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Abstract

We prove a quantitative partial result in support of the dynamical Mordell–Lang conjecture (also known
as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field
K of characteristic p, a semiabelian variety X defined over a finite subfield of K and endowed with a
regular self-map Φ : X−→X defined over K, a point α ∈ X(K) and a subvariety V ⊆ X, then the set of all
nonnegative integers n such that Φn(α) ∈ V(K) is a union of finitely many arithmetic progressions along
with a subset S with the property that there exists a positive real number A (depending only on X, Φ, α and
V) such that for each positive integer M,

#{n ∈ S : n ≤ M} ≤ A · (1 + log M)dim V .

2020 Mathematics subject classification: primary 11B37; secondary 11G25, 37P55.
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1. Introduction

1.1. Notation. Throughout this paper, we let N0 := N ∪ {0} denote the set of non-
negative integers. As always in arithmetic dynamics, we denote by Φn the nth iterate
of the self-map Φ acting on some ambient variety X. For each point x of X, we denote
its orbit under Φ by

OΦ(x) := {Φn(x) : n ∈ N0}.
Also, for us, an arithmetic progression is a set {an + b}n∈N0 for some a, b ∈ N0; in
particular, we allow the possibility that a = 0, in which case the above set is a singleton.

1.2. The dynamical Mordell–Lang conjecture. The dynamical Mordell–Lang
conjecture (see [7]) predicts that for an endomorphism Φ of a quasiprojective variety
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X defined over a field K of characteristic 0, given a point α ∈ X(K) and a subvariety
V ⊆ X, the set

S(Φ,α; V) := {n ∈ N0 : Φn(α) ∈ V(K)} (1.1)

is a finite union of arithmetic progressions; for a comprehensive discussion of the
dynamical Mordell–Lang conjecture, we refer the reader to the book [2].

When the field K has positive characteristic, then under the same setting as above,
the return set S from (1.1) is no longer a finite union of arithmetic progressions, as
shown in [6, Examples 1.2 and 1.4]. Instead, the following conjecture is expected to
hold.

CONJECTURE 1.1 (Dynamical Mordell–Lang conjecture in positive characteristic).
Let X be a quasiprojective variety defined over a field K of characteristic p. Let
α ∈ X(K), let V ⊆ X be a subvariety defined over K and let Φ : X −→ X be an
endomorphism defined over K. Then the set S(Φ,α; V) given by (1.1) is a union of
finitely many arithmetic progressions along with finitely many sets of the form

{ m∑
j=1

cj p
ajkj : kj ∈ N0 for each j = 1, . . . , m

}
(1.2)

for some given m ∈ N, some given cj ∈ Q and some given aj ∈ N0. (Note that in (1.2),
the parameters cj and aj are fixed, while the unknowns kj vary over all nonnegative
integers for j = 1, . . . , m.)

In [3], Conjecture 1.1 is proven for regular self-maps Φ of tori assuming that one of
the following two hypotheses is met:

(A) dim V ≤ 2; or
(B) Φ : GN

m −→ GN
m is a group endomorphism and there exists no nontrivial con-

nected algebraic subgroup G of GN
m such that an iterate of Φ induces an

endomorphism of G that equals a power of the usual Frobenius.

The proof from [3] employs various techniques from Diophantine approximation
(in characteristic 0), combinatorics over finite fields and specific tools akin to
semiabelian varieties defined over finite fields; in particular, the deep results of Moosa
and Scanlon [9] are essential in the proof. Actually, the dynamical Mordell–Lang
conjecture in positive characteristic turns out to be even more difficult than the
classical dynamical Mordell–Lang conjecture since even the case of group endomor-
phisms of GN

m leads to deep Diophantine questions in characteristic 0, as shown in
[3, Theorem 1.4]. More precisely, [3, Theorem 1.4] shows that solving Conjecture 1.1
just in the case of group endomorphisms of tori is equivalent with solving the following
polynomial–exponential equation: given any linear recurrence sequence {un}, a power
q of the prime number p and positive integers c1, . . . , cm such that

m∑
i=1

ci <
q
2

,
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then one needs to determine the set of all n ∈ N0 for which we can find k1, . . . , km ∈ N0
such that

un =

m∑
i=1

ciqki . (1.3)

Equation (1.3) remains unsolved for general sequences {un} when m > 2. For more
details about these Diophantine problems, see [4] and the references therein.

1.3. Statement of our results. Before stating our main result, we recall that a
semiabelian variety is an extension of an abelian variety by an algebraic torus; for
more details of semiabelian varieties, we refer the reader to [3, Section 2.1] and the
references therein.

We prove the following result towards Conjecture 1.1.

THEOREM 1.2. Let K be a field of characteristic p, let X be a semiabelian variety
defined over a finite subfield of K and let Φ be a regular self-map of X defined over
K. Let V ⊆ X be a subvariety defined over K and let α ∈ X(K). Then the set S(Φ,α; V)
defined by (1.1) is a union of finitely many arithmetic progressions along with a set
S ⊆ N0 for which there exists a constant A depending only on X, Φ, α and V such that
for all M ∈ N,

#{n ∈ S : n ≤ M} ≤ A · (1 + log M)dim V . (1.4)

Our result strengthens [1, Corollary 1.5] for the case of regular self-maps of
semiabelian varieties defined over finite fields since in [1] it is shown that the set S
(as in the conclusion of Theorem 1.2) is of Banach density zero; however, the methods
from [1] cannot be used to obtain a sparseness result such as the one in (1.4).

We sketch briefly the plan for our paper. In Section 2 we introduce the technical
ingredients regarding linear recurrence sequences which are used in our proofs.
Then, in Section 3, we prove Theorem 1.2 by combining [3, Theorem 3.2] with [8,
Théorème 6].

2. Technical background for our proofs

2.1. Linear recurrence sequences. The content of this section overlaps with [3,
Section 2] (see also [6, Section 3]).

A linear recurrence sequence is a sequence {un}n∈N0 over Q̄ with the property that
there exists m ∈ N and there exist c0, . . . , cm−1 ∈ Q̄ such that for each n ∈ N0,

un+m + cm−1un+m−1 + · · · + c1un+1 + c0un = 0. (2.1)

For more details regarding linear recurrence sequences, we refer the reader to [10];
however, we will gather in this section the most important notions which will be used
in our proof of Theorem 1.2.
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The characteristic roots of a linear recurrence sequence as in (2.1) are the solutions
of the equation

xm + cm−1xm−1 + · · · + c1x + c0 = 0. (2.2)

We let ri (for 1 ≤ i ≤ s) be the (nonzero) roots of (2.2). (As explained in [3, Section 3],
we can always reduce to the case c0 � 0 at the expense of disregarding finitely many
terms from our sequence.) Then there exist polynomials Qi(x) ∈ Q̄[x] such that for all
n ∈ N0,

un =

s∑
i=1

Qi(n)rn
i . (2.3)

It will be convenient for us later on in our proof of Theorem 1.2 to consider linear
recurrence sequences which are given by a formula such as the one in (2.3) for which
the following two properties hold:

(i) if some ri is a root of unity, then ri = 1; and
(ii) if i � j, then ri/rj is not a root of unity.

Linear recurrence sequences given by (2.3) and satisfying properties (i) and (ii) are
called nondegenerate. Given an arbitrary linear recurrence sequence, we can always
split it into finitely many linear recurrence sequences which are all nondegenerate;
moreover, we can achieve this by considering instead of one sequence {un}n∈N0 , finitely
many sequences which are all of the form {unM+�}n∈N0 for a given M ∈ N and for � =
0, . . . , M − 1. Indeed, assume that some ri or some ri/rj is a root of unity, say of order
M; then, for each � = 0, . . . , M − 1,

unM+� =

s∑
i=1

Qi(nM + �)r�i (rM
i )n. (2.4)

We can rewrite (2.4) for unM+� by collecting the powers rM
i which are equal to achieve

a nondegenerate linear recurrence sequence vn := unM+�.

2.2. F-arithmetic sequences. The content of this section overlaps with [3,
Section 3]. (We also mention [5], which was the starting point that led to the
constructions from [3].)

In this section, we fix some finite field Fq of characteristic p; also, we let X be
a semiabelian variety defined over Fq. We let F be the Frobenius endomorphism of
X induced by the field automorphism x �→ xq. We let Pmin,F ∈ Z[x] be the minimal
(monic) polynomial for the Frobenius (as an endomorphism of X); then Pmin,F has
simple roots: λ1, . . . , λ�. Moreover, each λj (for j = 1, . . . , �) has absolute value equal
to q or to q1/2.

Let {un}n∈N0 be a linear recurrence sequence over Q̄. Also, let m ∈ N0 and let
{U(i)

n }n∈N0 (for i = 1, . . . , m) be linear recurrence sequences over Q̄, each having simple
characteristic roots, all of the form λai

j for some ai ∈ N. With this notation for the linear

recurrence sequences {un}n∈N0 and {U(i)
n }n∈N0 for i = 1, . . . , m, and given some a, b ∈ N0,
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an F-arithmetic sequence is the set of all n of the form ak + b (for some k ∈ N0) for
which there exist k1, . . . , km ∈ N0 such that

un = U(1)
k1
+ · · · + U(m)

km
. (2.5)

Using the fact that the characteristic roots of each U(i) are λai
j , (2.3) shows that (2.5) is

equivalent with

un =

m∑
i=1

�∑
j=1

ci,jλ
aiki
j (2.6)

for some given ci,j ∈ Q̄.
The intersection of finitely many F-arithmetic sequences is called a generalised

F-arithmetic sequence.

3. Proof of Theorem 1.2

3.1. Dynamical Mordell–Lang conjecture and linear recurrence sequences. We
continue with the notation as in Section 2. Since X is defined over a finite field Fq of
q elements of characteristic p, we let F : X −→ X be the Frobenius endomorphism
corresponding to Fq. We let P ∈ Z[x] be the minimal polynomial with integer
coefficients such that P(F) = 0 in End(X). According to [3, Section 2.1], P is a monic
polynomial and it has simple roots λ1, . . . , λ�, each one of them of absolute value equal
to q or to

√
q.

From [3, Theorem 3.2], the set S(Φ,α; V) defined by (1.1) is a finite union of
generalised F-arithmetic sequences, each of which is an intersection of finitely many
F-arithmetic sequences. Using (2.6), each one of these F-arithmetic sequences consists
of all nonnegative integers n belonging to a suitable arithmetic progression for which
there exist k1, . . . , km ∈ N0 such that

un =

m∑
i=1

�∑
j=1

ci,jλ
aiki
j (3.1)

for some given linear recurrence sequence {un} over Q̄, some given m ∈ N0, some
given constants ci,j ∈ Q̄ and some given a1, . . . , am ∈ N. Applying Part (1) of [3,
Theorem 3.2], we also see that m ≤ dim V . Furthermore, the linear recurrence
sequence {un} (and the λi) along with the constants ci,j and ai depend solely on X, Φ,
α and V .

At the expense of further refining to another arithmetic progression (as explained
in Section 2), we may assume from now on that the linear recurrence sequence {un}
is nondegenerate. In addition, we know that the characteristic roots of {un} are all
algebraic integers (see Part (2) of [3, Theorem 3.2]) and further the characteristic roots
of {un} are either equal to 1 or equal to positive integer powers of the roots of the
minimal polynomial of Φ inside End(X). For more details, see [3, Section 3]. So,

https://doi.org/10.1017/S0004972721000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000083


386 D. Ghioca, A. Ostafe, S. Saleh and I. E. Shparlinski [6]

using (2.3), (3.1) becomes
s∑

r=1

Qr(n)μn
r =

m∑
i=1

�∑
j=1

ci,jλ
aiki
j , (3.2)

where μ1, . . . , μs are the characteristic roots of the recurrence sequence {un} and
Q1, . . . , Qs ∈ Q̄[x]. Hence, we are left with finding all n ∈ N0 satisfying (3.2) for some
k1, . . . , km ∈ N0.

3.2. Reduction to the case s = 1. If each polynomial Qr from (3.2) is constant, then
the famous result of Laurent [8] solving the classical Mordell–Lang conjecture (inside
an algebraic torus) provides the desired conclusion that the set of all n ∈ N0 satisfying
an equation of the form (3.2) must be a finite union of arithmetic progressions. So,
from now on, we assume that not all of the polynomials Qr are constant.

Without loss of generality, we assume that Q1 is a nonconstant polynomial.
According to [8, Section 8, page 319] (see also [10, Theorem 7.1]), all but finitely many
solutions to (3.2) are also solutions to a subsum derived from (3.2) which contains the
term Q1(n)μn

1. More precisely, there exist a subset Σ1 with 1 ∈ Σ1 ⊆ {1, . . . , s} and a
subset Σ2 ⊆ {1, . . . , m} × {1, . . . , �} such that we search for all n ∈ N0 with the property
that there exist some k1, . . . , km ∈ N0 such that the following equation holds:∑

r∈Σ1

Qr(n)μn
r =
∑

(i,j)∈Σ2

ci,jλ
aiki
j . (3.3)

Moreover, letting π1 : {1, . . . , m} × {1, . . . , �} −→ {1, . . . , m} be the projection on the
first coordinate, we have m1 := #(π1(Σ2)); in particular, m1 ≤ m. Without loss of
generality, we assume that π1(Σ2) = {1, . . . , m1} (with the understanding that, a priori,
m1 could be equal to 0, even though we show next that this is not the case).

Using [8, Théorème 6], (3.3) has finitely many solutions unless the following
subgroup GΣ ⊆ Z1+m1 is nontrivial. As described in [8, Section 8, page 320], the
subgroup GΣ consists of all tuples ( f0, f1, . . . , fm1 ) of integers with the property that

μ
f0
r = λ

ai fi
j for each r ∈ Σ1 and each (i, j) ∈ Σ2. (3.4)

Since μr2/μr1 is not a root of unity if r1 � r2, we conclude that if Σ1 contains at least
two elements (we already have by our assumption that 1 ∈ Σ1), then f0 = 0 in (3.4).
Indeed, if there exists some r with 1 � r ∈ Σ1, then μ f0

r = μ
f0
1 yields f0 = 0 because

μr/μ1 is not a root of unity. Furthermore, if f0 = 0, then, from (3.4), each fi = 0 (since
each λj has an absolute value greater than 1 and ai ∈ N). So, if Σ1 has more than one
element, then the subgroup GΣ is trivial. Therefore, in this case, [8, Théorème 6] yields
that (3.3) (and, therefore, also (3.2)) has finitely many solutions, as desired.

3.3. Concluding the argument. Therefore, from now on, we may assume that Σ1
has a single element, say, Σ1 = {1}. In particular, this implies that Σ2 cannot be the
empty set. Indeed, otherwise (3.3) would simply read

Q1(n)μn
1 = 0,
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which would only have finitely many solutions n (since μ1 � 0 and Q1 is nonconstant).
So, we see that indeed Σ2 is nonempty, which also means that 1 ≤ m1 ≤ m.

We have two cases: either μ1 equals 1 or not.

Case 1. μ1 = 1. Then (3.3) reads

Q1(n) =
∑

(i,j)∈Σ2

ci,jλ
aiki
j . (3.5)

For (3.5), the subgroup GΣ defined above as in [8, Section 8, page 320] is the subgroup
Z × {(0, . . . , 0)} ⊆ Z1+m1 since each integer fi from (3.4) must equal 0 for i = 1, . . . , m1
(note that μ1 = 1, while each λj is not a root of unity). According to [8, Théorème 6,
part (b)], there exist positive constants A1 and A2 depending only on Q1, the ci,j and
the ai, such that for any solution (n, k1, . . . , km1 ) of (3.5),

max{|k1|, . . . , |km1 |} ≤ A1 log |n| + A2. (3.6)

So, for each nonnegative integer n ≤ M (for some given upper bound M) for which
there exist integers ki satisfying (3.5), we have |ki| ≤ A2 + A1 log M. Letting

A3 := (2 ·max{A1, A2} + 1)m1 ,

we have at most A3(1 + log M)m1 possible tuples (k1, . . . , km1 ) ∈ Zm1 , which may
correspond to some n ∈ {0, . . . , M} solving (3.5). Since Q1 is a polynomial of degree
D ≥ 1, we conclude that the number of solutions 0 ≤ n ≤ M to (3.5) is bounded above
by D · A3(1 + log M)m1 . Finally, recalling that m1 ≤ m ≤ dim V , we obtain the desired
conclusion from (1.4).

Case 2. μ1 � 1. In this case, since we also know that any characteristic root μr of
the linear recurrence sequence {un}n∈N0 is either equal to 1 or not a root of unity, we
conclude that μ1 is not a root of unity.

Equation (3.3) reads now

Q1(n)μn
1 =
∑

(i,j)∈Σ2

ci,jλ
aiki
j . (3.7)

We analyse again the subgroup GΣ ⊆ Z1+m1 containing the tuples ( f0, f1, . . . , fm1 ) of
integers satisfying (3.4), that is,

μ
f0
1 = λ

ai fi
j for each (i, j) ∈ Σ2. (3.8)

Because μ1 is not a root of unity and also each λj is not a root of unity, while the ai are
positive integers, we conclude that a nontrivial tuple ( f0, f1, . . . , fm1 ) satisfying (3.8)
must actually have each entry nonzero (that is, fi � 0 for each i = 0, . . . , m1). We let b
be the least common multiple of f1, . . . , fm1 . Then there exists an algebraic number λ
such that

μ1 = λ
b. (3.9)
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Note that since μ1 is not a root of unity, then also λ is not a root of unity. We also define
the nonzero integers

bi :=
f0 · b

fi
for i = 1, . . . , m1.

From (3.8), whenever there is a pair (i, j) ∈ Σ2, then there exist roots of unity ζj,i of
order dividing fi such that

λai
j = ζj,i · λ

bi . (3.10)

Combining (3.10), (3.9) and (3.7), we see that our goal is to find all n ∈ N0 for which
there exist some k1, . . . , km ∈ N0 such that

Q1(n)λbn =
∑

(i,j)∈Σ2

ci,jζ
ki
j,i · λ

biki . (3.11)

Since ζ fi
j,i = 1, ζb

j,i = 1 for each (j, i) ∈ Σ2. We also define Bi := b · bi for each
i = 1, . . . , m1. Each integer ki can be written as

ki = bKi + Ri, (3.12)

where Ki := 
ki/b�, i = 1, . . . , m1. Thus, the integers Ri from (3.12) belong to the set
{0, 1, . . . , b − 1}. So, for each choice of a tuple

(R1, . . . , Rm1 ) ∈ {0, . . . , b − 1}m1 , (3.13)

working with integers ki satisfying (3.12) for the given choice of Ri transforms (3.11)
into an equation of the form

Q1(n)λbn =

m1∑
i=1

diλ
BiKi (3.14)

for some algebraic numbers d1, . . . , dm1 depending only on b, the ci,j, the ζj,i, for
(i, j) ∈ Σ2, and the choice of the tuple from (3.13). Therefore, there exist at most bm

distinct equations such as the one from (3.14). For each one of these finitely many
equations of the form (3.14), we want to find all integers n ∈ N0 for which there exist
some K1, . . . , Km ∈ N0 such that the corresponding equation (3.14) holds.

Dividing (3.14) by λbn yields

Q1(n) =
m1∑
i=1

diλ
gi (3.15)

for some integers gi. Again applying [8, Théorème 6, part (b)] (see also (3.6)) yields
immediately that any solution (n, g1, . . . , gm1 ) to (3.15) must satisfy the inequality

max{|g1|, . . . , |gm1 |} ≤ A4 log |n| + A5

for some constants A4 and A5 depending only on the initial data in our problem (X, Φ,
α and V). Exactly as in Case 1, we conclude that letting

A6 := (2 ·max{A4, A5} + 1)m1 ,
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for any given upper bound M ∈ N, we have at most A6(1 + log M)m1 possible tuples
(g1, . . . , gm1 ) ∈ Zm1 , which may correspond to some n ∈ {0, . . . , M} solving (3.15).
Since Q1 is a polynomial of degree D ≥ 1, we conclude that the number of solutions
0 ≤ n ≤ M to (3.15) is bounded above by D · A6(1 + log M)m1 . Finally, recalling that
m1 ≤ m ≤ dim V , we obtain the desired conclusion from (1.4).

This concludes our proof of Theorem 1.2.

4. Comments

REMARK 4.1. If in (3.2) there exists at least one characteristic root μr of {un} which
is multiplicatively independent with respect to each one of the λj, then there is never
a subsum (3.3) containing μr on its left-hand side for which the corresponding group
GΣ would be nontrivial. So, in this case, (3.2) would have only finitely many solutions.
Now, as proven in [3, Section 3], if Φ is a group endomorphism of the semiabelian
variety X, then the characteristic roots μr are also characteristic roots of the minimal
polynomial (in End(X)) of Φ. Therefore, with the notation as in Theorem 1.2, arguing
as in the proof of [3, Theorem 1.3], one concludes that ifΦ is a group endomorphism of
the semiabelian variety X with the property that each characteristic root of its minimal
polynomial (in End(X)) is multiplicatively independent with respect to each eigenvalue
λj of the Frobenius endomorphism of X, then, for each α ∈ X(K), the set S(Φ,α; V)
defined by (1.1) is a finite union of arithmetic progressions.

REMARK 4.2. In (3.15), if we deal with a polynomial Q1 of degree 1, then the
conclusion from (1.4) is sharp. More precisely, as a specific example, consider

Q1(n) = n, m1 = m, c1 = · · · = cm = 1 and λ = p. (4.1)

Then (3.15) reduces to the equation

n =
m∑

i=1

pki .

The number of positive integers n ≤ M which have precisely m nonzero digits (all
equal to 1) in base p is of the order of (log M)m, which shows that Theorem 1.2 is tight
if the dynamical Mordell–Lang conjecture reduces to solving (3.15) given by (4.1).
As proven in [3, Theorem 1.4], there are instances when the dynamical Mordell–Lang
conjecture reduces precisely to such an equation.

For higher degree polynomials Q1 ∈ Z[x] appearing in (3.15), one expects a lower
exponent than m appearing in the upper bounds from (1.4). One also notices that for
any polynomial Q1, arguments n with k nonzero digits in base p lead to sparse outputs.
Hence, simple combinatorics allows us to obtain a lower bound on the best possible
exponent in (1.4). However, finding a more precise exponent replacing m in (1.4) when
deg Q1 > 1 seems very difficult beyond some special cases. The authors hope to return
to this problem in a subsequent paper.
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