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The purpose of this note is to show that the correctness of a multiplicative proof net with

mix is equivalent to its semantic correctness: a proof structure is a proof net if and only if

its semantic interpretation is a clique, where one given finite coherence space interprets all

propositional variables.

This is just an example of what can be done with these kinds of semantic techniques; for

more information and further results, the reader is referred to Retoré (1994).

1. Presentation and warning

This note demonstrates the use of coherence semantics – more precisely, of the so-called

experiment method of Girard (1987) – for the analysis of proof structures and proof nets.

We limit our study to the cut-free, constant-free multiplicative fragment of linear logic

enriched with the mix rule.

This allows our note to be self-contained, but we must warn the reader that the defi-

nitions we give are adapted to the particular case under consideration, and consequently,

would be incomplete in the general setting. In the case of the formal definition of a proof

structure or net, this is just a question of precision, but for the semantics of a proof

structure, one should be aware that in the non-cut-free case, the set of all the results of

the experiments has to be restricted to the set of the results of the successful experiments.

For simplicity we will speak about ‘proof structures (or nets)’ instead of ‘constant-free

and cut-free multiplicative proof structure (or net) with mix’ and of ‘experiments’ instead

of ‘successful experiments’ – as the two notions agree in this restricted case.

We give here a semantic, but nevertheless algorithmic criterion for a proof structure to

be a proof net. Notice that, despite this, the result applies to non-cut-free proofs, since, as

far as correctness is concerned, a cut between A and A⊥ may be viewed as a tensor rule

or link between premises A and A⊥ and conclusion A⊗A⊥.

In Retoré (1994) we extended these methods in two directions. First, dealing directly

with non-cut-free proof structures allows a semantic characterisation of another interesting

property of proof structures or proof expressions, which is called acyclicity in Abram-

sky (1993), and which corresponds to the deadlock freeness notion of Lafont (1990) when
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the considered interaction nets are multiplicative proof structures. Second, we extended

the characterisations of correctness and deadlock freeness to the pomset calculus of

Retoré (1993) and Retoré (1997); in the latter case, the proofs are harder, but they entail

the simpler result exposed here.

2. Reminder

2.1. Language and sequent calculus for cut-free and constant-free multiplicative linear

logic with the mix rule

The multiplicative formulae are generated from a set of propositional variables P =

{a, b, . . .} by the linear negation ( )⊥ and two binary connectives par ( )℘( ) and tensor

( )⊗( ). Let us call this set of formulae F.

As this calculus allows, we shall consider formulae up to the De Morgan laws, namely

(A⊥)⊥, (A⊗B)⊥ ≡ A⊥℘B⊥ and (A℘B)⊥ ≡ A⊥⊗B⊥. Thus the formulae that we consider

may be defined as M ::= P | P⊥ | M℘M | M⊗M.

Given a formula F in M, the notation F⊥ is a shorthand for the unique formula F ′ of

M such that F ′ ≡ F⊥ where F⊥ is a formula of F.

The cut-free multiplicative sequent calculus is defined by the following rules:

` a, a⊥
ax ` Γ, A, B

` Γ, B, A
exch

` Γ ` ∆

` Γ,∆
mix

` Γ, A, B

` Γ, A℘B
par

` Γ, A ` ∆, B

` Γ,∆, A⊗B ts

Notice that the axiom is restricted to the formulae in P, as the η-expansion property

allows.

2.2. Cut-free and constant-free multiplicative proof structures and nets with mix

We deal here with cut-free constant-free multiplicative proof nets (Girard 1987) where the

logic is enriched with the mix rule (Fleury and Retoré 1994). We simply call them proof

structures and proof nets.

We use a characterisation à la Danos–Regnier (Danos and Regnier 1989; Troelstra 1992;

Girard 1995), where proof structures are graphs. More precisely, we use the following

definition.

Definition 1. A cut-free proof structure with conclusions C1, . . . , Cn is a graph whose

vertices are occurrences of formulae that consist of:

— the subformula trees of C1, . . . , Cn – the syntactic forest of the sequent ` C1, . . . , Cn
— a set of pairwise disjoint edges a a⊥ called axioms covering the pendant vertices (or

leaves) of the syntactic forest.

A ‘par-link’ of a proof structure is a full subgraph of it consisting of three vertices A,

B and A℘B, where A℘B is a subformula of some Ci. The vertices A and B are said to

be the premises of the par-link, and the vertex A℘B is said to be the conclusion of the

par-link.

The definition of a ‘tensor-link’ is obtained by replacing par with tensor and ℘ with ⊗
in the definition of a par-link,
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A link is said to be final whenever A ∗ B is some Ci, that is, a root of the syntactic forest.

A splitting tensor-link is a final tensor-link, each edge of which is an isthmus of the

proof structure.

Following Fleury and Retoré (1994), we use the following definition.

Definition 2. A feasible path of a proof structure is a path that does not contain the two

edges of the same par-link. A proof structure is a proof net whenever there is no feasible

cycle – we equivalently say, in this case, that the proof structure is correct.

As shown in Fleury and Retoré (1994), these proof nets correspond exactly to the

proofs of the sequent calculus that we gave. This entails the following useful proposition

– directly established in Retoré (1996).

Proposition 3. A proof net always contains a final par-link or a splitting tensor-link,

unless it consists of a family of axioms.

2.3. Coherence semantics

We recall here a few definitions – more details can be found in Girard (1995), Girard

et al. (1988), Troelstra (1992) and Retoré (1994).

Definition 4. A coherence space U is a non-directed graph:

— the set of vertices or tokens is called the web and is written |U|;
— adjacency, called strict coherence is an anti-reflexive and symmetrical relation written

xay[U].

The following shorthand is convenient:

x a` y[U] : x = y or xay[U] – coherent,

x `a y[U] : not xay[U] – incoherent,

x`y[U] : x 6= y and not (xay[U]) – strictly incoherent.

The dual U⊥ of a coherence space U is defined by its web |U⊥| = |U|, and its strict

coherence: xay[U⊥] iff x`y[U]. In other words, U⊥ is the complement graph of U.

Given two coherence spacesU and V , the coherence spacesU℘V andU⊗V are defined by:

|U℘V | = |U⊗V | = |U| × |V |
(x, y) a` (x′, y′)[U⊗V ] iff x a` x

′[U] and y a` y
′[V ]

(x, y)a(x′, y′)[U℘V ] iff xax′[U] or yay′[V ]

Definition 5. An interpretation ∇ is the choice, for each propositional variable a of a

coherence space a∇. Thus, defining (A℘B)∇ as A∇℘B∇, (A⊗B)∇ as A∇⊗B∇ and (A⊥)∇ as

(A∇)⊥, each formula F is associated with a coherence space F∇. Here are the two dual

coherence spaces ‘N = Z⊥’ and ‘Z = N⊥’:

N:
a b

Z :
a b

c d c d
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An ‘NZ-interpretation’ is an interpretation in which any atomic formula is interpreted as

N or as Z.

2.4. Experiments

The starting point of this note is the so-called method of experiments of Girard (1987,

§3.17–18) for computing the coherence semantics of a proof directly from the proof net.

It can be harmlessly extended to proof structures, as in the following definition.

Definition 6. Let ∇ be an interpretation. Let Π be a proof structure with conclusions

F1, . . . , Fn. A ∇-experiment of Π is a labelling of its vertices – i.e., of the occurrences of

the subformulae of the Fi. The label of a vertex A is a token, say u, of the web |A∇| of the

coherence space A∇, and we write u : A for this. A ∇-experiment is obtained as follows:

— for each axiom a a⊥ we arbitrarily choose a single token x ∈ |a∇| = |a⊥∇ |, which is

their common label

x : a x : a⊥,

and this completely determines the experiment;

— these labels are spread all over the proof net, from the premises of links to their

conclusions as follows:

Let ∗ ∈ {℘,⊗}. If the label of the left premise is u ∈ |A∇| and the label of the

right premise is v ∈ |B∇|, the label of the conclusion A ∗ B is (u, v), which belongs to

|(A ∗ B)∇| = |A∇| × |B∇|.

u : A

(u, v) : A*B

v : B

*-link

The result of an experiment E is the tuple |E| = (t1, . . . , tn) of the tokens ti labelling the

conclusion vertices: t1 : F1, . . . , and tn : Fn. Thus it is a token of (F1℘ · · ·℘Fn)∇. The

semantics ‖ Π ‖∇ of a Π according to an interpretation ∇ is the set of results of the

∇-experiments†.
From Girard (1987, 3.18), we have, among others, the following theorem.

Theorem 7. (‘soundness’) Let ∇ be any interpretation. Let Π be a proof structure with

conclusions F1, . . . , Fn. If Π is a proof net, then ‖ Π ‖∇ is a clique of the coherence space

(F1℘ · · ·℘Fn)∇.

For a proof in this setting, see Retoré (1994).

† There is no need to restrict the semantics to the experiments that succeed, because we only deal here with

cut-free proof structures – see Retoré (1994) for more details.
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3. Result

The purpose of this note is to establish the following theorem.

Theorem 8. Let ∇ be a given arbitrary NZ-interpretation. Let Π be a proof structure with

conclusions F1, . . . , Fn. Let E1 be a given arbitrary ∇-experiment of Π. If any ∇-experiment

E2 satisfies |E1| a` |E2|[(F1℘ · · ·℘Fn)∇], then Π is a proof net.

This result obviously entails the following corollary.

Corollary 9. Let ∇ be a given arbitrary NZ-interpretation. Let Π be a proof structure with

conclusions F1, . . . , Fn. If ‖ Π ‖∇ is a clique of (F1℘ · · ·℘Fn)∇, then Π is a proof net.

This clearly entails Corollary 10, which is the converse of Theorem 7.

Corollary 10. (‘completeness’) Let Π be a proof structure with conclusions F1, . . . , Fn. If

‖ Π ‖∇ is a clique of (F1℘ · · ·℘Fn)∇ for any interpretation ∇, then Π is a proof net.

The respective converses of Theorem 8 and its two corollaries are immediate conse-

quences of Theorem 7. Thus Theorem 8 and its corollaries are all semantic characterisations

of the correctness of a proof structure.

An advantage of Theorem 8 or Corollary 9 with respect to Corollary 10 is that it

provides an algorithm for asserting or refuting the correctness of a proof structure. This

algorithm simply consists of:

1 Choose an arbitrary NZ-interpretation ∇.

2 Choose an arbitrary ∇-experiment E1.

3 Check that any ∇-experiment E2 satisfies |E1| a` |E2|[(F1℘ · · ·℘F2)∇] – because |N| is

finite, there are finitely many E2.

Unfortunately, it is not an efficient algorithm: if the proof structure has N axiom-

links, there are 4N ∇-experiments to be checked (polynomial algorithms are known: for

example, Danos (1990), Fleury and Retoré (1994) and Retoré (1996)). However, this is

the only semantic characterisation, and is directly applicable to the proof expressions of

Abramsky (1993), without considering the corresponding proof structures.

4. Proof

Notation 11. In this section:

— ∇ denotes a given but arbitrary NZ-interpretation,

— Π denotes a proof structure with conclusions F1, . . . , Fn,

— E1,E2 are ∇-experiment of Π,

— A:a, A: ,̀ A:`a , A:a` , A:= Given a vertex A of Π, and two ∇-experiments E1

and E2, the expression A:a means: the two tokens t1 and t2 labelling the vertex A

according to E1 and E2 satisfy t1at2[A∇] – the other similar expressions are defined

in the same way.

Proposition 12. Let E1 be a given but arbitrary ∇-experiment of Π. Let a1 a⊥1 , a2 a⊥2
. . . and ap ap

⊥ be a family of axioms of Π (hence all the ai are atomic), and let φ and ψ

be two functions from [1, p] to {a1, a
⊥
1 , a2, a

⊥
2 ,. . . , ap, ap

⊥} such that {ψ(i), φ(i)} = {ai, ai⊥}
for i ∈ [1, p].
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Then there always exists another ∇-experiment such that φ(i):a ψ(i): ,̀ and, for any

axiom not in the family, b:= b⊥:=.

Proof. Assume the token for the axiom i according to E1 is xi ∈ |N| = |Z|. Then in the

interpretation of φ(i) that is N or Z, there exists another token yi such that xiayi[φ(i)∇],

and since ψ(i) = φ(i)⊥, we also have xi`yi[ψ(i)∇]. Indeed for any token x in |N| = |Z|
there exists another token y (respectively, another token z) of |N| = |Z| such that xay[N]

(respectively, xaz[Z]).

4.1. Experiments and feasible paths

In this subsection, E1 denotes a given but arbitrary ∇-experiment of Π, and the proof

structure Π is assumed to be a proof net†.
Let γ be a feasible path (cf. Definition 2) of Π from a conclusion X to a conclusion

Y . Notice that γ necessarily uses some axiom-links, which are all distinct, because Π is a

proof net.

Let a1 a⊥1 , a2 a⊥2 . . . , ap a⊥p , be the sequence of axiom-links that γ uses and let φ(i)

(respectively, ψ(i) ) be the first (respectively, second) vertex of ai a⊥i met by γ – thus

{φ(i), ψ(i)} = {ai, a⊥i }.
Proposition 12 provides another ∇-experiment E2 such that: φ(i):a ψ(i): ,̀ and, for

any other axiom, b:= b⊥:=.

We then have the following lemma.

Lemma 13. E1 and E2 satisfy X:a and Y : ,̀ while Z :`a for any other conclusion Z .

Proof. We proceed by induction, using Proposition 3.

1 If the proof net is a union of axiom-links, then, because of the existence of the (feasible)

path γ, X and Y are the two conclusions of the same axiom, and the result is obvious.

2 If there is a final par-link, we arbitrarily choose one, and call Π′ the proof net obtained

by removing this final par-link.

(a) If X is its conclusion. Then the path γ makes use of one of the edges of the

par-link. We call the corresponding premise X ′, and use γ′ for the restriction of

γ to Π′. Therefore γ′ uses the same axiom-links in the same order. We can apply

the induction hypothesis to Π′, X ′ and γ′, and therefore we obtain X ′:a and Y :`

with Z :`a for any other conclusion Z . From the coherence according to par, we

obtain the result.

(b) If Y is its conclusion, we proceed similarly, noticing that a′`b′[Y ′∇] and a′′ `a b
′′[Y ′′∇ ]

implies (a′, a′′)`(b′, b′′)[(Y ′℘Y ′′)∇ = Y∇].

(c) If neither of X,Y is its conclusion, then γ does not use this link. So we apply the

induction hypothesis to Π′, X, Y and γ, and the result immediately follows.

† This is in fact not needed, as can be seen in Retoré (1994), but it makes both the statement of the lemma

and its proof easier.
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3 If there is no final par-link, then there exists a splitting tensor-link, and we choose

one. Arbitrarily putting any totally disconnected part of Π with one or the other

premise of the chosen splitting tensor-link, we obtain a partition of Π – minus

the two edges of the chosen splitting tensor-link – into three full subgraphs: two

proof nets Π′, Π′′, respectively, containing one and the other premise of the splitting

tensor-link, and a single vertex, which is the conclusion of the splitting tensor-link.

(a) If X is the conclusion of the splitting tensor-link, say Y is in Π′, and call X ′ the

premise of X in Π′. Then, necessarily, γ starts with the edge X −X ′, and we use

γ′ for the rest of γ, which is necessarily included in Π′. We apply the induction

hypothesis to Π′, X ′, Y and γ′. Noticing that all conclusions in Π′′ are Z :=, and

the result is clear.

(b) If Y is the conclusion of the splitting tensor-link, we proceed similarly.

(c) If neither X nor Y is the conclusion of the splitting tensor-link, they either lie

in the same part Π′ or different parts, say X ∈ Π′ and Y ∈ Π′′.

i If X,Y are in the same part, since the tensor-link is splitting, γ does not use

it – otherwise there would exist a feasible cycle. So we apply the induction

hypothesis to Π′, X, Y and γ, and the result follows – all conclusions are Z :=

in Π′′.

ii If X is in Π′ and Y in Π′′, then γ uses the splitting tensor-link. We use U ′

for its premise in Π′, γ′ for the part of γ from X to U ′ (included in Π′), U ′′

for its premise in Π′′, and γ′′ for the part of γ from U ′′ to Y (included in Π′′).

We apply the induction hypothesis to Π′, X, U ′ with γ′ and to Π′′, U ′′ and Y

with γ′′. The result follows, since U ′:` and U ′′:a implies U ′⊗U ′′: .̀

4.2. Experiments and proof structures

We now prove the contrapositive of Theorem 8, i.e:

Theorem 14. Let ∇ be a given arbitrary NZ-interpretation

Let E1 be a given arbitrary ∇-experiment of the proof structure Π.

If the proof structure Π is not a proof net, there exists another ∇-experiment such that

|E1|` |E2|[(F1℘ · · ·℘Fn)∇].

Proof. Remember that the proof structure is not a proof net whenever it possesses a

feasible cycle, while the two experiments are not coherent in the par of its conclusions

whenever all conclusions are Z :`a , one of them being W : .̀

Here too we proceed by induction on the number of links of the proof structure.

1 Π cannot be a union of axiom-links.

2 If Π has a final par-link, say F1 = X℘Y , then the proof structure Π′ obtained by

removing this final par-link is not a proof net either. We apply the induction hypothesis,

and thus obtain an experiment E2 of Π′, for which |E1|` |E2|[(X℘Y ℘F2℘ · · ·℘Fn)∇].

So E2 viewed as an experiment of Π gives the result.

https://doi.org/10.1017/S096012959700234X Published online by Cambridge University Press

https://doi.org/10.1017/S096012959700234X


C. Retoré 452

3 Otherwise Π possesses a final tensor-link, say F1 = X⊗Y .

(a) If the proof structure obtained by removing this final tensor-link is not a proof

net either, we apply the induction hypothesis, and we are done, as in 2:

if |E1|` |E2|[((X℘Y )℘F2 · · ·℘Fn)∇], then |E1|` |E2|[((X⊗Y )℘F2℘ · · ·℘Fn)∇].

(b) Otherwise, the proof structure obtained by removing this final tensor-link is a

proof net. Therefore this proof net contains a feasible path γ between the two

premises of this final tensor-link, say X and Y . We apply Lemma 13, and thus we

obtain another experiment E2 such that X:a and Y : ,̀ the other conclusions being

Z :`a . This obviously provides another experiment E2 of Π such that X⊗Y :` and

Z :`a for any other conclusion.
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Retoré, C. (1997) In: Hindley, J. R. and de Groote, Ph. (eds.) Typed Lambda Calculus and

Applications. Springer-Verlag Notes in Computer Science, 1210 300–318.

Troelstra, A. S. (1992) Lectures on Linear Logic. Center for the Study of Language and Information

(CSLI) Lecture Notes 29, Cambridge University Press.

https://doi.org/10.1017/S096012959700234X Published online by Cambridge University Press

https://doi.org/10.1017/S096012959700234X

