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Abstract. We consider suspension semi-flows of angle-multiplying maps on the circle for
Cr ceiling functions with r ≥ 3. Under a Cr generic condition on the ceiling function,
we show that there exists a Hilbert space (anisotropic Sobolev space) contained in the L2

space such that the Perron–Frobenius operator for the time-t-map acts naturally on it and
that the essential spectral radius of that action is bounded by the square root of the inverse
of the minimum expansion rate. This leads to a precise description of decay of correlations.
Furthermore, the Perron–Frobenius operator for the time-t-map is quasi-compact for a Cr

open and dense set of ceiling functions.

1. Introduction
Decay of correlations and related topics for hyperbolic dynamical systems have been
studied for more than three decades since the works of Bowen [6], Ruelle [16]
and Sinai [17]. For the cases of discrete dynamical systems such as iterations of
expanding maps and Anosov diffeomorphisms, exponential decay of correlations for
Hölder observables was already known in the early stage of the study [6, 16, 17] and
nowadays we have a fairly good understanding of the speed of decay and also of the
Perron–Frobenius operators spectra [3, 4, 8, 9]. On the contrary, for the cases of continuous
dynamical systems such as Anosov flows, the corresponding argument is much more subtle
and our knowledge is less satisfactory at present. A simple reason for the subtleness in the
cases of flows is that the time-t-maps of hyperbolic flows are not hyperbolic (but partially
hyperbolic) as there is no expansion or contraction in the flow direction. Dolgopyat [7]
showed exponential decay of correlations for Anosov flows under the assumption that the
stable and unstable foliations are both C1 and are jointly non-integrable. More recently,
Liverani [13] extended the result to Anosov flows preserving contact structures and, in
particular, to all geodesic flows in strictly negative curvature. However, even in such cases,
we do not know whether the semi-groups of Perron–Frobenius operators are quasi-compact
on some appropriate Banach spaces. Neither do we know whether we observe exponential
decay of correlations for mixing or for generic Anosov flows.
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The aim of this paper is to study decay of correlations not for Anosov flows but for a
class of expanding semi-flows known as suspension semi-flows of angle-multiplying maps
on the circle, which we would like to view as a simplified model of the Anosov flow.
We consider Perron–Frobenius operators for the time-t-maps of such semi-flows and let
them act on the anisotropic Sobolev spaces introduced by Baladi and Tsujii [4]. Our main
result is that, under a Cr generic condition on the ceiling function, the essential spectral
radius of the action is bounded by the square root of the inverse of the minimum expansion
rate. This leads to a precise description on decay of correlations, which resembles the
results known for hyperbolic discrete dynamical systems [4, 8], and extends the earlier
result of Pollicott [15] on exponential decay. As a byproduct of our methods, we show that
the Perron–Frobenius operators are quasi-compact for a Cr open and dense set of ceiling
functions.

A prototype of the argument in this paper has actually appeared in Avila et al [1], where
a class of volume-expanding hyperbolic endomorphisms, called fat solenoidal attractors,
were studied. In this paper, we will apply essentially the same idea to analyze the time-
t-maps of the class of expanding semi-flows mentioned above. We emphasize that our
intention is to display the idea in a simple setting and present this paper as a study for
the cases of hyperbolic flows. (It is possible to apply the idea presented in this paper
to Anosov flows with sufficiently smooth stable foliations. However, we suspect that we
need to overcome essential difficulties to treat more general Anosov flows.) We therefore
confine our argument to a rather restrictive setting, although it is not very difficult to
extend it to more general classes of expanding semi-flows and transfer operators (see
Remark 1.5).

We fix integers `≥ 2 and r ≥ 3. Let τ : S1
→ S1 be the angle-multiplying map on

the circle S1
= R/Z defined by τ(x)= `x . Let Cr

+(S
1) be the space of positive-valued

Cr functions on S1. For each f ∈ Cr
+(S

1), we consider the subset

X f = {(x, s) ∈ S1
× R | 0 ≤ s < f (x)}

of the cylinder S1
× R. The suspension semi-flow T f = {T t

f : X f → X f }t≥0 of τ is the
semi-flow on X f in which each point on X f moves right upward (or the s-direction) with
the unit speed and, at the instant it reaches the upper boundary of X f , it jumps down
to the lower boundary with the x-coordinate transfered by τ (see Figure 1). The precise
expression for its time-t-map is

T t
f (x, s)= (τ n(x,s+t; f )(x), s + t − f (n(x,s+t; f ))(x))

where f (n)(x)=
∑n−1

i=0 f (τ i (x)) and n(x, t; f )= max{n ≥ 0 | f (n)(x)≤ t}.
Let m = m f be the normalization of the restriction of the standard Lebesgue measure

on S1
× R to X f . This is an ergodic invariant probability measure for T f . For a point

z = (x, s) ∈ X f and t ≥ 0, E(z, t; f ) := `n(x,s+t; f ) is the expansion rate along the orbit
of z up to time t . The minimum expansion rate of T f is naturally defined by

λmin(T f )= lim
t→∞

(
min
z∈X f

E(z, t; f )

)1/t

.

https://doi.org/10.1017/S0143385707000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000430


Decay of correlations 293

FIGURE 1. The semi-flow T f .

For functions ψ and ϕ in L2(X f )= L2(X f , m f ), we consider the correlation

Cort (ψ, ϕ)=

∫
ψ · ϕ ◦ T t

f dm f −

(∫
ϕ dm f

)(∫
ψ dm f

)
for t ≥ 0.

Suppose that
∫
ψ dm f = 0 for simplicity. If the semi-flow T f is mixing, we have

that limt→∞ Cort (ψ, ϕ)= 0. The question is the rate of convergence in this limit.
Pollicott [15] showed that the rate is exponential under a mild condition on f :
|Cort (ψ, ϕ)|< const. exp(−εt) for some ε > 0. (See also Baladi and Vall’ee [5] for
a generalization.) Under a Cr generic condition on f , our results give a more precise
description on asymptotic behavior of the correlation as t → ∞: for any real number
µ > (λmin(T f ))

−1/2, there exists finitely many complex numbers λi ∈ C (which may not
be distinct from each other) with µ≤ |λi |< 1 and integers mi ≥ 0 for 1 ≤ i ≤ k, such that∣∣∣∣Cort (ψ, ϕ)−

k∑
i=1

Hi (ψ, ϕ) · tmiλt
i

∣∣∣∣ ≤ H0(ψ, ϕ)µ
t for t ≥ 0 (1)

for any ϕ ∈ L2(X f ) and any C1 function ψ with
∫
ψ dm f = 0 supported on the interior

of X f , where Hi (ψ, ϕ) are coefficients that depend on ψ and ϕ (and µ). As we will see
later, the complex numbers λi above are peripheral eigenvalues of the Perron–Frobenius
operator for the time-1-map and each integer mi is bounded by the geometric multiplicity
of the eigenvalue λi .

In order to state the main results, we introduce some more notation. The differential
(DT t

f )z of T t
f at z ∈ X f is defined in the usual way if both z and T t (z) belong to the

interior of X f and, otherwise, is defined by

(DT t
f )z = lim

ε→+0
(DT t

f )z+(0,ε).

Fix a real number `−1 < γ0 < 1; it is better to choose γ0 close to 1, although not necessary.
Set

θ f = max
x∈S1

| f ′(x)|/(γ0`− 1)

and
C f = C(θ f ) := {(x, y) ∈ R2

| |y| ≤ θ f |x |}.
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By the definition of θ f , we see that the cone C f is strictly invariant for T f in the sense that

(DT t
f )z(C f )⊂ C(γ0θ f )⊂ C f for all z = (x, s) ∈ X f and t ≥ f (x)− s.

Note that, for large t , the inverse image (T t
f )

−1(z) of a point z ∈ X f consists of many

points and thus there are many narrow cones (DT t
f )ζ (C f ) for ζ ∈ (T t

f )
−1(z) in the tangent

space at z. As a measure for transversality between such cones, we introduce the quantity

m( f, t)= max
z∈X f

max
w∈(T t

f )
−1(z)

∑
ζ :ζ 6tw

1
E(ζ, t; f )

where
∑
ζ :ζ 6tw is the sum over the points ζ ∈ (T t

f )
−1(z) such that

(DT t
f )ζ (C f ) ∩ (DT t

f )w(C f ) 6= {0}.

Note that we always have m( f, t)≤ 1 because∑
ζ∈(T t

f )
−1(z)

1
E(ζ, t; f )

= 1 for any t ≥ 0 and z ∈ X f . (2)

Finally, we define the exponent

m( f )= lim sup
t→∞

m( f, t)1/t
≤ 1.

The Perron–Frobenius operator P t
f : L1(X f )→ L1(X f ) for t ≥ 0 is defined by

P t
f (u)(z)=

∑
w∈(T t

f )
−1(z)

u(w)

det (DT t
f )w

,

so that we have Cort (ψ, ϕ)=
∫
P t

fψ · ϕ dm f provided that
∫
ψ dm f = 0.

Let C1(X f ) be the set of functions ϕ on X f such that P t
f (ϕ) is C1 on the interior of

X f for any t ≥ 0. (This condition imposes a restriction on the behavior of the function in
the neighborhood of the boundary of X f , in addition to that it should be C1 on the interior
of X f .) This contains all the functions that are supported and C1 on the interior of X f .

The main results are now stated as follows.

THEOREM 1.1. There exists a Hilbert space W∗(X f ) such that

C1(X f )⊂ W∗(X f )⊂ L2(X f )

and such that the Perron–Frobenius operator P t
f for large t ≥ 0 restricts to the bounded

operatorP t
f : W∗(X f )→ W∗(X f )whose essential spectral radius is bounded by m( f )t/2.

THEOREM 1.2. For each ρ > 1, there exists an open and dense subset R in Cr
+(S

1) such
that, for f ∈R, the corresponding semi-flow T f = {T t

f } is weakly mixing and satisfies

m( f )≤ ρ · λ−1
min(T f ).

From these theorems, we obtain the following corollary.
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COROLLARY 1.3. For a Cr generic f ∈ Cr
+(S

1), the semi-flow T f is weakly mixing and
the essential spectral radius of the Perron–Frobenius operator P t

f acting on W∗(X f ) is

bounded by λmin(T f )
−t/2 for any sufficiently large t.

The estimate equation (1) for Cr generic f is an immediate consequence of this
corollary.

Proof of equation (1). Take large t > 0. By Corollary 1.3, we have the decomposition
W∗(X f )= E ⊕ V where E is the sum of the generalized eigenspaces for P t

f
corresponding to the eigenvalues not smaller than µt in absolute value and

V = {ϕ ∈ W∗(X f ) | µ−s
‖Ps

f ϕ‖∗ → 0 as s → ∞}

where ‖ · ‖∗ denotes the norm on W∗(X f ). The finite dimensional subspace E is invariant
under Ps

f for s ≥ 0 by commutativity of Ps
f and P t

f . Thus we have Ps
f |E = exp(s B) for a

linear map B : E → E . Now it is easy to derive equation (1), expressing ψ as the sum of
an element of V and generalized eigenvectors of B. 2

The following interesting observation was pointed out to the author by Avila [2]. We say
that f ∈ Cr

+(S
1) is cohomologous to a constant function if f (x)= ϕ(τ(x))− ϕ(x)+ c for

some ϕ ∈ Cr (S1) and c ∈ R.

THEOREM 1.4. The following conditions for f ∈ Cr
+(S

1) are equivalent:
(i) m( f ) < 1;
(ii) T f is weakly mixing; and
(iii) f is not cohomologous to a constant function.
In particular, either (or all) of these conditions holds for a Cr open and dense set of ceiling
functions f ∈ Cr

+(S
1).

This theorem and Theorem 1.1 (or Dolgopyat’s argument [15]) imply that, once T f is
weakly mixing, it is exponentially mixing and there are no intermediate rates in correlation
decay (for functions in C1(X f ) at least). We will give the proof in Appendix A.

Remark 1.5. We can generalize the argument in this paper to a more general class of
expanding semi-flows without much difficulty. For instance, the main results remains true
with obvious changes in the related definitions when we consider arbitrary C3 expanding
maps on the circle in the place of τ . The proof of Theorem 1.1 can be translated almost
literally to such cases using the standard estimates on the distortion of expanding maps,
while we need a slight modification to translate the proof of Theorem 1.2.

2. Proof of Theorem 1.1
In this section we consider the semi-flow T f = {T t

f }t≥0 for some fixed f ∈ Cr
+(S

1). For
simplicity, we write T t and P t for T t

f and P t
f , respectively.

2.1. Local charts on X f . We set up a system of local charts on X f . (The system of
local charts does not give the structure of (branched) manifold on X f .) To begin with, we
consider two small real numbers η > 0 and δ > 0, and set

R = (−η, η)× (δ, 2δ)⊂ Q = (−2η, 2η)× (0, 3δ).
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For each a = (x0, s0) ∈ X f such that [x0 − 2η, x0 + 2η] × {s0} ⊂ X f , we consider two
mappings

κa : Q → X f , κa(x, s)= T s(x0 + x, s0)

and
κ̃a : Q → S1

× R, κ̃a(x, s)= (x0 + x, s0 + s).

Note that κa and κ̃a coincide when the image of κ̃a does not meet the upper boundary of
X f . Let η and δ be so small that κa is injective on Q whenever it is defined.

Next we take a finite subset A of X f so that the mappings κa for a ∈ A are defined and
that the images κ̃a(R), a ∈ A, cover the subset

X̃ f := {(x, s) ∈ S1
× R | δ/3 ≤ s ≤ f (x)+ 2δ/3}.

We may and do suppose that the intersection multiplicity of {κ̃a(R)}a∈A is bounded by
an absolute constant (say 100). (This is in fact possible if we let the ratio η/δ be small.)
Clearly the images of κa(R) for a ∈ A cover X f .

Let Cr (R) be the set of Cr functions supported on R. We take the family {ha}a∈A

of functions in C∞(R) as follows. First, take a C∞ function β0 : R → [0, 1] such that
β0(s)= 1 if s ≤ δ/3 and β0(s)= 0 if s ≥ 2δ/3. We define β : S1

× R → [0, 1] by

β(x, s)=


β0(s − f (x)) if s ≥ f (x),

1 if δ < s < f (x),

1 − β0(s) if s ≤ δ.

This is a C∞ function supported on X̃ f . From the choice of the finite subset A, we can
take a family {h̃a : S1

× R → [0, 1]}a∈A of C∞ functions so that the support of each h̃a is
contained in κ̃a(R) and so that we have

∑
a h̃a ≡ β on S1

× R. We then define the C∞

function ha : R2
→ [0, 1] for a ∈ A by

ha =

{
h̃a ◦ κ̃a on R,

0 on R2
\ R.

2.2. Anisotropic Sobolev spaces. We recall the anisotropic Sobolev space and the
related definitions introduced by Baladi and Tsujii [4]. For a cone C ⊂ R2, we define
its dual by

C∗
= {v ∈ R2

| (v, u)= 0 for some u ∈ C \ {0}}.

For two cones C, C′
⊂ R2, we write C b C′ if the closure of C is contained in the interior

of C′ except for the origin.
A polarization 2 is a combination 2= (C+, C−, ϕ+, ϕ−) of closed cones C± in R2

and C∞ functions ϕ± : S1
→ [0, 1] on the unit circle S1

⊂ R2 that satisfy C+ ∩ C− = {0}

and

ϕ+(ξ)=

{
1 if ξ ∈ S1

∩ C+,

0 if ξ ∈ S1
∩ C−,

ϕ−(ξ)= 1 − ϕ+(ξ). (3)

For two polarizations2= (C+, C−, ϕ+, ϕ−) and2′
= (C′

+, C′
−, ϕ

′
+, ϕ

′
−), we write2<

2′ if R2
\ C′

+ b C−.
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Fix a C∞ function χ : R → [0, 1] satisfying

χ(s)=

{
1 for s ≤ 1,

0 for s ≥ 2.

For a polarization2= (C+, C−, ϕ+, ϕ−), an integer n ≥ 0 and σ ∈ {+,−}, we define the
C∞ function ψ2,n,σ : R2

→ [0, 1] by

ψ2,n,σ (ξ)=

{
ϕσ (ξ/|ξ |) · (χ(2−n

|ξ |)− χ(2−n+1
|ξ |)) if n ≥ 1,

χ(|ξ |)/2 if n = 0.

The family of functions ψ2,n,σ for n ≥ 0 and σ ∈ {+,−} is a C∞ partition of unity on R2.
For a function u ∈ Cr (R), we define

u2,n,σ (x)= ψ2,n,σ (D)u(x) := (2π)−2
∫

ei(x−y)ξψ2,n,σ (ξ)u(y) dy dξ

where ψ2,n,σ (D) is the pseudo-differential operator with symbol a(x, ξ)= ψ2,n,σ (ξ).
Note that the pseudo-differential operator ψ2,n,σ (D) may be viewed as the composition
F−1

◦92,n,σ ◦ F where F is the Fourier transform and 92,n,σ is the multiplication
operator by ψ2,n,σ .

For a polarization 2= (C+, C−, ϕ+, ϕ−) and a real number p, we define the semi-
norms ‖ · ‖

+

2,p and ‖ · ‖
−

2,p on Cr (R) by

‖u‖
σ
2,p =

(∑
n≥0

22pn
‖u2,n,σ‖

2
L2

)1/2

=

(∑
n≥0

22pn
‖ψ2,n,σ · Fu‖

2
L2

)1/2

.

We then define the anisotropic Sobolev norm ‖ · ‖2,p,q for real numbers p and q by

‖u‖2,p,q =
(
(‖u‖

+

2,p)
2
+ (‖u‖

−

2,q)
2)1/2

.

Clearly this norm is associated with a scalar product.
We will not actually use the anisotropic Sobolev norms for general p, q and2 but those

for the following specific cases. Fix small 0< ε < 1/2 and set

‖ · ‖
+

2 := ‖ · ‖
+

2,1, ‖ · ‖
−

2 := ‖ · ‖
−

2,0, ‖ · ‖2 := ‖ · ‖2,1,0

and
| · |

+

2 := ‖ · ‖
+

2,1−ε, | · |
−

2 := ‖ · ‖
−

2,−ε, | · |2 := ‖ · ‖2,1−ε,−ε .

In view of Parseval’s identity, we have

‖ · ‖2 ≥ ‖ · ‖L2/
√

6 (4)

where 6 is (a bound for) the intersection multiplicity of the supports of ψ2,n,σ . The
anisotropic Sobolev spaces W∗(R;2) and W†(R;2) are the completion of C∞(R) with
respect to the norms ‖ · ‖2 and | · |2 respectively. By equation (4), we see that the space
W∗(R;2) is naturally embedded in L2(R). Further, we recall the next lemma from Baladi
and Tsujii [4]. Let W s(R) be the (usual) Sobolev space of order s, that is,

W s(R)= {u ∈D′(R2) | supp(u)⊂ closure(R), (1 + |ξ |2)s/2Fu(ξ) ∈ L2(R2)}.
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LEMMA 2.1. For any polarizations 2′ <2, we have:
(a) C1(R)⊂ W 1(R)⊂ W∗(R;2)⊂ L2(R) and W 1−ε(R)⊂ W†(R;2)⊂ W −ε(R);
(b) W∗(R;2)⊂ W∗(R;2′) and W†(R;2)⊂ W†(R;2′); and
(c) the inclusion W∗(R;2)⊂ W†(R;2) is compact.

Proof. We can check (a) and (b) easily by using Parseval’s identity. For the claim (c), we
refer to Baladi and Tsujii [4, Proposition 5.1]. 2

Regarding the polarization 2, we will consider three polarizations:

2̌0 =
(
Č0,±, ϕ̌0,±

)
<20 =

(
C0,±, ϕ0,±

)
< 2̂0 =

(
Ĉ0,±, ϕ̂0,±

)
such that

(C(γ0θ f ))
∗ b Ĉ0,− b

(
R2

\ Č0,+
)

b (C(θ f ))
∗.

The Hilbert space W∗(X f ) in Theorem 1.1 is defined as follows. Consider the projection
operator (regarding functions as densities)

5 : (L2(R))A
→ L2(X f ), 5((ua)a∈A)=

∑
a∈A

πa(ua)

where πa : L2(R)→ L2(X f ) for a ∈ A is defined by

πa(u)(z)=

{
u(w)/ det Dκa(w) if z = κa(w) for some w ∈ R,

0 otherwise.

We equip the product spaces (W∗(R;20))
A

⊂ (L2(R))A and (W†(R;20))
A with the

norms

‖u‖ :=

(∑
a∈A

‖ua‖
2
20

)1/2

and |u| :=

(∑
a∈A

|ua |
2
20

)1/2

where u = (ua)a∈A

respectively, so that they are Hilbert spaces. Then we set

W∗(X f )=5((W∗(R;20))
A)

and equip it with the norm ‖u‖ = inf{‖u‖ |5(u)= u}. This space W∗(X f ) is isomorphic
to the orthogonal complement of the kernel of5 in (W∗(R;20))

A and, hence, is a Hilbert
space.

2.3. Transfer operators on local charts. We consider the time-t-map T t and the
corresponding Perron–Frobenius operator P t for t large enough. (It is enough to consider
t with t ≥ maxx∈S1 f (x)+ 3δ.) One technical difficulty in treating the time-t-map T t

directly is that it is not continuous at the boundary of X f . To avoid this problem, we
consider a system of transfer operators on the local charts {κa}a∈A as a lift of P t , in which
we do not find any trace of the discontinuity of T t .

For a, b ∈ A, let Q(a, b, t) be the set of points z ∈ Q such that, for some (x, s) ∈ Q:
(i) T t

◦ κa(z)= κb((x, s)); and
(ii) T t−η

◦ κa(z) ∈ κb(Q) for 0 ≤ η < s.
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Notice that the second condition (ii) does not follow from (i) when κ̃b(Q) meets the upper
boundary of X f . In fact, the second condition (ii) is important to avoid discontinuity in the
following argument.

For a, b ∈ A with Q(a, b, t) 6= ∅, we consider the Cr mapping

T t
ab : Q(a, b, t)→ Q, T t

ab(z)= κ−1
b ◦ T t

◦ κa(z).

This is simply the mapping T t viewed in the local charts κa and κb. Notice, however, that
we restrict the domain of definition to Q(a, b, t).

For a, b ∈ A with Q(a, b, t) 6= ∅, we consider the transfer operator

P t
ab : L2(R)→ L2(R), P t

abu(z)=

∑
w∈(T t

ab)
−1(z)

hb(z)u(w)

det(DT t
ab)w

where the sum is taken over w ∈ Q(a, b, t) such that T t
ab(w)= z. We define the system of

transfer operators on local charts,

Pt
: L2(R)A

→ L2(R)A,

by

Pt (u)=

(∑
a∈A

P t
ab(ua)

)
b∈A

for u = (ua)a∈A ∈ L2(R)A.

It is not difficult to check that the following diagram commutes:

L1(R)A Pt

−−−−→ L1(R)Ay5 y5
L1(X f )

P t

−−−−→ L1(X f )

(5)

In the following subsections, we will prove the following.

PROPOSITION 2.2. The operator Pt restricts to the bounded operator

Pt
: W∗(R;20)

A
→ W∗(R;20)

A.

Also Pt extends to the bounded operator

Pt
: W†(R;20)

A
→ W†(R;20)

A.

Further, we have the Lasota–Yorke type inequality

‖Pt (u)‖ ≤ C] · m( f, t)1/2‖u‖ + C |u| for u ∈ W∗(R)A (6)

where the constant C] does not depend on t while the constant C may.

We can deduce Theorem 1.1 from this proposition and from Lemma 2.1(c).

Proof of Theorem 1.1. Since W∗(R;20)
A is compactly embedded in W†(R;20)

A from
Lemma 2.1(c), the Lasota–Yorke type inequality in Proposition 2.2 implies that the
essential spectral radius of the operator Pt

: W∗(R;20)
A

→ W∗(R;20)
A is bounded
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by C] · m( f, t)1/2 [11, 12]. By the definition of the space W∗(X f ), the commutative
diagram (5) restricts to

W∗(R;20)
A Pt

−−−−→ W∗(R;20)
Ay5 y5

W∗(X f )
P t

−−−−→ W∗(X f ).

(7)

Recall also that the space W∗(X f ) is identified with the orthogonal complement of the
kernel of 5 in W∗(R)A. Through this identification, P t corresponds to the composition of
Pt with the orthogonal projection along the kernel of 5. Thus the essential spectral radius
of P t

: W∗(X f )→ W∗(X f ) is bounded by that of Pt
: W∗(R;20)

A
→ W∗(R;20)

A or
C]m( f, t)1/2. Since this holds for any t large enough, the essential spectral radius of
P t

: W∗(X f )→ W∗(X f ) is bounded by m( f )1/2. The inclusions C1(X f )⊂ W∗(X f )⊂

L2(X f ) follow from Lemma 2.1(a). 2

2.4. Two lemmas on the anisotropic Sobolev norms. In this section, we give two basic
lemmas on the anisotropic Sobolev norms. These lemmas and their proofs are slight
modifications of those given by Baladi and Tsujii [4]. For the convenience of the reader,
we give the proofs in Appendices B and C (see also Remark 2.5).

LEMMA 2.3. Let gi : R2
→ [0, 1], 1 ≤ i ≤ I , be a family of Cr functions such that∑I

i=1 gi (x)≤ 1 for x ∈ Q and that supp(gi )⊂ Q. Let 2 and 2′ be polarizations such
that 2′ <2. Then we have[ ∑

1≤i≤I

‖gi u‖
2
2′

]1/2

≤ C0‖u‖2 + C |u|2 for u ∈ W∗(R;2), (8)

where C0 is a constant that does not depend on {gi } while the constant C may. Further, if∑I
i=1 gi (x)≡ 1 for all x ∈ R, we also have

‖u‖2′ ≤ ν

[ ∑
1≤i≤I

‖gi u‖
2
2

]1/2

+ C
I∑

i=1

|gi u|2 for u ∈ W∗(R;2), (9)

where ν is the intersection multiplicity of the supports of the functions gi , 1 ≤ i ≤ I .

In the next lemma, we consider the following situation. For a Cr−1 function h : R2
→ R

supported on a closed subset K ⊂ R and for a Cr diffeomorphism S : U → S(U )⊂ R2

defined on an open neighborhood U of K , we consider a transfer operator L : Cr−1(R)→

Cr−1(R) defined by

Lu(x)=

{
h(x) · u ◦ S(x) if x ∈ K ,

0 otherwise.

Assume that, for polarizations 2= (C+, C−, ϕ+, ϕ−) and 2′
= (C′

+, C′
−, ϕ

′
+, ϕ

′
−), we

have
(DSζ )

tr(R2
\ C+) b C′

− for all ζ ∈ K ,
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where (DSζ )tr denotes the transpose of DSζ . Set

γ (S)= min
ζ∈K

|det DSζ |

and

3(S, 2′, K )= sup
{

‖(DSζ )tr(v)‖

‖v‖

∣∣∣∣ ζ ∈ K , (DSζ )
tr(v) /∈ C′

−

}
.

LEMMA 2.4. The operator L extends boundedly to L : W∗(R;2)→ W∗(R;2′) and to
L : W†(R;2)→ W†(R;2′). Further, we have for u ∈ W∗(R;2),

‖Lu‖
−

2′ ≤ γ (S)−1/2
‖h‖L∞‖u‖2 (10)

and
‖Lu‖

+

2′ ≤ C0γ (S)
−1/23(S, 2′, K )‖h‖L∞‖u‖2 + C |u|2 (11)

where the constant C0 does not depend on S, h, 2 nor 2′ while the constant C may. In
particular, we have for u ∈ W∗(R;2),

‖Lu‖2′ ≤ C0γ (S)
−1/2 max{1, 3(S, 2′, K )}‖h‖L∞‖u‖2 + C |u|2. (12)

Remark 2.5. The latter claim (9) of Lemma 2.3 is a special case of Baladi and Tsujii [4,
Lemma 7.1]. Also, Lemma 2.4 and the former claim (8) in Lemma 2.3 correspond to Baladi
and Tsujii [4, Propositions 7.2 and 6.1]. However, since we considered only anisotropic
Sobolev norms ‖ · ‖2,p,q with q < 0< p in those propositions [4], we need to modify the
statements and proofs slightly. This is the reason why we give the proofs of Lemma 2.4
and the former claim (8) of Lemma 2.3 in the Appendices B and C.

2.5. The Lasota–Yorke type inequality in local charts. To complete the proof of
Proposition 2.2, we only have to show the Lasota–Yorke type inequality (6), as the other
claims now follow from Lemma 2.4 where S is the branches of the inverse of T t

ab. For the
proof of the Lasota–Yorke type inequality (6), it is enough to show the following lemma
for the components P t

ab of Pt .

LEMMA 2.6. For a, b ∈ A and for sufficiently large t, we have

‖P t
ab(u)‖

2
20

≤ C] · m( f, t)‖u‖
2
20

+ C |u|
2
20

for u ∈ Cr (R)

where the constant C] does not depend on t while the constant C may.

Below, we prove Lemma 2.6. To begin with, we set up some notation. Fix a, b ∈ A
and consider large t > 0. Let {D(ω), ω ∈�}, be a finite family of small closed disks
whose interiors cover the closure of R. We may and do assume that the intersection
multiplicity of this cover is bounded by some absolute constant (say 4). Note that we can
take such a family of disks with arbitrarily small diameters. Let D(ω, i), 1 ≤ i ≤ I (ω),
be the connected components of the preimage (T t

ab)
−1(D(ω)) that meet the closure of R.

Then det DT t
ab takes a constant value on each component D(ω, i), which is denoted by

e(ω, i). From equation (2), it holds that∑
1≤i≤I (ω)

e(ω, i)−1
≤ 1 for any ω ∈�. (13)
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We write i tω j for 1 ≤ i, j ≤ I (ω) if

(DT t
ab)z(C f ) ∩ (DT t

ab)w(C f )= {0} (14)

for any z ∈ D(ω, i) and w ∈ D(ω, j). Note that equation (14) holds if and only if

(((DT t
ab)z)

tr)−1((C f )
∗) ∩ (((DT t

ab)w)
tr)−1((C f )

∗)= {0}.

Letting the diameters of the disks D(ω) be small, we may assume∑
j 6tωi

e(ω, j)−1
≤ m( f, t) for 1 ≤ i ≤ I (ω) and ω ∈�

where
∑

j 6tωi denotes the sum over 1 ≤ j ≤ I (ω) such that j 6tω i . Further, we can take
polarizations 2(ω, i)= (Cω,i,+, Cω,i,−, ϕω,i,+, ϕω,i,−) for each ω ∈� and 1 ≤ i ≤ I (ω)
such that

(((DT t
ab)z)

tr)−1(R2
\ Č0,+) b Cω,i,− b

(
R2

\ Cω,i,+
)

b Ĉ0,− for any z ∈ D(ω, i)

and
(R2 \ Cω,i,+) ∩ (R2 \ Cω, j,+)= {0} if i tω j .

Take a family of C∞ functions gω : R2
→ [0, 1] for ω ∈� such that the support of each

gω is contained in D(ω) and
∑
ω∈� gω(z)≡ 1 for all z ∈ R. We then define the functions

gω,i : R2
→ [0, 1] for ω ∈� and 1 ≤ i ≤ I (ω) by

gω,i (z)=

{
gω(T t

ab(z)) if z ∈ D(ω, i),

0 otherwise.

We now begin the proof of Lemma 2.6. In the following, we will write C] for constants
that do not depend on t and C for constants that may depend on t . (Notice that the values of
the constants denoted by C] and C are different from place to place.) We view the operator
P t

ab under consideration as the composition of the four operations:
(i) breaking a function u ∈ Cr (R) into uω,i := gω,i u, ω ∈�, 1 ≤ i ≤ I (ω);
(ii) transforming each uω,i to vω,i := P t

ab(uω,i );
(iii) summing up vω,i for 1 ≤ i ≤ I (ω) to get vω :=

∑
1≤i≤I (ω) vω,i = gωP t

abu; and
(iv) summing up vω for ω ∈� to get P t

abu =
∑
ω vω.

For operation (i), the former claim (8) of Lemma 2.3 gives the estimate∑
ω∈�

I (ω)∑
i=1

‖uω,i‖
2
2̌0

≤ (C]‖u‖20 + C |u|20)
2
≤ C]‖u‖

2
20

+ C |u|
2
20
.

For operation (iv), the latter claim (9) of Lemma 2.3 gives the estimate

‖P t
abu‖

2
20

=

∥∥∥∥∑
ω∈�

gωP t
abu

∥∥∥∥2

20

=

∥∥∥∥∑
ω∈�

vω

∥∥∥∥2

20

≤ C]
∑
ω∈�

‖vω‖
2
2̂0

+ C
∑
ω∈�

|vω|
2
2̂0
.

Below, we consider the operations (ii) and (iii). Letting S be a branch of (T t
ab)

−1 and
K = supp(gω) in Lemma 2.4, we obtain the estimates

|vω,i |2(ω,i) ≤ C |uω,i |2̌0
, (15)

‖vω,i‖2̂0
≤ C] · e(ω, i)−1/2

‖uω,i‖2̌0
+ C |uω,i |2̌0

, (16)

‖vω,i‖
+

2̂0
≤ C] · e(ω, i)−3/2

‖uω,i‖2̌0
+ C |uω,i |2̌0

. (17)
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The next lemma is the core of our argument, in which we essentially make use of the
transversality condition (14).

LEMMA 2.7. If i tω j , we have∑
n≥0

∣∣(ψ
2̂0,n,−

(D)vω,i , ψ2̂0,n,−
(D)vω, j )L2

∣∣ ≤ C |vω,i |2(ω,i)|vω, j |2(ω, j).

Proof. Set wi,n = ψ
2̂0,n,−

(D)vω,i , w′

i,n = ψ2(ω,i),n,−(D)vω,i , w′′

i,n = wi,n − w′

i,n . For
n > 0, from the assumption i tω j we have (w′

i,n, w
′

j,n)L2 = 0, that is,

(wi,n, w j,n)L2 = (w′′

i,n, w
′

j,n)L2 + (w′

i,n, w
′′

j,n)L2 + (w′′

i,n, w
′′

j,n)L2 .

Since we have that ‖w′

i,n‖L2 ≤ 2εn
|vω,i |2(ω,i) and that ‖w′′

i,n‖L2 ≤ 2−(1−ε)n
|vω,i |2(ω,i) by

the definition of the norm | · |2(ω,i), and since 0< ε < 1/2, we derive the lemma using the
Schwarz inequality. 2

It follows from Lemma 2.7 that(∥∥vω∥∥−

2̂0

)2
≤

∑
i

∑
j 6tωi

‖vω,i‖2̂0
‖vω, j‖2̂0

+ C
∑

i

|vω,i |
2
2(ω,i)

for some constant C > 0 that may depend on I (ω), where
∑

j 6tωi denotes the sum over
1 ≤ j ≤ I (ω) such that j 6tω i . Applying the inequalities (16) and (15) in the right-hand
side, we obtain

(∥∥vω∥∥−

2̂0

)2
≤ C]

∑
i

∑
j 6tωi

e(ω, j)−1
‖uω,i‖2

2̌0
+ e(ω, i)−1

‖uω, j‖
2
2̌0

2
+ C

∑
i

|uω,i |
2
2̌0

≤ C]m( f, t)
∑

i

‖uω,i‖
2
2̌0

+ C
∑

i

|uω,i |
2
2̌0
.

On the other hand, we obtain from inequality (17)

(∥∥vω∥∥+

2̂0

)2
≤ C]

(∑
i

e(ω, i)−3/2
‖uω,i‖2̌0

)2

+ C

(∑
i

|uω,i |2̌0

)2

≤ C]m( f, t)
∑

i

‖uω,i‖
2
2̌0

+ C
∑

i

|uω,i |
2
2̌0

where we used the Schwarz inequality, equation (13) and the simple fact e(ω, i)−1
≤

m( f, t) in the second inequality. We therefore obtain, for the operations (ii) and (iii),(∥∥vω∥∥
2̂0

)2
≤ C]m( f, t)

∑
i

‖uω,i‖
2
2̌0

+ C
∑

i

|uω,i |
2
2̌0
.

Letting S be the identity map in Lemma 2.4, we see that |uω,i |2̌0
≤ C |u|20 and

|vω,i |2̂0
≤ C |vω,i |2̂(ω,i). These and inequality (15) give

|vω|
2̂0

≤ C
∑

1≤i≤I (ω)

|vω,i |2(ω,i) ≤ C
∑

1≤i≤I (ω)

|uω,i |2̌0
≤ C |u|20 .

We can now conclude the Lasota–Yorke type inequality in Lemma 2.6 from the estimates
on the operations (i)–(iv) given above.
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3. Proof of Theorem 1.2
The following proof of Theorem 1.2 is a modification of the argument by Tsujii [18].

3.1. Notations. We recall some notation from Tsujii [18]. Let A= {1, 2, . . . , `} and
letAn be the space of words of length n onA. For a word a = (ai )

n
i=1 ∈An and an integer

0 ≤ p ≤ n, let [a]p = (ai )
p
i=1. For 0 ≤ p ≤ n, we define the equivalence relation ∼p onAn

so that a ∼p b if and only if [a]p = [b]p.
Let P be the partition of S1 into the intervals P(k)= [(k − 1)/`, k/`] for k ∈A. Then

P =
∨n−1

i=0 τ
−i (P) is the partition into the intervals

P(a)=

n−1⋂
i=0

τ−i (P(an−i )), a = (ai )
n
i=1 ∈An .

Let xa be the left end point of the interval P(a).

Remark 3.1. Notice that a is the inverse of the itinerary of the points in P(a).

For a point x ∈ S1 and a = (ai )
n
i=1 ∈An , a(x) denotes the unique point y ∈ P(a) such

that τ n(y)= x . For a Cr function f ∈ Cr (S1), x ∈ S1 and b ∈An , we put

s(x, b; f ) := f (n)(b(x))=

n∑
i=1

f ([b]i (x)).

Then we have
ds

dx
(x, b; f )=

n∑
i=1

`−i d f

dx
([b]i (x)).

We will identify the unit circle S1 with the lower boundary S1
× {0} of X f . If

f (n)(b(x))≤ t < f (n+1)(b(x)), the image of the horizontal tangent vector (1, 0) at b(x) ∈

S1
× {0} by the mapping T t

f has slope (ds/dx)(x, b; f ) and hence

(DT t
f )b(x)(C f )=

{
(ξ, η) ∈ R2

∣∣∣∣ ∣∣∣∣η −
ds

dx
(x, b; f ) · ξ

∣∣∣∣ ≤ `−nθ f |ξ |

}
.

For K > 1, let Cr
+(S

1
; K ) be the set f ∈ Cr

+(S
1) such that K −1 < f (x) < K for x ∈ S1

and ‖ f ‖Cr < K . By virtue of Theorem 1.4, it is sufficient for the proof of Theorem 1.2 to
show that, for each ρ > 1 and K > 0, the condition

m( f )≤ ρ · λmin(T f )
−1 (18)

holds for functions f in an open and dense subset of Cr
+(S

1
; K ). We will prove this

claim in the following. We henceforth fix an arbitrary ρ > 1 and K > 0. Note that for
f ∈ Cr

+(S
1
; K ), we have that

θ f ≤ θK := K/(γ0`− 1), `1/K
≤ λmin(T f )≤ `K

and also that ∣∣∣∣ d2s

dx2 (x, b; f )

∣∣∣∣ =

∣∣∣∣ n∑
i=1

`−2i d2 f

dx2 ([b]i (x))

∣∣∣∣ ≤
`−2 K

1 − `−2 ≤ θK (19)

for x ∈ S1 and b ∈An .
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3.2. Some consequences of the condition m( f ) > ρ · λmin(T f )
−1. In this subsection,

we see what kind of singular situation occurs if condition (18) does not hold. Fix 1< γ < `
such that γ K < ρ.

PROPOSITION 3.2. If m( f ) > ρ · λmin(T f )
−1 for f ∈ Cr

+(S
1
; K ), then, for any n ≥ 1,

there exist c ∈An and B ⊂An with #B ≥ γ n such that∣∣∣∣ ds

dx
(xc, a; f )−

ds

dx
(xc, b; f )

∣∣∣∣ ≤ 8θK · `−n for all a, b ∈ B.

Proof. Take γ < γ̄ < 1 so close to γ that γ̄ K < ρ. Then take 1< λ < λmin(T f ) so close
to λmin(T f ) that γ̄ Kλmin(T f ) < ρλ. From the assumption, we can take an arbitrarily large
t ≥ 0, z ∈ X f , w ∈ T −t (z) and Z ⊂ T −t (z) such that

(DT t )ζ (C f ) ∩ (DT t )w(C f ) 6= {0} for ζ ∈ Z (20)

and ∑
ζ∈Z

1
E(ζ, t; f )

≥ ρt
· λmin(T f )

−t . (21)

Additionally, we may and do assume that z ∈ S1
× {0}. Set

m = min{n(x, s + t; f ) | (x, s) ∈ Z}.

(Recall the definition of n(x, t; f ) in §1.) Then we have

K −1t < m < K t and `m > λt , (22)

provided that t is sufficiently large. (To see the second inequality, note that we have
`m

∼ λmin(T f )
t for large t .)

For each ζ = (x, s) ∈ Z , let I (ζ ) ∈An(x,s+t; f ) be the word such that ζ ∈ P(I (ζ )). Set
A = {[I (ζ )]m | ζ ∈ Z} ⊂Am . Then, applying formula (2), we can see that

#A · `−m
≥

∑
ζ∈Z

1
E(ζ, t; f )

.

Combining this inequality with equation (21), we see that

#A ≥ `mρtλmin(T f )
−t > (λρ · λmin(T f )

−1)t > γ̄ K t > γ̄m . (23)

Note that condition (20) implies∣∣∣∣ ds

dx
(z, b; f )−

ds

dx
(z, b′

; f )

∣∣∣∣ ≤ 4θK · `−m for all b, b′
∈ A. (24)

We now start to consider an arbitrary integer n ≥ 1 in the claim. Taking large t in the
beginning, we may and do assume that the integer m above is much larger than n. For each
0 ≤ k ≤ m, we split A into equivalence classes with respect to ∼k and let Ak ⊂ A be one
of those equivalence classes with maximum cardinality. Then the cardinality q(k) of Ak

is a decreasing sequence with respect to k. Further, we have q(0)≥ γ̄m by equation (23)
and also q(m)= 1 obviously. Therefore, we can find an integer 0 ≤ m′

≤ m − n such that
q(m′

+ n)≤ γ−nq(m′), provided that we took sufficiently large t in the beginning. We fix
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such an integer m′ and let A′
⊂Am−m′

be the set of words that are obtained by removing
the first common m′ letters (say c) from the words in Am′ , and put x = c(z). It then follows
from equation (24) that∣∣∣∣ ds

dx
(x, b; f )−

ds

dx
(x, b′

; f )

∣∣∣∣ ≤ 4θK · `−(m−m′)
≤ 4θK · `−n for all b, b′

∈ A′.

Set B = {[a]n | a ∈ A′
}. From the condition q(m′

+ n)≤ γ−nq(m′) in the choice of m′,
we have that #B ≥ γ n . Also, since∣∣∣∣ ds

dx
(x, [a]n; f )−

ds

dx
(x, a; f )

∣∣∣∣ ≤ θK · `−n for a ∈Am−m′

,

we see that ∣∣∣∣ ds

dx
(x, b; f )−

ds

dx
(x, b′

; f )

∣∣∣∣ ≤ 6θK · `−n for all b, b′
∈ B.

For b, c ∈An and f ∈ Cr
+(S

1
; K ), the variation of (ds/dx)(·, b; f ) on the interval

P(c) is bounded by θK `
−n , in view of equation (19). Therefore, translating the point x to

the point xc, we obtain the conclusion of the proposition. 2

To state the next proposition, we set up some constants. First take real numbers α and
β such that 1< β < α < γ and then take positive integers p and ν such that

β−p`2 < 1 and (ν + 1)(p + 1)α−ν < 1.

We put

δ =
log γ − log α
log `− log α

∈ (0, 1).

Then we choose an integer N > ν such that

`ναn < γ n for n ≥ N

and
`−ν(γ /β)n

′

(1 − (ν + 1)(p + 1)α−ν)≥ 1 for n′
≥ δN .

PROPOSITION 3.3. If m( f ) > ρ · λmin(T f )
−1 for f ∈ Cr

+(S
1
; K ), then for any n ≥ N,

there exist an integer δn ≤ n′
≤ n, a word d ∈An′

and mutually disjoint subsets Bi ⊂An′

for 1 ≤ i ≤ (ν + 1)(p + 1) such that:
(a) we have ∣∣∣∣ ds

dx
(xd, b; f )−

ds

dx
(xd, b′

; f )

∣∣∣∣ ≤ 10θK · `−n′

for all b, b′
∈

⋃(ν+1)(p+1)
i=1 Bi ;

(b) #Bi ≥ βn′

for 1 ≤ i ≤ (ν + 1)(p + 1); and
(c) [a]ν = [b]ν for a ∈ Bi and b ∈ B j if and only if i = j .

Proof. Let n ≥ N and let B ⊂An be the subset in the conclusion of Proposition 3.2. For
0 ≤ k ≤ [n/ν], we split B into equivalence classes with respect to ∼kν and let Bk ⊂ B
be one of those equivalence classes with maximum cardinality. Then the cardinality q(k)
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of Bk is decreasing with respect to k and satisfies q(0)= #B ≥ γ n and q([n/ν])≤ `ν <

γ nα−[n/ν]ν , where the last inequality follows from the first condition in the choice of N .
Let k0 be the smallest integer 1 ≤ k ≤ [n/ν] such that q(k) < γ nα−kν . By this choice

of k0, we have

q(k0) < α
−νq(k0 − 1) and q(k0 − 1)≥ γ nα−(k0−1)ν . (25)

Put n′
= n − (k0 − 1)ν. Since q(k)≤ `n−ν·k obviously, we have

`n′

= `n−(k0−1)ν
≥ q(k0 − 1)≥ γ nαn′

−n or n′
≥

log γ − log α
log `− log α

· n = δn.

Let B ′

i ⊂ Bk0−1, 1 ≤ i ≤ `ν , be the equivalence classes in Bk0−1 with respect to the
relation ∼k0 , arranged in decreasing order of cardinality. (Note that some of the B ′

i may be
empty.) Then we have a simple inequality

min
1≤i≤(ν+1)(p+1)

#B ′

i ≥
q(k0 − 1)− (ν + 1)(p + 1)q(k0)

`ν

≥ `−νγ nα−(k0−1)ν(1 − (ν + 1)(p + 1)α−ν)≥ βn′

where the second inequality follows from equation (25) and the latter from the second
condition in the choice of N . Finally, let Bi ⊂An′

for 1 ≤ i ≤ (ν + 1)(p + 1) be the subset
of words that are obtained by removing the first common (k0 − 1)ν letters (say c′) from
the words in B ′

i . Then the conditions (b) and (c) hold. From the condition on the subset B
in Proposition 3.2, we have∣∣∣∣ ds

dx
(xcc′ , b; f )−

ds

dx
(xcc′ , b′

; f )

∣∣∣∣ ≤ 8θK · `−n′

for all b, b′
∈

(ν+1)(p+1)⋃
i=0

Bi .

Take d ∈An′

such that xcc′ ∈ P(d); c is as defined in Proposition 3.2. Then condition
(a) holds because the variations of the functions (ds/dx)(·, a; f ) for a ∈An′

on P(d) are
bounded by θK `

−n′

, in view of equation (19). 2

3.3. Generic perturbations. We will show that the consequences of the condition
m( f ) > ρ · λmin(T f )

−1 given in Proposition 3.3 hold only for a very small set of f ∈

Cr
+(S

1
; K ). For this purpose, we next consider perturbations of the function f .

For f ∈ Cr
+(S

1
; K ) and ϕi ∈ C∞(S1), 1 ≤ i ≤ m, we consider the family

ft(x)= f (x)+

m∑
i=1

ti · ϕi (x) (26)

with parameter t = (ti )mi=1 ∈ Rm . For a point x ∈ S1 and a finite subset σ = {bi }0≤i≤p of
An , let Gx,σ : Rm

→ Rp be the affine map defined by

Gx,σ (t)=

(
ds

dx
(x, bi ; ft)−

ds

dx
(x, b0; ft)

)p

i=1
.

Note that Gx,σ (t) is independent of f in (26). For an affine map A : Rm
→ Rp, let

Jac(A) be the Jacobian of D A|ker(D A)⊥ , the restriction of the linear part D A to the
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orthogonal complement of its kernel when A is surjective, and set Jac(A)= 0 otherwise.
In other words, Jac(A) is the maximum among the Jacobians of the restrictions of D A to
p-dimensional subspaces in Rm . The following is a slight variation of Tsujii
[18, Proposition 16].

PROPOSITION 3.4. We can choose functions ϕi ∈ C∞(S1), 1 ≤ i ≤ m, such that for any
x ∈ S1 and any subsets A = {ai }1≤i≤(ν+1)(p+1) ofAν , there exists a subset A′

= {a′

i }0≤i≤p

of A such that we have Jac(Gx,σ )≥ 1 whenever a subset σ = {bi }0≤i≤p of An with n ≥ ν

satisfies [bi ]ν = a′

i for 0 ≤ i ≤ p.

The proof of Proposition 3.4 is similar to that of Tsujii [18, Proposition 16]. For
completeness, we give the proof in the last subsection.

3.4. The end of the proof. For n ≥ ν, c ∈An and σ = (bi )
p
i=0 ∈ (An)p+1, let Y (n, c, σ )

be the set of functions f ∈ Cr
+(S

1
; K ) such that∣∣∣∣ ds

dx
(xc, bi ; f )−

ds

dx
(xc, b0; f )

∣∣∣∣ ≤ 10 θK · `−n for all 1 ≤ i ≤ p.

Note that Y (n, c, σ ) is a closed subset in Cr
+(S

1
; K ).

For n ≥ ν, let Y (n) be the set of functions f ∈ Cr
+(S

1
; K ) that belongs to Y (n, c, σ ) for

more than [βn(p+1)
] combinations of (c, σ )⊂An

× (An)p+1 satisfying Jac(Gxc,σ )≥ 1.
Let Y∗(n)=

⋃n
n′=[δn]

Y (n′). Then Y (n) and Y∗(n) are also closed subsets in Cr
+(S

1
; K ).

Proposition 3.3 implies that, if m( f ) > ρ · λmin(T f )
−1, then f belongs to the closed

subset
⋂

n≥N Y∗(n). To finish the proof of the theorem, we show that the complement
of

⋂
n≥N Y∗(n) is dense in Cr

+(S
1
; K ).

Take a function f ∈ Cr
+(S

1
; K ) arbitrarily and consider the family (26) with ϕi ∈

C∞(S1), 1 ≤ i ≤ m, in Proposition 3.4. Take ε > 0 so small that ft ∈ Cr
+(S

1
; K ) for

all t ∈ [−ε, ε]m . Let X (n, c, σ ), X (n) and X∗(n) be the set of parameters t ∈ [−ε, ε]m

such that ft ∈ Y (n, c, σ ), ft ∈ Y (n) and ft ∈ Y∗(n), respectively. From the definition of
Jacobian in the previous subsection, we have Leb(X (n, c, σ ))≤ C`−np for some constant
C > 0 that depends on θK , m and ε. Therefore, taking the number of combinations of
(c, σ ) into consideration, we obtain

Leb(X (n))≤
C`−np

× `n
× `(p+1)n

β(p+1)n
< C(β−p`2)n .

As we chose p such that β−p`2 < 1, we have Leb
(⋂

n≥N X∗(n)
)
= 0 and hence the

complement of
⋂

n≥N Y∗(n) in Cr
+(S

1
; K ) is dense.

Remark 3.5. The proof above shows also that the condition m( f )≤ λmin(T f )
−1 holds for

a prevalent subset of f ∈ Cr
+(S

1) in a measure-theoretical sense [10, 19].

3.5. The proof of Proposition 3.4. To prove Proposition 3.4, it is enough to show the
following localized version of the claim.

PROPOSITION 3.6. For each y ∈ S1, we can choose functions ϕy,i ∈ C∞(S1) for 1 ≤

i ≤ `ν and a neighborhood Uy of y such that, for any point x ∈ Uy and any subsets
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A = {ai }1≤i≤(ν+1)(p+1) of Aν , there exists a subset A′
= {a′

i }0≤i≤p of A such that we have
that Jac(Gx,σ )≥ 1 whenever a subset σ = {bi }0≤i≤p of An with n ≥ ν satisfies [bi ]ν = a′

i
for 0 ≤ i ≤ p.

In fact, once we have Proposition 3.6, we can take a finite subset {y( j)}J
j=1 in S1 so that

the neighborhoods Uy( j) in Proposition 3.6 cover S1 and, letting {ϕi }
m
j=1 be the union of

{ϕy( j),i }
`ν

i=1 for 1 ≤ j ≤ J in the corresponding conclusions of Proposition 3.6, we obtain
Proposition 3.4.

Proof of Proposition 3.6. Take a point y ∈ S1 arbitrarily. For a, b ∈Aν , we write a ≺ b
if τ q(b(y))= a(y) for some q ≥ 0. By simple combinatorial argument, we can show that
this is a partial order onAν and that, for each a ∈Aν , there exists at most (ν + 1) elements
b ∈Aν such that b ≺ a. (See the proof of Tsujii [18, Proposition 16].)

For 0< ε < 1/2 and a ∈Aν , let U (ε) be the ε-neighborhood of y and Ua(ε) the
connected component of τ−ν(U (ε)) that contains a(y). We consider an integer µ > ν
that will be specified later. We then choose ε0 > 0 so small that τ i (Ub(ε0)) ∩ Ua(ε0) 6= ∅

for some 1 ≤ i ≤ µ only if a ≺ b. Take functions ϕa ∈ C∞(S1) for a ∈Aν supported on
Ua(ε0) such that

d

dx
ϕa(y)= `ν on Ua(ε0/3) and

∣∣∣∣ d

dx
ϕa(y)

∣∣∣∣< 2`ν on S1.

Finally, let ϕy,i , 1 ≤ i ≤ `ν , be a rearrangement of ϕa, a ∈Aν and let Uy = U (ε0/3).
We show that the conclusion of the proposition holds for the neighborhood Uy and the

functions ϕy,i , 1 ≤ i ≤ `ν , provided that the integer µ is sufficiently large. Consider the
family (26) with ϕi = ϕy,i and m = `ν and suppose that a subset A = {ai }1≤i≤(ν+1)(p+1)

of Aν is given. From the property of the partial order ≺ on Aν mentioned above, we can
choose a subset A′

= {a′

i }0≤i≤p of A that consists of maximal elements in A with respect
to ≺. Let σ = {bi }0≤i≤p be a subset of An with n ≥ ν such that [bi ]ν = a′

i for 0 ≤ i ≤ p.
For b ∈An and x ∈ Uy , we set

h1(x, b; t)=

min{n,µ}∑
j=1

`− j d

dx
ft([b] j (x))

and

h2(x, b; t)=

n∑
j=min{n,µ}+1

`− j d

dx
ft([b] j (x)),

so that
ds

dx
(x, b; ft)= h1(x, b; t)+ h2(x, b; t).

Accordingly, we decompose the affine map Gx,σ into

G(1)
x,σ (t)= (h1(x, bi ; t)− h1(x, b0; t))i=1,2,...,p : R`

ν

→ Rp

and
G(2)

x,σ (t)= (h2(x, bi ; t)− h2(x, b0; t))i=1,2,...,p : R`
ν

→ Rp.
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Let ξ : {1, 2, . . . , p} → {1, 2, . . . , `ν} be the correspondence such that a′

i (y) ∈

supp(ϕy,ξ(i)) for 1 ≤ i ≤ p, and consider the subspace of R`ν ,

E = {t = (t j )
`ν

j=1 ∈ R`
ν

| t j 6= 0 only if j = ξ(i) for some 1 ≤ i ≤ p},

which is naturally identified with Rp. Take any point x ∈ Uy and let L(1) and L(2) be

the matrices that represent the linear part of the affine mappings G(1)
x,σ : E → Rp and

G(2)
x,σ : E → Rp, respectively. As a consequence of the choice of a′

i , we can see that L(1) is
the identity matrix of size p while all the entries L(2) are bounded by 2`−µ+ν(1 − `−1)−1.
Therefore, if we take sufficiently large µ, it holds that

Jac(DGx,σ )≥ Jac(DGx,σ |E )≥ 1/2.

Multiplying each ϕy,i by 2, we can replace 1/2 by 1 on the right-hand side. 2

Acknowledgements. The author would like to thank Artur Avila, Sébastien Gouëzel,
Michihiro Hirayama and the anonymous referee for valuable comments that were crucial
in improving this paper.

A. Appendix. Proof of Theorem 1.4
We show that the negation of the conditions (i), (ii) and (iii) are all equivalent. First
we introduce two quantities n( f, t) and n( f ), similar to m( f, t) and m( f ), respectively,
as follows. Put Ĉ f = {(x, y) ∈ R2

| |y| ≤ 2θ f |x |} ⊃ C f . For t ≥ 0, z ∈ X f and a one-
dimensional subspace L ⊂ R2, we define

n( f, t, z, L)=

∑
∗

1
E(ζ, t; f )

≤ 1

where
∑

∗ is the sum over ζ ∈ (T t
f )

−1(z) such that (DT t
f )ζ (Ĉ f )⊃ L . Then we set

n( f, t)= max
z∈X f

max
L∈RP1

n( f, t, z, L)

and
n( f )= lim sup

t→∞

n( f, t)1/t .

Note that n( f, t) is submultiplicative with respect to t : n( f, t + s)≤ n( f, t) · n( f, s). In
this point, the quantity n( f, t) is better than m( f, t). In particular, the limit in the definition
of n( f ) is actually exact.

We show that m( f )= 1 implies n( f )= 1. For this purpose, it is sufficient to prove the
claim that

m( f, s)≤ n( f, t) for any t ≥ 0 and s = (b/a)t + b > t

where
a = min

x∈S1
f (x) and b = max

x∈S1
f (x).

Consider a point z ∈ X f and take w ∈ T −s
f (z). If

(DT s
f )ζ (C f ) ∩ (DT s

f )w(C f ) 6= {0} (A1)

https://doi.org/10.1017/S0143385707000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000430


Decay of correlations 311

for a point ζ ∈ T −s
f (z), then we have

(DT t
f )ζ ′(Ĉ f )⊃ L := (DT s

f )w(R × {0}) for ζ ′
= T s−t

f (ζ ) ∈ T −t
f (z). (A2)

Indeed, this follows from the fact that the differences between the slope of L and those
of boundary lines of (DT s

f )w(C f ) are not greater than `−[s/b]θ f , while the differences

between the slopes of the boundary lines of (DT t
f )ζ ′(Ĉ f ) and those of the boundary lines

of (DT t
f )ζ ′(C f ) are greater than `−[t/a]−1θ f = `−[s/b]θ f . Hence, in view of equation (2),

we have ∑
ζ :ζtw

1
E(ζ, s; f )

≤

∑
∗

1
E(ζ, t; f )

where
∑
ζ :ζtw denotes the sum over ζ ∈ T −s

f (z) satisfying equation (A1) and
∑

∗ denotes
the same sum as that in the definition of n( f, t, z, L). Clearly, this implies the claim above.

We next show that f is cohomologous to a constant function if n( f )= 1. Suppose
n( f )= 1. By the submultiplicative property of n( f, t), we have n( f, t)= 1 for all
t ≥ 0. We can therefore take sequences of real numbers tn ≥ 0, points zn ∈ X f and one-
dimensional subspaces Ln ∈ RP1 for n ≥ 1 such that n( f, tn, zn, Ln)= 1 for all n ≥ 1 and,
as n → ∞:
• tn → ∞;
• zn converges to some z∞ ∈ X f ; and
• Ln converges to some L∞ (in RP1).
The condition n( f, tn, zn, Ln)= 1 and equation (2) imply that the cone (DT −tn

f )w(Ĉ f )

contains Ln for all the points w ∈ T −tn
f (zn). Note the unstable subspace (or the

tangent space of the unstable manifold) for a backward orbit (w(t))t≤0 contained in
(DT −t

f )w(t)(C f ) for any t ≤ 0. Thus, by continuity, we see that the unstable subspaces
for all backward orbits of z∞ coincide with each other (and with L∞). Moreover, such
a property holds not only for the point z∞ but for all the points in X f because the set of
points with such a property is closed and completely invariant with respect to the flow T f .

For x ∈ S1, let ψ(x) be the slope of the (unique) unstable subspace at (x, 0) ∈ X f .
Invariance of the unstable subspaces implies that we have

ψ(τ(x))= ( f ′(x)+ ψ(x))/` for all x ∈ S1. (A3)

Inductive use of this equality yields

ψ(x)=

∑
n≥1

∑
τ n(y)=x

`−2n f ′(y) for all x ∈ S1, (A4)

where the right-hand side converges in Cr−1 sense. Since we have
∫

S1 ψ(x)= 0 from
equation (A4), the function

ϕ(x)=

∫ x

0
ψ(y) dy

is well defined and Cr on S1. It follows from equation (A3) that

ϕ(τ(x))= ϕ(x)+ f (x)− c for some constant c. (A5)

That is, f is cohomologous to a constant function.
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It is easy to show that T f is not weakly mixing if f is cohomologous to a constant
function. Suppose that f ∈ Cr

+(S
1) is cohomologous to a constant function, that is, f

satisfies equation (A5) for some ϕ ∈ Cr (S1) and c ∈ R. By integrating both sides over S1,
we see that c =

∫
S1 f (x) dx > 0. Define

8(x, s)= exp((2π i/c)(ϕ(x)+ s)) for (x, s) ∈ X f .

Then 8 ◦ T t
f = e(2π i/c)t8 for t ≥ 0 . Therefore, T t

f is not weakly mixing.
To finish the proof, we show that m( f )= 1 if the semi-flow Tt

f is not weakly mixing.

Suppose that Tt
f is not weakly mixing. Then we can find a real number a 6= 0 and an L2

function 8 on X f such that 8 ◦ T t
f = eiat8 for t ≥ 0. Equivalently, there exists an L2

function ϕ on S1 such that8(x, s)= e−iasϕ(x) and ϕ(τ(x))= eia f (x)ϕ(x) for x ∈ S1 and
t ≥ 0. Actually, the last equality implies that ϕ is a Cr function and so is8. (For the proof
of this fact, we refer to Parry and Pollicott [14, Proposition 4.2], for instance. Replace the
symbolic dynamical system σ : X+

→ X+ and the space of Hölder functions on X+ in the
proof by τ : S1

→ S1 and Cr (S1), respectively.) Let L(z) be the null line of the differential
Dz8. Then this line field is invariant with respect to the semi-flow T f and not tangent to
the flow direction. Hence L(z) is contained in the cone (DT −t

f )w(t)(C f ) for any backward
orbit {w(t)}t≤0 of z and any t ≤ 0. This and equation (2) imply that m( f, t)= 1 for any
t ≥ 0 and hence that m( f )= 1.

B. Appendix. Proof of Lemma 2.4
Let 0 = Z+ × {+,−}, c(+)= 1 and c(−)= 0. Below, we write C0 for constants that do
not depend on S, h,2 or2′ and C for constants that may depend on them. Take an integer
µ= µ(S) such that

2−µ+6
‖ξ‖ ≤ ‖(DSx )

tr(ξ)‖ ≤ 2µ−6
‖ξ‖ for any x ∈ K and any ξ ∈ R2.

Let ν ≤ µ− 6 be an integer such that

2ν−1 <3(S, 2′, K )≤ 2ν .

So we have
‖DStr

x (ξ)‖ ≤ 2ν‖ξ‖ if x ∈ K and (DSx )
tr(ξ) /∈ C′

−.

We write (m, τ ) ↪→ (n, σ ) if either:
• (τ, σ )= (+,+) and m − µ≤ n ≤ max{0, m + ν + 6}; or
• (τ, σ ) ∈ {(−,−), (+,−)} and m − µ≤ n ≤ m + µ.
We write (m, τ ) 6↪→ (n, σ ) otherwise.

Consider a function u ∈ Cr (R) and set v := Lu. For (n, σ ), (m, τ ) ∈ 0, we define

vm,τ
n,σ = ψ2′,n,σ (D)L(u2,m,τ ),

so that v2′,n,σ =
∑
(m,τ )∈0 v

m,τ
n,σ . By Parseval’s identity, we obtain∑

(n,σ )∈0

‖vm,τ
n,σ ‖

2
L2 ≤ ‖L(u2,m,τ )‖

2
L2 ≤ C0γ (S)

−1
‖h‖

2
L∞‖u2,m,τ‖

2
L2 . (B1)

We also have the following estimate, but will postpone the proof for a while.
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LEMMA B.1. If (m, τ ) 6↪→ (n, σ ), we have

‖vm,τ
n,σ ‖L2 ≤ C2−(r−1)max{m,n}

‖u2,m,τ‖L2 . (B2)

Remark B.2. If S is an affine map in the lemma above, the Fourier transform of
L(u2,m,τ ) is supported on DStr(supp(ψ2,m,τ )), which does not meet supp(ψ2′,n,σ ) by
the assumption (m, τ ) 6↪→ (n, σ ), and hence the assertion holds trivially with vm,τ

n,σ = 0. To
prove the lemma above, we will estimate some oscillatory integrals using smoothness of S.

We first show the assertion that |v|2′ ≤ C |u|2 for some constant C , which implies that
L extends boundedly to L : W†(R;2)→ W†(R;2′). By definition, we have

|v|22′ ≤ 2
∑

(n,σ )∈0

22(c(σ )−ε)n
(∥∥∥∥ ∑

(m,τ )↪→(n,σ )

vm,τ
n,σ

∥∥∥∥2

L2
+

∥∥∥∥ ∑
(m,τ )6↪→(n,σ )

vm,τ
n,σ

∥∥∥∥2

L2

)
where

∑
(m,τ )↪→(n,σ ) (respectively,

∑
(m,τ ) 6↪→(n,σ )) denotes the sum over (m, τ ) ∈ 0 such

that (m, τ ) ↪→ (n, σ ) (respectively, (m, τ ) 6↪→ (n, σ )). Since the relation (m, τ ) ↪→ (n, σ )
holds only if c(σ )≤ c(τ ) and |m − n|< µ, it holds that∑

(n,σ )∈0

∥∥∥∥ ∑
(m,τ )↪→(n,σ )

2(c(σ )−ε)nvm,τ
n,σ

∥∥∥∥2

L2
≤ C

∑
(n,σ )∈0

∑
(m,τ )∈0

22(c(τ )−ε)m
‖vm,τ

n,σ ‖
2
L2

≤ C
∑

(m,τ )∈0

22(c(τ )−ε)m
‖u2,m,τ‖

2
L2 ≤ C |u|

2
2

where the second inequality follows from equation (B1). It also follows from Lemma B.1
and the Schwarz inequality that∑

(n,σ )∈0

∥∥∥∥ ∑
(m,τ )6↪→(n,σ )

2(c(σ )−ε)nvm,τ
n,σ

∥∥∥∥2

L2

≤

∑
(n,σ )∈0

∥∥∥∥ ∑
(m,τ ) 6↪→(n,σ )

2c(σ )n−c(τ )m−(r−1−ε)max{n,m}
· 2(r−1)max{n,m}+(c(τ )−ε)mvm,τ

n,σ

∥∥∥∥2

L2

≤

∑
(n,σ )∈0

( ∑
(m,τ )∈0

22c(σ )n−2c(τ )m−2(r−1−ε)max{n,m}

)( ∑
(m,τ )∈0

22(c(τ )−ε)m
‖u2,m,τ‖

2
L2

)
≤ C |u|

2
2. (B3)

Thus we obtain |v|2′ ≤ C |u|2 for u ∈ Cr (R) and hence for u ∈ W†(R;2).
We next prove equations (10) and (11). The inequality (10) is easy to see:

(‖v‖−

2′)
2
≤ ‖v‖2

L2 ≤ γ (S)−1
‖h‖

2
L∞‖u‖

2
L2 ≤ γ (S)−1

‖h‖
2
L∞‖u‖

2
2.

To prove equation (11), we begin by writing the left-hand side as

(‖v‖+

2′)
2
= ‖ψ2′,0,+(D)v‖

2
L2 +

∑
n≥1

22n
‖ψ2′,n,+(D)v‖

2
L2 .

The first term on the right-hand side is bounded by |v|2
2′ and hence by C |u|

2
2. The sum on

the right-hand side is bounded by

2 ·

(∑
n≥1

∥∥∥∥ ∑
(m,τ )↪→(n,+)

2nv
m,τ
n,+

∥∥∥∥2

L2
+

∑
n≥1

∥∥∥∥ ∑
(m,τ )6↪→(n,+)

2nv
m,τ
n,+

∥∥∥∥2

L2

)
.
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By the Schwarz inequality, we have∥∥∥∥ ∑
(m,+)↪→(n,+)

2nv
m,+
n,+

∥∥∥∥2

L2
≤

( ∑
(m,+)↪→(n,+)

22(n−m)
)( ∑

(m,+)↪→(n,+)

22m
‖v

m,+
n,+ ‖

2
L2

)
where

∑
(m,+)↪→(n,+) denotes the sum over m ≥ 0 such that (m,+) ↪→ (n,+). Note that

we have (m, τ ) ↪→ (n,+) for n ≥ 1 only if τ = + and n ≤ m + ν + 6. We can therefore
see, by using equation (B1), that∑

n≥1

∥∥∥∥ ∑
(m,τ )↪→(n,+)

2nv
m,τ
n,+

∥∥∥∥2

L2
≤ C0 · 22νγ (S)−1

‖h‖
2
L∞‖u‖

2
2.

On the other hand, by using Lemma B.1 and the Schwarz inequality, we can show that∑
n≥0

∥∥∥∥ ∑
(m,τ ) 6↪→(n,+)

2nv
m,τ
n,+

∥∥∥∥2

L2
< C |u|

2
2

in a similar manner as equation (B3). We therefore obtain equation (11). Obviously,
equations (10) and (11) imply equation (12) and hence L extends boundedly to L :

W∗(R;2)→ W∗(R;2′). Finally, we complete the proof by proving Lemma B.1.

Proof of Lemma B.1. Since K is compact, we can take closed cones C̃+ b C+ and
C̃− b C− such that

(DSζ )
tr(Rd

\ C̃+) b C′
− for ζ ∈ K .

Let ϕ̃+, ϕ̃− : S1
→ [0, 1] be C∞ functions satisfying

ϕ̃+(ξ)=

{
1 if ξ /∈ S1

∩ C−,

0 if ξ ∈ S1
∩ C̃−,

ϕ̃−(ξ)=

{
1 if ξ /∈ S1

∩ C+,

0 if ξ ∈ S1
∩ C̃+.

Recall the function χ and define ψ̃n(ξ)= χ(2−n−1
|ξ |)− χ(2−n+2

|ξ |) for n ≥ 1 and

ψ̃2,n,σ (ξ)=

{
ψ̃n(ξ)ϕ̃σ (ξ/|ξ |) if n ≥ 1,

χ(2−1
|ξ |) if n = 0

for (n, σ ) ∈ 0. Then we have ψ̃2,n,σ (ξ)= 1 if ξ ∈ supp(ψ2,n,σ ). From the definition
of the relation ↪→, there exists a constant L > 1, which may depend on S, such that if
(m, τ ) 6↪→ (n, σ ) and max{m, n} ≥ L , it holds that

d(supp(ψ2′,n,σ ), (DSζ )
tr(supp(ψ̃2,m,τ )))≥ L−1

· 2max{n,m} for ζ ∈ K . (B4)

In the case where max{m, n}< L , it is easy to see that equation (B2) holds with the
constant C depending on L . Thus we assume max{m, n} ≥ L in the following.

We consider the operator Sm,τ
n,σ defined by

Sm,τ
n,σ = ψ2′,n,σ (D) ◦ L ◦ ψ̃2,m,τ (D).

Then we have vm,τ
n,σ = Sm,τ

n,σ u2,m,τ since ψ̃2,m,τ (D)(u2,m,τ )= u2,m,τ . We may rewrite
this operator Sm,τ

n,σ as

(Sm,τ
n,σ u)(x)= (2π)−4

∫
V m,τ

n,σ (x, y) · u ◦ S(y) · |det DS(y)| dy,
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where

V m,τ
n,σ (x, y)=

∫
ei(x−w)ξ+i(S(w)−S(y))ηh(w)ψ2′,n,σ (ξ)ψ̃2,m,τ (η) dw dξ dη. (B5)

Since we have ‖u ◦ S(y) · |det DS(y)|‖L2 ≤ C‖u‖L2 , the inequality (B2) follows if the
operator norm of the integral operator

Hm,τ
n,σ : L2(R2)→ L2(R2), Hm,τ

n,σ v(x)=

∫
V m,τ

n,σ (x, y)v(y) dy

is bounded by C · 2−(r−1)max{n,m}.
Apply the following formula of integration by parts for (r − 1) times in equation (B5),∫

ei f (w)g(w) dw = i ·

∫
ei f (w)

·

2∑
k=1

∂wk

(
∂wk f (w) · g(w)∑2

j=1(∂w j f (w))2

)
dw

where w = (wk)
2
k=1 ∈ R2. We then obtain the expression

V m,τ
n,σ (x, y)=

∫
ei(x−w)ξ+i(S(w)−S(y))ηF(ξ, η, w)ψ2′,n,σ (ξ)ψ̃2,m,τ (η) dw dξ dη

where F(ξ, η, w) is continuous in w and C∞ in ξ and η. Note that F(ξ, η, w)= 0 if
w /∈ K . From equation (B4), there is a constant Cαβ for multi-indices α and β, such that

|∂αξ ∂
β
η F(ξ, η, w)| ≤ Cαβ · 2−n|α|−m|β|−(r−1)max{n,m} (B6)

for w ∈ R2, ξ ∈ supp(ψ2′,n,σ ) and η ∈ supp(ψ̃2,m,τ ). For n ≥ 0 and m ≥ 0, we set

Gnm(ξ, η, w)= F(2nξ, 2mη, w)ψ2′,n,σ (2
nξ)ψ̃2,m,τ (2mη).

By changes of variable, we can rewrite V m,τ
n,σ (x, y) as∫

22n+2m(F−1
ξη Gnm)(2n(x − w), 2m(S(w)− S(y)), w) dw (B7)

where F−1
ξη is the inverse Fourier transform with respect to the variables ξ and η. From

equation (B6), there exists a constant Cαβ for any multi-indices α and β such that

|∂αξ ∂
β
η Gnm |L∞ ≤ Cαβ2−(r−1)max{n,m}.

This implies that there exists a constant C such that

|F−1
ξη Gnm(x, y, w)| ≤ C2−(r−1)max{n,m}(1 + |x |

2)−2(1 + |y|
2)−2.

Applying this inequality in expression (B7) for V m,τ
n,σ (x, y), we obtain the required estimate

for Hm,τ
n,σ from Young’s inequality. 2

C. Appendix. Proof of Lemma 2.3
We prove inequality (8). For inequality (9), we refer to Baladi and Tsujii [4, Lemma 7.1].
Recall the argument in the proof of Lemma 2.4 in Appendix B, setting S = id. Notice
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that the assumptions of Lemma 2.4 then hold since we assume 2′ <2. Set vi = gi · u for
1 ≤ i ≤ I . Then we have

I∑
i=1

(‖vi‖
−

2′)
2
≤

I∑
i=1

‖vi‖
2
L2 ≤ ‖u‖

2
L2 ≤ C‖u‖

2
2. (C1)

We have proved in the proof of Lemma 2.4 that∑
n≥0

22n
∥∥∥∥ ∑
(m,τ ) 6↪→(n,+)

ψ2′,n,+(D)(gi u2,m,τ )

∥∥∥∥2

L2
≤ C |u|

2
2.

Since we can and do put µ= 6 in the setting of S = id, the relation (m, τ ) ↪→ (n,+) holds
only if |m − n| ≤ 6. Hence we have, by the Schwarz inequality,

I∑
i=1

∑
n≥0

22n
∥∥∥∥ ∑
(m,τ )↪→(n,+)

ψ2′,n,+(D)(gi u2,m,τ )

∥∥∥∥2

L2

≤ 13 ·

I∑
i=1

∑
n≥0

∑
m:|m−n|≤6

22n
‖ψ2′,n,+(D)(gi u2,m,+)‖

2
L2

≤ 13 · 212
·

∑
m≥0

∑
i

22m
‖gi u2,m,+‖

2
L2 ≤ C0‖u‖

2
2.

We therefore obtain
∑I

i=1(‖vi‖
+

2′)
2
≤ C0‖u‖

2
2 + C |u|

2
2, which together with equa-

tion (C1) yields equation (8).
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[1] A. Avila, S. Gouëzel and M. Tsujii. Smoothness of solenoidal attractors. Discrete Contin. Dyn. Syst. 15(1)
(2006), 21–35.

[2] A. Avila. Personal communication, 2005.
[3] V. Baladi. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear

Dynamics, 16). World Scientific, Singapore, 2000.
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complètement continues. Ann. of Math. (2) 52 (1950), 140–147.

https://doi.org/10.1017/S0143385707000430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000430


Decay of correlations 317

[13] C. Liverani. On contact Anosov flows. Ann. Math. 159 (2004), 1275–1312.
[14] W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics.
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