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Abstract. Nonlinear resonant interaction between energetic particles and quasi-
electrostatic wave propagating perpendicularly to the ambient magnetic field in a
homogeneous plasma is studied in detail, with the main focus on the wave amp-
lification or attenuation caused by resonant interaction. As for k‖ → 0, reson-
ance velocity determined from linear resonance conditions tends to infinity, the
interaction under discussion is a completely nonlinear phenomenon. While the
wave amplitude may increase or decrease depending on the wave parameters and
integral characteristics of the energetic particle distribution function, an essential
wave amplification may occur when the wave frequency is close to a multiple of
cyclotron harmonic, and when the transversal energy of resonant particles is large
enough.

1. Introduction
Resonance wave–particle interaction is one of the fundamental plasma phenom-
ena with a great number of applications. The well-known condition for resonance
interaction between a wave and a particle in magnetized plasma has the form

ω − k‖v‖ = nΩc, (1.1)

where ω and k‖ are the wave frequency and parallel (along the ambient magnetic
field) wave normal vector, respectively, v‖ is the particle parallel velocity, Ωc is the
particle cyclotron frequency, and n is an integer. The number of works on the theory
of resonance wave–particle interaction in plasma is huge, thus a serious account of
them is hardly possible in an introduction to a paper, although this paper deals with
one particular problem of this theory. Thus, we limit ourselves to several remarks
necessary for our consideration.
As one can see from (1.1), the case k‖ = 0 considered in the present paper is,

in a sense, degenerated. In this case, at least in non-relativistic approximation,
the resonance conditions do not depend on particle characteristics. Formally, for
k‖ → 0 and ω �= nΩc, the resonance velocity tends to infinity implying that
the resonance wave–particle interaction vanishes. That is why it is usually as-
sumed that transversely propagating waves are not subject to linear resonant
instability.
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It is well understood, of course, that the resonance conditions (1.1) are writ-
ten in linear approximation, neglecting the particle velocity variation under the
influence of the wave, and that the linear stage of wave damping (or growth in
the case of instability) is only an initial stage. We mention the investigation of the
nonlinear stage of Landau damping for Langmuir waves started by Mazitov (1965)
and Al’tshul and Karpman (1965), and finalized by O’Neil (1965), who considered
nonlinear dynamics of resonance particles in the wave field that led to an essential
modification of the results predicted by linear theory. In these, as well as in many
other investigations of the nonlinear stage of resonant instabilities, the nonlinear
resonance region is considered to be centered on the resonance velocity determined
by linear resonance conditions and, in this sense, the case k‖ = 0 is definitely a
particular one.
At the same time, nonlinear particle dynamics in the field of transversely propa-

gating waves, both in homogeneous and in an inhomogeneous plasma, have been
extensively studied by many authors (see, in particular, Karney (1978, 1979), Gell
and Nakach (1980), Ryabova and Shklyar (1983), Shklyar (1986) and references
therein). Those studies, however, were mostly directed at the investigation of regular
and stochastic particle motion, in particular, of particle acceleration and heating
in the field of an intense wave. The back influence of energetic particles upon
transversely propagating wave has not yet been considered.

2. Basic equations
As is well known (see, for instance, Ginzburg and Rukhadze (1972)), resonance
waves in plasma are quasi-electrostatic. Accordingly, we write the field of the wave
propagating perpendicularly to the ambient magnetic field B0 directed along the
z-axis in the form

E = (Ex, 0, 0), Ex = E sin(kx − ωt) (2.1)

with constant wave number k and wave frequency ω. We study particle dynamics in
the field of constant amplitude wave assuming that the back influence of particles
upon the wave may be found by means of successive approximation method using
energy conservation law. This approach called the approximation of a given field
has been put forward by Mazitov (1965), Al’tshul and Karpman (1965), and O’Neil
(1965).
The following consideration is applicable to the dynamics of energetic electrons

in the field of an upper hybrid wave in the case when the electron plasma frequency
is larger or much larger than electron cyclotron frequency, as well as to dynamics
of energetic ions in the field of a lower hybrid wave. That is why we do not specify
particle charge and mass denoting them by q and m, respectively. The equations
of motion then take the form

dr
dt

= v,
dv
dt

=
qE
m

+
q

mc
[v× B0 ]. (2.2)

In the geometry under consideration, particles execute free motion in the z-
direction, with vz = vz0 , z = z0 + vz0t, where the subscript ‘0’ denotes the initial
values of the corresponding quantities. The x and y components of (2.2) describing
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the transversal motion of particles read

dx

dt
= vx,

dvx

dt
= Ωcvy +

qE

m
sin(kx − ωt),

dy

dt
= vy ,

dvy

dt
= −Ωcvx,

(2.3)

where particle cyclotron frequency

Ωc =
qB0

mc

has been introduced.
Equations (2.3) have the obvious integral of motion

xc ≡ x +
vy

Ωc
= constant (2.4)

which is nothing but the x-coordinate of the particle guiding center. Since, apart
from that, the variable y does not enter the right-hand sides of (2.3), the equations
for vx and vy , after excluding the variable x from their right-hand side with the
help of (2.4), form a closed set of two equations. Those equations, however, do not
have the Hamiltonian form. That is why it is more convenient to use, instead of
vx and vy , two other variables, namely, the transversal adiabatic invariant μ and
particle gyrophase ϕ connected with the quantities vx and vy by the relations

vx =

√
2μΩ
m

cos ϕ, vy = −
√

2μΩ
m

sin ϕ sign(q), Ω ≡ |Ωc|. (2.5)

Relations (2.5) together with (2.3) permit us to obtain equations for ϕ and μ in a
straightforward way resulting in

dϕ

dt
= Ω − qEk

mΩλ
sin(kxc + λ sin ϕ − ωt) sin ϕ,

dμ

dt
=

qEλ

k
sin(kxc + λ sin ϕ − ωt) cos ϕ,

(2.6)

where the parameter λ which has the meaning of dimensionless Larmour radius is
expressed through the variable μ according to the relation

λ = k

√
2μ

mΩ
. (2.7)

It is easy to see that (2.6) may be derived from the Hamiltonian

H = Ωμ +
qE

k
cos(kxc + λ sin ϕ − ωt) (2.8)

with μ and ϕ being the canonically conjugated momentum and phase. One should
bear in mind that the quantity λ is the function of canonical momentum μ according
to relation (2.7). Using the well-known expansion of the expression exp(i λ sin ϕ)
in Bessel functions, one can rewrite the Hamiltonian (2.8) in the form

H = Ωμ +
qE

k

∞∑
n=−∞

Jn (λ) cos(kxc + nϕ − ωt) (2.9)

which reveals the possibility of resonance effects in wave–particle interaction. In
zero-order approximation (E → 0) the rate of phase variation in the nth term in
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(2.9) is equal to nΩ−ω. If this quantity tends to zero, the corresponding term in the
Hamiltonian gives rise to resonant variation of the particle momentum.We see that,
in contrast to oblique wave propagation where resonance conditions define particle
longitudinal velocity, in the case of strictly perpendicular propagation the resonance
conditions nΩ−ω = 0 determine the wave frequency. For (nΩ−ω) → 0, the influence
of the wave field upon gyrophase variation should be taken into account to obtain
a correct description of particle dynamics. Depending on the wave amplitude, two
fundamentally different situations may arise. Deferring quantitative criteria for a
moment, we describe those situations in a qualitative manner. If the wave amplitude
is so large that the second term in the equation for phase (see (2.6)) is comparable
to Ω, then the particle motion becomes stochastic. In the opposite case, the slowly
varying term in the Hamiltonian is most important, although the influence of the
wave field upon particle gyrophase should, of course, be taken into account. We
only consider this case in this paper. The statement above concerning the origin of
stochasticity is known as Chirikov’s criterion of stochasticity (Chirikov 1979).
The development given above is not at all original and may be found in a number

of papers (see, for instance, the papers cited in the last paragraph of Sec. 1). It should
be considered as a reminder aimed at facilitating the following consideration and
making it more consistent. To bring out the original part of the present work we
mention that the previous studies of the case under discussion were limited to an
investigation of the particle dynamics, while, to the best of the author’s knowledge,
the back influence of particles upon wave growth or damping has not yet been
considered. The latter is the main focus of the present work.

3. Particle dynamics in the approximation of isolated resonance
As was mentioned above, we are interested in the case when the wave frequency is
close to the nth cyclotron harmonic, i.e. |ω − nΩ| � Ω, while the wave amplitude is
small enough (see the quantitative criterion below). In this case wemay retain in the
Hamiltonian (2.9) only the resonance term proportional to Jn (λ), which appears
to be slowly varying, as well as the term Ωμ, of course, which describes particle
unperturbed motion in the absence of the wave field. This approach is called the
approximation of isolated resonance. The corresponding reduced Hamiltonian then
takes the form

Hn (ϕ, μ; t) = Ωμ +
qE

k
Jn (λ) cos(kxc + nϕ − ωt). (3.1)

This Hamiltonian is the function of canonical variables (ϕ, μ) and depends explicitly
on time. In order to get rid of this dependence, it is appropriate to choose the
quantity

ζ = kxc + nϕ − ωt (3.2)

as a new phase, retaining the momentum μ as the second dependent variable. The
corresponding equations of motion that follow from (3.1) and (3.2):

dζ

dt
= (nΩ − ω) +

nqE

k

dJn [λ(μ)]
dμ

cos ζ,

dμ

dt
=

nqE

k
Jn (λ) sin ζ

(3.3)
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also have canonical form and can be derived from the Hamiltonian

h(ζ, μ) = (nΩ − ω)μ +
nqE

k
Jn (λ) cos ζ, (3.4)

which does not depend explicitly on time and, thus, is the constant of the motion.
We remind the reader that the quantity λ is a function of canonical momentum
μ according to (2.7), which is explicitly indicated in the first equation in (3.3).
However, in most cases we write simply λ, on the understanding that it does not
lead to confusion. We see that in the approximation of isolated resonance, the
problem is reduced to the investigation of a one-dimensional conservative system.
To establish the frame of validity of this approximation we notice that the rate of
gyrophase variation caused by the wave field is of the order (qE/k)[dJn (λ)/dμ]. As
was mentioned above, the approximation of isolated resonance is applicable when
this quantity is much less than Ω, i.e.

qE

k

dJn (λ)
dμ

� Ω.

At the same time, nonlinear effects in the approximation of isolated resonance
become important when

p ≡ nqE

k(|nΩ − ω|)
dJn (λ)

dμ ∼> 1. (3.5)

Before proceeding to the analysis of particle dynamics, we change to dimensionless
variables

t′ = Ωt, μ′ =
k2μ

mΩ
. (3.6)

In new variables, the equations of motion take the form (omitting primes)

dζ

dt
= α + nβ

dJn (λ)
dμ

cos ζ,

dμ

dt
= nβJn (λ) sin ζ,

(3.7)

while the corresponding Hamiltonian reads

h(ζ, μ) = αμ + nβJn (λ) cos ζ. (3.8)

Dimensionless parameters which enter (3.7) and (3.8) are defined as follows:

α =
nΩ − ω

Ω
, β =

qEk

mΩ2 , λ =
√

2μ. (3.9)

To gain some insight into the character of particle motion, we turn to examin-
ation of particle trajectories in the phase space (ζ, μ) determined by the equation
h(ζ, μ) = constant. The corresponding contour plots for various values of paramet-
ers are shown in Figs 1 and 2. As mentioned above, the character of particle motion
is determined by the parameter p (see (3.5)), which can be written in dimensionless
variables as

p =
nβ

αλ

dJn (λ)
dλ

. (3.10)

Although this parameter depends essentially on particle momentum, it is also
indicated in the figures, when appropriate. Dependence of particle dynamics on
the wave amplitude and, thus, on the nonlinear parameter p, for fixed values of n
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Figure 1. Phase space for n = 3, α = 0.0146, and different values of the amplitude β (see
(3.9) for the definition of dimensionless parameters).

and α is illustrated by Fig. 3. For small p, the phase changes almost linearly and,
consequently, the curve of momentum variation in time resembles the line on the
phase plane. With the increase of p, the phase trapping occurs, and the time of
momentum oscillations essentially decreases.
The most striking feature of particle behavior in the field of transversely propa-

gating wave is revealed in averaged (over initial phase) nonlinear particle dynamics.
It appears that, for a given number n of the closest cyclotron harmonic, the sign
of averaged momentum variation depends only on the initial momentum, and is
independent of time, the wave frequency, or the wave amplitude in the nonlinear
regime. This contrasts with the case of oblique propagation where the averaged
variation of particle energy depends on details of the particle distribution function
in the resonance region, i.e. at v‖ 	 (ω − nΩc)/k‖. The above-mentioned feature is
illustrated in Figs 4–7 which exhibit averaged (over the initial phase) variations of
particle momentum as functions of initial momentum itself, for various values of
parameters indicated in the figure captions. In all figures, the smooth dashed curve
depicts the value proportional to the quantity

Jn (λ)
dJn (λ)

dλ
≡ λ

2
dJ2

n (λ)
dμ

. (3.11)

In Fig. 4, the dimensionless time at which the momentum variations are displayed
is equal to 151 which corresponds to the “number of linear periods’ αt/2π 	 0.3.
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Figure 2. Phase space for n = 2, β = 0.6, and different values of α (i.e. of normalized
frequency deviation from the nth cyclotron harmonic).

The averaged variations of particle momentum as functions of initial Larmor
radius pictured at various moments of time are shown in Fig. 5. Increasing the
amplitude by a factor of 10 (Fig. 6) makes the variations of particle momentum
much larger and less smooth, but does not affect the feature under discussion:
the averaged momentum variation as usual has the sign of the quantity (3.11).
This feature remains in effect if we vary the frequency deviation from the closest
harmonic provided that it remains small enough, which is illustrated by Fig. 7.
The feature of particle motion demonstrated above, namely, that the averaged

(over initial phase) variation of particle momentum always has the sign of the
quantity dJ2

n (λ0)/dλ0 may be understood from the following consideration. Let us
introduce, instead of the variables ζ, μ three other quantities ξ, η and μ, the first
two defined as

ξ = Jn (λ) cos ζ, η = Jn (λ) sin ζ, (3.12)

where, as before, λ =
√

2μ. These quantities obey the following equations

dξ

dt
= −αη,

dη

dt
= αξ + nβJn (λ)

dJn (λ)
dμ

,

dμ

dt
= nβη,

(3.13)
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Figure 3. Variation of the particle phase (left column) and momentum (right column) as
functions of time for n = 4, α = 0.0345, and different values of dimensionless amplitude β.

that easily follow from definitions (3.12) and (3.7). The set of equations (3.13) has
an obvious integral of motion αμ + nβξ, which, of course, is nothing but (3.8)
expressed through new variables. Excluding ξ from the set of equations (3.13) with
the help of this integral we obtain the equations for μ, η

dμ

dt
= nβη,

dη

dt
= −α(αμ − h)

nβ
+

nβ

2
dJ2

n (λ)
dμ

, (3.14)

which may be derived from the Hamiltonian

H(μ, η) =
nβ

2
η2 +

(αμ − h)2

2nβ
− nβ

2
J2

n (λ) (λ ≡
√

2μ), (3.15)

where the quantities μ and η play the roles of canonically conjugated phase and
momentum, respectively. The Hamiltonian (3.15), as well as (3.14), depends on h
as a parameter, but does not depend explicitly on time and, thus, is a constant of
the motion. Using the definition (3.8) one can easily show that H ≡ 0, which is not
surprising since the equations of motion under discussion have only one integral of
motion. The advantage of using the Hamiltonian (3.15) consists in that it has the
standard form of a sum of kinetic and potential energy. It describes the motion of
a particle with effective mass equal to (1/nβ) in the potential

V (μ) =
(αμ − h)2

2nβ
− nβ

2
J2

n (
√

2μ). (3.16)
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Figure 4. Averaged over initial phase variation of the particle momentum, (μ − μ0 ), as a
function of the initial Larmor radius λ0 ≡

√
2μ0 for various values of wave amplitude β and

n = 3, α = 0.0123.

Such a motion permits a direct interpretation. One should, however, keep in mind
that the quantity μ plays the role of a coordinate in the Hamiltonian (3.15). The
potential V (μ) is shown in Fig. 8 with a solid line.
Turning to the analysis of particle motion in the potential (3.16) we first compare

the forces originating from the first and the second terms in (3.16), i.e. the first and
the second terms in (3.14) for η. From definition (3.15) and the condition H = 0
it follows that |αμ − h| ∼< |nβJn (λ)|. Using this inequality we find that the ratio
of the first term in (3.14) to the second term is less than 1/p, thus, in nonlinear
regime, the second term in the potential (shown in Fig. 8 by the dashed curve) is
the dominant term. Analysis of particle motion in the potential (3.16) permits us
to understand why the average variation of particle momentum has the sign of
the quantity (3.11). Qualitative explanation of this fact is the following. Since the
particle motion represents oscillations in the potential which is close to symmetrical
with respect to its minimum, the averaged over time coordinate μ coincides with
the coordinate μm of the potential minimum. Under assumption of ergodicity, the
same is true for the coordinate μ averaged over particle initial coordinate μ0 . Thus,
for particles with initial coordinate larger than μm , their coordinate decreases on
average and vice versa. We remind the reader that in the canonical representation
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Figure 5. The averaged variation of the particle momentum, (μ − μ0 ), as a function of the
initial Larmor radius λ0 ≡

√
2μ0 depicted at various moments of time for the wave amplitude

β = 0.3 and n = 5, α = 0.1347.

(3.15), the variable μ, which is the normalized transversal adiabatic invariant, plays
the role of a coordinate.
The quantity Jn (λ) dJn (λ)/dλ is encountered in the linear theory of transversely

propagating waves as a determining factor in non-resonant fluid-like instabilities
(see, for example, Gurnett and Bhattacharjee (2005), and the original paper by
Tataronis and Crawford (1970)). The case studied in the present paper is principally
different. We consider nonlinear resonant wave–particle interaction which involves
energetic particles in presence of ‘cold’ background particles supporting the wave
propagation. In the case k‖ → 0 under discussion, wave–particle interaction that
leads to energy exchange between wave and energetic particles and under certain
conditions results in the wave growth is a completely nonlinear effect. Our con-
sideration reveals the reason why the quantity mentioned above is the defining
parameter in the energy exchange between the wave and energetic particles.

4. Back influence of energetic particles upon the wave
We proceed from the equation

dU

dt
= −〈jNL ·E〉. (4.1)
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Figure 6. Averaged variation of the particle momentum for the same n and α as in Fig. 5,
but for β = 3.

Here U is the wave energy density which includes the energy of the electromag-
netic field and the oscillating energy of cold non-resonant particles. For the quasi-
electrostatic wave under discussion, this quantity is determined by the relation (see,
e.g., Shafranov (1967))

U =
ω

16π

∂ε

∂ω
|E|2 , (4.2)

with ε = (kiεij kj )/k2 , where εij is dielectric tensor. In the cold plasma approxima-
tion, the components of εij are given by the well-known relations (see, for instance,
Ginzburg and Rukhadze (1972)) that give (ωpe, ωpi are the electron and ion plasma
frequencies, respectively):

ε = 1 −
ω2
pe

(ω2 − Ω2
ce)

(4.3)

for upper hybrid resonance waves propagating perpendicularly to the ambient
magnetic field, and

ε 	 1 −
ω2
pe

Ω2
ce

−
ω2
pi

ω2 (4.4)

for transversely propagating lower hybrid resonance waves. We should note that
in both cases ω(∂ε/∂ω) > 0, thus, the waves have positive energy. This means (see
(4.1)) that their amplitude increases if the energetic particles lose the energy and
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Figure 7. Averaged variation of the particle momentum as a function of the initial Larmor
radius λ0 for n = 2, β = 0.3, and various α.

vice versa. Also, for theses waves the group velocity vg → 0, thus, the full derivative
dU/dt in (4.1) is, in fact, equivalent to ∂U/∂t. The quantity jNL on the right-hand
side of (4.1) is the nonlinear current of energetic particles, E is the wave electric
field given by (2.1), and the angular brackets denote the averaging over the wave
spatial period.
The aim of the following transformation is to express the quantity 〈 jNL ·E〉

through the averaged variation of particle momentum that we have studied before.
Towards this aim, we first write this expression in the explicit form, returning for
a moment to the initial dimensional variables

〈 jNL ·E〉 =
qEk

2π

∫
sin(kx − ωt)F (t, x, v⊥)vx dx dv⊥, (4.5)

where F (t, x, v⊥) is the particle distribution function integrated over longitudinal
velocity vz which obeys a Boltzman–Vlasov equation of the form

∂F

∂t
+ v⊥

∂F

∂r⊥
+

q

m

{
1
c
[v⊥ × B0 ] + E

}
∂F

∂v⊥
= 0. (4.6)

We proceed in the usual manner, namely, we multiply (4.6) by mv2
⊥/2Ω ≡ μ and

integrate it over dx dv⊥. Integrating the last term by parts, and taking into account
that the second term vanishes after averaging over x as the distribution F is a
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Figure 8. Effective potential with a particle transverse adiabatic invariant as a canonical
coordinate. The initial position of the particle, marked in the figure with an asterisk,
corresponds to a negative value of the quantity dJ 2

n (λ0 )/dλ0 .

periodic function of x and does not depend on y, we obtain∫
μ

∂F (t, x, v⊥)
∂t

dx dv⊥ − qE

Ω

∫
sin(kx − ωt)F (t, x, v⊥)vx dx dv⊥ = 0. (4.7)

The second term in (4.7), up to the factor, is equal to the right-hand side of (4.5).
Thus, from (4.7) and (4.5) we have

〈 jNL ·E〉 =
kΩ2

2πm

d

dt

∫
μF (t, x, μ, ϕ) dx dμ dϕ. (4.8)

In relation (4.8), we have changed the variables from (vx, vy ) to canonical variables
(μ, ϕ) according to (2.5), and took the derivative with respect to time out of the
integral sign.
We now note that the equations of motion that we have considered are written

in variables μ, ζ and, thus, the corresponding distribution is the function of the
variables t, μ, and ζ, the latter quantity being expressed through the variables
t, x, μ, ϕ according to the relation

ζ = kx − ωt + nϕ − λ sinϕ, (4.9)

which follows from (3.2), (2.4), and (2.5).We then change the variables of integration
in (4.8) from x, μ, ϕ to ζ, μ, ϕ. The Jacobian of this transformation is equal to 1/k.
Performing the integration with respect to ϕ and taking into account the fact that
in the variables t, μ, ϕ, ζ the distribution function does not depend on ϕ, we obtain
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from (4.8)

〈 jNL ·E〉 =
Ω2

m

d

dt

∫
μF (t, ζ, μ) dζ dμ. (4.10)

According to Liouville’s theorem

F (t, ζ, μ) dζ dμ = F0 [ζ0(t, ζ, μ), μ0(t, ζ, μ)] dζ0 dμ0 , (4.11)

where the subscript ‘0’ denotes the quantities at t = 0, i.e. F0 is the initial distri-
bution function, ζ0 , μ0 are particle initial phase and momentum expressed through
the current values of ζ, μ, and t. Changing the variables in (4.10) from ζ, μ to ζ0 ,
μ0 with the account of (4.11), substituting the result in (4.1), and carrying in the
derivative with respect to time under the integral sign we obtain

dU

dt
= −Ω2

m

∫
∂μ(t, ζ0 , μ0)

∂t
F0(ζ0 , μ0) dζ0 dμ0 . (4.12)

It is natural to assume that the initial distribution function does not depend on
ζ0 . Then, (4.12) gives, after integration with respect to time, the variation of wave
energy density resulting from wave–particle interaction:

ΔU = −2πΩ2

m

∫
Δμ(μ0)F0(μ0) dμ0 , (4.13)

where

Δμ(μ0) = 〈Δμ(ζ0 , μ0)〉 ≡ 1
2π

∫
Δμ(ζ0 , μ0) dζ0 (4.14)

is the variation of particle momentum, averaged over the initial phase, as a function
of the initial momentum, i.e. exactly the quantity which we have analyzed in
detail in the previous section. Equation (4.12) is the quantitative expression of
predetermined result: if the integral on the right-hand side of (4.12) is negative so
that the energetic particles in total lose their energy, then the wave energy and,
thus, the wave amplitude increases.
As we have seen above, the quantity Δμ(μ0) depends on the wave characteristics

and particle momentum, thus, the value and the sign of the right-hand side in (4.12)
strongly depend on the distribution function of energetic electrons. However, the
magnitude of ΔU may be estimated using the most general characteristics of the
distribution function and other parameters of the problem. To this aim, we write
the distribution function of energetic electrons in the form

F0(μ) =
nR

v2
T⊥

f

(
v2

⊥
v2
T⊥

)
, (4.15)

where nR is the density of energetic particles, vT⊥ is their characteristic transversal
velocity, and it is assumed that the magnitude and the characteristic scale of the
function f are of the order of 1. Changing to dimensionless variables μ′ and λ (see
(3.6) and (3.9)), and again omitting prime, we obtain

ΔU = −2πmΩ4nR

k4v2
T⊥

∫
f

(
λ2

0

λ2
T

)
Δμ(λ0)λ0 dλ0 , (4.16)

where

λT =
kvT⊥
Ω

. (4.17)
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As was mentioned above, the wave–particle interaction under discussion is only
efficient under the condition λT > n ∼ ω/Ω, which we will assume. The integrand
in (4.16) is the product of a sign changing function Δμ(λ0) with the characteristic
scale of variation ∼ π, and a positively defined smooth function f(λ2

0/λ2
T)λ0 which

tends to zero at λ0 � λT and has a characteristic scale of variation ∼ λT. In the case
when λT ∼> π, the magnitude of the integral in (4.16) may be estimated as follows

∫
f

(
λ2

0

λ2
T

)
Δμ(λ0)λ0 dλ0 ∼ f(1)Δμ(λT)λT ∼ Δμ(λT)λT. (4.18)

Substituting this estimation into (4.16) we obtain

|ΔU | ∼ nRmv2
T⊥λ−3

T Δμ(λT), (4.19)

where λT is determined in (4.17), and it is assumed that λT > n ∼ ω/Ω. We see that
a possible energy gain by transversely propagating quasi-electrostatic wave due to
nonlinear resonant interaction with energetic particles decreases rapidly with an
increasing number of the closest cyclotron harmonic.
Let us apply the results obtained above to one particular case, namely, consider

possible amplification of an upper hybrid resonance (UHR) wave in the equatorial
region of the magnetosphere at L-shell ∼ 4 owing to nonlinear resonant interac-
tion with energetic electrons. Intense UHR waves have been observed outside the
plasmapause by Kurth et al. (1979). These waves have been suggested by Shklyar
and Kliem (2006) as a possible driver of relativistic electron precipitation bursts
registered by low-orbiting satellites (see, for example, Blake et al. (1996), Nakamura
et al. (2000), and references therein). For estimations, we use the following figures for
energetic electron density nR, their thermal velocity vT, electron plasma frequency
ωp, and electron cyclotron frequency ωc:

nR ∼ 1 cm−3 , vT ∼ 109 cm s−1 , ωp ∼ 2.6×105 rad s−1 , ωc ∼ 8.6×104 rad s−1 .

The value of electron plasma frequency given above corresponds to the density of
cold electrons nc ∼ 21 cm−3 . For these parameters, the upper hybrid resonance
frequency, which defines the wave frequency ω, is about 3ωc, so that the number n
of the closest cyclotron harmonic is equal to 3. For such a wave ω∂ε/∂ω 	 2, and
the wave energy U 	 |E|2/8π (see (4.2)). Relation (4.19) then gives the following
estimation of the maximum wave amplitude (in SI units)

|E| ∼ 4.5λ
−3/2
T [Δμ(λT)]1/2 V m−1 . (4.20)

The quantityΔμ(λT) which enters into relation (4.20) is dimensionless and, accord-
ing to numerical results of the previous section, is of the order of unity. At the same
time, the quantity λT is most uncertain, as the magnitude of wave normal vector for
quasi-resonant waves is badly defined. In a sense, the k value itself is determined
from the condition that the corresponding wave has maximum amplification. The
requirement λT > n ∼ ω/Ω which sets the lower limit on the value of λT and,
thus, on the value of k, remains in effect, of course. The estimation (4.20) is quite
consistent with measurements by Kurth et al. (1979) who have reported the value
of |E| ∼ (1 − 20) mV m−1 .
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5. Concluding remarks
The nonlinear interaction between quasi-electrostatic wave propagating trans-
versely to the ambient magnetic field and energetic particles is a particular case of
wave–particle interaction since in linear approximation such an interaction vanishes
for wave frequencies not equal to a multiple of cyclotron frequency. In the case
of transverse propagation, the influence of the wave field upon the variation of
particle gyrophase is of critical importance and, consequently, the interaction has
a nonlinear nature. This interaction has been studied by several authors (see the
references given in Sec. 1) with the main aim to study particle dynamics. The main
focus of the present study is the variation of the wave field intensity caused by the
interaction with energetic particles. The consideration is applicable to upper hybrid
resonance wave interaction with energetic electrons, as well as to lower hybrid wave
interaction with energetic ions.
A self-consistent consideration of wave–particle interaction which simultaneously

describes both the evolution of the wave field and particle distribution function
demands a solution of nonlinear set of Maxwell–Boltzmann equations where both
the wave field and the distribution function are unknown, which, as a rule, requires
computer simulations. The consideration in the present paper is based on the
approximation of a given field (see Sec. 2 for references) which is not self-consistent
by its nature, although it has proved to be very productive, and the frame of
its validity is well understood. In this approximation, the particle dynamics are
considered in the given field, while the wave evolution is calculated from the energy
conservation in the system wave-resonant particles. We should emphasize that
numerical solutions of particle equations of motion in the given field used in the
present work represent numerical calculations of much simpler type as compared
with self-consistent numerical simulations.
The main result of the present work consists in that resonant interaction (for

example, of upper hybrid resonance wave with energetic electrons) in the nonlinear
stage may lead to a substantial growth of the wave intensity due to energy ex-
change with energetic particles. While the sign of energy transfer depends on the
characteristics of wave and particle distribution function, the energy exchange, in
general, is more efficient for frequencies close to cyclotron harmonics.
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