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We consider the modeling of a time series described by a linear regression com-
ponent whose regressor sequence satisfies the generalized asymptotic sample sec-
ond moment stationarity conditions of Grenander ~1954, Annals of Mathematical
Statistics 25, 252–272!+ The associated disturbance process is only assumed to
have sample second moments that converge with increasing series length, per-
haps after a differencing operation+ The model’s regression component, which can
be stochastic, is taken to be underspecified, perhaps as a result of simplifications,
approximations, or parsimony+ Also, the autoregressive moving average ~ARMA!
or autoregressive integrated moving average ~ARIMA! model used for the distur-
bances need not be correct+ Both ordinary least squares ~OLS! and generalized
least squares ~GLS! estimates of the mean function are considered+ An optimality
property of GLS relative to OLS is obtained for one-step-ahead forecasting+Asymp-
totic bias characteristics of the regression estimates are shown to distinguish the
forecasting performance+ The results provide theoretical support for a procedure
used by Statistics Netherlands to impute the values of late reporters in some eco-
nomic surveys+

1. INTRODUCTION

For many economic indicator series, modeling requires specification of both a
regression function and an autocovariance structure for the disturbance pro-
cess+ Suppose that, possibly after a variance stabilizing transformation ~e+g+,
differencing!, one has data Wt , 1 � t � T of the form

Wt � AXt � yt , (1.1)
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where the Xt are column vectors and the yt are real variates that are asymptot-
ically orthogonal to the Xt in a sense to be defined, whose lagged sample sec-
ond moments converge as Tr `+With monthly or quarterly seasonal economic
data, AXt might describe a linear or higher degree trend, stable seasonal effects,
moving holiday effects ~Bell and Hillmer, 1983!, trading day effects ~Findley,
Monsell, Bell, Otto, and Chen, 1998!, or other periodic effects+ The term Xt

might also include values of related stochastic variables, perhaps at leads or
lags+ We address the situation in which the modeler considers a model

Wt � AMXt
M � yt

M (1.2)

whose regressor Xt
M is not able to reproduce AXt for all t because of known or

unknown omissions, approximations, simplifications, etc+ We assume that the
modeler, perhaps starting from the ordinary least squares ~OLS! estimate for
AM given by ~1+5! later in this section, has decided upon an autoregressive
moving average ~ARMA! model family, not necessarily correct, for the distur-
bance ~or residual! process yt

M � Wt � AMXt
M+ Such a model for ~1+2! is called

a regARMA model+
Generalized least squares ~GLS! estimation of AM occurs simultaneously with

ARMA estimation+ The simplest definition of ~feasible! GLS estimates of AM ,
given by ~1+3!, makes use of the ARMA model’s innovation filter that is defined
as follows+ With L denoting the lag operator, let f~L! be the autoregressive
polynomial ~AR! and a~L! the moving average ~MA! polynomial of a ~per-
haps incorrect! candidate ARMA model for yt

M and let u � ~1,u1,u2, + + +! de-
note the coefficient sequence of the power series expansion f~L!0a~L! �

�j�0
` uj L j + When yt in ~1+1! and the regressors missing from Xt

M are weakly
~i+e+, first and second moment! stationary with mean zero, then yt

M will be
weakly stationary with mean zero+ In this case, assuming that values of yt

M are
available at all past times, yt 6 t�1

M ~u! � ��j�1
` uj yt�j

M is the model’s linear fore-
cast of yt

M from ys
M , �` � s � t � 1; see Section 5+3+3 of Box and Jenkins

~1976! or Hannan ~1970, p+ 147!+ The forecast errors at~u!� yt
M � yt 6 t�1

M ~u!�

�j�0
` uj yt�j

M are called the model’s innovations series, and the coefficient se-
quence u is its innovation filter+ If the ARMA model is correct, then for each t,
at~u! is uncorrelated with ys

M , �` � s � t � 1, and it follows that yt 6 t�1
M ~u!

has minimum mean square error among all such linear forecasts of yt
M and that

the innovations at~u! are uncorrelated ~white noise!+ However, we do not assume
that a correct ARMA model exists or that yt

M is weakly stationary+ For example,
when a missing regressor is deterministic, e+g+, periodic, yt

M will not be weakly
stationary even when yt is but will instead be asymptotically stationary, mean-
ing that its lagged sample second moments will converge as T increases+ Their
limits form the autocovariance sequence of a weakly stationary process+ In effect,
it is this autocovariance sequence for which an ARMA model is sought+ All
ARMA model–related quantities of interest in this paper depend only on u and
on the Wt and Xt

M+ Thus we can express model dependence in terms of u, as we
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do throughout the paper+ Further motivation for this “parameterization” is
given in Section 3+ We refer to each u as a model+

For given Wt , Xt
M , 1 � t � T and u, define Wt @u#� �j�0

t�1 uj Wt�j and Xt
M @u#�

�j�0
t�1 uj Xt�j

M for 1 � t � T and let ' denote transpose+ Following Pierce ~1971!,
we define the u-model’s GLS estimator of AM to be

AT
M~u! � �

t�1

T

Wt @u#Xt
M @u# '��

t�1

T

Xt
M @u#Xt

M @u# '��1

+ (1.3)

~We discuss another GLS estimator in Section 8+! With these AT
M~u!, an esti-

mate of u ~and of the ARMA coefficients determining u when they are identi-
fied! can be obtained by conditional or unconditional maximum likelihood
estimation ~MLE!+ ~As usual, Gaussian likelihood functions are used without
requiring the data to be Gaussian+! For the conditional MLE estimates on which
we focus for simplicity ~see Box and Jenkins, 1976, Sect+ 7+1+2!, for each
1 � t � T, one defines the u-model’s forecast of Wt from Ws, 1 � s � t � 1
to be AT

M~u!Xt
M � �j�0

t�2 ~�uj�1!~Wt�1�j � AT
M~u!Xt�1�j

M !, with the convention
�j�0

�1 � 0+ This is the special case Wt 6 t�1
M ~u,u,T ! of the more general fore-

cast function Wt 6 t�1
M ~u,u*,T ! defined in ~1+6!, which follows+ Conditional MLE

estimates uT leading to GLS estimates AT
M~uT ! are the minimizers

uT � arg min
u� OQ

1

T �
t�1

T

~Wt � Wt 6 t�1
M ~u,u,T !!2, (1.4)

where OQ is a compact set of u specified by ARMA~ p,q! models whose AR and
MA polynomials have all zeroes in $6z 6 � 1 � «% , for some « � 0+

Responding to the extensive literature comparing GLS with OLS, we also
consider model estimates and forecasts based on the OLS estimate of AM ,

AT
M � �

t�1

T

Wt Xt
M'��

t�1

T

Xt
M Xt

M'��1

+ (1.5)

This is the special case AT
M~u* ! of ~1+3! with u* � ~1,0,0, + + +!, the white noise

model for yt
M+ The forecast function of Wt associated with AT

M is obtained by
using this choice of u* in

Wt 6 t�1
M ~u,u*,T ! � AT

M~u* !Xt
M � �

j�0

t�2

~�uj�1!~Wt�1�j � AT
M~u* !Xt�1�j

M !+ (1.6)

With this formula, for any fixed u*, conditional MLE yields a specification
u*T � arg minu� OQ T �1 �t�1

T ~Wt � Wt 6 t�1
M ~u,u*,T !!2 +

In this paper, we obtain formulas for the limiting values of average squared
one-step-ahead prediction errors obtained from these two types of MLEs,

lim
Tr`

min
u� OQ

T �1 �
t�1

T

~Wt � Wt 6 t�1
M ~u,u,T !!2 (1.7)
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and, for fixed u*,

lim
Tr`

min
u� OQ

T �1 �
t�1

T

~Wt � Wt 6 t�1
M ~u,u*,T !!2+ (1.8)

With Theorems 5+1 and 7+1, which are given later in the paper, we show, under
general assumptions on Xt and Xt

M given subsequently, that ~1+7! is always less
than or equal to ~1+8!, typically less+ This is the optimality property of GLS
referred to in the title of this paper+ ~By contrast, in the correct regressor
case, when all our assumptions hold except ~2+9! requiring asymptotic non-
negligibility of the omitted regressors, the two limits are equal+! Further, using
OLS with the white noise model u* � ~1,0,0, + + +! for yt

M , as is often done,
usually leads to even worse forecasts, in the sense that limTr` T �1 �t�1

T ~Wt �
Wt 6 t�1

M ~u*,u*,T !!2 has a larger value than ~1+8!; see Section 7+1+1+

1.1. Overview of the Paper

The regressor sequence Xt , t � 1 is required to satisfy the conditions of
Grenander ~1954!, which define a property we call scalable asymptotic station-
arity; see Section 2 and Appendix B+ Grenander introduced this generalization
of stationarity to investigate the efficiency of OLS estimates for a large class of
nonstochastic regressors in models with a broad range of weakly stationary dis-
turbances+ We indicate in Section 7+2 why efficiency in Grenander’s sense is
rarely applicable in the context of misspecified nonstochastic regressors+ For
the models we consider, the regressor Xt

M in ~1+2!, which can be stochastic, is
taken to be a proper subvector of Xt + The remaining entries of Xt can be those
of any vector Xt

N , compatible with our assumptions, whose variables compen-
sate for the inadequacies of Xt

M in such a way that, for some AM and AN , the
regression function in ~1+1! can be decomposed as

AXt � AMXt
M � ANXt

N + (1.9)

Then, in ~1+2!, yt
M � ANXt

N � yt +
Our requirements for Xt

M , Xt
N , and yt are comprehensively stated in Sec-

tion 2 and verified for some important classes of models in Sections 2+1 and
6+1+1+ More information about ARMA model parameterization with innova-
tions coefficient sequences u � ~1,u1,u2, + + +! is provided in Section 3, which
includes some elementary examples+ For diagonal scaling matrices DM,T such
that a+s+-limTr` DM,T �t�1

T Xt
M Xt

M'DM,T is nonsingular, Theorem 4+1 gives a
formula for limTr` ~AT

M~u! � AM !T �102DM,T
�1 and establishes that conver-

gence is uniform on the compact sets OQ defined in Appendix A+ For a given u,
this limit is called the asymptotic bias characteristic of AT

M~u! for AM + Sec-
tion 5 obtains formulas for the limits of the sample second moments of the
forecast errors Wt � Wt 6 t�1

M ~u,u,T ! and Wt � Wt 6 t�1
M ~u,u*,T !+ The analogous

results for regARIMA-type nonstationary models, for situations in which the
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disturbance process requires a differencing transformation prior to ARMA mod-
eling, are discussed in Section 6+ We describe, in Theorem 7+1 in Section 7,
how the optimality property of GLS mentioned previously arises: the better
performance of GLS relative to OLS occurs when the OLS estimate has an
asymptotic bias characteristic different from that of the GLS estimate+ These
results provide support for an imputation procedure used by Statistics Nether-
lands ~Aelen, 2004!, which uses one-step-ahead forecasts from regARIMA mod-
els with stochastic distributed lag regressors to impute the net contribution of
late-reporting firms to economic time series from certain monthly surveys; see
Section 6+1+ Section 7+1 provides elementary expressions for some asymptotic
quantities associated with GLS and OLS estimation when yt

M is modeled as a
first-order autoregression+ These are used to illustrate the generality of GLS’s
optimality+ Section 8 discusses related results and extensions+

Proofs of the theorems are given in Appendix E+ They use the auxiliary results
of Appendix D obtained mainly from Findley, Pötscher, and Wei ~2001!+

2. THE DATA AND REGRESSOR ASSUMPTIONS

In ~1+1!, we require yt , t � 1 to be asymptotically stationary ~A+S+! in the sense
of Pötscher ~1987!, meaning that for each k � 0,61, + + + , the lag k sample sec-
ond moments have asymptotic limits almost surely ~i+e+, with probability one!,
denoted a+s+ That is, the limits

gk
y � lim

Tr`

1

T �
t�6k 6�1

T�6k 6

yt�k yt a+s+ (2.1)

exist+ ~By convention, �t�a
b � 0, if a � b+! From a well-known result of Her-

glotz, the sequence of asymptotic lag k second moments gk
y has a spectral dis-

tribution function Gy~l! such that gk
y � ��p

p e�ikl dGy~l! for k � 0,61, + + + +
We require Xt , t � 1 in ~1+1! to be scalably asymptotically stationary ~S+A+S+!,

meaning that the limits

Gk
X � lim

Tr`
DX,T �

t�6k 6�1

T�6k 6

Xt�k Xt
'DX,T a+s+, k � 0,61, + + + (2.2)

exist, where the DX,T are diagonal scaling matrices, DX,T � diag~d1,T , + + + ,
ddim X,T !, which are positive definite, decrease to zero ~DX,T ' 0!, and satisfy
limTr` DX,T�k

�1 DX,T � IX for each k � 0+ Here IX is the identity matrix of order
dim X+ ~Ordinary convergence is meant in ~2+2! if no coordinate of Xt is sto-
chastic+! The resulting sequence Gk

X has a spectral distribution matrix function
GX~l!: Gk

X � ��p
p e�ikl dGX ~l! for k � 0,61, + + + ; see Appendix B for further

background, including examples+
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Partition Xt as

Xt � �Xt
M

Xt
N� , (2.3)

where, as in the Introduction, the superscript N designates regressors not in the
model ~1+2!+ Let the corresponding partition of A in ~1+1! be A � @AM AN#
and let those of DX,T , Gk

X , and GX~l! be, respectively,

DX,T � �DM,T 0

0 DN,T
� ,

Gk
X � �GkMM Gk

MN

Gk
NM Gk

NN� , GX ~l!��GMM~l! GMN~l!

GNM~l! GNN~l!
� + (2.4)

From DX,T ' 0, we have

DM,T ' 0+ (2.5)

We require G0
MM to be positive definite,

G0
MM � 0, (2.6)

and restrict Xt
N to being A+S+,

Gk
N � lim

Tr`

1

T �
t�6k 6�1

T�6k 6

Xt�k
N Xt

N' a+s+, k � 0,61, + + + + (2.7)

Of course, ~2+7! is equivalent to DN,T � T �102IN , with IN the identity matrix
of order dim X N + We exclude omitted regressors of larger order, e+g+, t p with
p � 0, because they yield unbounded yt

M dominated by ANXt
N , which would

clearly reveal the inadequacy of Xt
M with large enough T+

Further, the two series yt and Xt must be asymptotically orthogonal, meaning
that

lim
Tr`

T �102 �
t�6k 6�1

T�6k 6

yt�k Xt
'DX,T � 0 a+s+, k � 0,61, + + + + (2.8)

Finally, to keep the focus on the incorrect regressor situation, we assume that

ANG0
N AN' � 0+ (2.9)

In summary, our assumptions concerning ~1+1! are ~2+1!, ~2+2!, and ~2+5!–~2+9!+
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2.1. Consequences of (2.1), (2.8), and (2.9) for yt and yt
M

First we note that, when Xt contains an entry equal to 1 for all t, then the cor-
responding scaling factor in DX,T can be taken to be T �102 , and so ~2+8! yields
limTr` T �1 �t�1

T yt � 0 a+s+ In this sense, yt in ~1+1! can be thought of as an
asymptotically mean zero process+ A similar result holds for the disturbances
yt

M � ANXt
N � yt of the misspecified model ~1+2!; see Section 4+

Now we establish the asymptotic stationarity of the yt
M+ From the require-

ment ~2+7! that Xt
N be A+S+ and from ~2+1! and ~2+8!, for each k, gk

M �
limTr` T �1 �t�6k 6�1

T�6k 6 yt�k
M yt

M is given by

gk
M � ANGk

NN AN' � gk
y ��

�p

p

e�ikl dGy M ~l!, (2.10)

where Gy M ~l! � ANGNN~l!AN' � Gy~l!+ From ~2+9!, we have g0
M � 0+ ~The

term g0
y can be zero+!

Finally, we note that, except in special situations such as that of Section 7+2,
the disturbances and regressors in ~1+2! will be asymptotically correlated, mean-
ing limTr` T �102 �t�6k 6�1

T�6k 6 yt�k
M Xt

M'DM,T � ANGk
NM � 0 for some k, which will

usually cause AT
M~u! defined in ~1+3! to be biased asymptotically for some u;

see Theorem 4+1+

2.2. Sufficient Conditions for (2.1) and (2.8)

The properties ~2+1! and ~2+8! hold under reasonably general assumptions on yt

and Xt + The verification of ~2+8! for a common type of stochastic regression
model is discussed in Section 6+1+1+ Here we consider the case in which yt

is weakly stationary with mean zero and Xt is nonstochastic with G0
X � 0+

Then, for almost sure convergence in ~2+1! and ~2+8!, it suffices to have yt �

�j�0
` bj «t�j , with �j�1

` jbj
2 � ` for some independent white noise process «t

such that supt E6«t 6r � ` with r � 2 if yt has a bounded spectral density or, if
the spectral density of yt is unbounded but square integrable, with r � 4; see
Section 3+1 of Findley et al+ ~2001!+

3. THE u-PARAMETERIZATION OF ARMA MODELS

Three features of our ARMA model situation may be new to readers not famil-
iar with the vein of research literature of which the papers by Pötscher ~1987,
1991! are representative: ~a! the disturbances yt

M , 1 � t � T are not required
to have means or covariances but only the asymptotic stationarity property;
~b! no ARMA model is assumed to be correct in the sense of being able to
exactly model the asymptotic lagged second moment sequence ~2+10!; ~c! the
ARMA coefficients of a model envisioned as f~L!yt

M � a~L!at are replaced
by the innovations filter u � ~1,u1,u2, + + +! defined by the property that u~z! �
�j�0
` uj z j satisfies u~z! � f~z!0a~z! for 6z 6 � 1+ In this section, we provide

some orienting discussion and examples+
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We assume that a~z! � 0 for all 6z 6 � 1, i+e+, that the model is invertible+
When yt

M is weakly stationary with mean zero and defined for all t, then there
always exists a weakly stationary series at � at ~u! such that the pre-
ceding ARMA model formula holds, namely, at � �j�0

` uj yt�j
M + When yt

M is
only A+S+ and defined only for t � 1, we define at @u# � �j�0

t�1 uj yt�j
M , t � 1+

This series is A+S+ with asymptotic lag k second moment given by gk
a~u! �

��p
p e�ikl 6u~e il !62 dGy M ~l!, with Gy M ~l! as in ~2+10!; see ~ii! of Proposi-

tion D+1 in Appendix D+ We would call the u-model correct if the white noise
property, gk

a~u! � 0 for k � 0, obtains or, equivalently, if gk
M �

s 2��p
p e�ikl 6u~e il !6�2 dl for all k for some s 2 � 0+ However, our theorems

do not require any model for yt
M , t � 1 to be correct in this sense+

For subsequent discussions, it will be useful to have in mind the u’s of
some simple ARMA models+As was indicated in Section 1, a white noise model
has u � ~1,0,0, + + +!+ For the invertible ARMA~1,1! model, ~1 � fL!yt

M �
~1 � aL!at , with 6a6, 6f6 � 1, one has uj � a j�1~a� f!, j � 1+ For AR~1! and
MA~1! models, we have u� ~1,�f,0,0, + + +! and u� ~1,a,a2, + + +!, respectively+

Model parameterization by u is useful because the u’s that are determined by
likelihood-maximizing ARMA coefficients have uniquely defined large-sample
limits in situations where the ARMA coefficients themselves do not, because
of common zeroes in limiting AR and MA polynomials+ For example, when an
ARMA~1,1! model is fitted to white noise, the sequence of maximum like-
lihood pairs ~fT,a T ! has multiple limit ~or cluster! points, all on the line
$~a,a! : 6a6� 1% ; see Hannan ~1982!+ However, when f� a for an ARMA~1,1!
model, then u � ~1,0,0, + + +!, and so this is the only limit point of the filter
sequence uT defined by the maximum likelihood estimates fT , aT + That is,
uT r u a+s+ coordinatewise, i+e+, uj

T r uj a+s+, j � 0+
As in the preceding examples, the coordinates of u are always continuous

functions of the ARMA coefficients+ The converse holds only if the ARMA
model is identifiable, i+e+, the AR and MA polynomials have no common zero;
also see the Appendix of Pötscher ~1991! for additional background on the
u-parameterization+ ~Pötscher’s parameter is the coefficient sequence of Du~z!�
a~z!0f~z!+ The relationship between u and Du is continuous and invertible; see
Section 3 of Findley, Pötscher, and Wei, 2004+!

To obtain the uniform convergence and continuity properties needed to estab-
lish the results indicated in the Introduction, ARMA~ p,q!, model coefficient
estimation is restricted to compact sets of AR and MA coefficient vectors whose
polynomials have all zeroes in $6z 6 � 1 � «% for some « � 0+ Such sets specify
compact sets OQ of the type discussed in Appendix A+

4. UNIFORM CONVERGENCE OF GLS ESTIMATES

We now present a fundamental convergence property of the AT
M~u! defined in

~1+3!+ A generalized inverse is to be used in ~1+3! when the inverse matrix fails
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to exist+ This can ~with probability one when Xt
M is stochastic! only happen for

a finite number of T values, because of ~2+6! and ~iv! of Proposition D+1 in
Appendix D+ For any matrix M, define 7M7� lmax

102 ~MM ' !, with lmax~{! denot-
ing the maximum eigenvalue+ If M is a vector with real coordinates m1, + + + ,mn,
then 7M7 � ~�1

n mi
2!102 +

Partition G0
X~u! � ��p

p 6u~e il !62 dGX ~l! analogously to ~2+4!, i+e+,

G0
X~u! � �G0MM~u! G0

MN~u!

G0
NM~u! G0

NN~u!
� ,

with G0
MM~u! � ��p

p 6u~e il !62 dGMM~l!, etc+ For u from an invertible model,
define

C NM~u! � G0
NM~u!G0

MM~u!�1+ (4.1)

In Appendix E, we prove the theorem that follows+

THEOREM 4+1+ Let OQ be a compact set of models as described in Appen-
dix A. Under the assumptions (2.1), (2.2), and (2.5)–(2.8), we have, uniformly
on OQ,

lim
Tr`
~AT

M~u!� AM !T �102DM,T
�1 � ANC NM~u! a.s. (4.2)

The function C NM~u! is continuous on OQ and thus bounded there,
maxu� OQ7C NM~u!7 � `.

For a given u, limTr` ~AT
M~u! � AM !T �102DM,T

�1 � ANC NM~u! is called the
asymptotic bias characteristic of AT

M~u! for AM + It is nonzero for some u if
Gk

NM � 0 for some k, i+e+, if the series ANXt
N and Xt

M are asymptotically corre-
lated+When DM,T � T �102 , then ANC NM~u! is the asymptotic bias of AT

M~u! for
AM + Omitted variable bias is a fundamental modeling issue; see, e+g+, Stock and
Watson ~2002, pp+ 143–149!+ Section 7 will show that, when ANC NM~u! varies
with u, there is usually an optimal value of ANC NM~u! for one-step-ahead fore-
casting that is determined by the uT sequence of ~1+4!+

If Xt
M has one or more coordinates that are A+S+, then for any XAM that differs

from AM only in these coordinates we have, uniformly on OQ,

lim
Tr`
~AT

M~u!� XAM !T �102DM,T
�1 � ANC NM~u!� ~AM � XAM ! a+s+ (4.3)

This reveals the important fact that the asymptotic bias characteristic associ-
ated with an alternative omitted-regressor decomposition, AXt � XAMXt

M � XXt
N

with XXt
N � ANXt

N � ~AM � XAM !Xt
M , differs from the right-hand side of ~4+2! by

a term that is independent of u+
Except in special situations, e+g+, when the omitted regressors are precisely

known, there is always ambiguity concerning Xt
N and AM + However, it is useful
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to note that if a coordinate Xi, t
M of Xt

M is constant with value one, then PX N �
limTr` T �1 �t�1

T Xt
N can be assumed to be zero: by defining XAM to differ from

AM in that XAi
M � Ai

M � AN PX N replaces Ai
M , and by defining XXt

N � Xt
N � PX N , one

obtains AXt � XA XXt � AN XXt
N with limTr` T �1 �t�1

T XXt
N � 0+ Then, for y̌t

M �
AN XXt

N � yt we have limTr` T �1 �t�1
T y̌t

M � 0+

5. UNIFORM ASYMPTOTIC STATIONARITY OF FORECAST ERRORS

We consider sample second moments of the errors of the one-step-ahead
forecasts Wt 6 t�1

M ~u,u*,T ! from ~1+6!+ For 1 � t � T, the forecast errors Wt �
Wt 6 t�1

M ~u,u*,T ! are observable and equal to Wt @u# � AT
M~u* !Xt

M @u# , which
yields

Wt � Wt 6 t�1
M ~u,u*,T ! � yt @u#� $AXt � AT

M~u* !Xt
M%@u# , 1 � t � T+ (5.1)

Thus, setting Ut~T ! � @ yt T 102DM,T Xt
M Xt

N# ', 1 � t � T and bT ~u
*! �

@1 ~AM � AT
M~u* !!T �102DM,T

�1 AN# , we have

Wt � Wt 6 t�1
M ~u,u*,T ! � bT ~u

* !Ut @u# ~T !, 1 � t � T+ (5.2)

Let OQ* be a compact set in the sense of Appendix A+ For b~u * ! �
@1 �ANC NM~u*! AN# , Theorem 4+1 yields

sup
u*� OQ*

7b~u* !7 � `, sup
u*� OQ*

7bT ~u
* !� b~u* !7r 0 a+s+ (5.3)

This fact and the properties of the Ut~T ! array described in Appendix C lead
to the following theorem, which is proved in Appendix E+ Define

BNM~u* ! � AN @�C NM~u* ! IN # (5.4)

and

GM,u* ~l! � Gy~l!� BNM~u* !GX ~l!B
NM~u* !'+ (5.5)

For any OQ, OQ*, let OQ 	 OQ* denote the Cartesian product set $~u,u*! : u � OQ,
u* � OQ* % and define convergence ~uT, u*T ! r ~u, u* ! in OQ 	 OQ* to mean
uj

T r uj and uj
*T r uj

* for all j � 0+

THEOREM 5+1+ Let OQ and OQ* be compact sets of models as described in
Appendix A. Under the assumptions (2.1), (2.2), and (2.5)–(2.8), the forecast-
error arrays Wt � Wt 6 t�1

M ~u,u*,T !, 1 � t � T are continuous on OQ 	 OQ*

and also jointly uniformly A.S. there. Specifically, for each k � 0,61, + + + , as
T r `, with

Gk
M~u,u* ! ��

�p

p

e�ikl 6u~e il !62 dGM,u* ~l! , (5.6)
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for GM,u* ~l! as in (5.5), the limits

1

T �
t�6k 6�1

T�6k 6

~Wt�k � Wt�k 6 t�k�1
M ~u,u*,T !!~Wt � Wt 6 t�1

M ~u,u*,T !!r Gk
M~u,u* !

(5.7)

hold uniformly a.s. on OQ	 OQ*. Further, the functions Gk
M~u,u* ! are continuous

and uniformly bounded on OQ	 OQ*. Also, from (5.7) and (5.1), for given u and
u*, the values of Gk

M~u,u* ! depend only on the values of the series AXt , Xt
M

and yt � Wt � AXt , not on the specification of the compensating regressor Xt
N

in decompositions AXt � AMXt
M � ANXt

N (see Sect. 4).

Theorem 5+1 shows that the quantities G0
M~u,u* ! are of special interest be-

cause they describe limiting average squared one-step-ahead forecast errors+With

g0
y~u! ��

�p

p

6u~e il !62 dGy~l!, (5.8)

~5+5! yields the decomposition

G0
M~u,u* ! � g0

y~u!� BNM~u* !G0
X~u!BNM~u* !'+ (5.9)

By specializing the argument used to establish Theorem 5+1, g0
y~u! is seen to

be the limiting average squared error of the u-model’s one-step-ahead forecast
of Wt when Xt

M � Xt + Similarly, using ~4+2!, the final quantity in ~5+9! is seen to
be the limit of the average of the squares of one-step-ahead forecast errors of
the regression-function error array AXt � AT

M~u* !Xt
M , 1 � t � T,

lim
Tr`

1

T �
t�1

T

~$AXt � AT
M~u* !Xt

M%@u# !2

� BNM~u* !��
�p

p

6u~e il !62 dGX ~l!�BNM~u* !' a+s+ (5.10)

It follows from the results for k � 0 in Theorem 5+1 by standard arguments
~see Pötscher and Prucha, 1997, Ch+ 3 and Lem+ 4+2! that the conditional max-
imum likelihood estimators uT of ~1+4! converge a+s+ to the compact set OQ0 of
minimizers of G0

M~u,u! over OQ,

uT r OQ0 a+s+ (5.11)

That is, on a set of realizations of the random variables in ~1+1! with probabil-
ity one, the limit point of each ~coordinatewise! convergent subsequence of
uT,T � 1 belongs to OQ0+ ~So if there is a unique minimizer Nu, then uT r Nu
a+s+! Equivalently, in terms of the l 1-norm ~see Appendix A!, limTr`minu� OQ0

7uT � u71 � 0 a+s+
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Similarly, the conditional maximum likelihood estimators u*T associated with
AT

M~u* ! for fixed u* � OQ converge a+s+ to the set of minimizers of G0
M~u,u* !,

which usually does not include u* ; see Section 7+1+1+

6. EXTENSION TO ARIMA DISTURBANCE MODELS

Now suppose the observed data are GWt , 1 � d � t � T from a time series of the
form GWt � A FXt � Iyt to which a model of the form GWt � AM FXt

M � Iyt
M is being

fit+ Suppose also that it has been correctly determined that the disturbances Iyt
M

require “differencing” with an operator d~L!� �j�0
d dj L j , whose zeroes are on

the unit circle, to obtain residuals for which an ARMA model can be consid-
ered+ The resulting model is called a regARIMA model for GWt + Such models
are extensively used for seasonal time series in the context of seasonal adjust-
ment ~see Findley et al+, 1998; Peña, Tiao, and Tsay, 2001!, often with d~L! �
~1 � L!~1 � Ls!, s � 4,12+ We assume that ~2+1!, ~2+2!, and ~2+5!–~2+8! hold
for Wt � d~L! GWt , yt � d~L! Iyt , Xt � d~L! FXt , and Xt

M � d~L! FXt
M and that Xt

M is
a subvector of Xt + For any 1 � t � T, because GWt � Wt � �j�1

d dj GWt�j , for
given u and u* a natural one-step-ahead forecast for GWt is GWt 6 t�1

M ~u,u*,T ! �
Wt 6 t�1

M ~u,u*,T ! � �j�1
d dj GWt�j , with Wt 6 t�1

M ~u,u*,T ! defined by ~1+6!+ This
leads to GWt � GWt 6 t�1

M ~u,u*,T ! � Wt � Wt 6 t�1
M ~u,u*,T ! for 1 � t � T and there-

fore to forecast-error limiting results as in Theorem 5+1 with the same func-
tions Gk

M~u,u* !+

6.1. Forecasting a Stochastic Regressor to Impute Values
for Late Survey Responders

We briefly consider an application involving regARIMA models with stochas-
tic regressors+ Section 3+3 of Aelen ~2004! provides an interesting one-step-
ahead forecasting application involving a variety of seasonal time series GWt whose
values come from enterprises that report economic data to Statistics Nether-
lands a month late, and FXt

M includes the sum of the values for month t from all
enterprises of the same type that report on time, i+e+, in the desired month, and
sometimes also lagged values of these sums+ Thus FXt

M is stochastic+ In con-
junction with the following discussion of distributed lag models, Theorem 5+1
and Theorem 7+1 in Section 7 provide theoretical support for Aelen’s use of the
regARIMA model GLS estimation and one-step-ahead forecasting procedures
of X-12-ARIMA ~Findley et al+, 1998! to obtain Statistics Netherlands’ imputed
value for GWt in the month in which FXt

M becomes available+

6.1.1. A Class of Distributed Lag Models Satisfying the Assumptions of
Theorem 5.1. After differencing, Aelen’s model becomes a distributed lag
model with regressors and correlated disturbances that are both treated as
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stationary+ We consider a broad class of such models+ Suppose that Wt and Zt

are jointly covariance stationary variates with zero means and that the spec-
tral density matrix of Zt is Hermitian positive definite at all frequencies+
Then, when the autocovariance sequence Gk

V of Vt � @Wt Zt
'# ' satisfies

�k��`
` 7Gk

V7 � `, there exist coefficients Ak satisfying �k��`
` 7Ak7 � ` such

that Wt � �k��`
` Ak Zt�k � yt holds, with Eyt Zt�k

' � 0, k � 0,61, + + + ; see
Theorem 8+3+1 of Brillinger ~1975!+ For any m, n � 0, setting Xt

M � @Zt�n
' + + +

Zt�m
' # ' , Xt

N � �k��n, + + + ,m Ak Zt�k, AM � @A�n + + + Am# , and AN � 1 leads to
~1+1! and ~1+2! having the form of a distributed lag model with stationary dis-
turbances ~see, e+g+, Stock and Watson, 2002! and to the assumptions of Theo-
rem 5+1 holding under Gaussianity or weaker assumptions on Vt ; see Theorem
IV+3+6 of Hannan ~1970!+

7. OPTIMALITY OF GLS

Because of the uniform convergence and continuity results established in Theo-
rem 5+1, for any compact OQ as described in Appendix A, we have

min
u� OQ

� 1

T �
t�1

T

~Wt � Wt 6 t�1
M ~u,u,T !!2� r min

u� OQ
G0

M~u,u! a+s+, (7.1)

and, for any fixed u* � OQ,

min
u� OQ

� 1

T �
t�1

T

~Wt � Wt 6 t�1
M ~u,u*,T !!2� r min

u� OQ
G0

M~u,u* ! a+s+ (7.2)

In Appendix E, we establish the theorem that follows+

THEOREM 7+1+ Let OQ be a compact set as described in Appendix A and
suppose that (2.1), (2.2), and (2.5)–(2.8) hold. Then for any fixed u* � OQ,

min
u� OQ
G0

M~u,u! � min
u� OQ
G0

M~u,u* ! , (7.3)

with equality holding if and only if a minimizer Nu* of G0
M~u,u* ! over OQ is

always a minimizer of G0
M~u,u! ,

G0
M~ Nu*, Nu* ! � min

u� OQ
G0

M~u,u! , (7.4)

and, simultaneously, the asymptotic bias characteristic of AT
M~ Nu* ! as an esti-

mator of AM coincides with that of AT
M~u* ! ,

ANC NM~ Nu* ! � ANC NM~u* ! . (7.5)
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As a consequence, strict inequality obtains in (7.3) if and only if

ANC NM~u* !� ANC NM~ Nu! (7.6)

holds for every minimizer Nu of G0
M~u,u! over OQ. For the maximum likelihood

estimators uT of (1.4), this condition implies

lim inf
Tr`
7~AT

M~uT !� AT
M~u* !!T �102DM,T

�1 7 � 0 a.s. (7.7)

Conversely, if G0
M~u,u! has a unique minimizer Nu, then (7.7) implies (7.6).

Unless u* is a minimizer of G0
M~u,u!, we expect that both minu� OQ G0

M~u,u! �
G0

M~ Nu*, Nu* ! and ANC NM~ Nu*!� ANC NM~u*! will hold except in quite special sit-
uations, the only one known to us being when ANC NM~u*!, and therefore also
G0

M~u,u* !, does not depend on u*+ In Section 7+1, this is shown to occur with
AR~1! models for yt

M only in a singular situation+ Otherwise Nu* is unique+
Whenever Nu* is unique, failure of ~7+5!, which implies minu� OQ G0

M~u,u! �
G0

M~ Nu*,u* ! and Nu* � u*, also yields G0
M~ Nu*,u* ! � G0

M~u*,u* !+
Model sets OQ usually include the white noise model u* � ~1,0,0, + + +! as a

degenerate case+ Hence the conclusions of Theorem 7+1 are generally applica-
ble to OLS as an alternative to GLS+ They indicate the following optimality
property of GLS: In conjunction with maximum likelihood estimation of u,
asymptotically, OLS estimation is never better than GLS estimation for one-
step-ahead forecasting. When the regressor is underspecified and ANC NM~u! is
nonconstant, OLS will typically have greater average mean square error than
GLS, for large enough T, because of its asymptotic bias characteristics being
different from that of GLS.

Thursby ~1987! provides comparisons of OLS and GLS biases when yt is
known to be independent and identically distributed ~i+i+d+! ~white noise!,
dim Xt

M � 2, dim Xt
N � 1, the coordinates of Xt are correlated first-order AR

processes, and the loss function is the posterior mean squared bias associated
with a prior for the parameters that determine the covariance structure between
Xt

N and Xt
M+ With the aid of numerical integrations for the GLS quantities, he

establishes that, depending on the choice of the autocovariance structure of
Xt

M , the mean squared asymptotic bias of GLS is sometimes less and some-
times greater than that of OLS+ Theorem 7+1 shows that, for either outcome,
GLS has an asymptotic advantage over OLS for one-step-ahead forecasting+

7.1. Examples Involving AR(1) Models and dim Xt
M = dim Xt

N = 1

The condition ~7+5! is the easiest to investigate, because, for AR models, Nu*

is the solution of a linear system of equations+ For simplicity, we consider only
the case in which dim Xt

M � dim Xt
N � 1 and a first-order AR model, i+e+,

1096 DAVID F. FINDLEY

https://doi.org/10.1017/S0266466607070430 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466607070430


u � u~f! � ~1,�f,0,0, + + +!, is used for the disturbance series yt
M in ~1+2!+

From ~5+8! and ~5+9!, this leads to

G0
M~u,u* ! ��

�p

p

61 � fe il 62 dGy~l!� BNM~u* !

	 �
�p

p

61 � fe il 62 dGX ~l!B
NM~u* !', (7.8)

where ��p
p 61 � fe il 62 dGy~l! � ~1 � f2 !g0

y � 2fg1
y and ��p

p 61 � fe il 62

dGX~l! � ~1 � f2 !G0
X � f~G1

X � G�1
X !+ Also, with u* � ~1,�f*,0, + + +!, the

C NM~u*! component of BNM~u*! is

C NM~u* ! �
~1 � f*2 !G0

NM � f*~G1
NM � G�1

NM!

~1 � f*2 !G0
MM � 2f*G1

MM
+

When

2G0
NMG1

MM � ~G1
NM � G�1

NM!G0
MM � 0, (7.9)

the derivative of C NM~u*! is nonzero on �1 � f* � 1 and C NM~u*! is strictly
monotonic; see Section 6+3 in the paper by Findley ~2005!, whose derivation
also shows that the unique Nu* � ~1,� Nf*,0, + + +! minimizing ~7+8! is the lag one
autocorrelation of GM,u* ~l! in ~5+5!,

Nf* �
g1

y � ~AN !2$G1
NN � ~C NM~u* !!2G1

MM � C NM~u* !~G1
NM � G�1

NM!%

g0
y � ~AN !2$G0

NN � ~C NM~u* !!2G0
MM%

+ (7.10)

There is no such simple formula for Nf minimizing G0
M~u,u! because the crit-

ical point equation for Nf provides Nf as a zero of a polynomial of degree five in
general+ However, from strict monotonicity of C NM~u*~f*!!, if Nf* � f* then
~7+5! fails, and therefore strict inequality holds in ~7+3! by Theorem 7+1+ For
the OLS choice, f* � 0, when C NM~u*! � C NM , ~7+10! shows that Nf* � 0
~except possibly at a single value of ~AN!2!, when either g1

y or DNM � G1
NN �

~C NM !2G1
MM � C NM~G1

NM � G�1
NM! is nonzero, which will usually be the case+ A

periodic Xt satisfying ~7+9! and DNM � 0 is given in Section 7+1+2+
When ~7+9! fails, C NM~u*! � C NM � G0

NM0G0
MM for all u*, and so equality

holds in ~7+3!+

7.1.1. The Inferiority of White Noise Modeling with OLS when Nf* � 0+ If
OQ is a compact model set containing the AR~1! models u � u~f!, then
G0

M~ Nu*,u* ! � G0
M~u*~ Nf* !,u* !+ So, under ~7+9! and Nf* � f*, we have, from

~7+3!, that minu� OQ G0
M~u,u! � G0

M~ Nu*,u* ! � G0
M~u*,u* !+ Thus, for u* �

~1,0,0, + + +!, it follows from ~7+1! and ~7+2! that when Nf* � 0, using OLS
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estimation of AM with the white noise model for yt
M leads to asymptotically

worse one-step-ahead forecasts than GLS with ~1+4!, for any such model set OQ+

7.1.2. Periodic Xt and an Example of DNM + The trading day and holiday
regressors discussed in Findley et al+ ~1998!, Bell and Hillmer ~1983!, and Find-
ley and Soukup ~2000! are effectively periodic functions; i+e+, Xt�P

M � Xt
M holds

for all t, for rather large periods P ~e+g+, 12 	 28 � 336 months for trading day
regressors, 12 	 19 � 228 months for some lunar holiday regressors, more for
other holidays, e+g+, Easter!+ The simplest holiday regressors are one-dimensional
and specify that the effect of the holiday is the same for each day in some
interval near the holiday, a dubious but simplifying assumption+ For such regres-
sors, the compensating Xt

N can be assumed to be one-dimensional and have the
same period+

Every regressor of period P has a Fourier representation �j aj cos~2pjt0
P ! � bj sin~2pjt0P ! with at most P nonzero coefficients, which are uniquely
determined linear functions of P consecutive values of the regressor; see Sec-
tion 4+2+3 of Anderson ~1971!+ To give a more complete analysis of ~7+3! for
the function ~7+8!, we consider a simplified period P � 4 regressor Xt

M having
the representation Xt

M � a1
M cos~p02!t � a2

M~�1!t , with a1
M , a2

M � 0, for which
Xt

N � a1
N cos~p02!t � b1

N sin~p02!t, with a1
N , b1

N � 0+ Thus Xt � @Xt
M Xt

N# ' �
a1 cos~p02!t � a2~�1!t � b1 sin~p02!t, where a1 � @a1

M a1
N# , a2 � @a2

M 0# ,
and b1 � @0 b1

N# + Consequently, Gk
X � 1

2
_a1
' a1 cos~p02!k � a2

' a2~�1!k �
1
2
_b1
' b1 sin~p02!k, k � 0,61, + + + , and GX~l! is piecewise constant with upward

jumps at l � 6p02,p; see Anderson ~1971, p+ 581!+
For this Xt , the left-hand side of ~7+9! has the value �a1

M a1
N~a2

M!2 , and
so ~7+9! holds+ Further, C NM � a1

M a1
N $~a1

M!2 � 2~a2
M!2 %�1 and DNM �

�~a2
M C NM !2 + Strict inequality holds in ~7+3! for OLS estimation except when

g1
y � 0 and ~AN!2 � g1

y~a2
M C NM !�2 , in which case Nf* � 0 � f*+

7.2. Regarding Asymptotic Efficiency in the Sense
of Grenander (1954)

Here we restrict attention to nonrandom regressors Xt in ~1+1! whose compo-
nents are polynomials, periodic functions, or realizations of stationary pro-
cesses with continuous spectral densities and with convergent sample second
moments+ The disturbance process yt is assumed to be a mean zero stationary
process with the last-mentioned properties+ Grenander ~1954! considers the cor-
rect regressor case and calls the OLS estimates AT

M � �t�1
T Wt Xt

'~�t�1
T Xt Xt

'!�1

asymptotically efficient if limTr` DT
�1 E $~AT � A!'~AT � A!%DT

�1 is minimal
~in the ordering of symmetric matrices! among all linear, unbiased estimates
AT of A+ For this situation, his result, given on p+ 244 of Grenander and Rosen-
blatt ~1984!, is that OLS is efficient if and only if the spectral distribution func-
tion GX~l! has at most dim Xt jumps and the sum of the ranks of the jumps
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GX~l�! � GX~l�!, 0 � l � p is equal to dim Xt + These conditions are not
satisfied, and OLS is not efficient, for most of the regressors discussed in Sec-
tion 7+1+2, including the calendar effect regressors and the period four regres-
sor with bN � 0; see Chapter 7+7 and case ~1! on p+ 253 of Grenander and
Rosenblatt ~1984!: usually, the number of terms in the Fourier representation
of Xt , and thus also the number of jumps in GX~l!, exceeds dim Xt +

To be able to apply Grenander’s result to our underspecified regression situ-
ation, assume that Xt

M and yt
M have the properties hypothesized previously for

Xt and yt + Thus Xt
N has a continuous spectral density and so cannot have

periodic components+ If we consider Xt
M having only polynomial and periodic

components, then Xt
N and Xt

M are asymptotically orthogonal; see Section 6+1 of
Findley ~2005!+ This implies ANC NM~u*!� 0 for all u*, resulting in equality in
~7+3! always, because G0

M~u,u* ! does not depend on u*+
On the other hand, with regressors in Xt

M that are realizations of station-
ary processes, if ANC NM~u*! is nonzero, then the analogue for AT

M~u* ! of
Grenander’s efficiency measure fails by being infinite, because some entries of
~AT

M~u* ! � AM !DM,T
�1 will have order T 102 ; see ~4+2!+

Thus this concept of efficiency is not useful in our context+

8. EXTENSIONS AND RELATED RESULTS

From their connection to one-step-ahead forecast error filters, it is not very sur-
prising that GLS estimates of regARMA and regARIMA models have an opti-
mality property for one-step-ahead forecasting+ Yet a systematic investigation
of the topic has been lacking+A pleasingly simple result, such as Theorem 7+1’s
connection of optimality with asymptotic bias characteristics, seems possible
only for the incorrect regressor case+ Indeed, if asymptotic efficiency results
are indicative, the correct regressor case will be quite complex+ In this case,
when the ARMA model for yt is incorrect, GLS can be more or less efficient
than OLS; see Koreisha and Fang ~2001!+ Even when the ARMA model is also
correct, the analysis and examples of Grenander and Rosenblatt ~1984! and of
Section 7+2 show, for nonstochastic regressors, that OLS is asymptotically effi-
cient only for a limited range of relatively simple regressors+

For any fixed u*, in the incorrect nonstochastic regressor case, a referee con-
jectures that, under additional assumptions and with the aid of a result like Theo-
rem 4+1 of West ~1996!, it can be shown that the limit as Tr ` of the variance
of T �102 �t�1

T ~Wt � Wt 6 t�1
M ~u*,u*,T !! does not depend on u*+

So far, we have only provided asymptotic results for the most simply defined
GLS estimates, which are obtained by truncating the infinite-past forecast error
filters and using conditional maximum likelihood estimation of the ARMA
model+ Section 2+4 of Findley ~2005! and ~d! of Lemma 10 of Findley ~2005!
reveal that the same limits are obtained if the errors of the finite-past one-step-
ahead forecasts discussed in Newton and Pagano ~1983! are used to define GLS
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estimates in conjunction with unconditional maximum likelihood estimation of
the ARMA model+ ~Analogous GLS estimates from AR models were consid-
ered in Amemiya, 1973+! See Section 9 of the technical report Findley ~2003!
for additional details, including details about how to weaken the assumptions
on Xt

M to include the frequently used intervention variables of Box and Tiao
~1975!+ These decay exponentially to zero and so have weight one in DM,T ,
causing ~2+5! to fail+ Also, with the restriction to measurable minimizers uT

discussed in Findley et al+ ~2001, 2004!, in the case of nonstochastic Xt , all
almost sure convergence results hold with convergence in probability when con-
vergence in ~2+1! holds only in this weaker sense+

Findley ~2003! also shows how to use the results of Appendix D to general-
ize Theorem 5+1 to the case of multi-step-ahead forecast errors and to establish
the convergence of u-parameter estimates that minimize average squared multi-
step-ahead forecast errors ~allowing for yt

M the more comprehensive model
classes of Findley et al+, 2004!+

Findley ~2005! uses the results of Theorems 4+1 and 7+1 to obtain formulas
and GLS optimality results for the limiting average of squared out-of-sample
~real time! forecast errors of regARIMA models under assumptions on the regres-
sors Xt that are slightly more restrictive than those of Section 2 but are satis-
fied by all of the specific regressor types we have mentioned+ The limit formulas
are the same as those of the present paper when Xt

M is A+S+ Empirical results
are available from the author showing that GLS usually leads to better one-step-
ahead out-of-sample forecasting performance than OLS for a suite of monthly
series that are modeled with trading day and Easter holiday regressors by the
U+S+ Census Bureau for the purpose of seasonal adjustment+
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APPENDIX A+ Compact u-Sets for Estimation

For each « � 0 and integer pair p,q � 0, we define Qp,q,« to be the set all of u �
~1,u1,u2, + + +! from invertible ARMA~r, s! models with r � p, s � q such that the zeroes
of the minimal degree AR and MA polynomials f~z! and a~z! such that u~z! � f~z!0
a~z! all belong to $6z 6 � 1 � «% + Every sequence uT � ~1,u1

T ,u2
T , + + +!, T � 1,2, + + + in

Qp,q,« has a subsequence uS~T ! that converges coordinatewise to some u � Qp,q,«, i+e+,
uj

S~T ! r uj , j � 1+ Thus Qp,q,« is compact for coordinatewise convergence+ Further,
for 0 � «0 � «, the sums �j�0

` ~1 � «0!
j 6uj 6 converge uniformly on Qp,q,«; i+e+,
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supu�Qp,q,« �j�0
` ~1 � «0!

j 6uj 6 � ` and limJr` supu�Qp,q,« �j�J
` ~1 � «0!

j 6uj 6 � 0+ See
Lemmas 2 and 10 of Findley ~2005! for these and other properties mentioned+ Our uni-
form convergence results that are presented subsequently follow from these facts as do
some other important properties+ First, the functions u~e il!� �j�0

` uj e il are continuous
on �p � l � p and uniformly bounded and bounded away from zero on Qp,q,«:

min
�p�l�p,u�Qp,q,«

6u~e il !6 � 0, max
�p�l�p,u�Qp,q,«

6u~e il !6 � `+

Second, if a sequence uT , T � 1,2, + + + in Qp,q,« converges coordinatewise to some u,
then it also converges in the stronger sense that limTr` �j�0

` ~1 � «0 !
j 6uj

T � uj 6 � 0
whenever 0 � «0 � «+ In particular, the topology of coordinatewise convergence on
Qp,q,« coincides with that of the l 1-norm 7u71 � �j�0

` 6uj 6+
Our theorems apply to any compact OQ for which OQ � Qp,q,« holds, for some « � 0

and p,q � 0+ A typical OQ would arise from constraints on the zeroes of the AR and MA
polynomials of the kind of ARMA model of interest+

APPENDIX B+ Scalable Asymptotic Stationarity

Under the data assumptions made in Section 2, Xt and yt in ~1+1! together form a multi-
variate sequence that is S+A+S+, a property we now consider in some detail+ Let Ut , t � 1
be a real-valued column vector sequence that is S+A+S+ and let IU denote the identity
matrix of order dim U, the dimension of Ut + Thus there is a decreasing sequence D1 �
D2 � + + + of positive definite diagonal matrices, for which DT ' 0 and

lim
Tr`

DT�k
�1 DT � IU , k � 1,2, + + + (B.1)

hold, such that, for each k � 0,61, + + + , the limits

Gk
U � lim

Tr`
DT �

t�6k 6�1

T�6k 6

Ut�k Ut
'DT a+s+ (B.2)

exist ~finitely!+ The properties ~B+1! and ~B+2! yield limTr`DT UT�j � 0 a+s+, j � 0+ For
example, when j � 0, as T r `,

DT UT UT
'DT � DT �

t�1

T

Ut Ut
'DT � ~DT DT�1

�1 !DT�1 �
t�1

T�1

Ut Ut
'DT�1~DT�1

�1 DT !

converges a+s+ to G0
U � G0

U � 0, whence DT UT r 0 a+s+ Further, DT ' 0 leads to
limTr`DT U1�j � 0 a+s+ for all j � 0+

Without a formal name, this generalization of stationarity was introduced for regres-
sors in Grenander ~1954! to encompass a variety of nonstochastic regressors, including
polynomials+ ~Our notation is the inverse of his, using DT where he uses DT

�1+ He only
requires the diagonal elements of G0

U to be positive, which is the nature of ~2+9! for
XXt

N � ANXt
N+ Our requirement ~2+10! for Xt

M is stronger+! Grenander shows that the real
matrix sequence Gk

U , k � 0,61, + + + has a representation Gk
U � ��p

p e�ikl dGU ~l! in which
GU~l! is a Hermitian-matrix-valued function such that the eigenvalues of increments
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GU~l2! � GU~l1!, l2 � l1, are nonnegative, or, equivalently, the increments are Her-
mitian nonnegative; see also Grenander and Rosenblatt ~1984!, Chapter II of Hannan
~1970!, and Chapter 10 of Anderson ~1971!+ For example, if Ut � t p, p � 0, then, with
DT � T �~ p�102! , one obtains Gk

U � ~2p � 1!�1 for each k, and so GU~l! can be taken to
be 0 for l � 0 and ~2p � 1!�1 for l � 0+ Grenander ~1954! and Grenander and Rosen-
blatt ~1984, Ch+ 7! verify the joint scalable asymptotic stationarity property for regres-
sors whose entries Xi, t are polynomials, linear combinations ~perhaps infinite! of
sinusoids, i+e+, of cosvj t and0or sinvj t, for various 0 � vj � p ~scaling sequence T �102!,
and, finally, products of polynomials t p with linear combinations of sinusoids ~scaling
sequence T �p�102!+ By contrast, exponentially increasing regressors, e+g+, Ut � ebt with
b � 0, are not S+A+S+ because ~B+1! fails for DT � ~�t�1

T e2bt !�102 ; see Hannan ~1970,
p+ 77!+

APPENDIX C+ Vector Array Reformulation
of Assumptions

The following reformulation of our assumptions ~2+1!, ~2+2!, and ~2+5!–~2+9! concerning
yt and Xt will enable us to make use of the results of Findley et al+ ~2001, 2004!+ The
vector array

Ut ~T ! � � yt

T 102DX,T Xt
�� �

yt

T 102DM,T Xt
M

Xt
N

	 , 1 � t � T, (C.1)

is A+S+ More specifically, for each k � 0,61, + + + ,

Gk
U � lim

Tr`
T �1 �

t�6k 6�1

T�6k 6

Ut�k~T !Ut ~T !
' a+s+ (C.2)

� �
gk

y 0 0

0 Gk
MM Gk

MN

0 Gk
NM Gk

NN
	 , (C.3)

with G0
MM � 0 and ANG0

NN AN' � 0+ Further, from Appendix B,

lim
Tr`

T �102U1�j ~T ! � 0 � lim
Tr`

T �102UT�j ~T ! a+s+, j � 0+ (C.4)

Because of ~C+3!, the spectral distribution matrix of the Gk
U sequence has the block

diagonal form GU~l! � blockdiag~Gy~l!,GX~l!!+

APPENDIX D+ Uniform Convergence Results
for Filtered A+S+ Arrays

The proposition and lemma that follow are formulated for proving some of the more
general results indicated in Section 8+
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PROPOSITION D+1+ Let Ut~T ! , 1 � t � T be an A.S. column vector array satisfying
(C.4) and let GU~l! denote the spectral distribution matrix of the asymptotic lagged
second moments matrices Gk

U defined by (C.2). Let H and Z be sets of filters h �
~h0,h1, + + +! and z � ~z0,z1, + + +! such that �j�0

` 6hj 6 resp. �j�0
` 6hj 6 converges uniformly

on H resp. Z. Then the filter output arrays Ut @h# ~T ! � �j�0
t�1 hj Ut�j and Ut @z# ~T ! �

�j�0
t�1 zj Ut�j , 1 � t � T, h � H, z � Z have the following properties:

(i) limTr` suph�H7T �102U1�j,T @h#7 � limTr` suph�H7T �102UT�j,T @h#7 � 0 a.s.
for all j � 0, and analogously for Ut @z# ~T ! .

(ii) As T r `, suph�H,z�Z 7T �1 �t�6k 6�1
T�6k 6 Ut�k @h# ~T !Ut @z# ~T !

' � Gk
U~h,z!7 r 0

a+s+, where Gk
U~h,z! � ��p

p e�iklh~e il !z~e�il ! dGU ~l! , for k � 0,61, + + + +
(iii) The functions Gk

U~h,z! are bounded on H 	 Z,

7Gk
U~h,z!7 � 7G0

U7 sup
h�H
6h~e il !6 sup

z�Z
6z~e il !6 � `,

and are jointly continuous in h,z in the sense that, if hT � H, zT � Z are such
that hT r h and zT r z (coordinatewise convergence) with h � H, z � Z,
then Gk

U~hT,zT !r Gk
U~h,z! . Also, if Z � H, then infh�H,�p�l�p 6h~e il !62G0

U �
G0

U~h,h! � suph�H,�p�l�p 6h~e il !62G0
U.

(iv) Let H be an index set for a family of arrays Ut~h,T ! , 1 � t � T, h � H such
that, as T r `,

sup
h�H



 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !' � G0~h!

r 0 a.s., (D.1)

where the G0~h! are positive definite matrices whose minimum eigenvalues are
bounded away from zero; i.e.,

inf
h�H
lmin~G0~h!! � mH (D.2)

holds for some mH � 0. Then

sup
h�H



� 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !'��1

� G0~h!
�1

r 0 a.s. (D.3)

Proof. Parts ~i!–~iii! are straightforward vector extensions of special cases of
Theorem 2+1 and Proposition 2+1 of Findley et al+ ~2001!+ For ~iv!, it follows from
~D+1! and ~D+2! that, given « � 0, for each realization except those of an event with
probability zero, there is a T« such that for T � T« the inequalities suph�H 7T �1

�t�1
T Ut ~h,T !Ut ~h,T !' � G0~h!7 � ~«02!mH

2 and infh�H lmin~T
�1 �t�1

T Ut ~h,T !
Ut ~h,T !' ! � 1

2
_ mH hold+ Hence for these T and all h � H,
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sup
h�H



� 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !'��1

� G0~h!
�1



� sup
h�H

�

� 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !'��1




	 

 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !' � G0~h!

7G0~h!�1 7�
�

1

mH

sup
h�H

�lmin
�1 � 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !'��
	 sup
h�H

�

 1

T �
t�1

T

Ut ~h,T !Ut ~h,T !' � G0~h!

� � «,

which establishes ~D+3!+
We also need the following lemma, whose proof can be obtained by standard argu-

ments, as in the proof of ~5+18! of Findley et al+ ~2004!+

LEMMA D+2+ Suppose that, on a set OQ*, the sequence bT ~u
*! , T � 1,2, + + + of row

vector functions converges uniformly a+s+ to a bounded function b~u*! , i.e., (5.3) holds,
and similarly for tT ~u*! , T � 1 and its limit t~u*! . Let Ut~h,T ! , h � H and Wt~z,T ! ,
z � Z, 1 � t � T be families of column vector arrays of the same dimension as b~u*!
and t~u*! , respectively, such that, for k � 0,61, + + + ,

sup
h�H,z�Z



 1

T �
t�6k 6�1

T�6k 6

Ut�k~h,T !Wt ~z,T !' � Gk~h,z!

r 0 a.s.

holds for functions Gk~h,z! with suph�H,z�Z7G0~h,z!7 � `. Then, as T r `,

sup
u*� OQ*

h�H,z�Z



 1

T �
t�6k 6�1

T�6k 6

bT ~u
* !Ut�k~h,T !Wt ~z,T !'tT ~u* !' � b~u* !Gk~h,z!t~u* !'



r 0 a.s. �

APPENDIX E+ Proofs

Proof of Theorem 4.1. We have

~AT
M~u!� AM !T �102DM,T

�1

� T �102 �
t�1

T

yt
M @u#Xt

M @u# 'DM,T�DM,T �
t�1

T

Xt
M @u#Xt

M @u# 'DM,T��1

� T �102 �
t�1

T

yt @u#Xt
M @u# 'DM,T�DM,T �

t�1

T

Xt
M @u#Xt

M @u# 'DM,T��1

� AN�T �102 �
t�1

T

Xt
N @u#Xt

M @u# 'DM,T��DM,T �
t�1

T

Xt
M @u#Xt

M @u# 'DM,T��1

+
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By ~ii! and ~iii! of Proposition D+1, T �102 �t�1
T yt @u#Xt

M @u# 'DM,T converges uni-
formly a+s+ to 0 and T �102 �t�1

T Xt
N @u#Xt

M @u# 'DM,T and DM,T �t�1
T Xt

M @u#Xt
M @u# 'DM,T

converge uniformly a+s+ to the continuous limits G0
NM~u! and G0

MM~u!, respectively,
with G0

MM~u! bounded below by the positive definite matrix m OQ
2 G0

MM , where m OQ �
minp�l�p,u� OQ6u~e il!6 � 0; see Appendix A+ It follows from ~iv! of Proposition D+1
that ~DM,T �t�1

T Xt
M @u#Xt

M @u# 'DM,T !
�1 converges uniformly to G0

MM~u!�1 , which is
therefore continuous ~and bounded above by m OQ

�2~G0
MM!�1 !+ Hence ~AT

M~u! � AM !
T �102DM,T

�1 converges uniformly a+s+ to ANC NM~u!, which is continuous on OQ and also
bounded+ �

Proof of Theorem 5.1. The assertions follow from ~5+2! and Lemma D+2 with
tT ~u

*! � bT ~u
*!, H � Z � OQ, and Ut~u,T ! � Wt~u,T ! � Ut @u# ~T ! � �j�0

t�1 uj Ut�j ~T !,
for Ut�j~T ! defined by ~C+1!, because the uniform convergence of T �1 �t�6k 6�1

T�6k 6

Ut�k @u# ~T !Ut @u# ~T !
' to Gk

U~u! � ��p
p e�ikl 6u~e il !62 dGU ~l! and the boundedness of

7G0
U~u!7 on OQ, which are required to apply Lemma D+2, follow from ~ii! and ~iii!,

respectively, of Proposition D+1+ The uniform convergence of �j�0
` 6uj 6 required by the

proposition is the special case «0 � 0 in Appendix A+ The fact that GU ~l! �
blockdiag~Gy~l!,GX~l!!, because of ~C+3!, yields the form of GM,u* ~l! in ~5+5!+ �

Proof of Theorem 7.1. We start by establishing that, for any invertible u and u*,
we have G0

M~u,u! � G0
M~u,u* ! with equality holding if and only if ANC NM~u*! �

ANC NM~u!+ Indeed, the component of G0
M~u,u* ! that depends on u* can be reexpressed

in terms of the analogues of C NM~u*! and G0
X~u! obtained by replacing Xt

N with XXt
N �

ANXt
N+ Denoting these analogues by XC NM~u*! and XG0

X~u!, we have

AN @�C NM~u* ! IN #G0
X~u!@�C NM~u* ! IN #

'AN'

� @� XC NM~u* ! 1# XG0
X~u!@� XC NM~u* ! 1# '+

By a standard calculation, for any C with the dimensions of XC NM~u!,

@� XC NM~u! 1# XG0
X~u!@� XC NM~u! 1# ' � @�C 1# XG0

X~u!@�C 1# ', (E.1)

with equality holding in ~E+1! if and only if C � XC NM~u! ~� ANC NM~u!!+
Next, note that because G0

M~u,u! and G0
M~u,u* ! are continuous functions of u on OQ,

they have minimizers Nu, resp+ Nu* over OQ+ From the result just established, we obtain

G0
M~ Nu, Nu! � G0

M~ Nu*, Nu* !� G0
M~ Nu*,u* !+ (E.2)

Thus G0
M~ Nu, Nu! � G0

M~ Nu*,u* ! holds, i+e+, equality in ~7+3!, if and only if ~7+4! and
G0

M~ Nu*, Nu* ! � G0
M~ Nu*,u* ! do, and the latter is equivalent to ~7+5!, as was just shown+

In particular, equality in ~7+3! implies the failure of ~7+6! for Nu� Nu* satisfying ~7+4!+
Conversely, failure of ~7+6! for some minimizer Nu, i+e+, ANC NM~u*!� ANC NM~ Nu!, implies
G0

M~ Nu*,u* ! � G0
M~ Nu,u* !� G0

M~ Nu, Nu!, which, from ~E+2!, yields G0
M~ Nu*,u* !� G0

M~ Nu, Nu!�
G0

M~ Nu*, Nu* !, i+e+, equality in ~7+3!+ Therefore ~7+6! for all Nu minimizing G0
M~u,u! is nec-

essary and sufficient for strict inequality in ~7+3!+

1106 DAVID F. FINDLEY

https://doi.org/10.1017/S0266466607070430 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466607070430


From Theorem 4+1 and ~5+11!, it follows that the left-hand side of ~7+7! is equal a+s+
to the left-hand side of

lim inf
Tr`
7AN~C NM~uT !� C NM~u* !!7 � min

Nu� OQ0

7AN~C NM~ Nu!� C NM~u* !!7 a+s+ (E.3)

The assertions concerning ~7+7! follow from ~E+3! and the fact that, when OQ0 � $ Nu% ,
equality holds in ~E+3! because uT r Nu a+s+, from ~5+11!+ �
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