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Equivariant cohomology of torus orbifolds
Alastair Darby, Shintarô Kuroki, and Jongbaek Song
Abstract. We calculate the integral equivariant cohomology, in terms of generators and relations,
of locally standard torus orbifolds whose odd degree ordinary cohomology vanishes. We begin by
studying GKM-orbifolds, which are more general, before specializing to half-dimensional torus
actions.

1 Introduction

The interest in the integral cohomology of orbifolds stems from the subtleties that
appear when in comparison with their manifold counterparts. The main, and first,
example of this is weighted projective space. It can easily be seen that its rational
cohomology is the same as that of ordinary projective space. Kawasaki [Kaw73]
proved, surprisingly, that integrally their cohomologies are also additively isomorphic
but that they have different product structures. Weighted projective spaces, when
thought of as toric varieties, admit a natural half-dimensional compact torus action
whose equivariant cohomology was studied in [BFR09]. A similar phenomenon is
observed whereby the rational equivariant cohomology is the same as for ordinary
projective space, but the integral equivariant cohomology distinguishes them. In this
paper, we consider a much wider class of orbifolds with torus action where this
phenomenon persists, namely GKM-orbifolds and torus orbifolds, and calculate their
integral equivariant cohomology.

Goresky et al. [GKM98] showed that a lot could be said about the equivariant
cohomology of a wide range of spaces with compact torus action by considering a
combinatorial approximation of the space. More specifically, if a space X with compact
torus T k-action is equivariantly formal (which is implied if Hodd(X) = 0), then each
closed one-dimensional orbit is a copy of a two-sphere that is rotated according
to some element of Hom(T k , S1). They proved that the equivariant cohomology
H∗T k(X;R) (note the real coefficients) is encoded in the one-skeleton, the union of
the zero- and one-dimensional orbits. It is isomorphic to the algebra of piecewise
polynomials on the one-skeleton, i.e., the algebra given by attaching to each fixed point
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of X elements of the polynomial algebra H∗(BT k ;R), so that if two fixed points belong
to a two-sphere, their polynomials agree modulo the element of Hom(T k , S1) attached
to that sphere.

The one-skeleton can be modeled on a labeled graph, and Guillemin and Zara
[GZ01] abstract this idea, studying these graphs as objects of interest in their own right,
and coin the terms GKM-manifold, GKM-orbifold, and GKM-graph. The algebra
of piecewise polynomials on the one-skeleton described beforehand is extended
to the abstract labeled graphs and is often called the equivariant cohomology of
the graph. A similar technique can be used for the equivariant cohomology of
GKM-manifolds with integer coefficients where the polynomials used now lie in
H∗(BT k ;Z).

Torus manifolds, first studied in [HM03] and consequently in [MP06, MMP07],
can be considered as a special case of GKM-manifolds where the the torus acts effec-
tively with exactly half the dimension of the manifold. This has the added bonus that
we can explicitly give generators and relations for the integral equivariant cohomology.
Examples of torus manifolds include toric manifolds (defined as compact nonsingular
toric varieties), quasitoric manifolds, and even-dimensional spheres.

The integral equivariant cohomology of smooth toric varieties is known to be given
by the face ring of the corresponding fan and, for quasitoric manifolds, the face ring of
the quotient simple polytope. For the wider class of torus manifolds, it was proved by
Masuda and Panov [MP06] that the integral equivariant cohomology is isomorphic to
the face ring of an appropriate simplicial poset. In [MMP07], they use Thom classes of
the associated torus graph to explicitly give the generators and relations for the integral
equivariant cohomology of the graph. This is isomorphic to the integral equivariant
cohomology of the torus manifold if its ordinary cohomology vanishes in all odd
degrees.

When we move from manifolds to orbifolds, the picture slightly changes. In the case
of singular toric varieties, including toric varieties having orbifold singularities, it was
proved in [BFR09, Fra10] that its equivariant cohomology with integer coefficients
is given by the ring PP[Σ] of piecewise polynomials on its fan Σ if its ordinary odd
degree cohomology vanishes. Note in particular that the ordinary cohomology of a
toric manifold is concentrated in even degrees; hence, its equivariant cohomology is
isomorphic to PP[Σ], which is isomorphic to the face ring of the fan in this case.
However, this is not true for orbifolds in general. In [BSS17, BNSS19, KMZ17], several
verifiable conditions for toric orbifolds to have vanishing odd degree cohomology are
studied, and the authors of [BSS17] show that, under the condition of vanishing odd
degree cohomology, the equivariant cohomology of a projective toric orbifold can
be realized as a subring of the usual face ring of the fan that satisfies an integrality
condition.

GKM orbifolds, as first defined in [GZ01], are orbifold versions of GKM-manifolds.
The closed one-dimensional orbits are now spindles (see Example 2.2). Examples
of GKM-orbifolds include weighted Grassmanians [AM15, CR02] and weighted flag
varieties [QS11]. In Section 2, we define an abstract orbifold GKM-graph, similar to
[GZ01], which is in some sense a rational version of the manifold case. After showing
how a GKM-orbifold produces such a graph, we then define the integral cohomology
of an orbifold GKM-graph H∗T(�, α) and prove that the integral equivariant cohomol-
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ogy of the GKM-orbifold is isomorphic to H∗T(�, α)when its odd degree cohomology
vanishes (among other conditions).

In Section 3, as in the manifold case, we concentrate on half-dimensional torus
actions. We work entirely combinatorially in this section by initially considering
the orbifold analogue of a torus graph. We then define the weighted face ring of an
orbifold torus graph, which is a polynomial ring given in terms of generators and
relations using integral linear combinations of rational Thom classes, and show that
this weighted face ring is isomorphic to the equivariant cohomology of the orbifold
torus graph.

We move back toward geometry in Section 4, where we consider locally
standard GKM-orbifolds. This leads to objects known as torus orbifolds (see
[GGKRW18, KMZ17]), orbifolds with a half-dimensional torus action, whose quo-
tient space Q is a manifold with faces. Each such orbifold can be characterized
by labeling the codimension-one faces of Q which is dual to the the correspond-
ing torus graph. From this characteriation, there is a canonical method to build
a torus orbifold using the quotient construction, which we show reproduces the
original torus orbifold. Using results from the previous sections, we give the integral
equivariant cohomology of this torus orbifold when its odd degree cohomology
vanishes.

In Section 5, we give an explicit formula for the integral equivariant cohomology of
all four-dimensional torus orbifolds for which there is a complete obstruction to the
vanishing of the odd degree cohomology.

Throughout this paper, cohomology is taken with integral coefficients, unless
stated otherwise. As is natural, we make the usual identification Hom(S1 , T k) =
H2(BT k) ≅ Zk and write its standard integral basis as {ε1 , . . . , εk}, where ε i is
the inclusion into the ith copy of S1 in T k ∶= S1 × ⋅ ⋅ ⋅ × S1. The dual of this notion
gives us the identification Hom(T k , S1) = H2(BT k) ≅ Zk with its dual integral basis
{ε∗1 , . . . , ε∗k}, where the elements now relate to projections.

One other way to consider the identification Hom(T k , S1) = H2(BT k) is to con-
sider elements of Hom(T k , S1) as complex one-dimensional T k-representations.
These can be thought of as T k-equivariant complex line bundles over a point, and
taking the equivariant first Chern classes of these bundles produces the identification.
As T k is abelian, the one-dimensional complex representations form all of the irre-
ducible representations.

2 GKM-orbifolds

We begin with a brief introduction of torus actions on orbifolds. We refer to [LT97,
Section 2] and [GGKRW18, Section 2] for more details regarding Lie group actions on
orbifolds.

Let X = (X ,U) be a 2n-dimensional orbifold, where U denotes an orbifold atlas
on the underlying topological space X. To be more precise, U consists of the maximal
collection of orbifold charts

{(Ũ , G , ϕ∶ Ũ �→ U ⊆ X)}
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which covers X, where Ũ is an open subset of R2n , G is a finite subgroup of O(2n),
and ϕ is a G-equivariant map which induces a homeomorphism from Ũ/G to an open
subset U of X.

Suppose that there is an action of a k-dimensional compact torus T k on X, for
some k ≤ n, with nonempty fixed point set. Then, we may consider a T k invariant
neighborhood Up of a fixed point p in X. Each element t ∈ T k induces a smooth map
Lt ∶Up → Up , which yields a smooth lift L̃t ∶ Ũp → Ũp such that the following diagram
commutes:

Ũp Ũp

Up Up .

L̃ t

/Gp /Gp

L t

Notice that (Ũp , Gp , Ũp
/Gp��→ Up) forms an orbifold chart, and Gp is called the local

group around p.
Now, we consider the tangent space TpŨ(∶= TpŨp) of Ũp at p and the tangential

representation with respect to the action of T k on Ũp . Since T k is abelian, the tangent
space TpŨ is decomposed into complex one-dimensional representations

TpŨ ≅
n
⊕
i=1

V(α i , p),(2.1)

where V(α i , p) denotes a complex one-dimensional T k-representation with weight
α i , p ∈ Hom(T k , S1).

Definition 2.1 A closed 2n-dimensional-oriented orbifoldX = (X ,U)with an action
of a k-dimensional torus T k , with k ≤ n, is called a GKM-orbifold if
(1) there are finitely many T k-fixed points and connected components of one-

dimensional orbits and
(2) the weights {α1, p , . . . , αn , p} ⊂ Hom(T k , S1) of the tangential representation at

each fixed point p ∈ X, as in (2.1), are pairwise linearly independent.

Remark 2.1 Although Guillemin and Zara [GZ01] require a T k-invariant almost
complex structure for their GKM-manifolds and GKM-orbifolds, we shall not assume
the existence of an invariant almost complex structure. Also see Remark 2.4.

Example 2.2 (Spindle) Consider the quotient space

S2(m, n) ∶= S3/S1⟨m, n⟩,
where we identity two points (z1 , z2) and (z′1 , z′2) in S3 ⊂ C2 if

(z′1 , z′2) = (tmz1 , tnz2)(2.2)

for some positive integers m, n, and t ∈ S1. We denote by [z1 ∶ z2] the equivalence class
coming from (2.2). Although S2(m, n) is equipped with an orbifold structure induced
from the equivalence relation, its underlying topological space is homeomorphic to S2.
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Hence, we may think of the S1-action on S2(m, n) being induced from the standard
T2/S1⟨m, n⟩ ≅ S1-action on S2, whose fixed point set consists of two isolated points
that are connected by a connected component of one-dimensional orbits. We refer to
[GZ01, Example 1.2.1] and [DKS19].

The two assumptions in Definition 2.1 lead us to understand the set of one-
dimensional orbits as a union of two-spheres which are connected only by fixed points.
This brings about a graph by associating the set of fixed points and the set of one-
dimensional orbits with the set of vertices and the set of edges, respectively.

Furthermore, the tangential representation (2.1) together with the order of the local
group around a fixed point produces a certain labeling on each edge. To be more
precise, the orientability ofX allows the local group Gp to be taken as a finite subgroup
of SO(2n), and by [GGKRW18, Proposition 2.8], there exists a Lie group T̃ such that T̃
acts on Ũp and T̃ is an extension of T k by Gp . We can also say that Gp commutes with
every connected subgroup of T̃ using [GGKRW18, Corollary 2.9]. Since the identity
component T̃o (which as a connected, compact, abelian Lie group is therefore a torus)
of T̃ has a pairwise linear independent representation Cn ≃ ⊕n

i=1 V(ε∗i ), any two-
dimensional complex representation ε∗i × ε∗j ∶ T̃o → U(2) does not commute with the
elements of U(2) except in the case of a maximal torus T2 ≃ im(ε∗i × ε∗j ). This implies
that the centralizer of T̃o in SO(2n) coincides with a maximal torus and that Gp must
be a subgroup of this. Therefore, G i , p , the projection of Gp onto its ith coordinate, is
a subgroup of SO(2). Here, we notice that the order ∣Gp ∣ of Gp is a multiple of ∣G i , p ∣,
for each i = 1, . . . , n.

To get a labeling on each edge, which encodes the given orbifold structure, we
consider the following composition:

(2.3) T k S1 S1/G i , p ,
α i , p ξ i , p

where α i , p ∈ Hom(T k , S1) and ξ i , p(e2πix) = [e2πix]. Identifying Hom(T k , S1)
with H2(BT k), the composition ξ i , p ○ α i , p in (2.3) defines an element in
H2(BT k ;Q).

Motivated by this geometric interpretation, we give the following definition of an
abstract orbifold GKM-graph.

Definition 2.2 For two positive integers k and n, with k ≤ n, an orbifold GKM-graph
is a triple (�, α, θ) defined as follows:
(1) � is an n-valent graph with the set V(�) of vertices and the set E(�) of oriented

edges.
(2) α∶E(�) → H2(BT k ;Q) is a map such that

(a) the set of vectors α(Ep(�)) are pairwise linearly independent for every p ∈
V(�), where Ep(�) is the set of outgoing edges from p and

(b) for an oriented edge e ∈ E(�), there are positive integers re and re such that
re α(e) = ±re α(e) ∈ H2(BT k), where e denotes the edge e with the reversed
orientation.
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(3) θ is a collection of bijections

θe ∶Ei(e)(�) �→ Et(e)(�),

such that ce ,e′(α(θe(e′)) − α(e′)) ≡ 0mod re α(e)(= ±re α(e)) ∈ H2(BT k), for
some ce ,e′ ∈ Z/{0}, where i(e) is the initial vertex and t(e) is the terminal vertex
of e ∈ E(�).

The function α and the collection θ are called an axial function and a connection on
�, respectively.

Given a GKM-orbifold X, we immediately obtain a labelled graph (�, α). We can
choose a connection θ on �, α in a similar way to [GZ01]: let e ∈ E(�), with p = i(e)
and q = t(e), and Ep(�) = {e p

1 = e , e p
2 , . . . , e p

n} and Eq(�) = {eq
1 = ē , eq

2 , . . . , eq
n}.

Then, the restriction to Se (the spindle associated to e) of the tangent orbibundle to
X splits equivariantly as a sum of line orbibundles ⊕n

i=1 L i , and we can relabel the
elements in Ep(�) and Eq(�), so that L i ∣p = Tp Xe p

i
and L i ∣q = Tq Xeq

i
. From this, we

get the identification e p
i ↦ eq

i which defines a connection on �, α and produces an
orbifold GKM-graph. The integer ce ,e p

i
can then be seen to be the Chern number of the

vector bundle φ∗L i where φ∶CP1 → Se = S2(m, n) (for some m, n ∈ Z/0) is defined
by φ[z1 ∶ z2] = [zm

1 ∶ zn
2 ].

Remark 2.3 If we choose re and re as the minimal integers such that re α(e) =
±re α(e), then a multiple of re coincides with the order of the local group Gp of
an orbifold chart around p = i(e). In particular, if a fixed point p ∈ XT ≅ V(�) is a
smooth point, i.e., an orbifold chart around p has the trivial local group, then we may
choose re to be +1 for each e ∈ Ep(�).
Remark 2.4 An almost complex structure on X is an endomorphism J∶TX→ TX
satisfying J2 = −id. If a GKM-orbifold is equipped with an T k-invariant almost
complex structure J, then the orientation induced from J forces the associated axial
function to satisfy re α(e) = −re α(e) ∈ H2(BT k), as in [GZ01, Definition 2.1.1].

Example 2.5 (Spindles) Here, we calculate two orbifold GKM-graphs (�, α, θ) for a
spindle S2(m, n) with respect to two different S1-actions on it.
(1) If we suppose that the pair (m, n) are coprime integers, then there exist a, b ∈ Z

such that mb − na = 1. We can then write the S1-action on the spindle S2(m, n)
in Example 2.2 as

t ⋅ [z1 ∶ z2] = [taz1 ∶ tbz2],

for a choice of a and b as above, since t ↦ [ta ∶ tb] defines an isomorphism S1 →
T2/S1⟨m, n⟩. Note that this action is effective and has two fixed points [1 ∶ 0] and
[0 ∶ 1]. The graph � is given by the two vertices connected by an edge, and the
connection θ is the only one. To obtain the axial function α, we see that

t ⋅ [1 ∶ z2] = [ta ∶ tbz2] = [(t−
a
m )m ta ∶ (t− a

m )n tbz2] = [1 ∶ t
−an+bm

m z2] = [1 ∶ t
1
m z2],
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Figure 1: The GKM-graph for an effective spindle.

Figure 2: The GKM-graph for a spindle with diagonal action.

where the second equality holds because of the relation (2.2). Therefore, the
weight of the orbifold tangential representation T[1∶0]U = V(α1)/Zm around the
fixed point [1 ∶ 0] is given by 1

m ε∗ ∈ H2(BS1;Q), where we denote by ε∗ the
standard basis of H2(BS1). Hence, we have α(e) = 1

m ε∗ for the edge e emanating
from the vertex corresponding to [1 ∶ 0]. A similar computation for the other
fixed point [0 ∶ 1] induces an orbifold GKM-graph for the S1-action on a spindle
S2(m, n) as described by Figure 1.

(2) An S1-action on a spindle S2(m, n) could be given by a diagonal action

t ⋅ [z1 ∶ z2] = [tz1 ∶ tz2],

where now the action may not be effective. As in the previous example, � is given
by the two vertices connected by an edge and θ is uniquely determined. We now
calculate the weight of the orbifold tangential representation around the fixed
point [1 ∶ 0]:

t ⋅ [1 ∶ z2] = [t ∶ tz2] = [1 ∶ t
m−n

m z2]

and in a similar fashion for the fixed point [0 ∶ 1]. Figure 2 now gives the orbifold
GKM-graph for this action.

Remark 2.6 For more on the spindles S2(m, n), including describing effective
actions when (m, n) are not a pair of coprime integers, see [DKS19].

The next example exhibits a 2n-dimensional GKM-orbifold equipped with a
k-dimensional torus action where k < n.

Example 2.7 (Weighted projective space) Consider the action of C∗ on C4 given by

t ⋅ (z1 , z2 , z3 , z4) = (z1 , tz2 , tz3 , tz4)

for some t ∈ C∗ and (z1 , z2 , z3 , z4) ∈ C4. It induces an action ofC∗ on∧2
C4 as follows

t ⋅ (z12 , z13 , z14 , z23 , z24 , z34) = (tz12 , tz13 , tz14 , t2z23 , t2z24 , t2z34),(2.4)

where we write z i j ∶= z i ∧ z j for simplicity. The action defined in (2.4) gives us a
weighted projective space P(1,1,1,2,2,2)(∧2

C4). Notice that the standard T4-action on
C4 induces a T4-action on ∧2

C4. Moreover, the circle subgroup {(1, t, t, t) ∣ t ∈ S1}
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Figure 3: Orbifold GKM-graph around [0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 1] ∈ P(1,1,1,2,2,2)(⋀
2
C

4).

of T4 acts trivially on P(1,1,1,2,2,2)(∧2
C4). Now, it is straightforward to see that

P(1,1,1,2,2,2)(∧2
C4) is a GKM-orbifold with respect to the residual T4/S1-action. Here,

we consider the following short exact sequence to identify T4/S1 with T3:

(2.5) 1 S1 T4 T3 1,ϖ λ

where ϖ(t) = (1, t, t, t) and λ is defined appropriately so that ker(λ) = im(ϖ), for
instance λ(t1 , t2 , t3 , t4) = (t1 , t2 t−1

4 , t3 t−1
4 ). Choose a right splitting

ρ∶T3 �→ T4

of (2.5) defined by ρ(r1 , r2 , r3) = (r1 , r2 , r3 , 1), which leads us to identity T3 with
coker(ϖ). Now, we compute the orbifold tangential representation around a fixed
point [0 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 1] as follows:

(r1 , r2 , r3) ⋅ [z12 ∶ z13 ∶ z14 ∶ z23 ∶ z24 ∶ 1]
= [r1r2z12 ∶ r1r3z13 ∶ r1z14 ∶ r2r3z23 ∶ r2z24 ∶ r3]

= [r1r2r−
1
2

3 z12 ∶ r1r
1
2
3 z13 ∶ r1r

− 1
2

3 z14 ∶ r2z23 ∶ r2r−1
3 z24 ∶ 1]

It shows us that

T[0,0,0,0,0,1]U ≅
5
⊕
i=1

Vα i /G i ,

where each one-dimensional orbifold vector bundle representation Vα i /G i is deter-
mined by

(ε∗1 + ε∗2 −
1
2

ε∗3 , ε∗1 +
1
2

ε∗3 , ε∗1 −
1
2

ε∗3 , ε∗2 , ε∗2 − ε∗3) ∈
5
⊕
i=1

H2(BT3;Q),

respectively. A similar computation for the other fixed points yields the corresponding
orbifold GKM-graph which is a complete graph with six vertices. Figure 3 shows a part
of this orbifold GKM-graph around the vertex corresponding to [0, 0, 0, 0, 0, 1].

Next, we introduce an algebraic object obtained from a given orbifold GKM-graph.
The definition is similar to the one defined in [GZ01, Section 1.7], but we emphasize
that we use Z as the coefficient ring.
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Definition 2.3 Given an orbifold GKM-graph (�, α, θ), we define the equivariant
cohomology H∗T k(�, α) of the graph (�, α, θ) as follows:

H∗T k(�, α) = { f ∶V(�) �→ H∗(BT k) ∣ f (i(e)) ≡ f (t(e))mod r̃e α(e)},

where r̃e is the smallest positive integer satisfying the condition (2)-(b) of
Definition 2.2.

We notice that H∗T k(�, α) has a natural graded ring structure given by vertex-wise
addition and multiplication, and the ith degree is defined by

H i
T k(�, α) = { f ∶V(�) �→ H i(BT k) ∣ f (i(e)) ≡ f (t(e))mod r̃e α(e)}.

It is easy to check that H∗T k(�, α) ∶= ⊕i≥0 H i
T k(�, α). Moreover, it is equipped with a

natural H∗(BT k)-algebra structure.

Remark 2.8 If (�, α, θ) is defined from a smooth toric manifold [DJ91], then the
equivariant cohomology H∗T k(�, α) is isomorphic to the face ring of the orbit space.
We will discuss this further in Sections 3 and 4 in a wider category of spaces including
all smooth toric manifolds.

The equivariant cohomology of (�, α, θ) can be defined over rational or real
coefficients, which coincides with the definition of the cohomology ring of a graph
in [GZ01, Section 1.7]:

H∗T k(�, α;Q) = { f ∶V(�) �→ H∗(BT k ;Q) ∣ f (i(e)) ≡ f (t(e))mod α(e)}.

It has a natural H∗(BT k ;Q)-algebra structure. We notice that H∗T k(�, α) is a subring
of H∗T k(�, α;Q).

Theorem 2.9 Let X = (X ,U) be a GKM-orbifold with respect to an effective action of
torus T, whose underlying topological space X is homotopic to a T-CW complex. Assume
that all isotropy subgroups of T are connected and Hodd(X) = 0. Then, the equivariant
cohomology ring H∗T(X) is isomorphic to H∗T(�, α) as an H∗(BT)-algebra.

Proof The proof is similar to [BFR09, Proposition 2.2] and [Fra10, Theorem 1.3]. The
assumption Hodd(X;Z) = 0 implies that the Serre spectral sequence of the fibration

X ET ×T X BT

degenerates at the E2-page. This is equivalent to the exactness of the Chang–Skjelbred
sequence

(2.6) 0 H∗T k(X) H∗T k(X0) H∗+1
T k (X1 , X0) ⋯,ι∗ δ

over Z-coefficients by the connectedness of the isotropy subgroups of T. We refer to
[FP07, Theorem 1.1]. Here, X0 and X1 denote the set of fixed points and the union
of all zero- and one-dimensional orbits in X, respectively. The map ι∶X0 ↪ X is the
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inclusion of fixed points into X. Since X0 is finite, we have

H∗T k(X0) ≅ ⊕
p∈X0

H∗(BT k).

Let Xe be the connected component of the fixed point set XTe corresponding to the
edge e, where we identify H2(BT)with Hom(T , S1), and Te ∶= ker(r̃e α(e)), where r̃e
is defined as in Definition 2.3. Then Xe can be regarded as a set of orbits of T/Te ≅
S1, hence it is homeomorphic to a two-sphere S2. Since every circle action on S2 is
isomorphic to the standard one, Xe has two fixed points {p, q} which correspond to
the vertices of e. Observe the following commutative diagram:
(2.7)

0 H∗T k(Xe) H∗T k({p, q}) H∗+1
T k (Xe , {p, q}) ⋯

0 H∗T k(Xe) H∗T k(Xe/{q}) ⊕H∗T k(Xe/{p}) H∗T k(Xe/{p, q}) ⋯

H∗(BT k) ⊕H∗(BT k) H∗(BTe)

ι∗e δe

je

≅

≅

j̃e

≅

where the first row is the long exact sequence of the pair (Xe , {p, q}), and the
second row is the Mayer–Vietoris sequence, and the third row is induced from the
inclusion Te → T k . Moreover, r̃e αe , as an element of Hom(T k , S1), induces a short
exact sequence

1 Te T k S1 1,r̃e αe

which allows us to identify H∗(BTe) with H∗(BT k)/⟨r̃e α(e)⟩.
Note that X1 is the union of 2-spheres intersecting only at fixed points. Hence, a

successive application of the relative Mayer–Vietoris sequence yields an isomorphism

H∗T k(X1 , X0) ≅ ⊕
e∈E

H∗T k(Xe , {p, q}).

Moreover, diagram (2.7) shows that ker δe ≅ ker je . Hence, by fixing an orientation on
E(�), the kernel of the differential δ in (2.6) can be realized as

ker δ ≅ ⋂
e∈E(�)

ker δe ≅ ⋂
e∈E(�)

ker je

= { f ∶V(�) �→ H∗(BT k) ∣ f (i(e)) − f (t(e)) ≡ 0 mod (r̃e α(e))},(2.8)

where the equality in (2.8) holds because the map j̃e in (2.7) sends ( f (i(e)), f (t(e)))
to f (i(e)) − f (t(e)). Notice that the exactness of (2.6) implies that (2.8) is isomorphic
to image of monomorphism ι∗∶H∗T k(X) → H∗T k(X0). Hence, the result follows. ∎

3 Orbifold torus graphs

In this section, we focus on the case when k = n from the definition of an orbifold
GKM-graph and from now on write T ∶= T n . All discussions in this section generalize
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Figure 4: An orbifold torus graph of (�, α).

some of the ideas in [MMP07, Section 3] to the orbifold category. We begin by defining
a particular class of orbifold GKM-graphs as follows:

Definition 3.1 An abstract orbifold torus graph is a pair (�, α) of an n-valent graph
� and a function

α∶E(�) �→ H2(BT ;Q)

called an axial function such that
(1) the set of vectors α(Ep(�)) is linearly independent for every p ∈ V(�) and
(2) for each edge e ∈ E(�), there are positive integers re and re such that re α(e) =
±re α(e) ∈ H2(BT), where e denotes the edge e with the reversed orientation.

Remark 3.1 Although Definition 2.2 assumes the pairwise linear independency of
α, here we further assume the linearly independency of α as in Definition (3.1)-(2).
This makes the abstract orbifold torus graph of Definition 3.1 generalize the notion of
a torus graph in [MMP07, Section 3] to the orbifold setup.

We notice that the first condition of Definition 3.1 determines a connection θ on
(�, α) uniquely. This allows us to define a face of an abstract orbifold torus graph as
follows: let �′ be a d-valent subgraph of �, where d < n. Then

F ∶= (�′ , α∣
E(�′))(3.1)

is called a d-dimensional face of (�, α, θ) if it is invariant under the uniquely deter-
mined connection θ. Figure 4 is an example of an orbifold torus graph. Considering
the graph � as a one-skeleton of three-simplex Δ3, one can see that faces of (�, α) are
given by intersecting (�, α) with faces of Δ3.

From an orbifold torus graph (�, α), we shall define an algebraic object Z[�, α]
which we call a weighted face ring. Let F(d) be the set of all d-dimensional faces of
(�, α) for 0 ≤ d ≤ n, and F ∶= F(0) ∪ ⋅ ⋅ ⋅ ∪ F(n), the set of all faces of (�, α). Notice
thatF(n) = {�} ,F(0) = V(�) andF(1) is the set of edges of � ignoring the orientation.

https://doi.org/10.4153/S0008414X20000760 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000760


310 A. Darby, S. Kuroki, and J. Song

Figure 5: Rational Thom classes of degree 2.

Associating each face F with a formal generator xF , with deg xF = 2(n − dim F),
we obtain a polynomial ring k[xF ∣ F ∈ F] for any commutative ring k with unit. We
define x� = 1 and x∅ = 0 by convention. In this paper, we mainly focus on the case
when k is Q or Z. Now, we consider a ring homomorphism

μ∶Q[xF ∣ F ∈ F] �→ H∗T(�, α;Q)(3.2)

sending xF to the element τF defined by

τF(v) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏i(e)=v
e∉�′

α(e) if v ∈ V(�′);

0 otherwise,
(3.3)

see (3.1) for the relation between F and �′. We call τF the rational Thom class
corresponding to F ∈ F. See Figure 5 for rational Thom class of degree 2 for the graph
(�, α) described in Figure 4.

Restricting μ of (3.1) to the ring Z[xF ∣ F ∈ F] of polynomials with integral coeffi-
cients, we have the following subset Z�,α of Z[xF ∣ F ∈ F]:

Z�,α ∶= { f ∈ Z[xF ∣ F ∈ F] ∣ ∀v ∈ V(�), μ( f )(v) ∈ H∗(BT)}.(3.4)

Indeed, the collection (3.4) is closed under addition and multiplication induced from
Z[xF ∣ F ∈ F], hence it is a subring.

Remark 3.2 When (�, α) is a torus graph as defined in [MMP07], the image of the
axial function α sits in H2(BT). Hence, in this case, Z�,α = Z[xF ∣ F ∈ F].

We notice that the combinatorics of � gives the relation

τF τE = τE∨F ∑
G∈E∩F

τG ,(3.5)

where E ∨ F denotes the minimal face containing both E and F and G ∈ E ∩ F runs
through all connected components. We refer to the proof of [MP06, Lemma 6.3].
Therefore, it is straightforward to see from the definition of Z�,α that

{xF xE − xE∨F ∑
G∈E∩F

xG ∣ E , F , G ∈ F}(3.6)
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is a subset of Z�,α and defines an ideal of Z�,α because the image of each element in
(3.5) via μ is identically zero. Now, we have the following definition of a weighted face
ring.

Definition 3.2 The weighted face ring of an abstract torus orbifold graph (�, α) is the
quotient ring

Z[�, α] ∶= Z�,α/I,

where I is the ideal generated by elements of (3.6).

In the proof of [MMP07, Theorem 5.5], they consider a torus graph (�, α) and
prove that the map μ in (3.2), with Z-coefficients, factors through the map

Z[xF ∣ F ∈ F]/I�→ H∗T(�, α)(3.7)

and is indeed an isomorphism. In this case, the domain of (3.7) coincides withZ[�, α]
of Definition 3.2, see Remark 3.2.

If we work over rationals, the role of the integers r̃e in an abstract orbifold torus
graph cancels out, which makes the theory the same as [MMP07, Theorem 5.5]. Hence,
we apply the same argument to get the following lemma:

Lemma 3.3 Given a torus orbifold graph (�, α), there is a ring isomorphism between
Q[xF ∣ F ∈ F]/I and H∗T(�, α;Q).

The next theorem extends the result of [MMP07] to the category of torus orbifolds.

Theorem 3.4 There is a ring isomorphism between Z[�, α] and H∗T(�, α).

Proof First, we consider a map

ν∶Z�,α �→ H∗T(�, α),

which is the restriction of μ defined in (3.2) to Z�,α . Then, we have the following
commutative diagram:

(3.8)
Q[xF ∣ F ∈ F] H∗T(�, α;Q)

Z�,α H∗T(�, α).

μ

ι1

ν

ι2

We prove the theorem by showing that ν is a surjective homomorphism with
kernel I.

We first show the surjectivity. Lemma 3.3 implies that H∗T(�, α;Q) is generated
by the rational Thom classes τF . Hence, any element in H∗T(�, α) is an integral linear
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combination of rational Thom classes, say g ∶= ∑F∈F aF τF for some aF ∈ Z. Moreover,
g satisfies

g(v) ∈ H∗(BT), for all v ∈ V(�),(3.9)

by Definition 2.3, which means ∑F∈F aF xF ∈ Q[xF ∣ F ∈ F] is indeed an element in
Z�,α because of (3.4). Hence, the map ν is surjective.

Next, we show that ker ν = I. Recall that the map μ factors through the map

Q[xF ∣ F ∈ F]/I�→ H∗T(�, α;Q)

by Lemma 3.3. Hence, we have ker μ = I. Moreover, the commutativity of (3.8) gives
ι2 ○ ν = μ ○ ι1, which implies that ker ν ⊂ ker μ = I. To show the reverse inclusion, take
an element h ∈ ker μ. Since ker μ = I ⊂Z�,α , we may assume that h = ι1(h). Now, the
commutativity of (3.8) together with the injectivity of ι2 establishes h ∈ ker ν. ∎
Remark 3.5 For a calculation of the weighted face ring Z[�, α], when � has exactly
two vertices, see [DKS19].

4 Torus orbifolds

We now consider torus orbifolds, 2n-dimensional GKM-orbifolds equipped with n-
dimensional torus actions which may have finite kernels. Using the results from
the previous sections, we calculate their integral equivariant cohomology ring, in
terms of generators and relations, when their ordinary odd degree cohomology
vanishes.

4.1 Locally standard torus orbifolds

We begin with defining a locally standard torus action on a torus orbifold. For
each point p ∈ X, there exists an orbifold chart (Ũ , G , ϕ∶ Ũ → U) of a T-invariant
neighborhood U around p, an equivariant diffeomorphism ψ from an open subset
W of Cn to Ũ and a surjective covering homomorphism ξ∶ (S1)n → T with ker ξ ≅ G
such that the following diagram commutes:

(S1)n ×W T ×U

W Ũ U ,

ξ×(ϕ○ψ)

ψ ϕ

where vertical maps represent torus actions on W and U, respectively. In particular,
the action of (S1)n on W is the standard one. Such an orbifold together with a
preferred orientation on each T-invariant suborbifold of codimension 1 is called a
locally standard torus orbifold. It is one of the immediate consequences of locally
standard actions that the quotient U/T is diffeomorphic to an open subset of

W/(S1)n ≅ Rn
≥ ∶= {(x1 , . . . , xn) ∈ Rn ∣ x i ≥ 0}.(4.1)

Weighted projective spaces are typical examples of locally standard torus orbifolds.
Here, we choose a particular half-dimensional torus actions. To be more precise, we
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consider a weighted projective space P(a0 , . . . , an) as a quotient of S2n+1 ⊂ Cn+1 by a
weighted S1-action given by

t ⋅ (z0 , . . . , zn) = (ta0 z0 , . . . , tan zn)

with respect to some weight vector (a0 , . . . , an) ∈ Nn+1. Then, the standard T n+1-
action on S2n+1 defines the residual action of an n-dimensional torus T n+1/S1 ≅ T n .

Example 4.1 Consider the weighted projective space P(1, 2, 3, 6), as a quotient space
S7/S1, where S1 acts on S7 by

t ⋅ (z1 , z2 , z3 , z4) = (tz1 , t2z2 , t3z3 , t6z4).

The standard T4-action on S7 induces a residual T4/S1-action on P(1, 2, 3, 6). Con-
sider the following short exact sequence

1 S1 T4 T3 1,ϖ λ

where ϖ(t) = (t, t2 , t3 , t6) and λ(t1 , t2 , t3 , t4) = (t−2
1 t2 , t−3

1 t3 , t−6
1 t4), so that ker(λ) =

im(ϖ). Identifying coker(ϖ) with T3 by taking a right splitting ρ∶T3 → T4 defined
by ρ(r1 , r2 , r3) = (1, r1 , r2 , r3), we calculate the orbifold tangential representations
around each fixed point by a similar manner to Example 2.7. The corresponding
orbifold GKM-graph coincides with the one described in Figure 4, which is indeed
an orbifold torus graph.

We continue this section by introducing a combinatorial model for a torus
orbifold, and end up with studying its equivariant cohomology ring with integer
coefficients.

Remark 4.2 We refer to [GGKRW18] for an exposition of torus orbifolds. The
authors also discuss GKM-graphs for torus orbifolds, but they adopt H2(BT) as the
target space of the axial function. The resulting equivariant cohomologies of torus
orbifolds that they calculate are then taken with rational coefficients.

4.2 Quotient construction

Given a 2n-dimensional locally standard torus orbifold X = (X ,U), we consider the
orbit space Q ∶= X/T . The local standardness implies that any point in Q has a
neighborhood diffeomorphic to an open subset of (4.1). The orbifold atlas U leads
each of these neighborhoods to fit together, so that the orbit space Q has the structure
of a manifold with faces, [BP15, Definition 7.1.2]. The points in Q corresponding to
zero-dimensional orbits, and points corresponding to (n − 1)-dimensional orbits are
called vertices and facets, respectively.

Let F(Q) ∶= {F1 , . . . , Fm} be the set of facets of Q and π∶X → Q be the orbit map.
We choose elements

{λ1 , . . . , λm} ⊂ H2(BT) ≅ Hom(S1 , T)(4.2)
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such that λ i(S1) ⊂ T is the isotropy subgroup of π−1(Fi), for i = 1, . . . , m. We call each
π−1(Fi) a characteristic suborbifold. The local standardness of the torus action leads us
to the next proposition.

Proposition 4.3 Let v be a vertex of Q and Fi1 , . . . , Fin facets containing v. Then, the
set {λ i1 , . . . , λ in} ⊂ H2(BT) is linearly independent.

Conversely, beginning with an n-dimensional manifold Q with faces, we consider
a function

λ∶F(Q) �→ H2(BT),

satisfying the condition that the vectors {λ(Fi1), . . . , λ(Fik)} are linearly independent
whenever Fi1 ∩ ⋅ ⋅ ⋅ ∩ Fik ≠ ∅. We call such a function λ and a pair (Q , λ) a characteris-
tic function, and a characteristic pair, respectively. Due to technical reasons, we always
assume that Q is a CW-complex.

Given a characteristic pair (Q , λ), one can construct a torus orbifold X(Q , λ) as
follows:

X(Q , λ) ∶= (Q × T)/ ∼,(4.3)

where the equivalence relation ∼ is given by (x , t) ∼ (y, s) if and only if x = y and
t−1s ∈ TF(x). Here, F(x) denotes the face of Q containing x in its relative inte-
rior, and TF(x) is the torus generated by λ(Fi1), . . . , λ(Fik), if F(x) = Fi1 ∩ ⋅ ⋅ ⋅ ∩ Fik .
We note that the CW-complex structure on Q gives a T-CW complex structure
on X(Q , λ).

The orbifold structure can be obtained in the same manner as described in [PS10,
Section 2.1] for quasitoric orbifolds. We notice that X(Q , λ) is equipped with an n-
dimensional torus T action by multiplication on the second factor, and the orbit map
is the projection of the first factor.

Given a point x ∈ X(Q , λ), let F(x) be the face of Q containing π(x) in its relative
interior. Then the isotropy subgroup of x is the torus TF(x), which yields the following
proposition.

Proposition 4.4 Let X(Q , λ) be a torus orbifold associated to a characteristic pair.
Then every isotropy subgroup is connected.

The next theorem extends [MP06, Lemma 4.5] and [PS10, Lemma 2.2] to torus
orbifolds, whose proof is similar to the proof of [DJ91, Proposition 1.8] where we note
that H2(Q;Zn) is isomorphic to [Q , BT], hence, the assumption for H2(Q;Zn) being
trivial implies that any principal T-bundle over Q is trivial, which plays an important
role in the proof.

Theorem 4.5 Let X = (X ,U) be a locally standard torus orbifold with T-action
and Q the orbit space such that H2(Q;Zn) is trivial. Let λ∶F(Q) → Zn ≅ H2(BT)
be the characteristic function defined by λ(Fi) = λ i as in (4.2). Then there is an
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Figure 6: Suspensions of Δ1 and Δ2 .

equivarianthomeomorphism f between X and X(Q , λ) such that the following diagram
commutes:

X(Q , λ) X

Q

f

pr1 π

where pr1 is the projection onto the first factor and π is the orbit map.

Example 4.6 Let Q be the suspension of the (n − 1)-simplex Δn−1 for n ≥ 2, see
Figure 6 for the case when n = 2 and 3. Then there are exactly n facets, say F1 , . . . , Fn ,
on Q. Consider a characteristic function

λ∶ {F1 , . . . , Fn} �→ H2(BT)

defined by λ(F j) ∶= ∑n
i=1 a i jε i ∈ H2(BT). The integers (a i j)1≤i , j≤n form an n × n

square matrix Λ which we regard as an automorphism on Rn . Now the space

(Δn−1 × T)/ ∼,(4.4)

where the equivalence relation ∼ is same as in (4.3), can be identified with a quotient
of an odd sphere S2n−1 by the action of the finite group

ker(exp Λ∶T �→ T).

The resulting space is known as an orbifold lens space, see [BSS17, Section 3.3]. Hence,
the resulting torus orbifold X(Q , λ) is exactly the suspension of an orbifold lens space.
We refer to [DKS19] for the discussion on these spaces. In particular, if the determinant
of Λ is ±1, i.e. , the set {λ(F1), . . . , λ(Fn)} forms a Z-basis of H2(BT), then the
resulting space (4.4) is homeomorphic to S2n−1. Hence, the resulting torus orbifold
X(Q , λ) is homeomorphic to S2n .

4.3 Equivariant cohomology ring of X(Q , λ)

Given a characteristic pair (Q , λ) for a torus orbifold, one can derive an orbifold
GKM-graph as follows. Let

� = (V(�),E(�))
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be the one-skeleton of Q, which is an n-valent graph. We define a function

α∶E(�) �→ H2(BT ;Q)

by: if e = Fk1 ∩ ⋅ ⋅ ⋅ ∩ Fkn−1 ∈ E(�) with the initial vertex i(e) = e ∩ Fkn , then α(e) is
defined by the following system of equations

⎧⎪⎪⎨⎪⎪⎩

⟨α(e), λ(Fk1)⟩ = ⋯ = ⟨α(e), λ(Fkn−1)⟩ = 0;
⟨α(e), λ(Fkn)⟩ = 1,

(4.5)

where ⟨, ⟩ denotes the natural paring between cohomology and homology. In
particular, the integers re (see Definition 2.2) are described below in the proof of
Lemma 4.7.

Intrinsically, each characteristic vector represents the S1-subgroup of T which
acts trivially on characteristic suborbifold. Hence, each edge e ∈ E(�) represents
an intersection of n − 1 many characteristic suborbifolds. Indeed, this intersection
is homeomorphic to a two-dimensional sphere and isomorphic to a spindle as an
orbifold, fixed by a rank n − 1 subgroup of T. The collection of equations in the first
line of (4.5) contains the information of circle subgroups of T which acts trivially on
an invariant two-sphere, and the second equation tells us the the residual S1-action.

Lemma 4.7 Let (Q , λ) be a characteristic pair associated to a torus orbifold. Then the
function α defined by (4.5) is an axial function on �. In particular, the set {α(e) ∣ e ∈
Ep(�), p ∈ V(�)} is linearly independent.

Proof Let λ(F j) = ∑n
i=1 a i jε i ∈ H2(BT), for j = 1, . . . , m. Identifying H2(BT) and

Zn by associating ε i with the ith standard unit vector in Zn , we may write λ(F j) =
(a1 j , . . . , an j) ∈ Zn . For each vertex v of Q with v = Fi1 ∩ ⋅ ⋅ ⋅ ∩ Fin , we write

Λv ∶= [λ(Fi1)t ⋯ λ(Fin)t] .(4.6)

Given an oriented edge e = Fk1 ∩ ⋅ ⋅ ⋅ ∩ Fkn−1 of Q, let i(e) = e ∩ Fkn be the initial
vertex and t(e) = e ∩ Fk′n be the terminal vertex. Consider Λ i(e) and Λt(e) with

re ∶= ∣det Λ i(e)∣ and r ē ∶= ∣det Λt(e)∣,

respectively. Let α(e){ε∗1 , . . . ,ε∗n} be the coordinate expression of α(e) with respect to
the basis {ε∗1 , . . . , ε∗n} ⊂ H2(BT). Then, the system of equations (4.5) implies that

α(e){ε∗1 , . . . ,ε∗n} ⋅ Λ i(e) = (0, . . . , 0, 1) and α(ē){ε∗1 , . . . ,ε∗n} ⋅ Λt(e) = (0, . . . , 0, 1).

Hence, we have

α(e){ε∗1 , . . . ,ε∗n} = (0, . . . , 0, 1) ⋅ Λ−1
i(e) and α(ē){ε∗1 , . . . ,ε∗n} = (0, . . . , 0, 1) ⋅ Λ−1

t(e) ,

which are the last rows of Λ−1
i(e) and Λ−1

t(e), respectively. Moreover, since the first n − 1
columns of Λ i(e) and Λt(e) are identical, the last row of adj(Λ i(e)) agrees with the last
row of adj(Λt(e)). This implies that

det Λ i(e) ⋅ α(e){ε∗1 , . . . ,ε∗n} = det Λt(e) ⋅ α(ē){ε∗1 , . . . ,ε∗n} .
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Hence, we get re α(e) = ±re α(e) as desired.
The second assertion follows immediately from the linear independence of char-

acteristic vectors around a vertex. ∎
When (�, α) is obtained from a characteristic pair (Q , λ), certain elements of

weighted face ring Z[�, α] can be immediately read off from (Q , λ).

Proposition 4.8
(1) For each facet F of Q, let �F ∶= lcm{∣det Λv ∣ ∣ v ∈ V(F)}, where Λv is the n × n

square matrix as defined in (4.6). Then, �F xF is an element of Z�,α .
(2) Let λ(F j) = ∑n

i=1 a i jε i ∈ H2(BT) for facets F1 , . . . , Fm of Q. Then

{
m
∑
j=1

a i jxF j ∣ i = 1, . . . , n}(4.7)

are elements of Z�,α .

Proof The proof of (1) is straightforward from the definition of rational Thom
classes, see (3.3). In order to prove (2), it is enough to show that the restriction of
(4.7) to each vertex v ∈ V(�) is an element of H2(BT). If v = Fk1 ∩ ⋅ ⋅ ⋅ ∩ Fkn for some
facets Fk1 , . . . , Fkn of Q, the definitions of μ and rational Thom classes (see (3.2) and
(3.3), respectively) yield

μ
⎛
⎝

m
∑
j=1

a i jxF j

⎞
⎠
(v) =

n
∑
�=1

a ikℓ τFkℓ
(v) =

n
∑
�=1

a ikℓ α(ekℓ),

where ekℓ = Fk1 ∩ ⋅ ⋅ ⋅ ∩ Fkℓ−1 ∩ Fkℓ+1 ∩ ⋅ ⋅ ⋅ ∩ Fkn with initial vertex v.
The system of equations (4.5) together with a coordinate expression α(ekℓ){ε∗1 , . . . ,ε∗n}

as in the proof of Lemma 4.7 allows us to continue the computation as follows:
n
∑
�=1

a ikℓ α(ekℓ) =
n
∑
�=1

a ikℓ ⋅ [0⋯ 0 1
�th

0⋯ 0] ⋅ Λ−1
v

= [a ik1 ⋯ a ikn ] ⋅ Λ−1
v

= [0⋯ 0 1
ith

0⋯ 0] ∈ Zn .

(4.8)

The final equality follows because [a ik1 ⋯ a ikn ] is the ith row of Λv .
Recall that we identify H2(BT) with Zn via the basis {ε∗1 , . . . , ε∗n}. Hence, the

vector [0 ⋯ 0 1 0 ⋯ 0] in the last line of (4.8) corresponds to ε∗i ∈ H2(BT), which
establishes the claim. ∎
Remark 4.9 (1) We note that the computation (4.8) shows that, for each i = 1, . . . , n,

the image of elements in the set (4.7) via the map μ are the constant functions
ε∗i ∶V(�) → H2(BT) defined by v ↦ ε∗i , for every v ∈ V(�).

(2) If∑F∈F(k) cF xF is an element of Z�,α , so is a constant multiple

r ⋅ ∑
F∈F(k)

cF xF = ∑
F∈F(k)

rcF xF
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for some r ∈ Z/{0}. Hence, we may choose the vector (c̃F)F∈F(k) (up to sign)
having minimal length in ((cF)F∈F(k) ⊗Z R) ∩Z∣F(k)∣, such that

∑
F∈F(k)

c̃F xF ∈ Z�,α .

We call such elements minimal Thom classes.
(3) In [BFR09], the equivariant cohomology of weighted projective spaces with

integral coefficients was calculated, and we observe that their Courant functions
correspond to the minimal Thom classes associated to facets of the underlying
simplex. Since all global polynomials appear in Z[�, α], by Remark 4.9(1), all of
the generators of their algebra have been covered.

(4) When X(Q , λ) is a projective toric variety [CLS11, Ful93], namely Q is a lattice
polytope and λ is defined to be primitive outward normal vectors of facets, then
the set of linear elements in equation (3.4) coincides with the set CDivT(X(Q , λ))
of T-invariant Cartier divisors of X(Q , λ). We refer to [CLS11, Section 4.2] and
[Ful93, Section 3.3] for more details.

Example 4.10 Consider a characteristic pair (Δ3 , λ) where characteristic function
λ is defined by λ(F1) = (−2,−3,−6), λ(F2) = (1, 0, 0), λ(F3) = (0, 1, 0) and λ(F4) =
(0, 0, 1) for facets Fi , where 1 ≤ i ≤ 4. The induced orbifold torus graph (�, α) and
the rational Thom classes of degree 2 are described in Figures 4 and 5, respectively.
Proposition 4.8-(1) says that 6xFi , i = 1, . . . , 4, are elements of Z�,α . However, the
minimal Thom classes corresponding to facets are 6xF1 , 3xF2 , 2xF3 , and xF4 . One can
also see that −2xF1 + xF2 , − 3xF1 + xF3 , and −6xF1 + xF4 are elements of Z�,α , whose
images via μ are constant functions represented by ε∗1 , ε∗2 , and ε∗3 , respectively.

The main theorem of this section is as follows:

Theorem 4.11 Let (Q , λ) be a characteristic pair and X the associated torus orbifold
with Hodd(X) = 0. Then there is an isomorphism

H∗T(X) ≅ Z[�, α]
of H∗(BT)-algebras, where (�, α) is the orbifold torus graph obtained from (Q , λ).
Furthermore, if H∗(X) is free over Z, then Z[�, α] is finitely generated.

Proof A CW-complex structure on Q defines a T-CW complex structure on X.
Hence, the assumption Hodd(X) = 0, together with Proposition 4.4, leads us to apply
Theorem 2.9. Finally, the first result follows from Theorem 3.4.

The proof of the second assertion is similar to the proof of [BFR09, Lemma 2.1]. If
H∗(X) is free over Z and vanishes in odd degrees, the Serre spectral sequence of the
fibration

X ET ×T X BTπ

degenerates at the E2-page, and there is a ring isomorphism H∗T(X) ≅ H∗(X) ⊗
H∗(BT) by the Leray–Hirsh theorem. Hence, the ring generators come from either
H∗(X) or H2(BT). Recall from Remark 4.9-(1) that the generators of H2(BT) are
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Figure 7: An orbifold torus graph without geometric origin.

already elements of Z�,α which are degree 2 elements ofZ[�, α]. Moreover, the result
of [FP07, Theorem 1.1] implies that the set of elements in H∗T(X)(≅ Z[�, α]) with
degree less than or equal to the dimension of X surjects onto

H∗(X) ≅ H∗T(X)/im(π∗ ∶ H>0(BT) �→ H∗T(X)),

which establishes the assertion. ∎
From the algebraic point of view, it is not obvious that Z[�, α] is finitely generated.

The proof of the second assertion uses an application of geometry to answer this
algebraic question.

Corollary 4.12 Let X and (�, α) be as above. If H∗(X) is free over Z and vanishes in
all odd degrees, then H∗(X) is isomorphic to Z[�, α]/J, where J is the ideal generated
by elements of (4.7).

Remark 4.13 Note that not every orbifold torus graph, as defined in Section 3,
originates from torus orbifolds as discussed in this section. For instance, the quotient
of the rational graph equivariant cohomology H∗T(�, α;Q) of the orbifold torus graph
described in Figure 7 by H>0(BT ;Q) fails Poincaré duality. Hence, results in [Sat56]
imply that (�, α) cannot be induced from an orbifold whose odd degree cohomology
vanishes.

5 An application: four-dimensional torus orbifolds

In this section, we consider the case when Q is an m(≥ 2)-gon, namely a two-
dimensional manifold with faces having m vertices and m sides. We begin by setting
up the following notation. See Figure 8, where the left picture gives the full description
for the case when m = 2.
• F(1) = {F1 , . . . , Fm}, the set of facets which are edges in this case.
• F(0) = {v1 , . . . , vm}, the set of vertices, where vk = Fk ∩ Fk+1 .
• λ∶F(1) → H2(BT), a characteristic function and we write

λ(Fk) ∶= ak ε1 + bk ε2 , for some ak , bk ∈ Z.
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Figure 8: Facets and vertices of 2-gon and m(≥ 3)-gon.

• Dk ∶= det Λvk = det[λ(Fk)t λ(Fk+1)t] = ak bk+1 − bk ak+1.
Here, we identify the index m + 1 with 1. Hence, vm = Fm ∩ F1 and Dm = amb1 − bm a1.

Following the result of [KMZ17, Corollary 4.1], H∗(X) is concentrated in even
degrees if and only if

span
Z
{ak ε1 + bk ε2 ∣ k = 1, . . . , m} = H2(BT),(5.1)

or equivalently,

gcd{D1 , . . . , Dm} = 1,(5.2)

see [BSS17, Example 4.4] and [BNSS19, Section 4.1] for a more general discussion.
Hence, we may apply Theorem 3.4 to four-dimensional torus orbifolds satisfying

(5.1) or (5.2). Preceding the computation of equivariant cohomology, we first introduce
a certain GL2(R)-representation, which will play an important role in our calculation.

5.1 A GL2(R)-representation

In this subsection, we identify GL2(R) with the general linear group
GL(H2(BT2;R)) by taking {ε1 , ε2} as a basis of H2(BT2;R). Let Vn ∶= ⊕n

t=0 Rrn−tst

be a vector space of homogeneous polynomials of degree n with variables r and s.
Then, Vn is isomorphic to H2n(BT2;R) as a vector space by associating r, s with
ε∗1 , ε∗2 ∈ H2(BT2;R), respectively. Observe that Vn is a GL2(R)-representation space
with respect to the action Ψ∶GL2(R) × Vn → Vn defined by

Ψ ([a b
c d] , f (r, s)) = f (ar + bs, cr + ds),

which gives a group homomorphism

Φ(n)∶GL2(R) �→ GL(Vn).(5.3)

Note that Φ(1) is the identity with respect to the basis {ε1 , ε2} of H2(BT2;R) and its
dual basis {ε∗1 , ε∗2} of H2(BT2;R) ≅ V1.

Example 5.1 When n = 2, the ordered basis {r2 , rs, s2} of V2 gives the following
matrix presentation of (5.3)

Φ(2) ([a b
c d]) =

⎡⎢⎢⎢⎢⎢⎣

a2 2ab b2

ac ad + bc bd
c2 2cd d2

⎤⎥⎥⎥⎥⎥⎦
.

https://doi.org/10.4153/S0008414X20000760 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000760


Equivariant cohomology of torus orbifolds 321

Indeed,

Ψ([a b
c d] , r2) = (ar + bs)2 = a2r2 + 2abrs + b2s2;

Ψ ([a b
c d] , rs) = (ar + bs)(cr + ds) = acr2 + (ad + bc)rs + bds2;

Ψ ([a b
c d] , s2) = (cr + ds)2 = c2r2 + 2cdrs + d2s2 .

5.2 Equivariant cohomology ring

Each pair of adjacent facets Fk , Fk+1 defines a (2 × 2)matrix

Λk ∶= [ λ(Fk) λ(Fk+1) ] = [
ak ak+1
bk bk+1

] for 1 ≤ k ≤ m − 1;

Λm ∶= [ λ(Fm) λ(F1) ] = [
am a1
bm b1

] .

Using the (n + 1) × (n + 1) matrix Φ(n)(Λk), we define a square matrix Λ̃(n)k of size
(nm × nm) as follows:

Λ̃(n)1 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ(n)(Λ1) 0

0 In(m−1)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Λ̃(n)k ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In(k−1) 0 0

0 Φ(n)(Λk) 0

0 0 In(m−k)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, for 2 ≤ k ≤ m − 1;

Λ̃(n)m ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In(m−1)−1 0

sn+1 0 s1 ⋯ sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Figure 9: The orbifold torus graph.

where 0 and si denote the zero matrix of size fitting in the block and the ith column
of Φ(n)(Λm), respectively. We define L

deg 2n
k to be the sublattice of Znm spanned by

the row vectors of Λ̃(n)k .

Theorem 5.2 Let X ∶= X(Q , λ) be a four-dimensional torus orbifold satisfying condi-
tion (5.1) or (5.2). Then H∗T(X) is generated by the union of

(i) {∑1≤i≤m c i xFi ∣ (c1 , . . . , cm) ∈ ⋂m
k=1 L

deg 2
k } and

(ii) {∑ t=0,1
1≤i≤m

ct , i x2−t
Fi

x t
Fi+1
∣ (c0,1 , c1,1 , c0,2 , c1,2 , . . . , c1,m) ∈ ⋂m

k=1 L
deg 4
k }.

Proof The orbifold torus graph (�, α) associated to (Q , λ) is given by

V(�) = F(0) = {v1 , . . . , vm} and E(�) = {ek , ēk ∣ k = 1, . . . , m},

where ek = Fk with initial vertex vk−1. The system of equations (4.5) yields

α(ek) =
1

Dk−1
(bk ε∗1 − ak ε∗2) and α(ēk) =

1
Dk
( − bk ε∗1 + ak ε∗2),

which gives the associated orbifold torus graph (�, α), see Figure 9.
In the associated weighted ring Z[�, α] =Z�,α/I, the ideal I allows us to express

an arbitrary element of degree 2n in Z[�, α] by

n−1
∑
t=0

m
∑
i=1

c(n)t , i xn−t
Fi

x t
Fi+1

.(5.4)

Recall from (3.4) that an element (5.4) is indeed an element of Z[�, α] if and only if

(c(n)0,k τn
Fk
+ c(n)1,k τn−1

Fk
τFk+1 +⋯+ c(n)n−1,k τFk τn−1

Fk+1
+ c(n)0,k+1τn

Fk+1
)∣

vk

(5.5)

is an element of H2n(BT) for each vertex vk , k = 1, . . . , m. Notice that the restrictions
of the rational Thom classes τFk and τFk+1 to vk are given by

τFk ∣vk
= 1

Dk
(bk+1ε∗1 − ak+1ε∗2) and τFk+1 ∣vk

= 1
Dk
( − bk ε∗1 + ak ε∗2),(5.6)

https://doi.org/10.4153/S0008414X20000760 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000760


Equivariant cohomology of torus orbifolds 323

Figure 10: A characteristic pair.

respectively. Hence, by identifying

H2n(BT) ≅
n
⊕
t=0

Z(ε∗1 )n−t(ε∗2)t ,

and plugging (5.6) into (5.5), we conclude that (5.5) is an element of H2n(BT) if and
only if

(c(n)0,k , . . . , c(n)n−1,k , c(n)0,k+1) ⋅Φ
(n)(Λ−1

k ) ∈ Zn+1 ,

which is equivalent to saying that (c(n)0,k , . . . , c(n)n−1,k , c(n)0,k+1) is an element in the sub-
lattice of Zn+1 spanned by the row vectors of Φ(n)(Λk). It is again equivalent to
say that

(c(n)0,1 , . . . , c(n)n−1,1 , . . . , c(n)0,k , . . . , c(n)n−1,k , . . . , c(n)0,m , . . . , c(n)n−1,m)(5.7)

is an element of Ldeg 2n
k , because there is no condition for entries in (5.7) except for

c(n)0,k , . . . , c(n)n−1,k and c(n)0,k+1. The same computation for all other vertices concludes that
(5.7) has to be an element of ⋂m

k=1 L
deg 2n
k .

Finally, the assumption (5.1) or (5.2) implies that H∗(X) is free over Z. More-
over, the second assertion of Theorem 4.11 concludes that Z[�, α] is generated by
elements of degree less than or equal to 4. In degree 2, (5.4) becomes ∑m

i=1 c(1)0, i xFi

and its coefficients satisfy (c(1)0,1 , . . . , c(1)0,m) ∈ ⋂m
k=1 L

deg 2
k , which coincides with (i) by

writing c i ∶= c(1)0, i for i = 1, . . . , m. In degree 4, an element (5.4) can be written by
∑ t=0,1

1≤i≤m
c(2)t , i x2−t

Fi
x t

Fi+1 such that (c(2)0,1 , c(2)1,1 , c(2)0,2 , c(2)1,2 , . . . , c(2)0,m , c(2)1,m) ∈ ⋂m
k=1 L

deg 4
k . This

also agrees with (ii) by writing ct , i ∶= c(2)t , i for t = 0, 1 and i = 1, . . . , m. Hence, the proof
is completed. ∎

We finish this paper by considering a specific example: the four-dimensional torus
orbifold1 associated to a Cartan matrix of type A, see Figure 10 for the characteristic
pair (Q , λ). We refer the readers to [Blu15].

1It is also a toric orbifold in the sense of [DJ91, Section 7].
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Notice that (Q , λ) in Figure 10 satisfies (5.1) and (5.2). Hence the cohomology
of the corresponding torus orbifold X(Q , λ) is torsion free and concentrated in
even degrees. In Example 5.3, we apply Theorem 4.11, in particular Theorem 5.2, to
calculate H∗T(X(Q , λ)). We can also apply Corollary 4.12 to obtain H∗(X(Q , λ)).
In Example 5.6, we calculate explicit generators of H∗(X(Q , λ)) and their
relations.

Example 5.3 (Equivariant cohomology) To apply Theorem 5.2, we begin with cal-
culating matrices Λ̃(n)k for n = 1, 2, and 1 ≤ k ≤ 4. When n = 1, the homomorphism
Φ(1)∶GL2(R) → GL2(R) is the identity. Hence, we have

Λ̃(1)1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0
1 −2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Λ̃(1)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 0
0 −2 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ̃(1)3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Λ̃(1)4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
−2 0 0 0

1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we have sublattices Ldeg 2
k of Z4 generated by the row vectors of Λ̃(1)k for each

1 ≤ k ≤ 4, whose intersection⋂4
k=1 L

deg 2
k can be generated by

{(−2, 1, 1, 0), (1,−2, 0, 1), (0, 0, 2, 0), (0, 0, 0, 2)}.(5.8)

Hence, H2
T(X(Q , λ)) is generated by

ζ1 ∶= −2x1 + x2 + x3 ,
ζ2 ∶= x1 − 2x2 + x4 ,
ζ3 ∶= 2x3 ,
ζ4 ∶= 2x4 ,

(5.9)

where we denote x i ∶= xFi for 1 ≤ i ≤ 4 for simplicity. We notice that {ζ1 , ζ2} are
elements described in (4.7).

Remark 5.4 An explicit example of (5.8) needs some tedious calculation, or one can
use a computer program, for example the module of “Toric lattices” of SAGE, see
[Nov10] and [S+].
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When n = 2, using the computation in Example 5.1, we have the following four
(8 × 8)matrices

Λ̃(2)1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 1
−2 5 −2 0

1 −4 4

0 I5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Λ̃(2)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2 0 0

1 2 1
0 −2 −2 0 0

4 0 0

0 0 I3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ̃(2)3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I4 0 0

1 0 0
0 0 1 0 0

0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Λ̃(2)4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I5 0

4
−2

1
0

0 0
0 −2
1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we have sublattices Ldeg 4
k of Z8 generated by row vectors of Λ̃(2)k above for 1 ≤

k ≤ 4, respectively. Finally, one can find generators of the intersection ⋂4
k=1 L

deg 4
4 as

follows:

{(1, 2, 1, 0, 3, 0, 1, 2), (0, 3, 3, 0, 1, 0, 0, 0), (0, 0, 9, 0, 3, 0, 0, 0), (0, 0, 0, 2, 2, 0, 0, 0),
(0, 0, 0, 0, 4, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 2, 2), (0, 0, 0, 0, 0, 0, 0, 4)},

which means that H4
T(X(Q , λ)) is generated by

η1 ∶= x2
1 + 2x1x2 + x2

2 + 3x2
3 + x2

4 + 2x1x4 ,
η2 ∶= 3x1x2 + 3x2

2 + x2
3 ,

η3 ∶= 9x2
2 + 3x2

3 ,
η4 ∶= 2x2x3 + 2x2

3 ,
η5 ∶= 4x2

3 ,
η6 ∶= x3x4 ,
η7 ∶= 2x2

4 + 2x1x4 ,
η8 ∶= 4x1x4 .

(5.10)

Remark 5.5 One can also interpret generators ζ1 , . . . , ζ4 in (5.9) and η1 , . . . η8 in
(5.10) as elements in H∗T(�, α) via Theorem 3.4. Recall that the map ν in (3.8) sends
xFi to τFi for i = 1, . . . , 4, which are illustrated in Figure 11. For instance,

ν(η8)(v) = 4τF1 τF4(v) =
⎧⎪⎪⎨⎪⎪⎩

−2(ε∗1 )2 − 4ε∗1 ε∗2 , if v = F1 ∩ F4;
0, otherwise.

One can immediately see that ν(η8) above satisfies the condition for H∗T(�, α) in
Definition 2.3.
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Figure 11: Rational Thom classes.

Example 5.6 (Singular cohomology) Recall that H∗(X(Q , λ)) ≅ Z[�, α]/J by
Corollary 4.12. Here, J is the ideal generated by {ζ1 , ζ2}, see Example 5.3. To obtain
the minimal number of generators and relations, we may choose y ∶= ζ3 and z ∶= ζ4 as
generators of H2(X(Q , λ)).

Moreover, one can see

η1 = η3 = η4 = η7 = 0,(5.11)

− η5 = η8 = 2η2 = 2η6 .(5.12)

modulo two ideals I and J. To see (5.11) and (5.12) explicitly, the following relation

x1x2 = 2x2
1 = 2x2

2 .(5.13)

may be helpful, which can be obtained by the following computation.

x2
2 = (2x1 − x3)x2 (by ζ1 = −2x1 + x2 + x3 = 0)
= 2(2x2 − x4)x2 − x2x3 (by ζ2 = x1 − 2x2 + x4 = 0)
= 4x2

2 − x2x3 (by x2x4 = 0)
= 4x2

2 − x2(2x1 − x2) (by ζ1 = −2x1 + x2 + x3 = 0)
= 5x2

2 − 2x1x2 ,

which implies that 2x2
2 = x1x2. Moreover,

x1x2 = x1(2x1 − x3) (by ζ1 = −2x1 + x2 + x3 = 0)
= 2x2

1 . (by x1x3 = 0)

Combining these two, we have (5.13). Hence, for instance

η1 = x2
1 + 2x1x2 + x2

2 + 3x2
3 + x2

4 + 2x1x4

= 12x2
1 − 10x1x2 + 8x2

2

= 0,

where the second and third equalities follow from the linear ideal J and (5.13),
respectively.
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Thus, we may put w ∶= η2 = η6 as a generator of H4(X(Q , λ)). Combining w with
degree 2 generators, we have more relations:

y2 = z2 = −2w , yz = 4w , yw = zw = 0

modulo the ideal I + J. Indeed, these can be verified by the following computation,
where we use the ideal I + J and (5.13) again.

y2 = 4x2
3 = 4(2x1 − x2)2 = 4(4x2

1 − 4x1x2 + x2
2) = −12x2

1 ,
z2 = 4x2

4 = 4(−x1 + 2x2)2) = 4(x2
1 − 4x1x2 + 4x2

2) = −12x2
1 ,

w = x3x4 = (2x1 − x2)(−x1 + 2x2) = 6x2
1 ,

yz = 4x3x4 = 4w ,
yw = 2x3(x3x4) = 2x3 ⋅ 6x2

1 = 0,
zw = 2x4(x3x4) = 2x4 ⋅ 6x2

2 = 0.

Finally, we conclude that

H∗(X(Q , λ)) ≅ Z[y, z, w]/K

where deg y = deg z = 2, deg w = 4 and K is the ideal generated by

{y2 + 2w , z2 + 2w , yz − 4w , yw , zw}.
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