
THE JOURNAL OF NAVIGATION (2020), 73, 1223–1236. c© The Royal Institute of Navigation 2020
doi:10.1017/S0373463320000211

Frequency Domain Design Method of
Wavelet Basis Based on Pulsar Signal
Sihai You1, Hongli Wang1, Yiyang He1, Qiang Xu2 and Lei Feng1

1(Department of Missile Engineering, Rocket Force University of Engineering,
Xi’an, Shaanxi, China)

2(Qingzhou High-Tech Research Institute, Shandong, China)
(E-mail: wanghongli19650526@163.com)

During pulsar navigation, the high-frequency noise carried by the pulsar profile signal reduces
the accuracy of the pulse TOA (Time of Arrival) estimation. At present, the main method to
remove signal noise by using wavelet transform is to redesign the function of the threshold and
level of wavelet transform. However, the signal-to-noise ratio and other indicators of the filtered
signal need to be further optimised, so a more appropriate wavelet basis needs to be designed.
This paper proposes a wavelet basis design method based on frequency domain analysis to
improve the denoising effect of pulsar signals. This method first analyses the pulsar contour
signal in the frequency domain and then designs a Crab pulsar wavelet basis (CPn, where n
represents the wavelet basis length) based on its frequency domain characteristics. In order to
improve the real-time performance of the algorithm, a wavelet lifting scheme is implemented.
Through simulation, this method analyses the pulsar contour signal data at home and abroad.
Results show the signal-to-noise ratio can be increased by 4 dB, the mean square error is reduced
by 61% and the peak error is reduced by 45%. Therefore, this method has better filtering effect.
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1. INTRODUCTION. A pulsar is a high-speed rotating neutron star that radiates elec-
tromagnetic waves of various wavelengths periodically to the surroundings. The navigation
method that uses one or more pulsars as a signal source is called pulsar navigation. As a
new type of autonomous navigation, it has attracted wide attention from scholars all around
the world (Becker et al., 2013; Xu et al., 2018a, 2018b; You et al., 2018). Pulsar navigation
uses the pulsar’s periodic electromagnetic waves as the signal source to obtain the position
and time information by calculating the phase of the signal. There are three problems in the
process of processing this signal. First, because the universe contains a lot of background
noise, and the signal detector itself contains noise caused by dark current, etc., the pulse
contour obtained contains a lot of noise. Second, the signal of the distant pulsar reach-
ing the detector is very weak and has been attenuated into the form of a single photon.
Third, because the effective area of the detector is small, it takes a long time to accumulate.
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These three problems affect the accuracy of the TOA (Time of arrival) estimate, thereby
reducing the accuracy of positioning and punctuality. Consequently, the pulsar signal must
be denoised.

The noise reduction method based on wavelet transform has been applied in many fields
(Wei et al., 2012; Liu et al., 2016). Wavelet transform was applied to the denoising of
pulsar signal for the first time in Xiao-ming et al. (2006), where the selection of wavelet
basis and the number of decomposition layers were studied. That study proved that the
wavelet transform could greatly improve the signal-to-noise ratio, and the high-frequency
information of the useful signal was not lost. Li et al. (2008) studied the selection of the
optimal threshold, and selected Coiflets as the wavelet basis for analysing the pulse sig-
nal from two angles of tight support and vanishing distance. However, the processing of
the threshold does not solve the contradiction between suppressing noise and retaining
details. Di et al. (2007) introduced fuzzy theory into the threshold processing algorithm
of wavelet denoising. A membership function was established to distinguish between sig-
nals and noise, and noise was suppressed while preserving the signal. In Zhe et al. (2010),
an improved wavelet spatial correlation filter denoising method was proposed, that could
further improve the ability to preserve signals while suppressing noise. Xue et al. (2016)
proposed a local linear minimum mean square error method for unsampled wavelet domain,
that could continue to improve both signal-to-noise ratio and signal retention.

The above scholars mainly focused on the selection of wavelet basis and the design of
wavelet threshold function. The choice of wavelet basis is the base of wavelet denoising,
so if the selection of the wavelet basis is inappropriate, it will directly affect the denoising
effect. There is currently no universal wavelet basis that accommodates all signals, so the
most appropriate wavelet basis for different signals is different. In most of the abovemen-
tioned literature, the existing wavelet basis was used for the selection of the wavelet basis,
and no special wavelet basis was designed for pulsar signals. Few researchers have stud-
ied the design of wavelet basis for pulsar signals. Hence, the wavelet basis set CPn (Crab
pulsar wavelet basis, where n represents the wavelet basis length) for the pulsar signal is
designed in this study. This set of wavelet basis can offer the denoised signal with greater
signal-to-noise ratio, and lower mean square error and peak position error.

The rest of the paper is organised as follows. In Section 2, the signal of the Crab pulsar is
analysed by the frequency domain method, and then the wavelet basis is designed. Section 3
implements a wavelet lifting algorithm. The simulation carried out is described in Section 4
and the simulation results are analysed. Section 5 gives the conclusion.

2. FREQUENCY DOMAIN ANALYSIS OF PULSAR SIGNAL AND CONSTRUC-
TION OF WAVELET BASIS.

2.1. Analysis of frequency characteristics of pulsar signal. The literature (Fang
et al., 2016) proves that the TOA estimation can completely abandon the high-frequency
part information that experiences the greatest interference from noise, and only uses the
low-frequency part information with high signal-to-noise ratio. FFT (fast Fourier transfor-
mation) is performed on the actual profile of the Crab pulsar data of the actual period of 1 s
and the actual noisy profile obtained by epoch folding, as shown in Figure 1. By comparing
the FFT amplitude-frequency curves, it can be seen that the ideal curve mainly concentrates
on the low frequency near 0 KHz, and the noise-containing curve has components in the
range of 20–40 KHz. When designing low-pass filters, the cut-off frequency should be as
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(a) (b)

(c) (d)

Figure 1. Waveform and FFT transform of ideal profile (a, c) and noisy profile (b, d).

close as possible to 0 KHz, and the curve of the filters should be as vertical as possible to
the x-axis, so as to approach the ideal filter. The closer to the ideal filter, the higher the order
of the filter is required, but the higher the order, the larger the amount of calculation. There-
fore, when designing the wavelet basis, the contradiction between the calculation amount
(order) and the signal-to-noise ratio should be balanced.

2.2. Construction of wavelet basis. Constructing a wavelet basis requires two prin-
ciples of linear phase and convergence, for two reasons. First, phase distortion affects the
TOA estimation of subsequent pulsar signals, which affects the positioning and punctuality
of pulsar navigation. Therefore, the process of pulsar signal denoising cannot be phase-
distorted. Secondly, if the filtered curve diverges, the filtering purpose cannot be achieved,
and the waveform will also be deformed, so it is desirable that the filtered curve converges.

The CPn wavelet basis cluster is designed by the Hamming window method, which is
compared with the Dbn (Daubechies) wavelet basis cluster as shown in Figure 2. n repre-
sents half the length of the filter. The larger n is, the better the filtering effect is, and the
closer it is to the ideal filter in the frequency domain (as shown in Figure 3). It also demands
a larger amount of calculation, however, so a trade-off is required between the amount of
calculation and the filtering effect according to the specific engineering requirements.

Figure 2(a)–2(d) correspond to Dbn and CPn of lengths 4, 6, 8, and 10. It can be seen
from the figure that the coefficients of CPn follow the even or odd symmetry. Therefore,
the phase delay and group delay of CPn are equal and constant in the frequency band. For
CPn of n-order linear phase, the group delay is n/2. That is to say, the signal after wavelet
transform is simply delayed by n/2 steps. This attribute preserves the waveform of the
signal in the passband, that is, there is no phase distortion.
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Figure 2. Comparisons of Dbn and CPn wavelet bases of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10.

The FFT of wavelet basis of lengths 4, 6, 8 and 10, respectively, is shown in the graphs
in Figure 3(a)– 3(d). In the case of the same length, all CPn wavelet basis low-pass filter
amplitude-frequency curve hCPn and high-pass filter amplitude-frequency curve gCPn are
respectively below Dbn’s low-pass filter amplitude-frequency curve hDbn and high-pass
filter amplitude-frequency curve gDbn. That is to say, the angle between the curve and the
y-axis is smaller. Closer to the ideal filter, in theory, the filtering effect is better.

The pole-zero diagrams of CPn of lengths 4, 6, 8 and 10 are presented in the graphs in
Figure 4(a)–4(d). It can be seen from the figure that the poles of CPn are all within the unit
circle, so they are stable and will not diverge after wavelet transformation.

3. IMPLEMENTATION OF LIFTING ALGORITHM. The lifting algorithm is a more
flexible and more versatile tool than the traditional wavelet, which is independent of the
Fourier transform (Sweldens, 1998). Because the lifting algorithm first downsamples and
then convolutes, it can reduce the complexity of the algorithm by half compared with tra-
ditional wavelets. The process of lifting the algorithm is divided into three main steps, as
shown in Figure 5.
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(a) (b)
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Figure 3. Comparison of FFT transform of Dbn and CPn wavelet bases of different lengths: (a) 4, (b) 6, (c) 8
and (d) 10.

(a) (b)

(c) (d)

Figure 4. Zero-pole maps of CPn wavelet basis of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10.

https://doi.org/10.1017/S0373463320000211 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463320000211


1228 SIHAI YOU AND OTHERS VOL. 73

Figure 5. Basic flow of lifting algorithms.

First step, split
The pulsar profile signal X after epoch folding is divided into two odd and even sets of

two vectors Xe and Xo which do not intersect each other, according to the index value i.
Second step, prediction
Designing the prediction operator s̃, combining Xe and Xo to obtain the prediction bias

γ̃ , can be considered as the high-frequency coefficient of X .
Third step, update
Designing the update operator t̃, combining γ̃ and Xe, yields the approximation

coefficient λ̃.
The above three steps represent an ideal, but the actual situation may be more com-

plicated. In fact, there may be multiple predictions and updates, and there may be multiple
scale-ups, such as K1 and K2 in Figure 5. The process of implementing the lifting algorithm
for hCPn and gCPn is as follows.

According to

λ(z) = h̃CPn(z)X (z)

= h̃e(z)Xe(z) + z−1h̃o(z)Xo(z)
(1)

and
γ (z) = g̃CPn(z)X (z)

= g̃e(z)Xe(z) + z−1g̃o(z)Xo(z),
(2)

a matrix form equation

[
λ

γ

]
=

[
h̃e(z) h̃o(z)
g̃e(z) g̃o(z)

] [
X e(z)

z−1X o(z)

]
. (3)

is obtained. A multiphase matrix

P̃ =
[

h̃e(z) h̃o(z)
g̃e(z) g̃o(z)

]
. (4)

can be obtained. According to

P̃(z) =
(

h̃e(z) h̃0(z)
h̃e(z)t(z) + g̃new

e (z) h̃o(z)t(z) + g̃new
o (z)

)
=

(
1 0

t̃(z) 1

)
P̃new(z) (5)
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Table 1. K1 and K2 in analytic formula of CPn lifting algorithms.

Wavelet
basis K1 K2

CP4 (4 · 56E − 02) · Z + (4 · 54E − 01) · Z2 (4 · 56E − 02) + (4 · 54E − 01) · Z

CP6
(2 · 64E − 02) + (3 · 33E − 01) · Z

+ (1 · 40E − 1) · Z2
(2 · 64E − 02) + (3 · 33E − 01) · Z

+ (1 · 40E − 1) · Z2

CP8
(1 · 74E − 02) · Z + (1 · 66E − 01) · Z2

+ (2 · 55E − 01) · Z3 + (6 · 12E − 02) · Z4
(1 · 74E − 02) + (1 · 66E − 01) · Z

+ (2 · 55E − 01) · Z2 + (6 · 12E − 02) · Z3

CP10
(1 · 19E − 02)Z + (8 · 88E − 02) · Z2

+ (2 · 07E − 01) · Z3 + (1 · 59E − 01) · Z4

+ (3 · 25E − 02) · Z5

(1 · 19E − 02) + (8 · 88E − 02) · Z
+ (2 · 07E − 01) · Z2 + (1 · 59E − 01) · Z3

+(3 · 25E − 02) · Z4

Table 2. Simulation parameters.

Name Parameters
Pulsar data sources RXTE data from NASA (experimental results in Section 4)

XPNAV-1 and HXMT (See Appendix for experimental results.)
Wavelet basis Low-pass FIR digital filter of Hamming window
Length of wavelet basis 4, 6, 8 and 10
Computer Win7 X64, :i5-3210M, 2·5 GHz, 16GB RAM
Matlab R2015a

and

P̃(z) =
(

h̃e(z) + g̃e(z)s̃(z) h̃o(z) + g̃o(z)s̃(z)
g̃e(z) g̃o(z)

)
=

(
1 s̃(z)
0 1

)
P̃new(z), (6)

P̃(z) can be converted into a lifted form

P(z)=
m∏

i=1

{(
1 si(z)
0 1

)(
1 0

ti(z) 1

)}
.
(

K1 0
0 K2

)
. (7)

Its analytic formula is

P(z) =
[

1 1
0 1

] [
1 0

− 1
2 1

] [
2K1 0

0 K2

]
. (8)

So the prediction operator is

t(z) = −1
2

, (9)

and the update operator is

s(z) = 1. (10)

K1 and K2 are shown in the Table 1.

4. SIMULATION AND DISCUSSION.
4.1. Simulation conditions. The numerical simulation hardware and software param-

eters are shown in Table 2.
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4.2. Comparison of filtering effect. To verify the validity of the proposed method,
two sets of Dbn and CPn wavelet basis of the same length were compared. The indicators
for evaluation are as follows.

SNR (signal-to-noise ratio)

SNR = 10·1g

[ ∑N
i=1 y2∑N

i=1 y − ŷ2

]
. (11)

where y is the original signal, ŷ is the denoised signal, and N is the signal length.
MSE (mean square error)

MSE =
∑N

i=1 (y − ŷ)2

N
. (12)

PRE (Peak relative error)

PRE =
|V0 − Vd|

V0
· 100% (13)

where V0 is the pulse peak of the standard pulse profile and Vd is the peak of the pulsar
signal after denoising.

CC (correlation coefficient)

CC =
cov(y, ŷ)√

var(y)var(ŷ)
(14)

where cov(y, ŷ) is the covariance of y and ŷ, and var(y) and var(ŷ) are the variances of y
and ŷ, respectively.

The filtering effect of the four different length filters is shown in Figure 6. For clarity, the
filtered curve is moved vertically. It can be seen that the CPn wavelet basis filtered curve is
smoother and closer to the ideal curve, so its filtering effect is better.

The denoising effects of the two wavelet bases of Dbn and CPn are shown in Tables 3
and 4. It can be seen from the two tables that the SNR of CPn is higher than the SNR of
Dbn in the same length, and even the CP4 wavelet basis of length 4 is higher than the SNR
of DB5 wavelet basis of length 10. The MSE and PRE indicators of CPn are also better
than that of Dbn. In the case of level 1 decomposition, the SNR of the wavelet basis length
is 10, and the MSE and the PRE reach the highest at the same time. Compared with Db5,
CP10 has 4 dB higher SNR, 61% lower MSE and 45% lower PRE. On the whole, both the
CPn wavelet basis and the Dbn wavelet basis conform to the law that the noise reduction
effect is better with the increase of the wavelet basis length.

As the length increases, however, it will inevitably lead to an increase in the calculation,
which increases the calculation time and takes up more hardware resources. Using a plat-
form with parallel computing, filters of different lengths can be calculated simultaneously.
This can parallelise the complex filtering process, which can greatly reduce the calculation
time. The optimal filter is then selected by the cost function to realise adaptive wavelet
basis selection. Compared with the Dbn wavelet basis, the CPn wavelet basis has a good
filtering effect, and the algorithm is no more complicated. When the length of the anal-
ysed data is fixed and the threshold collapse algorithm is determined, the complexity of the
wavelet denoising algorithm is only related to the length of the wavelet basis. Accordingly,
when the CPn wavelet basis and the Dbn wavelet basis are the same length, their algorithm
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(a) (b)

(c) (d)

Figure 6. Denoising effect of CPn and Dbn of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10 (RXTE data).

Table 3. Level 1 filtering effect of different wavelet bases (RXTE data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 6·53e+00 5·35e-02 1·56e-01 7·98e-01
CP4 6·55e+00 5·32e-02 1·23e-01 8·21 e-01
Db3 6·54e+00 5·35e-02 1·67e-01 8·02 e-01
CP6 6·59e+00 5·27e-02 5·12e-02 8·57 e-01
Db4 6·54e+00 5·35e-02 1·27e-01 8·02 e-01
CP8 6·59e+00 5·26e-02 4·93e-02 8·66 e-01
Db5 6·53e+00 5·35e-02 1·06e-01 8·01 e-01
CP10 6·60e+00 5·25e-02 4·30e-02 8·71 e-01

Table 4. Level 2 filtering effect of different wavelet bases (RXTE data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 6·57e+00 5·29e-02 6·90e-02 8·43e-01
CP4 6·59e+00 5·27e-02 6·72e-02 8·59e-01
Db3 6·58e+00 5·29e-02 5·99e-02 8·45e-01
CP6 6·60e+00 5·24e-02 3·67e-02 8·77e-01
Db4 6·58e+00 5·28e-02 9·65e-02 8·45e-01
CP8 6·60e+00 5·24e-02 2·82e-02 8·81e-01
Db5 6·58e+00 5·28e-02 5·80e-02 8·46e-01
CP10 6·61e+00 5·24e-02 2·10e-02 8·83e-01

complexity is the same. That is, the time consumption of the algorithm is basically the
same.

4.3. The effect of filtering effect on TOA accuracy. In order to test the effect of the CPn
method proposed in the paper on TOA estimation, the CPn method and the Dbn method
respectively filter signals with different SNR, and then use the correlation coefficient
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(a) (b)

(c) (d)

Figure 7. Error of TOA estimation after CPn and Dbn filtering: (a) 4, (b) 6, (c) 8 and (d) 10.

method (Fang et al., 2016) to estimate the TOA. The simulation results of 100 sets of pro-
file curves filtered by two methods are shown in Figure 7. The graphs in Figure 7(a)–7(d)
present the TOA estimation error curves of the filter lengths 4, 6, 8 and 10, respectively.
The abscissa represents the index of the pulsar profile data. The ordinate represents the esti-
mation error of TOA. It can be seen from the figure that the CPn curve of each subgraph is
better than the Dbn curve in terms of stability or absolute value. Therefore, the CPn method
has a better effect on the estimation of TOA.

5. CONCLUSION. This paper designs a set of wavelet basis CPn based on frequency
analysis and implements its lifting algorithm. Compared with the traditional Dbn wavelet
basis cluster, there are improvements in SNR, MSE and PRE. The set of wavelet basis can
select a wavelet basis of a suitable length according to different requirements of accuracy
and calculation amount. The design method of this wavelet base is not only suitable for
Crab pulsar signal, but also can be applied to other pulsar signal denoising. The method can
provide a signal source with higher SNR for the TOA estimation algorithm, thereby more
accurately estimating the TOA, and finally improving the accuracy of the pulsar navigation.
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APPENDIX

The results of XPNAV-1 and HXMT data are shown in Figures A1–A4 and Tables A1–A4.

(a) (b)

(c) (d)

Figure A1. Level 1 denoising effect of CPn and Dbn of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10
(XPNAV-1 data).
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(a) (b)

(c) (d)

Figure A2. Level 2 denoising effect of CPn and Dbn of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10
(XPNAV-1 data).

(a) (b)

(c) (d)

Figure A3. Level 1 denoising effect of CPn and Dbn of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10 (HXMT
data).
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(a) (b)

(c) (d)

Figure A4. Level 2 denoising effect of CPn and Dbn of different lengths: (a) 4, (b) 6, (c) 8 and (d) 10 (HXMT
data).

Table A1. Level 1 filtering effect of different wavelet basis (XPNAV-1 data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 7·21e+00 3·66e-02 2·26e-01 5·61e-01
CP4 7·43e+00 3·44e-02 2·81e-02 6·18e-01
Db3 7·21e+00 3·66e-02 1·86e-01 5·59e-01
CP6 7·71e+00 3·18e-02 6·39e-03 7·16e-01
Db4 7·21e+00 3·66e-02 8·46e-02 5·60e-01
CP8 7·80e+00 3·10e-02 3·16e-02 7·54e-01
Db5 7·21e+00 3·66e-02 1·13e-01 5·61e-01
CP10 7·84e+00 3·06e-02 4·66e-02 7·78e-01

Table A2. Level 2 filtering effect of different wavelet basis (XPNAV-1 data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 7·61e+00 3·27e-02 5·66e-02 6·78e-01
CP4 7·77e+00 3·13e-02 4·29e-02 7·39e-01
Db3 7·62e+00 3·26e-02 2·30e-02 6·82e-01
CP6 7·89e+00 3·03e-02 5·82e-02 8·02e-01
Db4 7·60e+00 3·28e-02 2·80e-02 6·73e-01
CP8 7·93e+00 2·99e-02 7·65e-02 8·24e-01
Db5 7·60e+00 3·28e-02 2·93e-02 6·74e-01
CP10 7·95e+00 2·98e-02 8·78e-02 8·38e-01
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Table A3. Level 1 filtering effect of different wavelet basis (HXMT data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 6·13e+00 5·80e-02 2·03e-01 4·45e-01
CP4 6·28e+00 5·54e-02 9·18e-02 5·07e-01
Db3 6·13e+00 5·80e-02 1·84e-01 4·45e-01
CP6 6·45e+00 5·27e-02 1·73e-02 6·13e-01
Db4 6·13e+00 5·79e-02 1·63e-01 4·47e-01
CP8 6·50e+00 5·19e-02 1·95e-02 6·65e-01
Db5 6·14e+00 5·78e-02 1·89e-01 4·49e-01
CP10 6·53e+00 5·14e-02 4·15e-02 7·00e-01

Table A4. Level 2 filtering effect of different wavelet basis (HXMT data).

Wavelet basis SNR (dB) MSE PRE CC

Db2 6·38e+00 5·38e-02 7·21e-02 5·62e-01
CP4 6·48e+00 5·22e-02 4·70e-02 6·43e-01
Db3 6·38e+00 5·38e-02 4·59e-02 5·65e-01
CP6 6·56e+00 5·09e-02 5·74e-02 7·38e-01
Db4 6·37e+00 5·39e-02 6·48e-03 5·62e-01
CP8 6·59e+00 5·06e-02 6·93e-02 7·73e-01
Db5 6·38e+00 5·38e-02 2·53e-02 5·62e-01
CP10 6·60e+00 5·04e-02 8·03e-02 7·95e-01

https://doi.org/10.1017/S0373463320000211 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463320000211

	APPENDIX

