηeff + B∂Bηeff =m−3Ω−1B−1
∫ ∞

0
−D2(1+ τ 2)−1B∂Bi(ζ̂ ∗0 α̂0 − ζ̂0α̂

∗
0) dτ , (B 11)

B∂Ωηeff = m−3Ω−2
∫ ∞

0
D2(1+ τ 2)−1

[
2τ 2(1+ τ 2)−1 + 4

3
λ̂τ 3 −Ω∂Ω

]
× i(ζ̂ ∗0 α̂0 − ζ̂0α̂

∗
0) dτ . (B 12)

For β̂ 6= 0 solutions to (B 7) (just at leading order) are(
ζ̂0

α̂0

)
= 1

p+ − p−

[(
p+

B̂

)
eip+τ −

(
p−

B̂

)
eip−τ

]
, p± = 1

2
β̂ ±

√
1
4
β̂2 + B̂2 (B 13a,b)

(cf. Keating & Diamond 2008) from which we can obtain

νeff =−λ
4 + (2− 3∆2)λ2δ2 + (1−∆2)δ4

2m6λ2(λ2 + δ2)2
, (B 14)

χeff =ΩB∆2 3λ2 − δ2

m8(λ2 + δ2)3
+Ωβ2∆4 δ2(3λ2 + δ2)

4m10B3λ2(λ2 + δ2)2
, (B 15)

ηeff = 1
2m6(λ2 + δ2)

, ηeff + B∂Bηeff = λ
2 + (1− 2∆2)δ2

2m6(λ2 + δ2)2
, (B 16a,b)

where we have abbreviated (in this appendix only)

δ =
√

m−2B2 + 1
4 m−6β2, 1δ =m−1B. (B 17a,b)
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