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Abstract This note is a report on the observation that the Fano–Enriques threefolds with terminal
cyclic quotient singularities admit Calabi–Yau threefolds as their double coverings. We calculate the
invariants of those Calabi–Yau threefolds when the Picard number is one. It turns out that all of them
are new examples.
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1. Introduction

The threefolds whose hyperplane sections are Enriques surfaces were studied by Fano
in a famous paper [5]. The modern proofs for the results of [5] were given in [3]. Such
varieties are always singular and their canonical divisors are not Cartier but numeri-
cally equivalent to Cartier divisors. We call such threefolds Fano–Enriques threefolds (see
Definition 2.1). In this note, we consider Fano–Enriques threefolds whose singularities
are terminal cyclic quotient ones. It is worth noting that any Fano–Enriques threefold
with terminal singularities admits a Q-smoothing to one with terminal cyclic quotient
singularities [10]. The canonical coverings (which are double-coverings) of Fano–Enriques
threefolds with terminal cyclic quotient singularities are smooth Fano threefolds [1,13].
Hence all the singular points of such Fano–Enriques threefolds are of type 1

2 (1, 1, 1). Using
the classification of smooth Fano threefolds, Bayle [1] and Sano [13] gave a classification
of such threefolds. In this note, we observe that all those Fano–Enriques threefolds also
admit some Calabi–Yau threefolds as their double covering, branched along some smooth
surfaces and those singularities. A Calabi–Yau threefold Y is a compact Kähler manifold
with trivial canonical class such that the intermediate cohomology groups of its struc-
ture sheaf are trivial (h1(Y,OY ) = h2(Y,OY ) = 0). We calculate the invariants of these
Calabi–Yau double coverings when their Picard numbers are one (Table 1). It turns out
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Table 1. Invariants of Calabi–Yau double coverings.

Xd H3
Y HY · c2(Y ) h1,1(Y ) h1,2(Y )

X1 4 28 1 45
X2 8 32 1 33
X3 2 20 1 37
X4 4 28 1 45

that all the Calabi–Yau threefolds are new examples. Although a number of Calabi–Yau
threefolds have been constructed, those with Picard number one are still quite rare. Note
that they are primitive and play an important part in the moduli spaces of all Calabi–Yau
threefolds [7].

2. Calabi–Yau double coverings

As the higher-dimensional algebraic geometry has been developed, the definition of Fano–
Enriques threefolds has also evolved and has been generalized. We adopt the following
version of the definition.

Definition 2.1. A three-dimensional normal projective variety W is called a Fano–
Enriques threefold if W has canonical singularities, and −KW is not a Cartier divisor
but numerically equivalent to an ample Cartier divisor HW .

Prokhorov proved in [11] that the generic surface in the linear system |HW | is an
Enriques surface with canonical singularities and that the Enriques surface is smooth if
the singularities of W are isolated and −K3

W �= 2. We refer to [2,6,12] for more sys-
tematic expositions of Fano–Enriques threefolds. In this note, we consider the case that
W has only terminal cyclic quotient singularities. We summarize the properties of W
[1,3,5,13].

(1) All the singularities of W are the type of 1
2 (1, 1, 1).

(2) The number of singularities of W is eight.

(3) −2KW is linearly equivalent to −2HW .

(4) There is a smooth Fano threefold that covers doubly W , branched only at the
singularities of W .

Bayle [1] and Sano [13] gave a classification of smooth Fano threefolds that double-cover
Fano–Enriques threefolds.

Let ϕ : X →W be the double covering, branched along the singularities of W . Then
X is one of smooth Fano threefolds in [13, Theorem 1.1]. We want to find a Calabi–Yau
threefold that double-covers W , using the following theorem, which is a special case of
[9, Theorem 1.1].
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Theorem 2.2. Let W be a projective three-dimensional variety with singularities of
type 1

2 (1, 1, 1) such that h1(W,OW ) = h2(W,OW ) = 0. Suppose that the linear system
|−2KW | contains a smooth surface S. Then there is a Calabi–Yau threefold Y that is a
double covering of W with the branch locus S ∪ Sing(W ).

Let p1, p2 be any points of X. From the description of the Fano threefold Xs in [13,
Theorem 1.1], one can find an effective divisor D from |−KX | such that D does not
contain p1, p2. Let θ be the covering involution on X, i.e. the quotient X/〈θ〉 is W .
Therefore, for any point q ∈W , we can find an effective divisor D in the linear system
|−KX | such that D ∩ ϕ−1({q}) = ∅. Note that the effective divisor

ϕ(D) + ϕ(θ(D))

belongs to the linear system |−2KW | and does not contain the point q. So the linear
system |−2KW | is base-point free and we can find a smooth surface S from it. Hence, by
Theorem 2.2, there is a Calabi–Yau threefold Y that covers doubly W , branched along
S and singularities of W .

Since Hi(X,OX) = 0 and Hi(W,OW ) = 0 for i = 1, 2, we have isomorphisms

H2(X,Z) 
 Pic(X), H2(W,Z) 
 Pic(W )

by the exponential sequences. Hence we can regard classes of Cartier divisors of X,W as
elements of H2(X,Z) and H2(W,Z), respectively. Let r be the index of Fano threefold
X (i.e. the largest integer r such that −KX = rHX for some ample divisor HX of X).

Now we calculate the invariants of Y . For a double covering with dimension higher
than two, it is a non-trivial task to calculate the topological invariants even in the case
where the base of the covering is smooth. In our case, S is an ample divisor of W , so
it may be worth trying to apply the Lefschetz hyperplane theorem. However, W is not
smooth, so the usual Lefschetz hyperplane theorem does not apply here. There are other
versions of the Lefschetz hyperplane theorem for singular varieties, but they all require
that W − S is smooth, which is not true for our case. We prove a type of the Lefschetz
hyperplane theorem for S ⊂W . We say that an element α of an additive abelian group
G is divisible by an integer k if α = kα′ for some element α′ ∈ G. α is said to be primitive
if it is divisible by only ±1. We denote the quotient of G by its torsion part as Gf .

Lemma 2.3. The map H2(W,Q) → H2(S,Q), induced by the inclusion S ↪→W , is
injective and the image HW |S in H2(S,Z)f of HW ∈ H2(W,Z) is divisible by r.

Proof. Consider the commutative diagram:

X
ϕ

�� W

SX
ϕ|SX ��

��

��

S
��

��

where SX = ϕ−1(S) and the vertical maps are inclusions. Note that

ϕ|SX
: SX → S
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is an unramified double covering and we have a pull-back

(ϕ|SX
)∗ : H2(S,Q) → H2(SX ,Q).

We have an induced commutative diagram:

H2(X,Q)

��

H2(W,Q)

��

ϕ∗
��

H2(SX ,Q) H2(S,Q)
(ϕ|SX

)∗
��

Note that the pull-back ϕ∗ : H2(W,Q) → H2(X,Q) is injective. Since SX is a smooth
ample divisor of X, the map H2(X,Q) → H2(SX ,Q) is injective by the Lefschetz
hyperplane theorem. So we have the injectivity of the map

H2(W,Q) → H2(S,Q).

Consider another commutative diagram:

H2(X,Z)

��

H2(W,Z)

��

ϕ∗
��

H2(SX ,Z)f H2(S,Z)f
(ϕ|SX

)∗
��

Note that −KX = rHX and recall that θ is the covering involution on X. Then
θ∗(−KX) = −KX in H2(X,Z). Since H2(X,Z) has no torsion, θ∗(HX) = HX in
H2(X,Z) and so

(θ|SX
)∗(HX |SX

) = θ∗(HX)|SX
= HX |SX

in H2(SX ,Z)f . Hence h′ := HX |SX
lies in the image of the map

H2(S,Z)f → H2(SX ,Z)f .

Note that ϕ∗(HW ) = −KX = rHX . Hence

(ϕ|SX
)∗(HW |S) = ϕ∗(HW )|SX

= rHX |SX
= rh′

is divisible by r in H2(SX ,Z)f . Since the map

(ϕ|SX
)∗ : H2(S,Z)f → H2(SX ,Z)f

is injective, HW |S is divisible by r in H2(S,Z)f . �

We note that HW is primitive in H2(W,Z). By the above lemma, HW |S is not primitive
in H2(S,Z)f when r > 1. This is different from what the usual Lefschetz hyperplane
theorem expects for smooth threefolds.
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Proposition 2.4. We have

h2(Y ) ≤ h2(X),

e(Y ) = e(X) − 24 − 2(−KX)3

and

ψ∗(HW ) · c2(Y ) = (−KX)3 + 24,

where ψ : Y →W is the double covering in Theorem 2.2, e(Y ) is the topological Euler
characteristic of Y and c2(Y ) is the second Chern class of Y .

Proof. Consider the following fibre product of two double covers:

˜X

���
��

��
��

�

����
��

��
��

Y
ψ

���
��

��
��

� X
ϕ

����
��

��
��

W

Then it is easy to see that:

(a) ˜X → Y is an étale double cover, and

(b) ˜X → X is the double cover branched along a member ˜S of |−2KX |.
Using the fact that ˜S is an ample divisor of ˜X, one can show that h2( ˜X) = h2(X) [4].
Since h2(Y ) ≤ h2( ˜X), we have h2(Y ) ≤ h2(X).

Note that e(X) = 2e(W ) − 8 and e(SX) = 2e(S). Note also that SX ∼ −2KX and, by
the Riemann–Roch theorem,

1 = χ(X,OX) = 1
24c2(X) · (−KX).

By the adjunction formula, we have

e(SX) = c2(X) · (−2KX) + 4(−KX)3 = 48 + 4(−KX)3.

So

e(Y ) = 2e(W ) − e(S) − 8 = e(X) − 1
2e(SX) = e(X) − 24 − 2(−KX)3.

Note that ψ∗(S) ∼ 2SY and S ∼ 2HW , where SY = ψ−1(S). So ψ∗(HW ) · c2(Y ) = SY ·
c2(Y ). By the adjunction formula,

SY · c2(Y ) = −S3
Y + c2(SY )

= −ψ∗(HW )3 + e(SY )

= −2H3
W + e(S)
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= −ϕ∗(HW )3 + 1
2e(SX)

= −(−KX)3 + 24 + 2(−KX)3 = (−KX)3 + 24.

Hence ψ∗(HW ) · c2(Y ) = (−KX)3 + 24. �

We are interested in the case where the Calabi–Yau threefold Y has Picard number one.
Hence we assume that X has Picard number one. There are four such families [13]:

X1: complete intersection of a quadric and a quartic in the weighed projective space
P(1, 1, 1, 1, 1, 2), r1 = 1, −K3

X1
= 4, e(X1) = −56.

X2: complete intersection of three quadrics in P6, r2 = 1, −K3
X2

= 8, e(X2) = −24.

X3: hypersurface of degree 4 in P(1, 1, 1, 1, 2), r3 = 2, −K3
X3

= 16, e(X3) = −16.

X4: compete intersection of two quadrics in P5, r4 = 2, −K3
X4

= 32, e(X4) = 0.

Theorem 2.5. Suppose that X has Picard number one. Then W and Y have Picard
number one,

H3
Y =

1
r3

(−K3
X)

and

HY · c2(Y ) =
1
r
((−KX)3 + 24),

where HY is an ample generator of Pic(Y ).

Proof. By Proposition 2.4,

1 ≤ h2(W ) ≤ h2(Y ) ≤ h2(X) = 1,

so W and Y have Picard number one. Since Y has Picard number one, ψ∗(HW ) = kH ′
Y

for some ample generator H ′
Y of Pic(Y ) (
 H2(Y,Z)) and a positive integer k. Note

that HY −H ′
Y is a torsion element and that H ′

Y is primitive in H2(Y,Z). We also note
that SY is a smooth ample divisor of Y . By the Lefschetz hyperplane theorem, H ′

Y |SY

is primitive in H2(SY ,Z)f . By Lemma 2.3, HW |S is divisible by r in H2(S,Z)f . So its
image (ψ|SY

)∗(HW |S) in H2(SY ,Z)f is divisible by r. Note that

(ψ|SY
)∗(HW |S) = ψ∗(HW )|SY

= k(H ′
Y |SY

).

So k is divisible by r. Let k = lr for some positive integer l. We will show that l = 1.
Note that

H3
Y = H ′

Y
3 =

1
k3
ψ∗(HW )3 =

2
k3
H3
W =

1
k3
ϕ∗(HW )3 =

1
r3l3

(−K3
X)

and

HY · c2(Y ) =
1
k
ψ∗(HW ) · c2(Y ) =

1
rl

((−K3
X) + 24).
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For X1,X3 and X4, the condition of H3
Y being a positive integer requires that l = 1.

For X2, by the Riemann–Roch theorem, we have

χ(Y,HY ) =
H3
Y

6
+
HY · c2(Y )

12
=

8
6l3

+
32
12l

=
4 + 8l2

3l3
,

which should be an integer. So we also have l = 1 in this case. Therefore,

H3
Y =

1
r3

(−K3
X)

and

HY · c2(Y ) =
1
r
((−KX)3 + 24). �

By Proposition 2.4 and the relation e(Y ) = 2(h1,1(Y ) − h1,2(Y )), we can determine
all the Hodge numbers of Y . We list the invariants of the Calabi–Yau threefold Y s in
Table 1. It turns out that they are all new examples. See [8, Appendix I] for a list of
known examples of Calabi–Yau threefolds of Picard number one.

Note that the invariants of Y1 and those of Y4 overlap. Consider the commutative
diagram in the proof of Proposition 2.4. For X1, the branch locus of ˜X1 → X1 is a
quadric section, thus ˜X1 is a (2, 2, 4)-weighted complete intersection of P(1, 1, 1, 1, 1, 1, 2).
For X4, the branch locus of ˜X4 → X4 is a quartic section, thus ˜X4 is also a (2, 2, 4)-
weighted complete intersection of P(1, 1, 1, 1, 1, 1, 2). Therefore, ˜X1 and ˜X4 are in the
same family. Since Y1 and Y4 are étale Z2-quotients of ˜X1 and ˜X4, respectively, they have
the same invariants.
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