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On the role of vorticity stretching and strain
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cascade

Perry L. Johnson†

Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

(Received 7 February 2021; revised 26 April 2021; accepted 27 May 2021)

The tendency of turbulent flows to produce fine-scale motions from large-scale energy
injection is often viewed as a scale-wise cascade of kinetic energy driven by vorticity
stretching. This has been recently evaluated by an exact, spatially local relationship
(Johnson, P.L. Phys. Rev. Lett., vol. 124, 2020, p. 104501), which also highlights the
contribution of strain self-amplification. In this paper, the role of these two mechanisms is
explored in more detail. Vorticity stretching and strain amplification interactions between
velocity gradients filtered at the same scale account for approximately half of the energy
cascade rate, directly connecting the restricted Euler dynamics to the energy cascade.
Multiscale strain amplification and vorticity stretching are equally important, however,
and more closely resemble eddy viscosity physics. Moreover, ensuing evidence of a
power-law decay of energy transfer contributions from disparate scales supports the
notion of an energy cascade, albeit a ‘leaky’ one. Besides vorticity stretching and strain
self-amplification, a third mechanism of energy transfer is introduced and related to
the vortex thinning mechanism important for the inverse cascade in two dimensions.
Simulation results indicate this mechanism also provides a net source of backscatter in
three-dimensional turbulence, in the range of scales associated with the bottleneck effect.
Taken together, these results provide a rich set of implications for large-eddy simulation
modelling.

Key words: turbulent flows

1. Introduction

One of the most salient features of turbulent flows is enhanced rates of energy dissipation
(ε) and mixing. Turbulence rapidly produces fine-scale variations in the velocity field. The
dynamics of this process has been of enduring interest for understanding and modelling
turbulent flows across a wide range of applications. The resulting broadband range of
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length and time scales, evolving under intrinsically nonlinear dynamics, lies at the centre
of what makes turbulent flows challenging to analyse, model and predict.

The kinetic energy cascade is the predominant concept for illuminating the production
of small scales in turbulence (Richardson 1922; Kolmogorov 1941b; Onsager 1949;
Frisch 1995). Turbulent kinetic energy is produced primarily in the form of large-scale
motions with size comparable to that of the shear flow that serves as the energy
source. The kinetic energy is dissipated to thermal energy by viscosity (ν) primarily
acting on the smallest-scale motions in the flow, which are comparable in size to
the Kolmogorov length scale, η = ν3/4ε−1/4 (Kolmogorov 1941b). The energy cascade
describes the process of transferring kinetic energy from the largest-scale motions where
it is produced to the smallest-scale motions responsible for irreversible dissipation. The
cascade phenomenology asserts that the predominant exchanges of energy occur between
coherent motions having nearly the same size, so that energy is passed in a quasi step-wise
manner to successively smaller-scale motions. The cascade terminates when the smallest
scales are finally energized and viscous dissipation removes kinetic energy at the rate it is
supplied.

The energy cascade provides a conceptually simple phenomenological explanation for
the observed complex, chaotic behaviour of turbulence. Supposing that the energy transfer
processes are chaotic and somewhat independent across length scales, the cascade idea
provides an attractive explanation for why universal properties are observed for such a
wide range of turbulent flow scenarios. However, two significant questions are raised.

First, is the net transfer of energy from large to small scales in turbulence actually
accomplished primarily by interactions between motions having nearly the same size?
This is the question of scale locality, which is a necessary property for the cascade
phenomenology to be plausible. Strictly speaking, the energy transfer does not occur
in a well-defined step-like manner (Lumley 1992). In this sense, the cascade is ‘leaky’.
However, the question of scale locality may be answered more rigorously by quantifying
the relative contribution of interactions between differently sized motions to the energy
cascade rate. Theoretical analysis predicts that the contribution to the cascade rate across
scale � due to interactions with motions at scale �′ < � decays as a power law for
�′ � �, specifically, ∼(�′/�)4/3 (Kraichnan 1966, 1971; Eyink 2005; Eyink & Aluie 2009).
This power law indicates the degree of ultra-violet locality (L’vov & Falkovich 1992).
Numerous numerical investigations have revealed at least some degree of scale locality
in the mean energy transfer across scales, with general support for the theoretical scaling
(Zhou 1993a,b; Aoyama et al. 2005; Mininni, Alexakis & Pouquet 2006; Domaradzki &
Carati 2007a,b; Mininni, Alexakis & Pouquet 2008; Aluie & Eyink 2009; Domaradzki,
Teaca & Carati 2009; Eyink & Aluie 2009; Cardesa et al. 2015; Doan et al. 2018).

The second question of significant importance to the energy cascade phenomenology
is: What dynamical mechanism is responsible for driving such a cascade? To some
degree, answering this second question should also shed some light on the first. That
is, identifying the dynamical mechanism of the cascade should provide some basis for
examining the scale locality of that mechanism. For example, consider the most commonly
cited mechanism for the cascade, i.e. vortex stretching (Taylor 1938; Onsager 1949;
Tennekes & Lumley 1972). The vortex stretching mechanism of the energy cascade is
illustrated in figure 1 and may be described as follows. A compact region characterized
by elevated vorticity (i.e. a vortex) subjected to an extensional strain rate along its axis
of rotation will have its cross-section reduced. As this occurs, the vorticity in that region
will be enhanced in keeping with Kelvin’s theorem. In this way, kinetic energy is passed
from straining motions to vortical motions that decrease in size. Owing to this proposed
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Vorticity stretching and strain self-amplification

ω2 > ω1 

ω1

Figure 1. A simplified illustration of vortex stretching.

cascade mechanism, the role of vortex structures in turbulence dynamics has been an active
subject of research over the years (Lundgren 1982; Chorin 1988; Pullin & Saffman 1994,
1998; Jiménez & Wray 1998; Lozano-Durán, Holzner & Jiménez 2016). For instance,
numerical simulations have been used to confirm that interactions between vortices and
straining regions are strongest when the vortical structure is only somewhat smaller than
the straining region (Doan et al. 2018).

The question of dynamical mechanism is of high importance in its own right (Carbone
& Bragg 2020). This is especially true for reduced-order models of turbulence, a practical
step for predicting many turbulent flows. Large-eddy simulations (LES) are widely used
and increasing in popularity with growing computational resources. The LES approach
directly calculates the dynamics of large-scale motions on a computational grid while
requiring a closure model for representing the effect of smaller, unresolved scales on the
computed large-scale motions. Arguably the most important feature of an LES closure
model is that it removes energy from the resolved scales in an accurate manner. However,
eddy viscosity closures remain the most common approach to LES alongside heuristic
approaches which rely on implicit modelling via specially designed discretization errors.
From a physical perspective, these popular models are known to be deficient despite their
widespread use (Borue & Orszag 1998). In contrast, the stretched vortex model of Misra
& Pullin (1997) attempts to build a model on more explicit physical grounds, appealing to
the classical vortex stretching mechanism of the cascade. It has also been proposed to use
vortex stretching to determine an eddy viscosity (Silvis & Verstappen 2019).

More recently, the self-amplification of straining motions has been proposed as an
alternative cascade mechanism (Tsinober 2009; Paul, Papadakis & Vassilicos 2017;
Carbone & Bragg 2020; Johnson 2020a), casting doubt on the widespread view that
the cascade is driven primarily by vortex stretching. Strain-rate self-amplification is
illustrated in figure 2. A region of enhanced strain rate with one strong negative eigenvalue
experiences a strengthening of that compressive strain rate as faster moving fluid catches
up with slower moving fluid in front of it. This decreases the spatial extent of strong
compressive strain rate. This mechanism is responsible for the finite-time singularity and
shock formation in the inviscid Burgers equation, but has received much less attention
in the context of Navier–Stokes. The restricted Euler equation, a dynamical system more
relevant to three-dimensional (3-D) Navier–Stokes than the Burgers equation, displays a
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Figure 2. A simplified schematic of strain self-amplification.

finite-time singularity that includes both strain self-amplification and vorticity stretching
(Vieillefosse 1982).

Indeed, more careful accounting of the relative contributions of vortex stretching and
strain self-amplification in turbulent flows indicate that the latter is responsible for a larger
share of the energy cascade rate. Most notably, Johnson (2020a) derived an exact, spatially
local relationship between the energy cascade rate and the dynamical mechanisms of
vortex stretching and strain self-amplification. It is the goal of this paper to leverage this
result to illuminate key aspects of the cascade as seen from the perspective of velocity
gradient dynamics.

In this paper, the roles of vortex stretching and strain self-amplification in determining
the energy cascade rate are elucidated. First, § 2 reviews turbulent velocity gradients
dynamics and the framework for studying the energy cascade in terms of spatial filtering.
The connection between the velocity gradients and the cascade is established in § 3,
enhancing and building upon the results of Johnson (2020a). Simulation results highlight
the relative importance of each mechanism to the energy cascade. Also included is a brief
discussion of the inverse energy cascade in 2-D flows, demonstrating a comprehensive
framework for turbulent cascades. Following that, § 4 builds on the concept of cascade
efficiency from Ballouz & Ouellette (2018), examining the efficiency of the dynamical
mechanisms comprising the cascade rate. This analysis reveals the relevance of the
restricted Euler dynamics to the energy cascade, while judging the relative suitability of
an eddy viscosity hypothesis for representing the various dynamical processes involved.
Then, § 5 returns to the question of scale locality in terms of both vorticity stretching and
strain self-amplification. It is shown that the concept of cascade efficiency can be examined
on a scale-by-scale basis to test the de-correlation idea of Eyink (2005). Conclusions are
drawn in § 6.

2. Background

2.1. Simulation database: homogeneous isotropic turbulence
In this paper, the kinetic energy cascade is quantified via direct numerical simulation
(DNS) of forced homogeneous isotropic turbulence (HIT) in a triply periodic domain.
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The incompressible Navier–Stokes equations,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ν∇2ui + fi,

∂uj

∂xj
= 0, (2.1a,b)

are solved using a pseudo-spectral method with 1024 collocation points in each direction.
The velocity field, u, is advanced in time with a second-order Adams–Bashforth scheme,
and the pressure p simply enforces the divergence-free condition. The 2

√
2/3 rule for

wavenumber truncation is used with phase-shift dealiasing (Patterson & Orszag 1971).
The forcing, f , is specifically designed to maintain constant kinetic energy in the first
two wavenumber shells. After a startup period, statistics are computed over 6 large-eddy
turnover times. The Taylor-scale Reynolds number is approximately Reλ = 400 with grid
resolution kmaxη = 1.4. The integral length scale is L/η = 460.

HIT is a very useful canonical flow to efficiently explore the energetics of small-
and intermediate-scale turbulence dynamics. The analysis performed in this paper is not
limited to HIT in principle, and the inertial range results are expected to be representative
of a wide range of turbulent shear flows at sufficiently high Reynolds numbers.

2.2. Velocity gradient tensor
Vorticity stretching and strain self-amplification are dynamical processes defined via
the velocity gradient tensor, A, which is comprised of the strain-rate tensor, S, and the
rotation-rate tensor, Ω ,

Aij = ∂ui

∂xj
= Sij + Ωij, Sij = 1

2
(Aij + Aji), Ωij = 1

2
(Aij − Aji), (2.2a–c)

where the rotation-rate tensor may be written in terms of the vorticity vector ω = ∇ × u,

Ωij = −1
2εijkωk, ωi = −εijkΩjk. (2.3a,b)

This decomposition is foundational to the energetics of turbulent flows because viscosity
resists deformation but not rotation. Thus, the rate at which kinetic energy is dissipated
into thermal energy depends only on the (Frobenius norm of the) strain-rate tensor,

ε = 2νSijSij = 2ν‖S‖2. (2.4)

On the other hand, the vorticity plays no direct role in the viscous dissipation of kinetic
energy. However, vorticity is still essential to the dynamics leading to energy dissipation, as
seen from the first relation of Betchov (1956) for incompressible homogeneous turbulence,

〈‖S‖2〉 = 1
2 〈|ω|2〉. (2.5)

Angle brackets denote ensemble averaging. The Betchov relation shows that the average
(or global) amount of vorticity and strain rate is held in balance for incompressible flows,
presumably by the action of the pressure as it enforces ∇ · u = 0. Thus, the significantly
enhanced dissipation rates in turbulence cannot occur without equally enhanced enstrophy.
At sufficiently high Reynolds numbers, this relationship holds to good approximation even
for inhomogeneous flows.
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λ2 > 0 λ2 < 0
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Figure 3. Depiction of the velocity gradient tensor in the strain-rate eigenframe. Velocity gradients with two
extensional eigenvalues (a) tend to deform initially spherical fluid particles into disk-like oblate spheroids.
Velocity gradients with two compressive eigenvalues (b) deform spherical fluid particles to prolate spheroids,
like a rugby ball shape.

Similarly, the norm of the velocity gradient is the sum of the vorticity and strain-rate
norms,

1
2‖A‖2 = 1

4 |ω|2 + 1
2‖S‖2, (2.6)

so that (2.5) implies a statistical equi-partition between enstrophy and dissipation. Thus,
the second invariant of the velocity gradient tensor,

Q = −1
2 AijAji = 1

4 |ω|2 − 1
2‖S‖2, (2.7)

has an average of zero.
The strain-rate tensor, being symmetric, has 3 real eigenvalues, λ1 > λ2 > λ3,

associated with a set of orthogonal eigenvectors. The eigenvalues sum to zero for
incompressible flows, λ1 + λ2 + λ3 = 0. Therefore, the largest eigenvalue is always
extensional along its eigenvector, λ1 ≥ 0, and the smallest one is always compressive,
λ3 ≤ 0. The intermediate eigenvalue, λ2, may be positive or negative. The sign of λ2
indicates the topology of fluid particle deformations, figure 3, and has more important
dynamical effects as discussed below.

2.3. Velocity gradient dynamics
Consider a Lagrangian view of turbulence as a collection of fluid particles characterized
by their deformational and rotational behaviour, i.e. their velocity gradient tensor. The
Lagrangian evolution equation for the velocity gradient tensor is derived as the gradient of
(2.1a,b),

DAij

Dt
= −AikAkj − 2

3
Qδij︸ ︷︷ ︸

autonomous dynamics

−
∫∫∫

PV

[
Q(x + r)

2π|r|3
(

δij − 3
rirj

|r|2
)]

dr + ν∇2Aij︸ ︷︷ ︸
nearby particle interactions

, (2.8)
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where the formal solution of the pressure Poisson equation, ∇2p = 2Q, is used to write
the pressure Hessian as the sum of the second and third terms in (2.8) (Ohkitani & Kishiba
1995). The contribution of pressure to the autonomous dynamics is due to the enforcement
of ∇ · u = 0 at the point on the trajectory, while the non-local integral arises from the
enforcement of ∇ · u = 0 at all surrounding points. For HIT simulations with large-scale
forcing, the gradient of the force is typically negligible compared to other terms in (2.8) at
high Reynolds numbers.

Significant insight may be gained into velocity gradient dynamics by focusing only on
its autonomous dynamics using the restricted Euler equation,

DAij

Dt
= −AikAkj − 1

3
AmnAnmδij. (2.9)

By neglecting the interaction with the velocity gradients of other surrounding fluid
particles, the restricted Euler equation represents a dramatic mathematical simplification
of turbulent flows while retaining some key dynamical processes. In fact, rigorous
mathematical results are possible (Vieillefosse 1982, 1984; Cantwell 1992).

The most salient feature of solutions to the restricted Euler equation is a finite-time
singularity for (almost) all initial conditions. The cause of this singularity may be readily
identified using the equation for the velocity gradient norm in restricted Euler dynamics,

D
Dt

(
1
2
‖A‖2

)
= 1

4
ωiSijωj︸ ︷︷ ︸

Pω

− SijSjkSki︸ ︷︷ ︸
Ps

. (2.10)

The two terms on the right side of (2.10) represent production of velocity gradient
magnitude by vorticity stretching and strain self-amplification, respectively.

The local rate of velocity gradient production by vorticity stretching/compression,

Pω = 1
4 |ω|2

3∑
i=1

λi cos2(θω,i), (2.11)

depends strongly on how the vorticity vector aligns in the strain-rate eigenframe, figure 3.
Here, θω,i is the angle between the vorticity and the ith eigenvector of the strain-rate tensor.
The local enstrophy, and hence the velocity gradient magnitude, is increased when the
vorticity vector aligns more with eigenvectors having positive (extensional) eigenvalues.
Velocity gradient production rate via strain self-amplification is,

Ps = −3λ1λ2λ3. (2.12)

The strain rate amplifies itself when λ2 > 0 but self-attenuates when λ2 < 0, see figure 3.
It is no surprise, then, that restricted Euler solutions tend toward a state with two positive
strain-rate eigenvalues, λ1 = λ2 = −1

2λ3, as they approach the finite-time singularity.
Furthermore, the vorticity aligns with the eigenvector associated with the intermediate
eigenvalue, λ2, in this approach to singularity. Thus, both strain self-amplification and
vorticity stretching together drive the finite-time singularity in restricted Euler.

Incompressible Navier–Stokes dynamics, with the non-local pressure Hessian and
viscous term reintroduced, do not exhibit the finite-time singularity seen for the restricted
Euler equation. Instead, there is a balance between vorticity and strain-rate as already
discussed with (2.5). Betchov (1956) provided another relation for incompressible
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homogeneous turbulence, namely,

− 〈SijSjkSki〉 = 3
4 〈ωiSijωj〉 or 〈Ps〉 = 3〈Pω〉, (2.13a,b)

which means that the average value of R (the third invariant of the velocity
gradient tensor) is also zero, as enforced by the pressure via the constraint
∇ · u = 0. As with (2.5), (2.13a,b) is approximately true for high Reynolds
number inhomogeneous flows. What this means is that, while the pressure enforces
∇ · u = 0 leading to an equal partition between dissipation and enstrophy, it also causes
the strain-rate self-amplification to produce stronger velocity gradients at three times the
rate of vorticity stretching.

The significance of the restricted Euler equation is that its signature features are
unmistakably observed in the statistics of experiments and DNSs of the Navier–Stokes
equations. Indeed, turbulent flows show a tendency of the vorticity to align with the
strain-rate eigenvector associated with the intermediate eigenvalue, λ2, which tends to
be positive much more often than it is negative (Ashurst et al. 1987; Kerr 1987; Tsinober,
Kit & Dracos 1992; Lund & Rogers 1994; Mullin & Dahm 2006; Gulitski et al. 2007).
In addition, turbulence is characterized by enhanced probabilities of strong velocity
gradients along the Vieillefosse manifold, 4Q3 + 27R2 = 0 in the fourth quadrant, which
is an attracting manifold along which the finite-time singularity occurs for restricted
Euler (Cantwell 1993; Soria et al. 1994; Chong et al. 1998; Nomura & Post 1998; Ooi
et al. 1999; Gulitski et al. 2007; Elsinga & Marusic 2010). While the non-local part
of the pressure Hessian tensor, along with viscous effects, are important for describing
turbulence quantitatively, many of the unique qualitative features of turbulent velocity
gradients can be connected to restricted Euler dynamics.

In summary, velocity gradients in a fluid undergoing nonlinear self-advection (u · ∇u)
naturally strengthen via vorticity stretching and strain self-amplification. Of these two
dynamical processes, strain self-amplification is three times as strong on average, as
enforced by the non-local action of the pressure. For more discussion about velocity
gradient dynamics, as well as measurement and modelling, the reader is referred to
(Tsinober 2009; Wallace 2009; Meneveau 2011). Next, the energy cascade is introduced
using a spatial filtering formulation. As will be shown, this framework allows for directly
relating the velocity gradient dynamics to the energy cascade.

2.4. Spatial filtering and the energy cascade
A spatial low-pass filter,

ā�(x) =
∫∫∫ ∞

−∞
G�(r)a(x + r) dr, F{ā�} = (2π)3F{G�}F{̂a} (2.14a,b)

retains features of a field a(x) that are larger than � while removing features smaller than
� (Leonard 1975; Germano 1992). Here, F denotes the 3-D Fourier transform,

F{a}(k) = 1
(2π)3

∫∫∫ ∞

−∞
a(x) exp(−ik · x) dx, (2.15)

with inverse transform,

F−1{b}(x) =
∫∫∫ ∞

−∞
b(k) exp(ik · x) dk. (2.16)

An example velocity field from the DNS of HIT is shown in figure 4, before and after
the application of a spatial filter. The spatial filter may be interpreted as a form of local
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Figure 4. The fluid velocity in the z direction on an xy plane in the HIT simulation: (a) unfiltered, (b) filtered
at � = 25η using a Gaussian filter, (3.1a,b).

averaging, weighted by the filter kernel G�(r). Following Germano (1992), the generalized
second moment is the difference of the filtered product and the product of two filtered
fields,

τ�(a, b) = ab
� − ā�b̄�. (2.17)

It is a generalized covariance of small-scale activity (smaller than �).
The kinetic energy can be thus defined as the sum of large-scale and small-scale

energies,
1
2 uiui

� = 1
2 ū�

i ū�
i + 1

2τ�(ui, ui). (2.18)

If the filter kernel is positive semi-definite, i.e. G�(r) ≥ 0 for all r, then the subfilter-scale
energy is positive everywhere, τ(ui, ui)(x) ≥ 0 for all x (Vreman, Geurts & Kuerten 1994).

Applying a low-pass filter to the incompressible Navier–Stokes equations, (2.1a,b),
results in an evolution equation for the filtered velocity field,

∂ ū�
i

∂t
+ ū�

j
∂ ū�

i
∂xj

= −∂ p̄�

∂xi
+ ν∇2ū�

i − ∂τ�(ui, uj)

∂xj
+ f̄ �

i . (2.19)

The main difference with the unfiltered Navier–Stokes equation (2.1a,b), is the
introduction of the subfilter stress tensor’s divergence on the right side. The dynamical
equation for the large-scale kinetic energy directly follows from multiplication of (2.19) by
ū�

i ,

∂(1
2 ū�

i ū�
i )

∂t
+

∂Φ�
j

∂xj
= ū�

i f̄ �
i + τ�(ui, uj)S̄�

ij − 2νS̄�
ijS̄

�
ij, (2.20a)

where
Φ�

j = 1
2 ū�

i ū�
i ū�

j + p̄�ū�
j − 2νū�

i S̄�
ij + ū�

i τ�(ui, uj). (2.20b)

There are three source/sink terms. First, large-scale kinetic energy is produced though
work done by the applied forcing function, ū�

i f̄ �
i . Second, the subfilter stress may add or
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remove energy depending on its alignment with the filtered strain-rate tensor, τ�(ui, uj)S̄�
ij.

Finally, the direct dissipation of large-scale kinetic energy by viscosity, −2νS̄�
ijS̄

�
ij, is

typically negligible if �  η.
An equation for total kinetic energy, 1

2 uiui
�, is constructed by multiplying (2.1a,b) by ui

and then filtering. Equation (2.20a) is subtracted from the resulting equation to form the
transport equation for the small-scale energy,

∂(1
2τ�(ui, uj))

∂t
+

∂φ�
j

∂xj
= τ�(ui, fi) − τ�(ui, uj)S̄�

ij − 2ντ�(Sij, Sij), (2.21a)

where

φ�
j = 1

2τ�(ui, ui)ū�
j + 1

2τ�(ui, ui, uj) + τ�( p, uj) − 2ντ�(ui, Sij), (2.21b)

where the second transport term is a generalized third moment (Germano 1992),

τ�(a, b, c) = abc
� − ā�τ�(b, c) − b̄�τ�(a, c) − c̄�τ�(a, b) − ā�b̄�c̄�. (2.22)

There are three sources/sinks in (2.21a), which have the following significance. The
first source is direct forcing of the small scales, τ�(ui, fi), which is typically negligible
for � � L. The second is the same term, −τ�(ui, uj)S̄�

ij, as appears with opposite sign in
the large-scale energy equation (2.20a). This term represents the rate at which energy is
transferred from motions of size larger than � to motions of size smaller than �. Thus, the
energy cascade rate is defined as (Leonard 1975; Germano 1992; Meneveau & Katz 2000),

Π� = − ◦
τ �(ui, uj)S̄�

ij, (2.23)

where the overset circle indicates the deviatoric component of the tensor,

◦
τ �(ui, uj) = τ�(ui, uj) − 1

3τ�(uk, uk)δij. (2.24)

The isotropic part of the subfilter stress tensor does not contribute to the energy cascade
rate, Π�, because the trace of S̄� is zero due to incompressibility. Positive cascade rate
indicates energy transfer from large to small scales and negative rate indicates backscatter
or inverse cascade. It may be interpreted as the rate at which large-scale motions do work
on small-scale motions (Ballouz & Ouellette 2018).

Averaging (2.20a) and (2.21a) for a stationary, homogeneous flow yields, respectively,

0 = 〈ū�
i f̄ �

i 〉 + 〈τ�(ui, uj)S̄�
ij〉 − 2ν〈S̄�

ijS̄
�
ij〉, (2.25)

0 = 〈τ�(ui, fi)〉 − 〈τ�(ui, uj)S̄�
ij〉 − 2ν〈τ�(Sij, Sij)〉. (2.26)

In the inertial range of turbulence, η � � � L, the viscous dissipation of the large scales
and forcing of the small scales may be neglected,

〈uifi〉 ≈ 〈ū�
i f̄ �

i 〉 ≈ −〈τ�(ui, uj)S̄�
ij〉 ≈ 2ν〈τ�(Sij, Sij)〉 ≈ 2ν〈SijSij〉. (2.27)

More simply, the inertial range is the range length scales, �, for which 〈Π〉 ≈ 〈ε〉.
Figure 5(a) tests for scales where this relation approximately holds.
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Figure 5. (a) The pre-multiplied third-order longitudinal structure function alongside the mean interscale
energy transfer. (b) The average norm of the filtered strain-rate tensor as function of filter width, �. A −2/3
power law is consistent with inertial range behaviour. The inset is premultiplied by �2/3. In both panels, the two
vertical grey lines are at 2�/η = 50 and 150, indicating the approximate inertial range of scales. The integral
length scale is 2L/η = 920.

2.5. Filtered velocity gradients
Velocity increments,

δui(r; x) = ui(x + r) − ui(x) (2.28)

and structure functions are prominent tools of classical turbulence theory. Filtered velocity
gradients are intimately related to velocity increments (Eyink 1995),

Ā�
ij(x) ≡ ∂ ūi

∂xj
(x) =

∫∫∫
dr

∂G
∂rj

∣∣∣∣
r
δui(r, x) =

∫ ∞

0
dρ

dG
dρ

["
dS

rj

|r|δui(r; x)

]
, (2.29)

where the filter kernel is assumed to be spherically symmetric. That is, the filtered velocity
gradient is an averaging of velocity increments weighted by the gradient of the filter kernel.
Thus, filtered velocity gradients contain information about velocity increments in the flow,
arranged so as to illuminate the local topology of the flow at scale �. Filtered velocity
gradients can be decomposed into rotation and deformation at scale �,

Ā�
ij = S̄�

ij + Ω̄�
ij, S̄�

ij = 1
2 (Ā�

ij + Ā�
ji), Ω̄�

ij = 1
2(Ā�

ij − Ā�
ji), (2.30a–c)

Ω̄�
ij = −1

2εijkω̄
�
k, ω̄�

i = −εijkΩ̄
�
jk, (2.31a,b)

1
2‖Ā�‖2 = 1

4 |ω̄�|2 + 1
2‖S̄�‖2, 〈‖S̄�‖2〉 = 1

2 〈|ω̄�|2〉. (2.32a,b)

The K41 scaling of the filtered strain-rate norm, ‖S̄�‖ ∼ �−2/3, is shown in figure 5(b) as
another indication of what filter widths may be considered to be in the inertial range.

Figure 6 shows vorticity and filtered vorticity fields from the same snapshot used for
figure 4. It is evident that the vorticity is predominantly organized at the smallest scales of
motion, near η. This is true of the velocity gradient tensor in general. However, the filtered
velocity gradient, as demonstrated for the filtered vorticity, is primarily organized at a scale
near the filter width. Thus, the filtered velocity gradient provides a good definition of fluid
motions at scale �. Comparing figures 4 and 6, note the striking visual difference in how
filtering effects the velocity field and the velocity gradient field.

922 A3-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.490


P.L. Johnson

x

y

−2 −1 0 1 2

x

−0.4 −0.2 0 0.2 0.4

π/2

π

3π/2

2π

π/2

π

3π/2

2π

0 π�/2 π 3π/2 2π 0 π/2 π 3π/2 2π

ωzτη ωzτη

(a) (b)

Figure 6. The z component of vorticity along the same xy plane from figure 4: (a) unfiltered, (b) filtered at
� = 25η using a Gaussian filter, (3.1a,b).

Like the filtered velocity gradient, the subfilter stress tensor may also be written as a
local averaging of velocity increments (Constantin, E & Titi 1994; Eyink 1995),

τ�(ui, uj) =
[∫∫∫

drG�(r)δui(r; x)δuj(r; x)

]
−
[∫∫∫

drG�(r)δui(r; x)

] [∫∫∫
drG�(r)δuj(r; x)

]
. (2.33)

In this way, it can be directly shown that

τ�(ui, uj) ∼ δu2 and S̄�
ij ∼ δu/�, therefore Π� ∼ δu3/�, (2.34a,b)

so that the inertial range equation, from (2.27), in the form 〈Π�〉 = 〈ε〉 is in some
ways analogous to the celebrated four-fifths law of Kolmogorov (1941a), i.e. 〈δu3

L(r)〉 =
−4

5 〈ε〉r. The similarity between these two is highlighted in figure 5(a), which includes the
pre-multiplied third-order longitudinal structure function alongside 〈Π〉/〈ε〉. These two
are similar diagnostics of inertial range scales.

2.6. Filtered velocity gradient dynamics
Definitively linking the energy cascade rate with vorticity stretching and strain
self-amplification is naturally done by considering the dynamics of filtered velocity
gradients. Viewing the filtered flow as the collection of fluid particles of size ∼ � following
trajectories set by ū�, each particle’s rotation and deformation dynamics may be described
by the gradient of filtered Navier–Stokes, (2.19), which reads

D̄Ā�
ij

Dt
= −

(
Ā�

ikĀ�
kj − 1

3
Ā�

mnĀ�
nmδij

)
︸ ︷︷ ︸

autonomous dynamics

−
(

∂2p̄�

∂xixj
− 1

3
∇2p̄�δij

)
+ ν∇2Ā�

ij − ∂τ�(ui, uk)

∂xj∂xk
.

(2.35)
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Vorticity stretching and strain self-amplification

This equation gives the dynamical evolution of filtered velocity gradients along filtered
Lagrangian trajectories, D̄/Dt = ∂/∂t + ū� · ∇. The difference from unfiltered velocity
gradients, (2.8), is the gradient of the subfilter scale force. The dynamical consequence
of the subfilter-scale force is subtle, and the restricted Euler-like features observed for
unfiltered velocity gradients are also seen for filtered ones (Danish & Meneveau 2018). In
other words, the autonomous dynamics of filtered velocity gradients is very influential in
setting statistical trends in turbulent flows, as previously seen for unfiltered gradients.

The restricted Euler equation for filtered velocity gradient dynamics again results by
neglecting all except the autonomous terms in (2.35),

D
Dt

(
1
2
‖Ā�‖2

)
= Pω̄ + Ps̄ = 1

4
ω̄�

i S̄�
ijω̄

�
j − S̄�

ijS̄
�
jkS̄�

ki. (2.36)

This, which now neglects interactions with both nearby particles and subfilter scales,
highlights the role of vorticity stretching and strain self-amplification in increasing the
magnitude of filtered velocity gradients. Recall from (2.32a,b) that the filtered vorticity
and strain-rate are also held in statistical equi-partition by the zero divergence condition,
∇ · ū� = 0, owing to the filtered pressure. In addition, the average amount of strain
self-amplification is also held at three times the vorticity stretching for filtered fields,

− 〈S̄�
ijS̄

�
jkS̄�

ki〉 = 3
4 〈ω̄�

i S̄�
ijω̄

�
j 〉 or 〈Ps̄〉 = 3〈Pω̄〉. (2.37a,b)

Equation (2.36) is only meant to demonstrate the relationship of Ps̄ and Pω̄ with the growth
of filtered velocity gradients. For a full description of real turbulent flows, the pressure,
viscous, and subfilter terms must be retained.

3. Energy cascade in terms of filtered velocity gradients

3.1. Theory
The local energy cascade rate, Π(x, t), is determined by the filtered strain-rate tensor,
the subfilter stress tensor and how those two align. Johnson (2020a) demonstrated how
the subfilter stress tensor may be phrased in terms of filtered velocity gradients across
all scales ≤ �, so that the energy cascade rate may be written solely in terms of filtered
velocity gradients. This result directly connects the restricted Euler singularity with the
fact that turbulence generates a net cascade from large to small scales. A summary of the
derivation is presented below, with more details provided in Appendix C.

A Gaussian filter kernel

G�(r) = N exp
(

−|r|2
2�2

)
, (2π)3F{G�}(k) = exp

(
−1

2
|k|2�2

)
, (3.1a,b)

decays rapidly in both physical space and wavenumber space, and is thus a popular
choice for studies involving explicit filters (Borue & Orszag 1998; Domaradzki & Carati
2007b; Eyink & Aluie 2009; Leung, Swaminathan & Davidson 2012; Cardesa et al. 2015;
Lozano-Durán et al. 2016; Buzzicotti et al. 2018; Alexakis & Chibbaro 2020; Dong et al.
2020; Portwood et al. 2020; Vela-Martín & Jiménez 2021). Here, the definition of the filter
width, �, is chosen such that its gradient, dG/dr, is maximum at r = �. That is, velocity
increments at separation r = � have are the most heavily weighted when constructing
the filtered velocity gradient according to (2.29). Note that in figure 5(a), 2� appears to
correspond to the structure function separation r. This happens because, in (2.29), the
velocity increments with equal and opposite separation vectors of length � are essentially
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Figure 7. (a) Average energy spectrum from the HIT simulation, and (b) filtered spectra using a Gaussian filter
with various values of 0.9η ≤ � ≤ 170η spaced evenly in logarithmic space. The black dashed line indicates
the inertial range spectrum, E(k) = 1.6ε2/3k−5/3. The inset in panel (a) shows the premultiplied spectrum on
a log–linear plot.

combined to form velocity increments at 2�, which are integrated on a half-sphere to form
the filtered velocity gradient.

The Gaussian filter has already been demonstrated in physical space in figures 4 and 6.
Figure 7 shows average energy spectra with and without a Gaussian filter. Note that the
unfiltered spectrum decays as a (stretched) exponential in the dissipation range (Townsend
1951; Kraichnan 1959; Novikov 1961; Qian 1984; Sreenivasan 1985; Foias, Manley &
Sirovich 1990; Smith & Reynolds 1991; Manley 1992; Sanada 1992; Chen et al. 1993;
Saddoughi & Veeravalli 1994; Sirovich, Smith & Yakhot 1994; Ishihara et al. 2005;
Khurshid, Donzis & Sreenivasan 2018; Buaria & Sreenivasan 2020), and the effect of the
Gaussian filter moves this exponential-like decay to lower wavenumbers. The unfiltered
spectrum shows agreement with the standard Kolmogorov spectrum, E(k) = 1.6ε2/3k−5/3

over a limited range of wavenumbers kη � 1. A ‘spectral bump’, as typically observed,
is evident near 0.1 < kη < 0.2 (Qian 1984; Falkovich 1994; Lohse & Müller-Groeling
1995; Kurien, Taylor & Matsumoto 2004; Bershadskii 2008; Frisch et al. 2008; Meyers
& Meneveau 2008; Mininni et al. 2008; Donzis & Sreenivasan 2010). This is usually
associated with a ‘bottleneck effect’ at the end of the cascade in which viscosity is slightly
too slow in dissipating energy as it arrives from larger scales, resulting in a slight pile-up
of energy. While the filtering approach does smooth out this effect to some degree, it is
visible for the filtered strain-rate norm in the inset of figure 5(b) in the range 5 < �/η < 10.

Because the Gaussian kernel serves as the Green’s function for the diffusion equation,
a filtered quantity is the solution to

∂ ā�

∂(�2)
= 1

2
∇2ā�, with initial condition ā�=0(x) = a(x), (3.2)

where the square of the filter width, �2, serves as a time-like variable. The initial condition
at � = 0 is the unfiltered field. From this observation, it is straightforward to show that any
generalized second moment may be written as

∂τ�(a, b)

∂(�2)
= 1

2
∇2τ�(a, b) + ∂ ā�

∂xk

∂ b̄�

∂xk
, with initial condition τ�=0(a, b) = 0. (3.3)
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Thus, the generalized second moment is the solution to a forced diffusion equation with
zero initial condition. The forcing is the product of filtered gradients as a function of scale
(the time-like variable). The formal solution for this forced diffusion equation is

τ�(a, b) =
∫ �2

0
dα

∂a
∂xk

√
α

∂b
∂xk

√
α

β

, (3.4)

where β ≡ √
�2 − α is the conjugate filter such that successively filtering at

√
α and β is

equivalent to applying a single filter at scale �,

ā
√

α
β = ā�. (3.5)

The formal solution in (3.3) contains two components,

τ�(a, b) = �2 ∂a
∂xi

�
∂b
∂xi

�

+
∫ �2

0
dατβ

⎛⎝ ∂a
∂xk

√
α

,
∂b
∂xk

√
α
⎞⎠ . (3.6)

The first component is the product of gradients at the filter scale � and the second
component involves subfilter-scale generalized second moments of gradients filtered at
scales smaller than �. Equation (3.6) is applied to the subfilter stress, τ�(ui, uj), by setting
a = ui and b = uj. Contracting with S̄�

ij to compute the energy cascade rate, Π�, results in

Π� = Π�
s1 + Π�

ω1 + Π�
s2 + Π�

ω2 + Π�
c . (3.7)

The five components of (3.7) are defined and interpreted as follows.
The first two terms involve velocity gradients filtered at scale � only. First, the

self-amplification of the strain rate at scale � transfers energy across scale � at a rate,

Π�
s1 = �2Ps̄ = −�2S̄�

ijS̄
�
jkS̄�

ki = −3�2λ�1λ
�
2λ

�
3, (3.8)

where λ�i are the 3 eigenvalues of the strain-rate tensor filtered at scale �. This term gives
mathematical definition to the simplified process sketched in figure 2. The strain-rate triple
product represents the production of larger strain rates with smaller spatial extent which
may be thought of as similar to the dynamics of the Burgers equation. The drawing in
figure 2 is meant only to provide a useful intuitive feel for how Π�

s1 transfers energy to
smaller scales, not a sweeping claim that all regions with high Πs1 resemble the simplified
sketch.

Similarly, the vorticity at scale � is stretched by the strain rate at the same scale, which
transfers energy

Π�
ω1 = �2Pω̄ = 1

4
�2S̄�

ijω̄
�
i ω̄

�
j = 1

4
�2
∣∣∣ω̄�
∣∣∣2 3∑

i=1

λ�i cos2(θ�
ω,i), (3.9)

where θ�
ω,i are the angles between each corresponding eigenvector and the vorticity vector

filtered at scale �. As such, this term quantifies the local rate at which vortex stretching, as
sketched in a simplified manner in figure 1, passes energy across scale �.

For these first two terms, a subscript ‘1’ is used to denote that these rates involve
quantities at a single filter scale. In fact, these two terms appear both in (3.7) and in
the velocity gradient evolution, (2.36). The same processes responsible for increasing
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the filtered velocity gradient magnitude also redistribute energy to sub-filter scales, thus
connecting the restricted Euler singularity with the energy cascade. It is also possible to
obtain these two as leading-order terms in an infinite expansion in at least two ways.

First, using spatial filtering with a more general filter shape, the Taylor expansion of
the Leonard stress is led by these two terms (Pope 2000). Truncation of this expansion is
sometimes called the Clark model, or tensor diffusivity model (Clark, Ferziger & Reynolds
1979; Borue & Orszag 1998). This model performs well in a priori tests, but does not
remove large-scale energy at a sufficient rate when used with LES (Vreman, Geurts &
Kuerten 1996, 1997). Intriguingly, it may be shown that the Lagrangian memory effects in
the evolution of the subfilter stress tensor are correctly mimicked by the tensor diffusivity
model (Johnson 2020b). In practice, the tensor diffusivity model is often supplemented
with an eddy viscosity model (Clark et al. 1979; Vreman et al. 1996, 1997). Eyink (2006)
extended this result to a multiscale gradient expansion for the full subfilter stress tensor, but
still relied on truncating infinite series. Carbone & Bragg (2020) provided an alternative
derivation of single-scale vorticity stretching and strain self-amplification as leading-order
terms in an infinite series. In that case, the Kármán–Howarth–Monin equation (de Kármán
& Howarth 1938; Monin & Yaglom 1975; Hill 2001) is used with filtered velocity gradients
substituted as the leading-order term in the evaluation of velocity increments. Importantly,
the result highlights agreement between velocity increment and filtering approaches to the
energy cascade, indicating a degree of objectivity to this result (see, e.g. objections in
Tsinober 2009).

The true advantage of the result from Johnson (2020a), (3.7), lies in the remaining three
terms. These cascade rates involve interactions between the strain rate filtered at scale �

and velocity gradients at scales smaller than �. They are given a subscript ‘2’ to denote
their multiscale nature (specifically, the sum of interactions involving two different scales).
First, the cascade rate due to the amplification of small-scale strain by larger-scale strain is

Π�
s2 = −S̄�

ij

∫ �2

0
dατβ(S̄

√
α

jk , S̄
√

α

ki ) = −
∫ �2

0
dαS̄�

ijτβ(S̄
√

α

jk , S̄
√

α

ki ). (3.10)

For this term, S̄� represents the strain rate at the filter scale where the cascade rate
is evaluated and the generalized second moment of S̄

√
α in the integral represents

smaller-scale strain rates being amplified as energy is passed down the cascade. This
process may be thought of as a multiscale generalization of figure 2. Thus, S̄� amplifies
strain rates at all scales

√
α < � and the resulting energy cascade rate is constructed by

integrating over all smaller scales.
Similarly, the stretching of small-scale vorticity by larger-scale strain is

Π�
ω2 = S̄�

ij

∫ �2

0
dατβ(ω̄

√
α

i , ω̄
√

α

j ) =
∫ �2

0
dαS̄�

ijτβ(ω̄
√

α

i , ω̄
√

α

j ). (3.11)

In this mechanism, the enstrophy at scales
√

α < � is amplified as it aligns with extensional
strain rates, S�, organized at larger scales, figure 1. This results in an energy cascade rate
across scale �.

Finally, the last term in (3.7) represents the contribution to the energy cascade rate from
larger-scale strain rates acting on smaller-scale strain–vorticity covariance,

Π�
c = Π�

c2 = S̄�
ij

∫ �2

0
dα[τβ(S̄

√
α

jk , Ω̄
√

α

ki ) − τβ(Ω̄
√

α

jk , S̄
√

α

ki )]. (3.12)
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Figure 8. (a) The mean contribution of each cascade mechanism as a function of filter width. (b) The
probability density functions of each component of the energy cascade rate from (3.7) at � = 46η. The two
vertical grey lines are at 2�/η = 50 and 150, indicating the approximate inertial range of scales. The integral
length scale is at 2L/η = 920.

In this final term, the strain rate at scale � amplifies or attenuates the generalized subfilter
covariance of strain rate and vorticity at all scales

√
α < �. This term is given the subscript

‘c’, denoting it as a cross-term between both strain rate and vorticity. It is the only of the
five terms not interpretable as vorticity stretching of strain self-amplification. Its meaning
is less obvious, but one potential interpretation is given in § 3.3 while considering the
inverse energy cascade in two dimensions.

3.2. Results
Figure 8(a) shows the net contribution of each dynamical mechanism to the cascade rate,
as a fraction of the total cascade rate, which is shown figure 5(a). First, the sum of all five
contributions is equal to unity, confirming the correctness of (3.7) in a spatially averaged
sense. The point-wise accuracy of (3.7) is also confirmed in Appendix A, which also
includes a brief study of its accuracy when some terms are neglected.

In the dissipative range, � ∼ η, the three multiscale terms are small and the two
single-scale terms comprise the cascade at the specified ratio of 3:1. In the range of
filter widths previously identified as the inertial range, 25 < �/η < 75 for this simulation,
the fractional contribution of each cascade rate is constant, indicating some degree of
self-similarity. Each plateau is fitted to two decimal places as reported in the figure. Note
that 〈Πc〉 ≈ 0 so that the other four terms are responsible for establishing the cascade rate.

In the inertial range, the sum of the two single-scale rates account for approximately half
of the full cascade rate, with their multiscale analogues accounting for the other half. The
amplification of strain rates, both single-scale and multiscale, account for roughly 5/8 of
the energy cascade rate, with the remaining 3/8 due to vorticity stretching. Interestingly,
the strain–vorticity covariance term supplies a negative cascade rate at filter widths
corresponding to the spectral bump, offering a potential clue to the dynamical causes of the
bottleneck effect. Also, the averages of Πs2 and Πω2 are indistinguishable in figure 8(a). At
first glance, it seems there could exist some precise relationship between the two. However,
the author was not able to identify any such analytical relationship, and inspection of the
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numerical values plotted in figure 8(a) suggested that these terms were very close but not
exactly equal.

The probability density functions (PDFs) of each contribution to the energy cascade rate
from (3.7) are shown in figure 8(b) with filter width in the middle of the inertial range.
The total cascade rate PDF is strongly skewed with relatively rare backscatter events. The
net backscatter is less than 2 % of the total average cascade rate. The single-scale strain
self-amplification, Πs1, is also strongly skewed and has the most probable extreme positive
events of any of the five components. The single-scale vorticity stretching, Πω1 is much
less skewed toward downscale energy cascade. The multiscale strain amplification and
vorticity stretching, Πs2 and Πω2, are extremely skewed and almost never negative. Finally,
the amplification of subfilter strain–vorticity covariance, Πc, is relatively symmetric and
has the most probable extreme negative events. The PDFs of the energy cascade rates are
explored as a function of filter width in Appendix B.

3.3. Implications for the inverse cascade in 2-D turbulence
The main topic of this paper is the energy cascade in 3-D flows. However, it is worthwhile
to comment on implications for the inverse cascade of energy in two dimensions. Of the
five terms on the right side of (3.7), only the fifth term is non-zero. All vorticity stretching
and strain amplification terms vanish exactly in 2-D incompressible flows. Thus

Π� = Π�
c2 = S̄�

ij

∫ �2

0
dα[τβ(S̄

√
α

jk , Ω̄
√

α

ki ) − τβ(Ω̄
√

α

jk , S̄
√

α

ki )]. (3.13)

Taking the eigenframe of the strain rate at scale �,

Π�(x) = 2
∫ �2

0
dα

∫∫∫
drGβ(r)λ�(x)λ

√
α(x + r)ω̄

√
α(x + r) sin 2φ(x, r), (3.14)

where φ(x, r) is the angle of the eigenvectors of S̄
√

α(x + r) with respect to the
eigenvectors of S̄�(x). Here, the eigenvalues of the strain rate are λ and −λ. If the
strain-rate eigenvectors at � and

√
α align parallel or perpendicular, then there is no transfer

of energy. Maximum transfer of energy across scale � occurs for ±45o, with the direction
of the transfer also depending on the sign of vorticity. An inverse cascade is supported
when smaller-scale strain rate is misaligned with larger-scale strain rate in the opposite
rotational direction as the vorticity.

One such (cartoon-ish) scenario is sketched in figure 9. As a clockwise vortex (ω < 0)
is subjected to a larger-scale strain rate, it is flattened or thinned into a shear layer
with strain-rate eigenvalues at 45◦ from the larger-scale strain. The resulting alignment
produces a maximum inverse cascade rate. This is the vortex thinning mechanism of the
2-D inverse cascade (Kraichnan 1976; Chen et al. 2006; Xiao et al. 2009).

Therefore, (3.7) represents a comprehensive view of interscale energy transfer in two-
and 3-D turbulence. It is interesting to note (G.L. Eyink, private communication) that
this approach may be thought of as a sort of differential renormalization group analysis
(Eyink 2018). While vorticity stretching and (to some degree) strain self-amplification
are commonly discussed as cascade mechanisms in 3-D turbulence, it should not be a
surprise that the vortex thinning mechanism posited for the 2-D inverse cascade is at
least a possible mechanism for energy transfer in three dimensions as well. Thus, while
(3.7) from Johnson (2020a) clearly identifies the roles of vorticity stretching and strain
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Large-scale strain

Small-scale strain

e�,2 e�,2

e�,1e�,1

eα,2 eα,1

ω < 0

φ = π/4

Figure 9. Simplified schematic of the vortex thinning mechanism driving an inverse energy cascade in 2-D
turbulence.

self-amplification, it also demonstrates how vortex thinning could be active, even if that
activity may be negligible outside a particular range of scales in practice.

In two dimensions Πc2 represents the inverse cascade. In the inertial range for 3-D
turbulence, this vortex thinning term is evidently small compared with vorticity stretching
and strain self-amplification, both of which drive a forward cascade to small scales.
However, figure 8(a) also reveals that the vortex thinning term does provide a backscatter
contribution for scales in between the viscous and inertial ranges, suggesting that the
vortex thinning mechanism is a potential dynamical cause of the bottleneck effect.

4. Efficiency of the energy cascade

The energy cascade rate, Π�, depends on how the eigenvectors of the subfilter stress tensor
align with those of the filtered strain-rate tensor (Ballouz & Ouellette 2020). This may be
made explicit by writing the cascade rate in terms of eigenvalues of the filtered strain rate,
λi, and deviatoric subfilter stress tensor, μj,

Π� =
3∑

i=1

3∑
j=1

λ�i μ
�
j cos2(θ�

ij). (4.1)

Here, θij is the angle between the ith eigenvector of the filtered strain rate and jth
eigenvector of the subfilter stress tensor. Ballouz & Ouellette (2018) defined an energy
cascade efficiency as

Γ �
BO = Π�

Π�
max,BO

, where Π�
max,BO =

{
λ�1μ

�
1 + λ�2μ�

2 + λ�3μ�
3 Π� > 0

−(λ�1μ
�
3 + λ�2μ�

2 + λ�3μ�
1) Π� < 0

(4.2)

is the maximum energy transfer possible for a fixed set of eigenvalues, μi and λj, for ◦
τ

�

and S̄�, respectively. Perfect alignment between eigenvectors of the ◦
τ

� and S̄� is required
for an efficiency of Γ � = 1. Under this definition, the average cascade efficiency is
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approximately 40 % for the top-hat filter for filter widths much larger than the Kolmogorov
scale (Ballouz, Johnson & Ouellette 2020).

Here, a slightly different definition of efficiency is used,

Γ � = Π�

Π�
max

= − ◦
τ

� : S̄�

‖ ◦
τ

�‖‖S̄�‖
=

3∑
i=1

3∑
j=1

λ�i μ
�
j cos2(θ�

ij)

(λ�1
2 + λ�2

2 + λ�3
2
)1/2(μ�

1
2 + μ�

2
2 + μ�

3
2
)1/2

. (4.3)

In addition to the re-alignment of eigenvectors, this definition of Π�
max in the denominator

allows for the ratio of eigenvalues to be rearranged at fixed Frobenius norm to further
maximize the flux. Thus, unity efficiency Γ � = 1 requires not only perfect alignment of
(respective) eigenvectors, cos2(θij) = δij, but also the proportionality of eigenvalues,

λ1

μ1
= λ2

μ2
= λ3

μ3
. (4.4)

If follows that
Π�

max ≥ Π�
BO max, therefore Γ � ≤ Γ �

BO. (4.5)

It is important that ◦
τ is the deviatoric part of the sub-filter stress when constructing the

denominator of (4.3). This is significant because the inclusion of the isotropic part of the
sub-filter stress would increase its norm without increasing the maximum potential value
of its contraction with the deviatoric strain-rate tensor.

Phrasing Π� in terms of vorticity stretching and strain self-amplification, (3.7)–(3.12),
allows for defining the efficiency of each dynamical mechanism in transferring energy
downscale. Each component of Π� can be written as an inner product of S̄� with a
component of the subfilter stress tensor. For example, the deviatoric part of the sub-filter
stress due to single-scale strain self-amplification is

(
◦
τ

�
s1)ij = �2(S̄�

ikS̄�
jk − 1

3‖S̄�‖2δij). (4.6)

The efficiency of the strain self-amplification, Πs1, in the downscale transfer of energy is

Γ �
s1 = − ◦

τ
�
s1 : S̄�

‖ ◦
τ

�
s1‖‖S̄�‖

=
√

6 Π�
s1

�2‖S̄�‖3
=

−√
6 S̄�

ijS̄
�
jkS̄�

ki

‖S̄�‖3
= −3

√
6 λ�1λ

�
2λ

�
3

(λ�1
2 + λ�2

2 + λ�3
2
)3/2

, (4.7)

which the reader may recognize as the s∗ parameter of Lund & Rogers (1994) applied to
the filtered strain-rate tensor. Thus, the strong bias of turbulence toward λ�2 > 0 manifests
as a bias toward positive efficiency of downscale energy flux. In fact, the PDF of s∗ has
been consistently shown to peak at s∗ = 1 (Γs1 = 1), i.e. λ�1 = λ�2 = −1

2λ
�
3. When this is

true, there is one eigenvector along which the flow is strongly squeezing, with weaker
stretching occurring along perpendicular directions. In the opposite case, Γ �

s1 = −1, there
is strong stretching along one eigenvector and weaker squeezing along perpendicular
directions, i.e. 1

2λ
�
1 = −λ�2 = −λ�3. This situation corresponds to maximum efficiency in

reverse (upscale) energy transfer and is relatively rare in turbulent flows.
Note that use of the Ballouz–Ouellette efficiency, i.e. not allowing for re-arranging of

eigenvalue ratios when constructing the maximum potential flux, would result in a unity
efficiency for the resolved strain self-amplification. The reason for this is that ◦

τ
�
s1 is, by

definition, always perfectly aligned with S̄� so that the cascade rate by this mechanism is
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only a function of the eigenvalues. This consideration was part of the reasoning motivating
the definition of efficiency used here.

Another reason to use (4.3) rather than (4.2) is that the former provides a stricter test
of whether the subfilter stress conforms to the eddy viscosity hypothesis, ◦

τ
�
ij = −2νtS̄�

ij.
The eddy viscosity ansatz asserts that the subfilter stress not only aligns its eigenvectors
with those of the filtered strain-rate tensor, but also that their eigenvalues are proportional.
Thus, with the present definition of efficiency,

Γ � =
⎧⎨⎩1, eddy viscosity (downscale cascade)

0, zero cascade rate
−1, negative eddy viscosity (inverse cascade)

, (4.8)

which can be applied individually to each term in (3.7) to test the extent to which each
cascade mechanism may be accurately modelled by an eddy viscosity.

Unlike the strain self-amplification, vorticity stretching suffers from eigenvector
misalignment in addition to non-optimal eigenvalue ratios. The efficiency of the energy
cascade due to single-scale vorticity stretching is

Γ �
ω1 = − ◦

τ
�
ω1 : S̄�

‖ ◦
τ

�
ω1‖‖S̄�‖

=
√

6Π�
ω1

�2‖Ω̄�‖2‖S̄�‖ =
√

6ω̄�
i ω̄

�
j S̄�

ij

2|ω̄�|2‖S̄�‖ =

√
6

3∑
i=1

λ�i cos2(θ�
ω,i)

2(λ�1
2 + λ�2

2 + λ�3
2
)1/2

, (4.9)

where
(

◦
τ

�
ω1)ij = �2(Ω̄�

ikΩ̄
�
jk − 1

3‖Ω̄�‖2δij) = −1
4�2(ω̄�

i ω̄
�
j − 1

3 |ω̄�|2δij). (4.10)

This efficiency is maximum, Γ �
ω1 = 1, when two conditions are satisfied. First, the

vorticity is perfectly aligned with the maximum eigenvalue, cos(θ�
ω,i) = δi1. Second, the

strain-rate tensor must have the configuration 1
2λ

�
1 = −λ2 = −λ3 so that the magnitude

of the stretching is maximized. Note that the condition for maximum vorticity stretching
efficiency is that of Γ �

s1 = −1. When Γs1 = 1, the maximum efficiency of vorticity
stretching is limited, −1 ≤ Γω1 ≤ 0.5. Therefore, the chaos of turbulent dynamics
aside, the efficiencies of strain-rate self-amplification and vorticity stretching cannot be
simultaneously maximum. In fact, the asymptotic behaviour of solutions to the restricted
Euler equation as they approach the finite-time singularity is Γ �

s1 = 1 and Γ �
ω1 = 0.5.

The efficiencies for the multiscale terms are similarly defined and interpreted,

Γ �
s2 = − ◦

τ
�
s2 : S̄�

‖ ◦
τ

�
s2‖‖S̄�‖

, Γω2 = − ◦
τ

�
ω2 : S̄�

‖ ◦
τ

�
ω2‖‖S̄�‖

, Γ �
c = − ◦

τ
�
c : S̄�

‖ ◦
τ

�
c‖‖S̄�‖

. (4.11a–c)

In terms of filtered strain-rate eigenvalues, λ�i , subfilter stress eigenvalues, μx,j, and
eigenvector alignment angles, θx,ij, the efficiencies of the multiscale cascade rates are

Γ �
x =

3∑
i=1

3∑
j=1

λ�i μ
�
x,j cos2(θ�

x,ij)

(λ�1
2 + λ�2

2 + λ�3
2
)1/2(μ�

x,1
2 + μ�

x,2
2 + μ�

x,3
2
)1/2

, where x = s2, ω2, c. (4.12)

The average cascade efficiencies from DNS of HIT are shown in figure 10(a) as a
function of filter width. At a filter width chosen in the middle of the inertial range, � = 46η,
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Figure 10. Cascade efficiencies for each term in (3.7): (a) average efficiency as a function of filter width and
(b) PDF of efficiency at � = 46η. The dashed line shows the Ballouz–Ouellette efficiency.

the PDF of each term is also shown in figure 10(b). The overall cascade efficiency is less
than 25 % in the viscous range and grows above 40 % in the inertial range. The overall
efficiency based the Ballouz–Ouellette definition is only slightly larger than the present
one. The PDF of the total cascade rate peaks near 50 %, and negative efficiencies below
−50 % extremely rare. Indeed, the eddy viscosity approximation for subfilter stresses lacks
a high degree physical fidelity in general.

The single-scale terms, Πs1 and Πω1, are less efficient than the total subfilter activity in
supporting a downscale cascade in the inertial range. In fact, their efficiency is relatively
constant as a function of scale from the viscous range through the inertial range. The strain
self-amplification efficiency PDF peaks at Γ �

s1 = 1, but also allows for substantial negative
efficiencies. Meanwhile, the most commonly observed efficiency for single-scale vorticity
stretching is slightly less than 50 %, but negative efficiencies for this mechanism are also
not particularly rare. Thus, the signature of restricted Euler dynamics is observed in the
location of the efficiency PDF peaks, namely, at Γ �

s1 = 1 and Γ �
ω1 = 0.5. Nevertheless, the

mean efficiency is quite low due to the fluctuations.
In contrast, the three multiscale processes have more sharply peaked efficiency PDFs.

Multiscale vorticity stretching and strain self-amplification show a strong tendency toward
eddy viscosity-like behaviours, with mean efficiencies near 70 % and 75 %, respectively,
in the inertial range. Indeed these terms rarely generate backscatter, and when they do, it
is inefficient in alignment. While the restricted Euler dynamics may be invoked for the
single-scale terms, the smaller-scale strain rates and vorticities comprising ◦

τ
�
s2 and ◦

τ
�
ω2

evolve on faster time scales compared with S̄�, coming closer to satisfying conditions
of scale separation that leads to eddy viscosity physics. It is known, for example, that
finer-scale vorticity aligns more readily with the strongest extensional direction of a
larger-scale strain rate (Leung et al. 2012; Fiscaletti et al. 2016), which is physically
related to the time lag in alignment elucidated by Xu, Pumir & Bodenschatz (2011). The
Lagrangian behaviour of these terms deserves further consideration in future work.

The PDF of the strain–vorticity covariance term, Πc, is also strongly peaked. Unlike
the vorticity stretching and strain self-amplification terms, the most common value of Πc
is zero. The PDF is symmetric and the mean value is very small throughout the inertial
range. While it is does not appear correlated with S̄�, it is not known whether ◦

τ c2 is
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strongly correlated with other quantities filtered at scale � to facilitate LES modelling of
this term.

5. Scale locality of the energy cascade

It has been presumed in the discussion so far that the interscale energy transfer in
turbulence may be faithfully characterized as a cascade. However, it is useful to leverage
the present developments to examine the scale locality of energy transfer. A distinct
advantage of (3.7) is that its formulation allows this question to be addressed in the context
of vorticity stretching and strain self-amplification mechanisms.

Scale locality of the cascade can be quantified by computing the energy transfer across
scale � that remains resolved when the velocity field is filtered at scale 0 ≤ �′ ≤ �, here
denoted Π�,�′

. That is, the energy cascade rate at � is computed in the artificial absence
of any motions smaller than scale �′. When �′ = 0, it is trivial that 100 % of the interscale
energy transfer will be resolved, Π�,0 = Π�. On the other hand, if �′ = �, then the resolved
energy transfer is Π�,�′ = Π�

s1 + Π�
ω1. It is evident from figure 8(a) that this accounts for

roughly 50 % of the total 〈Π�〉. The question of scale locality, then, is how quickly Π�,�′

approaches Π� when �′ is decreased below �.
First, a brief mathematical development is presented to generate the expressions needed

to quantitatively evaluate the question of scale locality outlined in words in the previous
paragraph. Given (3.4), the sub-filter stress tensor may be written as

τ�(ui, uj) =
∫ �2

0
dαĀ

√
α

ik Ā
√

α

jk

β

, (5.1)

where β = √
�2 − α. Supposing the velocity field was known only to resolution 0 ≤ �′ ≤

�, then the resolved amount of sub-filter stress would be

τ�,�′(ui, uj) =
∫ �2

�′2
dαĀ

√
α

ik Ā
√

α

jk

β

+
∫ �′2

0
dαĀ�′

ikĀ�′
jk

√
�2−�′2

, (5.2)

because, for α < �′2, the integrand is not fully known and the velocity gradients filtered
at scale

√
α can at best be approximated by the velocity gradients filtered at scale �′.

Subtracting (5.2) from (5.1) results in an equation for the unresolved sub-filter stress,

τ�(ui, uj) − τ�,�′(ui, uj) =
∫ �′2

0
dατβ ′(Ā

√
α

ik , Ā
√

α

jk )

√
�2−�′2

, (5.3)

where β ′ =
√

�′2 − α. Contracting (5.3) with the filtered strain-rate tensor, S̄�, defines
the unresolved portion of Π� for a velocity field filtered at scale �′. Figure 11(a) shows
this quantity computed from DNS results. The top curve shows the result for �′ = �. It
is evident that the interscale transfer has at least some degree of locality, because these
curves drop steeply from their originating points on the black �′ = � curve.

Following Eyink (2005), a power-law relation may be expected,

χ�,�′ = 〈Π� − Π�,�′ 〉
〈Π�〉 ∼

(
�′

�

)p

. (5.4)

The exponent p quantifies the extent of scale locality. A steeper power law means a higher
degree of scale-local dominance and more adherence to cascade-like behaviour. A log–log
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Figure 11. (a) Per cent of unresolved cascade rate when the velocity field is filtered at scale �′ ≤ �, for various
�. Top (black) curve indicates results for �′ = �. The (coloured) curves emanating downward from the top curve
show results for �′ < �, each curve representing a different fixed value of � (the value at which it intersects the
black curve). (b) The same results (with same corresponding colours) plotted log–log as a function of �′/�,
each curve again representing a different fixed value of �. The dashed line indicates the theoretical power-law
exponent of 4/3.
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Figure 12. Per cent of (a) 〈Π�
s 〉 = 〈Π�

s1 + Π�
s2〉 and (b) 〈Π�

ω〉 = 〈Π�
ω1 + Π�

ω2〉 unresolved by velocity field
filtered at scale �′ ≤ � plotted log–log against �′/�, as in figure 11(b). The dashed lines indicates a power-law
exponent of 4/3. The value of � corresponding to each colour is the same as in figure 11.

plot of the unresolved component of interscale energy transfer is shown in figure 11(b).
For large enough � and �′, the curves appear to collapse as would be a good indicator
of scale-invariant behaviour. Furthermore, the power-law curve fit produces an exponent
near 1.1 for the overlapping region of the orange-ish curves. This deviates some from the
theoretical prediction of 4/3, though it is certainly steeper than a 2/3 power law which
would result from perfect correlation across scales (Eyink 2005; Eyink & Aluie 2009).
This result suggests that current theories may over-estimate the de-correlation effect. A
more precise estimate of this power law requires higher resolution DNS.

The current formulation allows us to follow this line of investigation further.
Specifically, the above decomposition into resolved and unresolved components of the
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Figure 13. Trace of the subfilter stress tensor at scale � remaining unresolved at scale �′, as a function of
�′/� for various values of 0.9η ≤ � ≤ 170η: (a) unresolved strain-rate component, (b) unresolved vorticity
component. Also, trace-based cascade efficiency of the unresolved subfilter stress: (c) unresolved strain-rate
component, (d) unresolved vorticity component. The value of � corresponding to each colour is the same as in
figure 11.

interscale energy transfer may be performed separately for strain self-amplification and
vorticity stretching. Mathematically, this is done by replacing the full velocity gradient
tensor in (5.1)–(5.3) with either its symmetric or anti-symmetric part,

χ�,�′
s = 〈Π�

s − Π�,�′
s 〉

〈Π�
s 〉 , χ�,�′

ω = 〈Π�
ω − Π�,�′

ω 〉
〈Π�

ω〉 . (5.5a,b)

The results for strain self-amplification and vorticity stretching are qualitatively similar to
figure 11(a). In figure 12, each of these two are shown on a log–log plot vs �′/�. Similar
collapse into power-law behaviour is seen. This indicates that strain self-amplification
and vorticity stretching have very similar scale-locality properties when it comes to their
contributions to the energy cascade, each one very similar to the p ≈ 1.1 behaviour of the
total cascade rate.

To further explore the observed discrepancy with theoretical predictions, the efficiency
of the unresolved subfilter stress is computed as a function of �′ for each filter width �. This
decomposes the decay of the unresolved portion of Π to be split into decreasing magnitude
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and de-correlation with S̄
�
. The theory predicts a power-law decay of 2/3 for each. To

fully accomplish this, a slightly altered definition of efficiency is needed. In particular, to
measure the de-correlation effect, the denominator of efficiency should use the trace of
the unresolved subfilter stress tensor rather than the norm of its deviatoric part,

Γ
�,�′

s,tr = −(τ �
s − τ �,�′

s ) : S̄�

tr(τ �
s − τ

�,�′
s )‖S̄�‖

, Γ
�,�′
ω,tr = −(τ �

ω − τ �,�′
ω ) : S̄�

tr(τ �
ω − τ

�,�′
ω )‖S̄�‖

. (5.6a,b)

Indeed, a perfectly decorrelated stress tensor in the physical sense could be an isotropic
tensor. In other words, it is not desired to measure the extent to which the deviations from
an isotropic tensor align with the filtered strain rate, but rather, how much energy transfer
is occurring for a given level of subfilter activity.

The results are shown in figure 13. Panels (a,b) show the decay of the unresolved trace
for strain-rate amplification and vorticity stretching,

χ
�,�′
s,tr = tr(τ �

s − τ �,�′
s )

tr(τ �
s)

, χ
�,�′
ω,tr = tr(τ �

ω − τ �,�′
ω )

tr(τ �
ω)

. (5.7a,b)

Below these, the respective decay of efficiency is shown, (5.6a,b). Panels (c,d) show the
same results for vorticity stretching. For both mechanisms, the 2/3 power law is observed
for the trace but the efficiency decays more slowly than predicted by theory. However, the
results suggest that the decorrelation (efficiency decay) becomes steeper as � increases.
It is plausible, then, that a simulation with a significantly higher Reynolds number may
produce results in better agreement with theory at sufficiently large �/η. At the very least,
the present results do no rule out that possibility. It is worth noting that Domaradzki et al.
(2009) observed results consistent with p = 4/3 using a Fourier decomposition, but also
had technical difficulties due to finite Reynolds number DNS.

6. Conclusion

In this paper, the exact relationship introduced by Johnson (2020a) is exploited to discern
the role of strain-rate amplification and vorticity stretching in transferring kinetic energy
from large to small scales in turbulent flows. About half of the net energy cascade
rate is proportional to velocity gradient production rates. These rates, which can be
described as vorticity stretching and strain self-amplification of the filtered field, have
important statistical biases which contain the signature of the restricted Euler dynamics.
For instance, the tendency toward a strain-rate eigenvalue state or λ1 = λ2 = −1

2λ3 makes
strain self-amplification more efficient at driving the cascade while limiting the efficiency
of vorticity stretching. Indeed, the efficiency PDFs indicate a tendency of turbulent
dynamics to favour restricted Euler-like alignments. However, the pressure is also evidently
important in determining average cascade rates. The pressure imposes the divergence-free
condition, ∇ · u, one consequence of which is the three-to-one ratio between average strain
self-amplification and vorticity stretching rates. Thus, both the autonomous dynamics of
the velocity gradient and the non-local action of the pressure favour energy cascade via
strain self-amplification over vortex stretching, in terms of efficiency and average rate,
respectively. This work joins Carbone & Bragg (2020) and Vela-Martín & Jiménez (2021)
in highlighting the crucial role of strain-rate self-amplification in the energy cascade,
calling into question the classical emphasis on vorticity stretching (Taylor 1938; Onsager
1949).
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Note that this conclusion about the relative contributions is for the average cascade
rate and does not contradict the observation by others that vorticity stretching is more
influential in generating extreme events in turbulent flows (Buaria et al. 2019; Carbone
& Bragg 2020). Another point of nuance not yet pursued is a possible subtle difference
between vortex stretching and vorticity stretching. Indeed, regions of strong vorticity are
often positioned close to regions of strong strain (Vlaykov & Wilczek 2019), so that the
stretching of a vortex, if more broadly conceived of as the evolution of a flow structure
that also includes regions of higher strain rate, may include the strain self-amplification
as defined mathematically in this paper. In general, further investigation of the Johnson
(2020a) formulation in terms of spatially coherent structures would be insightful (Dong
et al. 2020).

A significant advantage of the formulation from Johnson (2020a) is the ability to write
the remainder of the energy cascade rate in terms of multiscale vorticity stretching and
strain-rate amplification mechanisms. It is shown in this paper that the stretching of
smaller-scale vorticity and the amplification of smaller-scale strain rate by larger-scale
strain rate is responsible for the other half of the energy cascade rate. These subfilter
stress components are more efficiently aligned with the filtered strain-rate tensor, proving
to be better approximated using an eddy viscosity. The net contribution of multiscale
interactions decreases with scale separation as a power law, in close agreement to
theoretical 4/3 power-law predictions for the scale locality of interscale energy transfer.
This is true for both strain self-amplification and vorticity stretching mechanisms. Note
that this is still not a particularly strong degree of locality, especially when compared
with, e.g. the bubble breakup cascade in two-phase turbulent flows, where a much steeper
power law is predicted and observed (Chan, Johnson & Moin 2020a; Chan et al. 2020b).

Finally, a third cascade mechanism is explored, namely, the distortion of small-scale
strain–vorticity covariance by the larger-scale strain rate. While the net contribution of
this term is negligible in the inertial range of 3-D turbulence, it has noticeable effects
elsewhere. In two dimensions, it is the only possible mechanism, because both strain-rate
amplification and vorticity stretching vanish exactly. This mechanism is responsible for
the inverse cascade in two dimensions. It is argued, following Chen et al. (2006) and
Xiao et al. (2009), that this term may be interpreted as a vortex thinning mechanism
(Kraichnan 1976). Furthermore, in three dimensions, the strain–vorticity correlation drives
net backscatter opposing strain self-amplification and vorticity stretching for a range of
filter width between viscous and inertial scales. This is the range of scales where the
so-called spectral bump occurs, advancing vortex thinning as a candidate mechanism for
what causes the bottleneck effect in three dimensions.

Velocity increments and structure functions have featured heavily in turbulence theory.
No doubt, the ease of measurement using hot-wire anemometry (provided one may assume
Taylor’s hypothesis) has fuelled the use of such two-point statistics. Filtered velocity
gradients naturally encompass the information contained in velocity increments and
similarly enable a scale-by-scale investigation of turbulent flows. The advantage of filtered
velocity gradients is the ability to distinguish solid-body rotation from fluid deformation
organized at scales much larger than η. Writing interscale energy transfer in terms of
filtered velocity gradients not only connects with (and expands upon) classical cascade
descriptions in terms of vorticity stretching, but also leverages the insights of the restricted
Euler equation. A natural connection emerges between turbulence theory and modelling
for LES, a tool of increasing practical importance in the age of supercomputing.

Acknowledgements. A. Elnahhas is acknowledged for providing helpful feedback on an initial draft of this
manuscript. The author benefited from discussions on this topic with a number of colleagues, in alphabetical

922 A3-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.490


P.L. Johnson

order by last name: J. Ballouz, A. Bragg, J. Cardesa, G. Eyink, S. Lele, A. Lozano-Duran, P. Moin, N. Ouellette
and I. Paul.

Funding. This work was supported in part by the Advanced Simulation and Computing program of
the U.S. Department of Energy’s National Nuclear Security Administration via the PSAAP-II Grant no.
DE-NA0002373.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Perry L. Johnson https://orcid.org/0000-0002-7929-9396.

Appendix A. Relative importance of the small-scale strain–vorticity covariance

In (3.7), the first two terms, ◦
τ s1 and ◦

τω1, are resolved at scale �. Therefore, in theory,
these two need no approximate modelling for LES. The third and fourth terms, ◦

τ s2 and
◦
τω2, have been shown to be better approximated by an eddy viscosity, figure 10. The fifth
term, which may be thought of as a vortex thinning term, ◦

τ c2, is not so easily modelled.
The simplest model would be to ignore its contribution, which is close to zero in the mean
within the inertial range of scales.

A preliminary a priori study of the effects of neglecting some of the terms in (3.7)
is shown in figure 14. As previously shown by Borue & Orszag (1998), the correlation
coefficient of the tensor diffusivity model, Π ≈ Πs1 + Πω1, is quite good, near 0.9
in the inertial range. The normalized mean square error, R2, is around 0.75. When
the multiscale vorticity stretching and strain self-amplification terms are added as well,
Π ≈ Πs1 + Πω1 + Πs2 + Πω2, the correlation coefficient exceeds 0.95 and the R2 value
also significantly improves. This observation provides evidence that (3.7) is a meaningful
decomposition of the energy cascade rate, because the accuracy of the sum improves
as more terms are included. The correlation coefficients and R2 values are perfect, 1.0,
when all five terms are included in the sum, reflecting the exact nature of (3.7) on a
point-wise basis. This point-wise verification was also performed for the full tensor, (3.4),
with relative errors comparable to machine precision. There is also some error associated
with the trapezoidal rule integration, though this component of the error is made small
through refinement of �α.

Appendix B. Cascade rate and efficiency PDFs as a function of scale

The mean cascade rate, Π�, and cascade efficiency, Γ �, were shown as a function of �/η

in figures 8(a) and 10(a), respectively. In the inertial range, 50 � 2�/η � 150, these mean
quantities were relatively flat indicating some degree of scale similarity. Alongside these
mean values, figures 8(b) and 10(b) show the PDFs for cascade rate and efficiency at a
single filter width in the middle of the inertial range, 2�/η ≈ 92. In this Appendix, more
plots are included to explore the dependence of the PDFs on the filter width.

Figure 15(a) shows the PDFs for the total cascade efficiency for six different filter
widths. The remaining five panels, figure 15(b– f ), show the cascade efficiency PDFs for
each of the five terms on the right side of (3.7). The largest three filter widths shown
are in the approximate inertial range and their PDFs are remarkably similar. Some minor
deviation is observed for 2�/η = 54 at the lower end of the inertial range. This observation
further supports the identification of inertial range scales in the simulation.

Further, the efficiency PDFs of the two single-scale cascade mechanisms, Γs1 and Γω1,
show little variation between inertial and viscous range filter widths. The reason for this is
the similarity in velocity gradient tensor tendencies regardless of filter scale. The second
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Figure 14. Correlation coefficient (a) and mean square error (b) for complete and incomplete sums of the
cascade mechanisms.

derivative of the subfilter stress tensor, being the dynamical difference between velocity
gradients filtered at different scales, evidently does not play a major role in altering these
efficiencies. In contrast, the three multiscale contributions to the cascade have significantly
different PDFs in the viscous range than observed at larger filter widths.

While similarity is clearly observed in the inertial range for the efficiency PDFs, the
same cannot be said of the cascade rates themselves, figure 16. As the energy cascade
progresses to smaller scales, the phenomenon of intermittency manifests in increasingly
heavy-tailed distributions of the cascade rate. This is true for the total cascade rate as well
as each of the five different contributions on the right side of (3.7). Within the viscous
range, the PDFs do start to collapse to some extent, but less so for the multiscale rates.
However, the decrease in available active subfilter scales easily explains this fact.

Appendix C. Detailed derivation of energy cascade rate for Gaussian filters

For any field variable, a(x), with Fourier transform, F{a}(k), the Gaussian filtered field is

F{ā�}(k) = exp(−1
2 k2�2)F{a}(k), (C1)

which by substitution is seen to satisfy

∂F{ā�}
∂(�2)

= −1
2

k2F{ā�}. (C2)

This equation is the Fourier transform of

∂ ā�

∂(�2)
= 1

2
∇2ā� (C3)

and the initial condition, ā�=0(x) = a(x), is satisfied.
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Figure 15. PDFs for the cascade efficiencies at various filter widths: (a) total cascade efficiency, (b)
strain–vorticity covariance amplification, (c) single-scale strain-rate self-amplification, (d) single-scale
vorticity stretching, (e) multiscale strain-rate amplification and ( f ) multiscale vorticity stretching.

Now the generalized second moment of two fields, a(x) and b(x) may be written as

τ�(a, b) = ab
� − ā�b̄� (C4)

and its derivative with �2 is

∂τ�(a, b)

∂(�2)
= ∂ab

�

∂(�2)
−
(

ā� ∂ b̄�

∂(�2)
+ b̄� ∂ ā�

∂(�2)

)
. (C5)

Now substituting (C3) for all three derivatives in �2 on the right side,

∂τ�(a, b)

∂(�2)
= 1

2
∇2ab

� − 1
2
(ā�∇2b̄� + b̄�∇2ā�) (C6)
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Figure 16. PDFs for the cascades rates at various filter widths: (a) total cascade efficiency, (b) strain–vorticity
covariance amplification, (c) single-scale strain-rate self-amplification, (d) single-scale vorticity stretching,
(e) multiscale strain-rate amplification and ( f ) multiscale vorticity stretching. The legend from figure 15 also
applies here.

and using the product rule, the following relationship may be established

∇2(ā�b̄�) = ā�∇2b̄� + b̄�∇2ā� + 2
∂ ā�

∂xj

∂ b̄�

∂xj
, (C7)

which upon substitution yields,

∂τ�(a, b)

∂(�2)
= 1

2
∇2(ab

� − ā�b̄�) + ∂ ā�

∂xj

∂ b̄�

∂xj
, (C8)

hence
∂τ�(a, b)

∂(�2)
= 1

2
∇2τ�(a, b) + ∂ ā�

∂xj

∂ b̄�

∂xj
. (C9)
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Note that, by definition, τ�=0(a, b) = 0. The Fourier transform of this equation is

∂F{τ�(a, b)}
∂(�2)

= −1
2

k2F{τ�(a, b)} + F
{

∂ ā�

∂xj

∂ b̄�

∂xj

}
. (C10)

Multiplying by exp(1
2 k2�2),

∂

∂(�2)

[
exp

(
1
2

k2�2
)
F{τ�(a, b)}

]
= exp

(
1
2

k2�2
)
F
{

∂ ā�

∂xj

∂ b̄�

∂xj

}
(C11)

and integrating with dummy variable α from 0 to �2,

exp
(

1
2

k2�2
)
F{τ�(a, b)} =

∫ �2

0
exp

(
1
2

k2α

)
F
⎧⎨⎩ ∂a

∂xj

√
α

∂b
∂xj

√
α
⎫⎬⎭ dα, (C12)

where τ�=0(a, b) = 0 has been used on the left side of the equation. Then dividing by
exp(1

2 k2�2) solving for the generalized second moment,

F{τ�(a, b)} =
∫ �2

0
exp

[
−1

2
k2(�2 − α)

]
F
⎧⎨⎩ ∂a

∂xj

√
α

∂b
∂xj

√
α
⎫⎬⎭ dα, (C13)

which can be written as a Gaussian filter with width
√

�2 − α,

F{τ�(a, b)} =
∫ �2

0
F

⎧⎪⎪⎨⎪⎪⎩
∂a
∂xj

√
α

∂b
∂xj

√
α

√
�2−α

⎫⎪⎪⎬⎪⎪⎭ dα. (C14)

Then, with an inverse Fourier transform, the formal solution is obtained,

τ�(a, b) =
∫ �2

0

⎡⎢⎢⎣ ∂a
∂xj

√
α

∂b
∂xj

√
α

√
�2−α

⎤⎥⎥⎦ dα. (C15)

Now the integrand

I = ∂a
∂xj

√
α

∂b
∂xj

√
α

√
�2−α

(C16)

may be expanded as a product of filtered quantities plus a generalized second moment,

I = ∂a
∂xj

√
α

√
�2−α

∂b
∂xj

√
α

√
�2−α

+

⎛⎜⎜⎝ ∂a
∂xj

√
α

∂b
∂xj

√
α

√
�2−α

− ∂a
∂xj

√
α

√
�2−α

∂b
∂xj

√
α

√
�2−α

⎞⎟⎟⎠ ,

(C17)
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with the two successive filters collapsing to a single filter as

F

⎧⎪⎪⎨⎪⎪⎩
∂a
∂xj

√
α

√
�2−α

⎫⎪⎪⎬⎪⎪⎭ = exp
[
−1

2
k2(�2 − α)

]
exp

(
−1

2
k2α

)
F
{

∂a
∂xj

}

= exp
(

−1
2

k2�2
)
F
{

∂a
∂xj

}
= F

{
∂a
∂xj

�
}

. (C18)

The resulting simplification for the integrand is

I = ∂a
∂xj

�
∂b
∂xj

�

+ τβ

⎛⎝ ∂a
∂xj

√
α

,
∂b
∂xj

√
α
⎞⎠ , (C19)

where β = √
�2 − α. The first term on the right is independent of α so may be directly

integrated, giving the formal solution,

τ�(a, b) = �2 ∂a
∂xj

�
∂b
∂xj

�

+
∫ �2

0
τβ

⎛⎝ ∂a
∂xj

√
α

,
∂b
∂xj

√
α
⎞⎠ dα. (C20)

For the present context, we take a = ui and b = uj from the velocity vector and define
the velocity gradient tensor, Aij = ∂ui/∂xj,

τ�(ui, uj) = �2Ā�
ikĀ�

jk +
∫ �2

0
τβ(Ā

√
α

ik , Ā
√

α

jk ) dα. (C21)

Finally, constructing the local cascade rate, Π� = −τ�(ui, uj)S̄�
ij, by contracting with the

filtered strain-rate tensor,

Π� = −�2S̄�
ijĀ

�
ikĀ�

jk − S̄�
ij

∫ �2

0
τβ(Ā

√
α

ik , Ā
√

α

jk ) dα. (C22)

Applying the decomposition of the filtered velocity gradient into filtered strain rate and
filtered rotation rate, Ā = S̄ + Ω̄ ,

S̄�
ijĀ

�
ikĀ�

jk = S̄�
ij(S̄

�
ik + Ω̄�

ik)(S̄
�
jk + Ω̄�

jk) = S̄�
ijS̄

�
ikS̄�

jk + S̄�
ijΩ̄

�
ikS̄�

jk + S̄�
ijS̄

�
ikΩ̄

�
jk + S̄�

ijΩ̄
�
ikΩ̄

�
jk,

(C23)

the middle two terms being zero by symmetry arguments,

S̄�
ijĀ

�
ikĀ�

jk = S̄�
ijS̄

�
ikS̄�

jk + S̄�
ijΩ̄

�
ikΩ̄

�
jk = S̄�

ijS̄
�
ikS̄�

jk − 1
4 ω̄�

i S̄�
ijω̄

�
j , (C24)

with Ω̄�
ij = −1

2εijkω̄
�
k . A similar decomposition of the integrand in (C22) is

τβ(Ā
√

α

ik , Ā
√

α

jk ) = τβ(S̄
√

α

ik , S̄
√

α

jk ) + τβ(S̄
√

α

ik , Ω̄
√

α

jk ) + τβ(Ω̄
√

α

ik , S̄
√

α

jk )

+ τβ(Ω̄
√

α

ik , Ω̄
√

α

jk ). (C25)

The substitution of these two into (C22) leads to (3.7).
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