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Slowly decaying drift turbulence
with wave effects
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(Received 22 May 1998)

The effect of linear waves on the Charney–Hasegawa–Mima model of drift and
geostrophic turbulence is studied numerically for a slowly decaying field. It is shown
that wave effects can reduce the efficiency of nonlinear mode coupling, effectively
‘freezing’ the spectrum to a narrow band in wavenumber space. Selective nonlinear
interactions tend to favour velocities parallel to the direction of propagation of the
waves. Accordingly, anisotropic spectra are observed, steeper in the direction of
wave propagation, and shallower in the perpendicular direction.

1. Introduction
Drift turbulence plays an important role in the physics of strongly magnetized
plasmas. It is essentially an electrostatic phenomenon, dominated by macroscopic
motion (the E × B and polarization drifts), driven unstable by the presence of
temperature gradients. Drift turbulence is also probably responsible, at least in
part, for the high level of energy and particle transport observed in tokamaks
(anomalous transport, for a review, see Connor and Wilson 1994).

Various models of increasing complexity have been proposed to describe the dy-
namics of drift turbulence, including fluid models (Manfredi and Ottaviani 1997),
gyrokinetic models, both Lagrangian (Sydora et al. 1996) and Eulerian (Manfredi et
al. 1996), and gyrofluid models (Waltz et al. 1994). For each type of description, slab,
cylindrical and toroidal coordinates have been used, and realistic three-dimensional
simulations of the whole torus are now within reach.

However, such sophisticated models necessarily involve a relatively large number
of control parameters (the Larmor radius, the aspect ratio, the temperature and
density gradients, the collisional dissipation, etc.). Since each large-scale simulation
requires several tens of hours on a typical supercomputer, a systematic scan of the
parameter space is obviously not feasible. On the other hand, even simple models
retain some of the main features of drift turbulence, while depending on a smaller
number of free parameters. It is therefore possible to perform a systematic analysis
of some specific effect, and gain some insight into its repercussions on the turbulent
dynamics.

Perhaps the simplest model of drift turbulence is the Hasegawa–Mima (H–M)
equation (Hasegawa and Mima 1978), which is derived under several, more or less
restrictive, assumptions: cold ions, a perfectly adiabatic response for the electrons,
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and purely two-dimensional dynamics. However simple, this equation can have sur-
prisingly rich turbulent solutions, which makes an analytical approach extremely
difficult. Under the assumption of homogeneous and isotropic turbulence, and
local interactions in wavenumber space, inertial ranges can be determined follow-
ing the guidelines of Kolmogorov’s theory of hydrodynamic turbulence (Ottaviani
and Krommes 1992). Numerical results have shown the existence of these inertial
ranges, although the actual slopes of the energy spectra are more difficult to deter-
mine with precision (Fyfe and Montgomery 1979; Hasegawa et al. 1979; Larichev
and McWilliams 1991; Kukharkin et al. 1995; Watanabe et al. 1997).

Most numerical work so far has concentrated on homogeneous and isotropic tur-
bulence. Anisotropy can arise, for example, from the existence of an equilibrium
density gradient, which allows linear waves to propagate in the direction normal to
the density gradient (drift waves). Linear wave effects can thus compete with non-
linear ones, and may have a significant impact on the turbulent dynamics (Rhines
1975; Maltrud and Vallis 1991; Kukharkin and Orszag 1996). These phenomena are
studied in the present paper for the case of slowly decaying turbulence. Results show
that wave effects do indeed modify the isotropic spectra. In some extreme cases,
the turbulent energy transfer is virtually halted, and the spectrum is ‘squeezed’
into a narrow band in wavenumber space.

Finally, we note that the H–M equation is almost identical in structure to the
Charney equation, which describes two-dimensional fluid turbulence in a rotating
frame (Horton and Hasegawa 1994) (its main application is to planetary atmos-
pheres). The analogues of drift waves are then Rossby waves. Most of the results
obtained in this paper can be easily transposed to the Charney equation.

2. Model equation and previous results
In suitable units, the H–M equation is

∂

∂t
(∇2φ− φ) + J(φ,∇2φ) + β

∂φ

∂x
= 0, (1)

where J is the two-dimensional Jacobian, defined as J(a, b) = axby − aybx. Space
is normalized to the ion Larmor radius ρs = (Te mi)1/2/eB and time is normalized
to a/cs, where cs = (Te/mi)1/2 is the sound speed and a is the size of the system.
Te and e are respectively the electron temperature and charge, while mi is the ion
mass. The electrostatic potential φ(x, y, t) is measured in units of (Te/e) ρs/a. This
normalization will be used throughout the text and in all figures, except where
otherwise stated.

Equation (1) contains only two dimensionless parameters : A = a/ρs represents
the size of the system, measured in Larmor radii ; β = a/Ln measures the relative
importance of wave effects. Ln is a typical scale of variation of the equilibrium
density profile, which is directed along the y axis. Note that (1) reduces to the
two-dimensional Navier–Stokes equation for β = 0 and k� 1. The actual quantity
transported by the flow is W = ∇2φ− φ. In this paper, we refer to W as the ‘gen-
eralized vorticity’ and to ζ = ∇2φ as simply the ‘vorticity’, according to standard
usage. The linear limit of (1) is equivalent to the evolution of a collection of indepen-
dent drift waves obeying the (dimensionless) dispersion relation ωk = βkx/(1 + k2).
The computational box is periodic in the x direction (0 < x < a) and finite in
y (− 1

2a < y < 1
2a; both φ and W vanish at y = ± 1

2a). Such boundary conditions
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are similar to those that would be used in the case of cylindrical geometry, where
only one coordinate (the azimuthal angle) is periodic, while the other (the radius)
is finite. Our choice can thus be viewed as a ‘pseudocylindrical’ geometry, in which
the correct boundary conditions are used but the curved metric is neglected. Fur-
thermore, a dissipative term, of the form −ν∇4W (hyperviscosity), is added to the
right-hand side of (1) to control the numerical noise at small wavelengths, although
no forcing is included at this stage (freely decaying turbulence).

Anisotropy is introduced in (1) by the different boundary conditions and, more
importantly, by the presence of the wave term proportional to β. Like the two-
dimensional Navier–Stokes equation, the H–M equation possesses two inviscid
quadratic invariants, the average energy E and the average enstrophy Ω:

E =
1
a2

∫
a

∫
a

[(∇φ)2 + φ2] dr, (2)

Ω =
1
a2

∫
a

∫
a

[(∇2φ)2 + (∇φ)2] dr. (3)

We now briefly review the results of Kolmogorov’s theory of homogeneous,
isotropic turbulence applied to the H–M equation (Kraichnan and Montgomery
1980; Ottaviani and Krommes 1992). However, it should always be kept in mind
that these results are in principle only valid for stationary driven-damped systems,
in which energy and enstrophy are injected (and dissipated) at a constant rate.
Their relevance to the slowly decaying case treated here is therefore questionable,
although inertial-range ideas can serve as a guideline to interpret the numerical
results of decaying experiments.

When k � 1, (1) reduces to the Navier–Stokes equation. If the forcing is local-
ized around a wavenumber kf , Kolmogorov’s theory predicts a direct cascade of
enstrophy for k > kf , and a inverse cascade of energy for k < kf . Defining the
potential spectrum Eφ(k) such that

∫∞
0 Eφ(k) dk =

∑
k |φk|2, one obtains

Eφ(k) ∼ ε2/3 k−11/3 (k < kf ), (4a)

Eφ(k) ∼ η2/3 k−5 (k > kf ), (4b)

where ε and η are the rates of transfer of energy and enstrophy respectively. Indeed,
(4) yields the usual Kolmogorov expressions when written in terms of the energy
spectral density E(k) (

∫∞
0 E(k) dk =

∑
k (1 + k2)|φk|2), i.e. k−5/3 in the energy

range and k−3 in the enstrophy range. When k� 1, the same dependence of Eφ(k)
is obtained, although in this case the energy spectral density E(k) will differ from
the Navier–Stokes result.

Most numerical work has concentrated on the regime β = 0 (isotropy) and k� 1,
since this is the case that differs significantly from the well-studied Navier–Stokes
equation. The inverse energy cascade was studied by Kukharkin et al. (1995) and
Watanabe et al. (1997) for the driven case with k � 1 � kf , and the spectrum
of (4a) was recovered within good approximation. It was also observed that the
transfer of energy to wavenumbers smaller than unity is significantly reduced,
so that the spectrum has a peak at k ≈ 1, and displays an ordered structure in
real space (‘quasicrystallization’). The direct enstrophy cascade was investigated
by Larichev and McWilliams (1991) for weakly decaying turbulence. An energy
spectrum E ∼ k−6 was observed (note that for k � 1 the energy and potential
spectra have the same k dependence, i.e. E(k) ∼ Eφ(k)), which is somewhat steeper
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than the prediction of (4b). It must be said, however, that spectra steeper than the
Kolmogorov law are also usually observed in the enstrophy range of Navier–Stokes
simulations (McWilliams 1984; Legras et al. 1988).

The case β� 0 (and k� 1) was studied by Rhines (1975) and Maltrud and Vallis
(1991) in the context of geophysical fluid dynamics. Note, however, that in these
studies the term ∂φ/∂t is missing from (1), so that the dispersion relation becomes
ω = βkx/k

2, which is dispersive for all wavenumbers, unlike (1). The two models
become identical in the limit k� 1, but differ significantly when k� 1. Comparing
the relative strength of the nonlinear and wave terms, Rhines points out that the
transition between turbulent and wave-like motion should occur at

kβ =
(
β

U

)1/2

, (5)

with turbulence dominating for k > kβ and waves dominating for k < kβ . U is a typ-
ical velocity of the flow, for example the mean square velocity, U 2 =

∑
k k

2|φk|2. Nu-
merical experiments were carried out with both low- and high-wavenumber forcing
(Maltrud and Vallis 1991). In the former case, energy spectra significantly steeper
than the Kolmogorov result k−3 were found for purely Navier–Stokes turbulence
(β = 0), probably due to the presence of coherent vortices. For finite β, such vor-
tices are destroyed, and the spectrum becomes closer to the k−3 law (although this
effect seems to depend on the forcing and dissipation mechanisms, and sometimes
steeper spectra are observed for a finite β). At the same time, the spectrum becomes
anisotropic. For high-wavenumber forcing, the inverse cascade k−5/3 was observed
in the inertial range, and it appeared not to be affected by the value of β. The cas-
cade is arrested at kβ , where wave motion becomes dominant. More recent results
(Kukharkin and Orszag 1996) – obtained, however, with a slightly different model
– combine the effect of both β and the domain size A. They suggest that zonal
flows (i.e. elongated structures parallel to the x axis, caused by the wave term in
(1)) may be driven unstable by taking a relatively large value of A, resulting in the
formation of ring vortices.

The aim of the present paper is to confirm the above results for finite β, and to
extend them to the case of slowly decaying turbulence. For example, the numerical
results of Maltrud and Vallis (1991) for driven–damped turbulence are still not
conclusive as to the effect of waves on the direct cascade. In comparison with
the isotropic case, a finite β appears to generate either a steeper or a shallower
spectrum, depending on external parameters such as the forcing and the large-
scale dissipation. On the other hand, the study of decaying turbulence envisaged
here has the advantage of reducing the number of external parameters that can
influence the spectral properties. It is hoped that the results presented in this paper
will help to characterize turbulent solutions of drift equations and to quantify more
precisely the effect of linear waves on the turbulent dynamics.

3. Numerical results
The H–M equation (1) is solved numerically using a hybrid spline-spectral method,
coupled to a leapfrog integrator in time. Typically a mesh 1024 × 1024 was used,
except where otherwise stated.

First, we investigate the case A = 2π, and therefore k > 1. This is the regime
most relevant to geostrophic turbulence (the Charney equation). If we transform
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to a moving frame x′ = x + βt, (1) becomes (omitting primes)

∂

∂t
(∇2φ− φ) + J(φ,∇2φ) + β

∂ ∇2φ

∂x
= 0. (6)

Comparing the relative strengths of linear and nonlinear terms, one finds that wave
effect are important when β ≈ kφ. This defines another criterion for the transition
from the turbulent to the wave-dominated regime:

k′β =
β

Φ
, (7)

where Φ is a typical value of the potential, defined, for example, as Φ2 =
∑
k φ

2
k.

Again, turbulence should dominate for k > k′β and waves for k < k′β . The latter
estimate is more accurate than that provided by (5), since the non-dispersive part
of the drift frequency has been eliminated by switching to a moving frame. This
is particularly important for small wavenumbers, for which the drift frequency is
entirely non-dispersive.

The initial condition is restricted to a narrow band of small wavenumbers
1 < kx < 4, 0.5 < ky < 2 (owing to our boundary conditions, half-integer wave-
numbers also are present in the y direction). The numerical timestep and the hy-
perviscosity used in this group of simulations are ∆t = 0.0015 and ν = 3 × 10−10.
The average energy and enstrophy – defined in (2) and (3) – initially present in the
system are respectively E = 0.24 and Ω = 0.75. The average eddy turnover time
τE (characteristic timescale of the turbulence) is defined as

τE =
(

1
a2

∫
a

∫
a

|∇2φ|2 dr
)−1/2

, (8)

and its value turns out to be τE ≈ 1.3 in our units (note that the ‘absolute’ time is
plotted in the figures).

We first treat the isotropic case, β = 0. The spectrum rapidly broadens to higher
wavenumbers, and, after a few eddy turnover times, a quasistationary spectrum
is formed. The anisotropy of the turbulence can be quantified by comparing the
average unidirectional potential spectra

〈|φ(kx)|〉 =
1

2π

∫ π

−π
|φ(kx, y)| dy, (9a)

〈|φ(ky)|〉 =
1

2π

∫ 2π

0
|φ(ky, x)| dx, (9b)

where, for example, φ(kx, y) is obtained from φ(x, y) by Fourier transforming over x.
Since the initial spectrum was localized at small wavenumbers, we expect the results
from the direct enstrophy cascade to be more relevant to this case. According to
(4b), and taking into account the definition of Eφ, the spectrum of the potential
should be proportional to k−2 for both directions, since we are in the isotropic
case.

The numerical results show that the spectrum is indeed isotropic and approxi-
mately follows a power law, although the slope is considerably steeper than that
predicted by Kolmogorov’s theory (Fig. 1). The exponent is measured to be roughly
−2.7 for both directions. This would give Eφ(k) ∼ k−6.4, which is to be compared
with the k−5 of (4b). Again, it must be noted that spectra steeper than Kolmogorov’s
prediction have frequently been observed in simulations of both the Navier–Stokes
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Figure 1. Unidirectional potential spectra for (a) kx and (b), ky for β = 0 and A = 2π. The
straight line has a slope equal to −2.7. Logarithms are to base 10.
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Figure 2. Shaded plot of the vorticity ζ = ∇2φ for β = 0 and A = 2π.

and Hasegawa–Mima equations. This steepening is often attributed to the presence
of ‘coherent structures’ (long-lived vortices) in the flow. Large vortices are indeed
observed in the vorticity plot (Fig. 2). Another way to quantify the departure from
Kolmogorov behaviour is to consider the kurtosis, which is defined, for a generic
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Figure 3. Time histories of the generalized vorticity kurtosis K(W ) (solid line) and
potential kurtosis K(φ) (dashed line) for the case β = 0 and A = 2π.

function f (x, y, t), as

K(f ) =
〈f4〉
〈f 2〉2 , (10)

where the angular brackets here indicate the area average. The kurtosis is equal
to 3 for a Gaussian-distributed random variable. A kurtosis larger than 3 has been
found to be often accompanied by steep spectra (Maltrud and Vallis 1991), and
our results confirm this trend for the generalized vorticity kurtosis K(W ) (Fig. 3).
The potential kurtosis K(φ) is instead much closer to its Gaussian value, again in
agreement with previous simulation results.

The large vortices appearing in the isotropic case (Fig. 2) are destroyed even for
moderate values of β, as shown in the shaded plot of the generalized vorticity (Fig.
4). A large vortex still survives for β = 0.5, while for β = 2 only small vortices are
present. For β = 5, the flow is clearly anisotropic, and is dominated by elongated
structures parallel to the direction of wave propagation (‘zonal flows’). It therefore
appears that an intermediate regime exists for moderate values of β, in which the
flow is still isotropic, but large coherent structures are suppressed. This conclusion
is supported by the potential spectrum for β = 2 (Fig. 5), which is indeed almost
isotropic and virtually indistinguishable from the β = 0 case.

Next, we investigate the case of a strong β effect, by running three cases with
β = 10, 20 and 40. The value of kβ , the wavenumber below which wave effects
are important (see (5)) is respectively kβ ≈ 5, 7 and 10, whereas (7) yields k′β ≈
3, 6 and 12. The initial condition is the vorticity field obtained from the isotropic
simulation at a time when the quasistationary state has already been obtained.
After switching on the β effect, the spectrum becomes clearly anisotropic, steeper
in kx and shallower in ky, as shown in Fig. 6 for β = 10 (the cases β = 20 and
40 are virtually identical). It appears that nonlinear transfer to high values of kx
is inhibited by the strong wave effect, so that the spectrum retreats to smaller
wavenumbers. This does not happens for the ky spectrum, which remains broad,
while the slope of the inertial range becomes closer to −2, the value predicted by
Kolmogorov’s theory. This behaviour can be understood by noting that the wave
term in (1) has the effect of breaking vortices along the x axis, thus reducing their
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Figure 4. Shaded plots of the vorticity ζ = ∇2φ for A = 2π and
(a) β = 0.5 and (b) β = 2.
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Figure 5. Unidirectional potential spectra for (a) kx and (b) ky, for β = 2 and A = 2π. The
dotted line corresponds to the case of Fig. 1 (β = 0). The straight line has a slope equal to
−2.7. Logarithms are to base 10.
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Figure 6. Unidirectional potential spectra for (a) kx and (b) ky, for β = 10 and A = 2π. The
dotted line corresponds to the case of Fig. 1 (β = 0). Logarithms are to base 10.

size in the y direction but not in the x one. This results in the formation of zonal
flows, clearly visible in the shaded plot of Fig. 7. The field becomes closer to a
random field in the y direction, which is turn generates a Kolmogorov spectrum.
At the same time, the vorticity kurtosis drops to a value close to 3, as expected
for a Gaussian distribution (Fig. 8). The above results do not seem to depend on
the actual value of β – at least when it is large enough for wave effects to play a
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Figure 7. Shaded plot of the vorticity ζ = ∇2φ for β = 10 and A = 2π.
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Figure 8. Time histories of the vorticity kurtosis K(ζ) (solid line) and potential kurtosis
K(φ) (dashed line) for β = 10 and A = 2π.

significant role. In particular, the spectra appear to be virtually identical for the
three values of β considered here.

It is interesting to evaluate the correlation functions of the potential in both
directions, which are defined as

C(δx) = 〈φ(x + δx, y) φ(x, y)〉, (11a)

C(δy) = 〈φ(x, y) φ(x, y + δy)〉, (11b)

where the average is taken over both spatial variables. When the β effect is suffic-
iently strong, longer range correlations develop in x (Fig. 9a), while shorter correla-
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Figure 9. Correlation functions C(δx) (a) and C(δy) (b) for A = 2π and β = 0 (solid line)
and β = 10 (dashed line).

tions are observed in the y direction. This is another manifestation of the presence
of zonal flows parallel to the x axis.

In another set of simulations, the β effect is introduced from the start, while again
A = 2π. This time only four modes are initially excited, with wavenumbers k =
(1, 0.5), (1, 1), (2, 0.5) and (2, 1), and a mesh 256× 256 was used, with hyperviscosity
ν = 1.2 × 10−7. Two cases are studied, with β = 20 and β = 40, corresponding to
kβ ≈ 6.8 and 9.6 respectively (k′β ≈ 6.1 and 12.2). Both initial conditions are
therefore well inside the wave-dominated regime, and we suspect that nonlinear
excitation will be rather inefficient. This is indeed the case, as shown in Fig. 10
for the β = 40 run: even for times large compared with the eddy turnover time
(τE = 1.4 in this case), the spectrum does not extend beyond kβ in either direction.
The extent to which nonlinear transfer has been suppressed is quite remarkable,
and results in all of the energy being ‘squeezed’ into a narrow band in wavenumber
space. Moreover, the original modes are largely dominant, as is apparent from the
power spectrum of the time history of the potential at a fixed point (Fig. 11a).
This spectrum is strongly peaked at three frequencies, which closely match the
linear frequencies of the four modes initially present in the system (it happens that
two such frequencies have the same numerical value). For comparison, the same
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Figure 10. Unidirectional potential spectrum for (a) kx and (b) ky, for β = 40 and A = 2π,
at different times of the evolution, from t = 0 to t = 150, at intervals of 25 units of time.
Logarithms are to base 10.

spectrum is shown for a strongly turbulent case and the same value of β (Fig. 11b).
In the latter case, the frequency spectrum is broader and extends to the small-
frequency region, which reveals the presence of large wavenumbers, as expected
from the dispersion relation ωk = βkx/(1+k2). Note that a cascade towards smaller
frequencies was also predicted by Rhines (1975) (see also Horton and Hasegawa
1994) for resonant three-wave couplings (this will be analysed in the next section).

We now turn to the case A� 1, i.e. a domain size much larger than the Larmor
radius, which is more relevant to the physics of magnetized plasmas. We first treat
the isotropic case β = 0, for two values of the system size, A = 30 and A = 60. The
eddy turnover time, computed from (8), is respectively τE ≈ 3.5 and τE ≈ 4.2. The
shaded plot of the vorticity shown in Fig. 12 reveals that the characteristic size of
the vortices scales with the Larmor radius ρs, and therefore decreases compared
with the system size (Kukharkin et al. 1995). This effect is most evident from
the plot of the correlation function C(δx) shown in Fig. 13(a) for the three cases
A = 2π, 30 and 60 (for clarity, in Fig. 13 lengths have been normalized to the
system size a). The correlations go to zero for separations δx of the order of a
few Larmor radii. The correlation function C(δy) shown in Fig. 13(b), reveals a
similar pattern. The potential spectrum for the case A = 60 is plotted in Fig. 14:
it is isotropic and decays roughly as k−2.7, as found for the case A = 2π. Indeed,
Kolmogorov’s theory predicts that the potential spectrum should not depend on
the range of wavenumbers considered (and hence on the value of A). However,
the spectrum is peaked at kpeak ≈ 0.25, which is larger than the fundamental
wavenumber 2π/A ≈ 0.10. The vorticity kurtosis (Fig. 15) is again larger than the
Gaussian value of 3, while the potential kurtosis is slightly smaller.

Next, we investigate the impact of wave propagation on the dynamics for large
values of A. Three cases were studied, with A = 60 and β = 0.2, 0.5 and 5. The
plots of the vorticity are shown in Fig. 16 for the latter two values of β, and reveal
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Figure 11. Power spectra of the potential at a fixed point (a) for the run of Fig. 10, with
β = 40, and (b) for a run with same β but broad wavenumber spectrum. The peaks in (a)
are located at ω = 13.3, 15.2 and 17.8, and correspond to the linear frequencies.

a pattern similar to that detected for A = 2π. For β = 0.2, the wave effect is still
small, and the resulting spectrum is close to the isotropic case. Taking large values
of β leads to a flow largely dominated by zonal flows, with a spectrum steeper in
the x direction (Fig. 14). In contrast to the A = 2π case, where the y spectrum for
large β was shallower than for β = 0, here it appears to have the same slope, or a
slightly steeper one. Finally, the β effect brings both the vorticity and the potential
kurtosis to a value close to 3 (Fig. 17).

We also note that, when longer wavelengths are considered, wave effects start
to play a role at smaller values of β. Using (7), it is found that in the present
case wave effects should be important for wavenumbers smaller than k′β ≈ 0.4β.
For β = 0.2, we obtain k′β ≈ 0.08, while the fundamental mode is k0 ≈ 0.1, and
this provides a reasonable estimate for the lowest β needed to introduce significant
wave effects. It must be noted that, in our normalization, the potential is meas-
ured in units of (Te/e) ρs/a: since the normalized potential is taken to be of the
order of unity, it turns out that the real φ decreases with increasing size. In other
words, our model assumes that the potential fluctuations scale with ρs/a. This is a
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Figure 12. Shaded plots of the vorticity ζ = ∇2φ for β = 0 and
(a) A = 30 and (b) A = 60.
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Figure 13. Correlation functions C(δx) (a) and C(δy) (b) for β = 0 and A = 2π (solid line),
A = 30 (dotted line) and A = 60 (dashed line). Space coordinates x and y are normalized to
the system size a. The correlation functions are normalized so that C(0) = 1.

reasonable assumption, which can be derived on the basis of mixing-length argu-
ments, assuming that the saturation level is proportional to the growth rate. Since
for the ion-temperature-gradient instability (responsible for the destabilization of
drift modes) the growth rate scales as ρs/a, one deduces that the potential should
be of the same order. Alternatively, this fact implies that the two lengthscales en-
tering our problem, namely the Larmor radius ρs and the inverse of k′β , (7), are of
the same order: k′β ρs ≈ 1. If this estimate is correct, one expects wave phenomena
to play an important role on large-scale modes, which in turn may have an impact
on the transport of mass and energy.

Finally, we perform a numerical experiment analogous to that presented in Fig.
10, but now with A = 60 and β = 1. Only four large-scale modes are initially
present, with wavenumbers k ≈ (0.1, 0.05), (0.1, 0.1), (0.2, 0.05) and (0.2, 0.05), and
mode amplitude equal to unity. The simulation is run for over 35 eddy turnover
times (τE = 27 in this case). Again, it is observed that nonlinear transfer to larger
wavenumbers is arrested at k′β = β/φ = 1 (Fig. 18). In this simulation, as in most ap-
plications, lengthscales both larger and smaller than the Larmor radius are present
simultaneously (specifically, we have ρskmin ≈ 0.05 and ρskmax ≈ 10). The numeri-
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Figure 15. Time histories of the vorticity kurtosis K(ζ) (solid line) and potential kurtosis
K(φ) (dotted line) for β = 0 and A = 60.

cal results thus suggest that small and large scales may be decoupled, small scales
displaying turbulent dynamics, and large scales behaving essentially as weakly in-
teracting linear waves. The boundary separating the different behaviours is given
by k′β , which, as discussed in the previous paragraph, turns out to be of order ρ−1

s if
the potential-fluctuation amplitude scales with the Larmor radius. It is important
to note that the separation is given by the parameter k′β , which is a measure of wave
effects, rather than by the Larmor radius itself. It is only as a result of the scaling
assumed for the potential that these two scales are comparable. If no waves are
present, the Larmor radius itself does provide a barrier for nonlinear transfer, but
this is a ‘leaky’ barrier. The point is that, for large-scale modes, nonlinear transfer
takes place on a longer timescale (by a factor k2), but is not completely arrested.
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Figure 16. Shaded plots of the vorticity ζ = ∇2φ for A = 60 and
(a) β = 0.5 and (b) β = 5.
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Figure 17. Time histories of the vorticity kurtosis K(ζ) (solid line) and potential kurtosis
K(φ) (dotted line) for β = 5 and A = 60.
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Figure 18. Unidirectional potential spectra for (a) kx and (b) ky, for β = 1 and A = 60,
at different times of the evolution, from t = 0 to t = 1000 (solid line). The dashed line
corresponds to the case β = 0, A = 60 at time t = 400. Logarithms are to base 10.

Figure 18 also shows the spectrum obtained with β = 0, which indeed extends to
wavenumbers larger than unity. This effect was studied by Kukharkin et al. (1995)
and Watanabe et al. (1997) for the inverse cascade, and was shown to lead to the for-
mation of vortices with size of the order of the gyroradius (‘quasicrystallization’).
By contrast, the β effect seems to provide a much stronger barrier.

It must be added that the dynamics of drift waves for length scales much larger
than the Larmor radius should be modelled by a slightly different equation, which
also includes slow variations in the equilibrium electron temperature (see e.g.
Spatschek et al. 1990; Horton and Hasegawa 1994; Kukharkin and Orszag 1996).
The main difference from the standard H–M equation is the presence of a ‘scalar
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nonlinearity’

αφ
∂φ

∂x
, (12)

where α = ρs/LT , and LT is the scale of variation of the electron temperature. Note
that α � 1, while β ≈ 1. Comparing this new term with the standard nonlinear
term (the Jacobian), we find that the scalar nonlinearity should play a role for
wavenumbers of the order of or smaller than

kα = α1/3. (13)

Note that, taking α = 0.001 (consistent with tokamak parameters), yields ρskα =
0.1, i.e. a wavelength still smaller than the machine size. Thus, for large enough
structures, the scalar nonlinearity should be the dominant one, and may modify to
some extent the previous numerical result. This interesting point will be the subject
of further investigations.

4. Discussion
Much can be learned about nonlinear transfer by looking at a simplified model of
mode coupling. Following the procedure outlined in Horton and Hasegawa (1994),
let us suppose that the spectrum is dominated by three waves k1,k2 and k3 such
that k1 + k2 + k3 = 0. From (1), it can be shown that the interaction of the three
waves is described by the following set of equations:

dφ1

dt
+ iω1φ1 = Λ1

2,3 φ
∗
2 φ
∗
3 , (14a)

dφ2

dt
+ iω2φ2 = Λ2

3,1 φ
∗
1 φ
∗
3 , (14b)

dφ3

dt
+ iω3φ3 = Λ3

1,2 φ
∗
1 φ
∗
2 , (14c)

where the coupling coefficients Λjl,m are defined by

Λjl,m =
1
2
k2
l − k2

m

1 + k2
j

kl × km · ẑ. (15)

We study the case where one of the modes is more highly populated than the others,
so that we can linearize (11). We take

φj = Aj(t) exp(−iωjt) , j = 1, 3, (16a)

φ2 = A2 exp(−iω2t) , A2 = const. (16b)

with k1 < k2 < k3, and A1, A3 � A2. The middle mode is thus more highly pop-
ulated than the sidebands. From (14)–(16), we can obtain a second-order linear
differential equation for A1(t) or A3(t), which has unstable solutions when

∆ω2 − 4Λ1
2,3Λ3

1,2|A2|2 < 0, (17)

where ∆ω = ω1 + ω2 + ω3 is the frequency mismatch. It can be shown that
Λ1

2,3Λ3
1,2 > 0, so that an instability can actually exist. On the other hand, if modes

1 or 3 are highly populated, the system is unconditionally stable, showing that non-
linear transfer can only occur by exciting both a smaller and a larger wavenumber.

The system is unstable whenever the second term on the left-hand side of (17)
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dominates, i.e. for high wavenumbers or large amplitudes. This is the case of tur-
bulent coupling. In the opposite case, instability can occur only when ∆ω ≈ 0, i.e.
for a resonant three-wave process. Although both turbulent and resonant mode
coupling scale in the same way (both occur on a time scale of order (kU )−1), it is
intuitive that the latter should be less efficient, since an additional constraint on
the frequency mismatch must be satisfied. Broadly speaking, this is the reason why
energy transfer is drastically slowed down when wave effects are important.

Now, if we consider the results shown in Figs 10 and 11, where only four long
waves were initially present and β = 40, it can easily be seen that all possible
combinations give a frequency mismatch of order β, while the Λ coefficients are
all of order unity. In such a case, no instability can occur according to (14), which
is in agreement with our numerical results. A similar conclusion is reached for the
case of Fig. 18 (A = 60): the frequency mismatch is of order β = 1, while the Λ
coefficients are proportional to the wavenumbers, and therefore small.

The above considerations on mode coupling can also be used to interpret our first
set of simulations (Fig. 6), where the β effect was introduced after the wavenumber
spectrum had already reached a quasistationary, isotropic state of the type |φk| ∼
|φ0|k−µ. Here φ0 is a constant of order unity and the exponent µ was estimated to
be close to 3. With these assumptions, the square root of the second term on the
left-hand side of (17) scales as φ0 k

−1 for large wavenumbers. If the interaction is
non-resonant, ∆ω ≈ ωk = βkx/(1 + k2), and this term scales as βkx/k2. As shown
above, instability can arise only when the first term is smaller than the second. But,
for large values of β, this can occur only when kx ≈ 1 and ky � 1, because in this
case ∆ω ∼ βk−2, while the other term scales as φ0 k

−1. It is easy to show that in all
other cases (e.g. kx ≈ ky � 1), both terms scale in the same way, and no unstable
solution is allowed for a large enough value of β.

The above discussion shows that a strong β effect tends to favour small wave-
numbers in x and large wavenumbers in y, because only for these wavenumbers
can turbulent, non-resonant mode coupling effectively take place. The numerical
results presented earlier seem to support this conjecture. It must be noted that this
type of mode interaction is highly non-local, contrary to Kolmogorov’s assumption.
Indeed, a typical wavenumber triad will be formed by two modes with ky� kx ≈ 1
and one mode with ky ≈ kx ≈ 1, therefore coupling the large-scale isotropic flow
with small-scale anisotropic zonal flows.

5. Conclusions
In this paper, we have discussed the impact of linear drift waves on the turbulent
dynamics of the Charney–Hasegawa–Mima equation. Numerical experiments have
been carried out in a slowly decaying regime with no external forcing. When no
linear waves are present, and A = 2π, the wavenumber spectrum is isotropic, but
considerably steeper than what is predicted by Kolmogorov’s theory of station-
ary turbulence. Large-scale vortices are observed, together with high values of the
vorticity kurtosis.

Increasing the relative importance of the wave term (‘β effect’) results in a sub-
stantial anisotropy of the flow, with the formation of elongated structures parallel
to the direction of propagation of the waves (the x axis). The large vortices dis-
appear as they are broken down by the shear effect introduced by the waves. The
spectrum then becomes steeper in kx (with almost no energy at large wavenumbers),
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and shallower in ky, getting closer to Kolmogorov’s law. At the same time, the vor-
ticity kurtosis drops to a value of approximately 3, expected for a random Gaussian
variable.

When large values of β are introduced right from the beginning of the run, and
the spectrum is initially localized to small wavenumbers, turbulent energy transfer
is almost entirely inhibited. The spectrum remains confined to a narrow band of
small wavenumbers for long times, and the dynamics is virtually linear. In this case,
wave effects virtually decouple the dynamics of small and large scales.

For larger systems, A = 30–60, and β = 0, it has been shown that the vortex size
scales with the Larmor radius ρs. The spectrum is peaked at wavenumbers ρsk ≈
0.25, but otherwise its slope does not depend on the size of the system, in agreement
with Kolmogorov’s theory of isotropic turbulence for the H–M equation. The flow is
modified even at moderate values of β, developing an anisotropic structure similar
to that already described for the case A = 2π. The results confirm that wave effects
can play a significant role when the size of the system is large compared to the
Larmor radius.

The numerical results have been interpreted using a simple model of nonlinear
coupling among three waves. It has been shown that energy transfer can occur
through either a resonant or a non-resonant (turbulent) process. The resonant pro-
cess is far less efficient, since the modes must satisfy a stringent condition on their
frequencies. For large values of β, mostly resonant interactions occur, thus reducing
nonlinear energy transfer. Only for modes with ky � kx is non-resonant coupling
allowed, and this provides a qualitative explanation for the observed anisotropic
spectra.

In conclusion, the simulations presented in this paper provide further evidence
that wave effects strongly modify the usual picture of homogeneous and isotropic
turbulence. Since, for example, test-particle transport has been shown to be rather
sensitive to the structure of the underlying turbulent fields (Manfredi and Dendy
1996, 1997), the effects described above may have an impact on the confinement of
charged particles in fusion devices.
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