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Abstract

Let {Zn, n = 0, 1, 2, . . .} be a supercritical branching process, {Nt , t ≥ 0} be a Poisson
process independent of {Zn, n = 0, 1, 2, . . .}, then {ZNt , t ≥ 0} is a supercritical Poisson
random indexed branching process. We show a law of large numbers, central limit
theorem, and large and moderate deviation principles for log ZNt .

Keywords: Central limit theorem; large deviation principle; moderate deviation principle;
random indexed branching process; stock prices

2010 Mathematics Subject Classification: Primary 60J80
Secondary 60F10

1. Introduction

The model of random indexed branching process is one of the important extensions of
the Galton–Watson branching process, which was introduced by Epps [4] in order to study the
evolution of stock prices. The statistical investigation on various estimates and some parameters
of the process were performed by Dion and Epps [3]. Recently, this randomly indexed branching
process has been brought to attention in both the theoretical and applied sense. On theoretical
side, Mitov et al. [8], [11] considered a critical branching process subordinated by a general
renewal process. The authors investigated the probability of nonextinction, the asymptotic
behavior of the moments, and also limiting distributions under normalization. Results on the
subcritical case were presented in [10]. In a more applied direction, Mitov and Mitov [7] derived
an equation for the fair price of a European call option based on modeling the underlying stock
price by this process with a Poisson subordinator and with a geometric offspring distribution.
Subsequently, an equation for the fair price of an up-and-out call option, a particular form of a
barrier option, was derived in [9]. For more details, we refer the reader to the doctoral theses
of Williams [12] and Wu [13]. In [13], based on the idea of Athreya [1], the author derived the
large deviation for ZNt+1/ZNt . Large deviation results for sums indexed by the generations
of a Galton–Watson process were presented in [5]. In this paper, for a supercritical random
indexed branching process with a Poisson subordinator, we shall mainly show the asymptotic
properties of log ZNt .

Let us give a description of the model. Let {Zn, n = 0, 1, 2, . . .} and {Nt, t ≥ 0} be two
independent stochastic processes on the same probability space (�, F , P) with the following
characteristics.

(i) That {Zn} is a Galton–Watson branching process with an offspring distribution {pi, i =
0, 1, 2, . . .}. Throughout this paper, we assume that our branching process starts from
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one ancestor, i.e. Z0 = 1 almost surely (a.s.) and that it belongs to the Böttcher case
with a finite mean, i.e. p0 + p1 = 0 and 1 < m = ∑∞

n=2 npn < ∞.

(ii) That {Nt, t ≥ 0} is a Poisson process with parameter λ > 0.

Definition 1.1. The continuous-time process {ZNt , t ≥ 0} is called a Poisson randomly indexed
branching process.

Define Wn = Zn/mn for n = 0, 1, 2, . . . , then {Wn} is a nonnegative martingale with
limit W . One can prove that {WNt , t ≥ 0} is also a nonnegative martingale and has the same
limit W ; see [13].

First, we present a large deviation principle. Let

�t(θ) = log E

(
exp

(
θ log ZNt

t

))
,

�(θ) = lim
t→+∞

�t(tθ)

t
= lim

t→+∞
log E(Zθ

Nt
)

t
, �∗(x) = sup

θ∈R

{θx − �(θ)}.

According to the Gärtner–Ellis theorem (see [2]) and the results in [6], we have our first
main result.

Theorem 1.1. (Large deviation.) Assume that E(Za
1 ) < ∞ for all a ≥ 1. Then, for any

measurable subset B of R,

− inf
x∈Bo

�∗(x) ≤ lim inf
t→∞

1

t
log P

(
log ZNt

t
∈ B

)

≤ lim sup
t→∞

1

t
log P

(
log ZNt

t
∈ B

)

≤ − inf
x∈B̄

�∗(x),

where Bo denotes the interior of B, B̄ its closure, and

�∗(x) =
⎧⎨
⎩

x

log m
log

(
x

λ log m

)
− x

log m
+ λ, x ≥ 0,

+∞, x < 0.

Now we consider moderate deviations. Let {at , t ≥ 0} be a family of positive numbers
satisfying

at

t
→ 0 and

at√
t

→ ∞ as t → ∞.

As in the case of the large deviation principle, based on the Gärtner–Ellis theorem and the
moderate deviation principle for Poisson process, we have the following theorem.

Theorem 1.2. (Moderate deviation.) For any measurable subset B of R,

− inf
x∈Bo

x2

2λ
≤ lim inf

t→∞
t

a2
t

log P

(
log ZNt / log m − λt

at

∈ B

)

≤ lim sup
t→∞

t

a2
t

log P

(
log ZNt / log m − λt

at

∈ B

)

≤ − inf
x∈B̄

x2

2λ
.
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Similar to the law of large numbers and central limit theorem for Poisson process, we have
our final result.

Theorem 1.3. (Law of large numbers and central limit theorem.) Let �(x) be the standard
normal distribution function. For any x ∈ R,

lim
t→∞

log ZNt

t
= λ log m a.s., lim

t→∞ P

(
log ZNt / log m − λt√

λt
≤ x

)
= �(x).

2. Large deviation principle

The large deviation principle can be derived from the following two lemmas and the Gärtner–
Ellis theorem.

Lemma 2.1. Assume that E(Za
1 ) < ∞ for all a ≥ 1. For any θ ∈ R, there exists a constant

C(θ) > 0 such that

lim
n→∞

E(Zθ
n)

mnθ
= C(θ).

Proof. The proof is a consequence of [6, Theorem 1.3]. �

Lemma 2.2. Assume that E(Za
1 ) < ∞ for all a ≥ 1. For any θ ∈ R, �(θ) = λ(mθ − 1) and

�∗(x) =
⎧⎨
⎩

x

log m
log

(
x

λ log m

)
− x

log m
+ λ, x ≥ 0,

+∞, x < 0,

where 0 log 0 := 0. Furthermore, �∗(λ log m) = 0, �∗(x) is strictly increasing for x > λ log m

and �∗(x) is strictly decreasing for x < λ log m.

Proof. For any θ ∈ R, using the law of the total probability, and the independence of Zn

and Nt , we obtain the θ -order moment of ZNt as

E(Zθ
Nt

) =
∞∑

n=0

E(Zθ
Nt

| Nt = n)P(Nt = n)

=
∞∑

n=0

E(Zθ
n)P(Nt = n)

=
∞∑

n=0

C(θ)mnθ
P(Nt = n) +

∞∑
n=0

[E(Zθ
n) − C(θ)mnθ ]P(Nt = n)

= C(θ)

∞∑
n=0

mnθ (λt)n

n! e−λt +
∞∑

n=0

[E(Zθ
n) − C(θ)mnθ ] (λt)n

n! e−λt

= C(θ) exp(λt (mθ − 1)) + I, (2.1)

where

I =
∞∑

n=0

[E(Zθ
n) − C(θ)mnθ ] (λt)n

n! e−λt .
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According to Lemma 2.1, for any ε > 0, there exists a constant N = N(θ) such that for any
n > N(θ), we have ∣∣∣∣E(Zθ

n)

mnθ
− C(θ)

∣∣∣∣ < ε.

Consequently,

|I | ≤
∞∑

n=0

|E(Zθ
n) − C(θ)mnθ | (λt)n

n! e−λt

=
N∑

n=0

|E(Zθ
n) − C(θ)mnθ | (λt)n

n! e−λt +
∞∑

n=N+1

|E(Zθ
n) − C(θ)mnθ | (λt)n

n! e−λt

≤ M(θ) + ε

∞∑
n=0

mnθ (λt)n

n! e−λt

= M(θ) + ε exp(λt (mθ − 1)), (2.2)

where

M(θ) =
N∑

n=0

|E(Zθ
n) − C(θ)mnθ | (λt)n

n! e−λt .

According to (2.1) and (2.2), we have

(C(θ) − ε) exp(λt (mθ − 1)) − M(θ) ≤ E(Zθ
Nt

) ≤ (C(θ) − ε) exp(λt (mθ − 1)) − M(θ).

Given ε < C(θ), we have

�(θ) = lim
t→+∞

log E(Zθ
Nt

)

t
= λ(mθ − 1).

Consequently, the Fenchel–Legendre transform of � is

�∗(x) =
⎧⎨
⎩

x

log m
log

(
x

λ log m

)
− x

log m
+ λ, x ≥ 0,

+∞, x < 0.

(2.3)

The proof of Lemma 2.2 follows from (2.3). �
The following result is a general result on large deviations; see [6].

Lemma 2.3. Let I be a continuous function on R satisfying

(i) that I (b) = infx∈R I (x) = 0 for some b ∈ R;

(ii) that I is strictly increasing on [b, ∞) and strictly decreasing on (−∞, b].
Let μt , t ≥ 0 be a family of probability distribution on R and let {at } be a family of positive

numbers satisfying at → ∞. Then, the following statements are equivalent.

(i) For x < b,

lim
t→∞

log μt((−∞, x])
at

= −I (x).
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For x > b,

lim
t→∞

log μt([x, ∞))

at

= −I (x).

(ii) It holds that {μt , t ≥ 0} satisfies a large deviation principle. For any measurable subset B
of R,

− inf
x∈Bo

I (x) ≤ lim inf
t→∞

log μn(B)

at

≤ lim sup
t→∞

log μn(B)

at

≤ − inf
x∈B̄

I (x).

From Theorem 1.1 and Lemma 2.3, we obtain immediately the following corollary.

Corollary 2.1. Assume that E(Za
1 ) < ∞ for all a ≥ 1. Then

lim
t→∞

1

t
log P

(
log ZNt

t
≤ x

)
= −�∗(x) for x < λ log m,

lim
t→∞

1

t
log P

(
log ZNt

t
≥ x

)
= −�∗(x) for x > λ log m.

3. Moderate deviation principle

For any t > 0, θ ∈ R, define

θt = atθ

t log m
.

The large deviation principle can be derived from the following two lemmas and the Gärtner–
Ellis theorem.

Lemma 3.1. For any θ ∈ R, there exists a constant C > 0 such that

C ≤ lim inf
t→∞

E(Z
θt

Nt
)

E(mNtθt )
≤ lim sup

t→∞
E(Z

θt

Nt
)

E(mNtθt )
≤ 1.

Proof. The result is obvious for θ = 0.
For θ 	= 0, using the law of the total probability and the independence of Zn and Nt , we

have

E(Z
θt

Nt
) = E(W

θt

Nt
mNtθt ) =

∞∑
n=0

E(Wθt
n )mnθt P(Nt = n). (3.1)

For θ < 0, we have θt < 0. By Jensen’s inequality, E(W
θt
n ) ≥ (E(Wn))

θt = 1. By (3.1), we
have

lim inf
t→∞

E(Z
θt

Nt
)

E(mNtθt )
≥ 1.

On the other hand, according to [6, Theorem 2.1], there exist two positive constants a and Ca

such that E(W−a) ≤ Ca . Noting that −θt/a ∈ (0, 1) for large enough t and that by [6, Lemma
2.1], E(W−s

n ) ≤ E(W−s) for s > 0, again by Jensen’s inequality, we have

E(Wθt
n ) = E(W−a

n )−θt /a ≤ (E(W−a
n ))−θt /a ≤ (E(W−a))−θt /a ≤ C

−θt /a
a

According to (3.1), this leads to

lim sup
t→∞

E(Z
θt

Nt
)

E(mNtθt )
≤ 1.
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For θ > 0, we have θt ∈ (0, 1) for large enough t , so by Jensen’s inequality, E(W
θt
n ) ≤

(E(Wn))
θt = 1. By (3.1), we have

lim sup
t→∞

E(Z
θt

Nt
)

E(mNtθt )
≤ 1.

On the other hand, from the proof of [6, Lemma 2.3], we know that E(Wb) ≤ Cb for some
b > 1 and Cb > 0. By Hölder’s inequality,

1 = E(Wn) = E(W
θt /p
n W

1−θt /p
n ) ≤ (E(Wθt

n )1/p(E(W
(1−θt /p)q
n ))1/q (3.2)

for p, q > 1, p−1 + q−1 = 1. Take

p = pt := b − θt

b − 1
, q = qt := b − θt

1 − θt

,

then p, q > 1, p−1 + q−1 = 1, (1 − θt/p)q = b, and p/q = (1 − θt )/(b − 1). According to
[6, Lemma 2.1] and (3.2), we obtain

E(Wθt
n ) ≥ (E(Wb

n ))−(1−θt )/(b−1) ≥ (E(Wb))−(1−θt )/(b−1) ≥ C
−(1−θt )/(b−1)
b .

By (3.1), this leads to

lim inf
t→∞

E(Z
θt

Nt
)

E(mNtθt )
≥ C

−1/(b−1)
b =: C ∈ (0, 1]. �

Next, for any t > 0, θ ∈ R, define

�̄t (θ) = log E

(
exp

(
θ(log ZNt / log m − λt)

at

))
,

�̄(θ) = lim
t→+∞ a−2

t t�̄t

(
a2
t

t
θ

)
, �̄∗(x) = sup

θ∈R

{θx − �̄(θ)},

�̃t (θ) = log E

(
exp

(
θ(Nt − λt)

at

))
,

�̃(θ) = lim
t→+∞ a−2

t t�̃t

(
a2
t

t
θ

)
, �̃∗(x) = sup

θ∈R

{θx − �̃(θ)}.

Lemma 3.2. For any θ, x ∈ R,

�̄(θ) = �̃(θ) = 1

2
λθ2, �̄∗(x) = �̃∗(x) = x2

2λ
.

Proof. According to the moderate deviation principle for a Poisson process, we only need
to prove that

�̄(θ) = �̃(θ) for all θ ∈ R.
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For any θ ∈ R, by Lemma 3.1,

�̄(θ) = lim
t→+∞ a−2

t t�̄t

(
a2
t

t
θ

)

= lim
t→+∞ a−2

t t log E

(
exp

(
a2
t θ(log ZNt / log m − λt)

at t

))

= lim
t→+∞ a−2

t t[log E(Z
θt

Nt
) − λatθ ]

= lim
t→+∞ a−2

t t[log E(mNtθt ) − λatθ ]

= lim
t→+∞ a−2

t t�̃t (
a2
t

t
θ)

= �̃(θ). �

From Theorem 1.3 and Lemma 2.3, we obtain immediately the following corollary.

Corollary 3.1. For all x > 0,

lim
t→∞

t

a2
t

log P

(
log ZNt / log m − λt

at

≤ −x

)
= −x2

2λ
,

lim
t→∞

t

a2
t

log P

(
log ZNt / log m − λt

at

≥ x

)
= −x2

2λ
.

4. Law of large numbers and central limit theorem

The proof of Theorem 1.3 is based on the law of large numbers and central limit theorem
for the Poisson process in the following lemma.

Lemma 4.1. For a Poisson process {Nt, t ≥ 0} with parameter λ > 0, we have

lim
t→∞

Nt

t
= λ a.s. lim

t→∞ P

(
Nt − λt√

λt
≤ x

)
= �(x).

Proof of Theorem 1.3. For any t > 0, we have

log ZNt

t
= log WNt + Nt log m

t
.

Note that our branching process belongs to the Böttcher case, so WNt → W > 0 a.s. when
t → ∞. By Lemma 4.1, we have the law of large numbers.

Next, for any x ∈ R, define

At(x) =
{

Nt − λt√
λt

≤ x

}
Bt(x) =

{
log WNt√
λt log m

≤ x

}
,

Ct (x) =
{

log ZNt / log m − λt√
λt

≤ x

}
.

Note that as WNt = ZNt /mNt , we have for any ε > 0,

P(Ct (x)) = P(Ct (x) ∩ Bt(−ε)) + P(Ct (x) ∩ Bc
t (−ε))

≤ P(Bt (ε)) + P(At (x + ε)). (4.1)
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Since WNt → W > 0 a.s. when t → ∞, we have

lim
t→∞ P(Bt (−ε)) = 0 (4.2)

Let t → ∞ and then ε → 0 in (4.1), by Lemma 3.1 and (4.2), we have

lim sup
t→∞

P(Ct (x)) ≤ �(x).

Similarly, one can show that lim inf t→∞ P(Ct (x)) ≥ �(x). �
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