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OPTIMALITY OF GLS FOR
ONE-STEP-AHEAD FORECASTING
WITH REGARIMA AND RELATED

MODELS WHEN THE REGRESSION
IS MISSPECIFIED

DaviD F. FINDLEY
U.S. Census Bureau

We consider the modeling of a time series described by a linear regression com-
ponent whose regressor sequence satisfies the generalized asymptotic sample sec-
ond moment stationarity conditions of Grenander (1954, Annals of Mathematical
Statistics 25, 252-272). The associated disturbance process is only assumed to
have sample second moments that converge with increasing series length, per-
haps after a differencing operation. The model’s regression component, which can
be stochastic, is taken to be underspecified, perhaps as a result of simplifications,
approximations, or parsimony. Also, the autoregressive moving average (ARMA)
or autoregressive integrated moving average (ARIMA) model used for the distur-
bances need not be correct. Both ordinary least squares (OLS) and generalized
least squares (GLS) estimates of the mean function are considered. An optimality
property of GLS relative to OLS is obtained for one-step-ahead forecasting. Asymp-
totic bias characteristics of the regression estimates are shown to distinguish the
forecasting performance. The results provide theoretical support for a procedure
used by Statistics Netherlands to impute the values of late reporters in some eco-
nomic surveys.

1. INTRODUCTION

For many economic indicator series, modeling requires specification of both a
regression function and an autocovariance structure for the disturbance pro-
cess. Suppose that, possibly after a variance stabilizing transformation (e.g.,
differencing), one has data W,, 1 =< =< T of the form

W, =AX, +y, (1.1)
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where the X, are column vectors and the y, are real variates that are asymptot-
ically orthogonal to the X, in a sense to be defined, whose lagged sample sec-
ond moments converge as 7T — co. With monthly or quarterly seasonal economic
data, AX,; might describe a linear or higher degree trend, stable seasonal effects,
moving holiday effects (Bell and Hillmer, 1983), trading day effects (Findley,
Monsell, Bell, Otto, and Chen, 1998), or other periodic effects. The term X,
might also include values of related stochastic variables, perhaps at leads or
lags. We address the situation in which the modeler considers a model

W, = AMXM + yM (1.2)

whose regressor X} is not able to reproduce AX, for all ¢ because of known or
unknown omissions, approximations, simplifications, etc. We assume that the
modeler, perhaps starting from the ordinary least squares (OLS) estimate for
AM given by (1.5) later in this section, has decided upon an autoregressive
moving average (ARMA) model family, not necessarily correct, for the distur-
bance (or residual) process y” = W, — AMX™. Such a model for (1.2) is called
a regARMA model.

Generalized least squares (GLS) estimation of AY occurs simultaneously with
ARMA estimation. The simplest definition of (feasible) GLS estimates of AY,
given by (1.3), makes use of the ARMA model’s innovation filter that is defined
as follows. With L denoting the lag operator, let ¢»(L) be the autoregressive
polynomial (AR) and «(L) the moving average (MA) polynomial of a (per-
haps incorrect) candidate ARMA model for y* and let 8 = (1,6,,6,,...) de-
note the coefficient sequence of the power series expansion ¢(L)/a(L) =
27;0 6;L’. When y, in (1.1) and the regressors missing from XY are weakly
(i.e., first and second moment) stationary with mean zero, then y™ will be
weakly stationary with mean zero. In this case, assuming that values of y are
available at all past times, y,,_,(6) = =32, 6,y is the model’s linear fore-
cast of y from y¥, —co < s =t — 1; see Section 5.3.3 of Box and Jenkins
(1976) or Hannan (1970, p. 147). The forecast errors a,(6) =y — y}._(0) =
2706 yt"fj are called the model’s innovations series, and the coefficient se-
quence 6 is its innovation filter. If the ARMA model is correct, then for each f,
a,(0) is uncorrelated with y!/, —oo < s = — 1, and it follows that y},_,(6)
has minimum mean square error among all such linear forecasts of y and that
the innovations a,(6) are uncorrelated (white noise). However, we do not assume
that a correct ARMA model exists or that y™ is weakly stationary. For example,
when a missing regressor is deterministic, e.g., periodic, y™ will not be weakly
stationary even when y, is but will instead be asymptotically stationary, mean-
ing that its lagged sample second moments will converge as T increases. Their
limits form the autocovariance sequence of a weakly stationary process. In effect,
it is this autocovariance sequence for which an ARMA model is sought. All
ARMA model-related quantities of interest in this paper depend only on 6 and
on the W, and X*. Thus we can express model dependence in terms of 6, as we
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do throughout the paper. Further motivation for this “parameterization” is
given in Section 3. We refer to each 6 as a model.
For given W,, X, 1 =t = T and 6, define W,[6] = 2};(]) O;W,_; and X' [0] =
j’;(l) 0; X,"fj for 1 =t = T and let ' denote transpose. Following Pierce (1971),
we define the #-model’s GLS estimator of AM to be

T T —1
A7(0) = 2 W, [0]X}" [0]’(EX,M (01X} [0]') : (1.3)

=1 =1
(We discuss another GLS estimator in Section 8.) With these A¥(6), an esti-
mate of 6 (and of the ARMA coefficients determining 6 when they are identi-
fied) can be obtained by conditional or unconditional maximum likelihood
estimation (MLE). (As usual, Gaussian likelihood functions are used without
requiring the data to be Gaussian.) For the conditional MLE estimates on which
we focus for simplicity (see Box and Jenkins, 1976, Sect. 7.1.2), for each
1 =t = T, one defines the #-model’s forecast of W, from W, | = s =1 — 1
to be AY(9)XM + E_;;%(—Gjﬂ)(W,,l _; — AY(6)X",_,), with the convention
2o = 0. This is the special case ,‘t,l(ﬁ, 0,T) of the more general fore-
cast function W,‘, 1(0,60%,T) defined in (1.6), which follows. Conditional MLE
estimates 07 leading to GLS estimates AY(67) are the minimizers

T
07 = arg m1 2 W/i1(0,0,T))% (1.4)

1
6T;
where @ is a compact set of 8 specified by ARMA (p,q) models whose AR and
MA polynomials have all zeroes in {|z| = 1 + &}, for some & > 0.
Responding to the extensive literature comparing GLS with OLS, we also
consider model estimates and forecasts based on the OLS estimate of A,

a T —1
AT =2 th,M’[Ex,Mx,M’] : (1.5)
=1 =1

This is the special case AY (6*) of (1.3) with * = (1,0,0,...), the white noise
model for y. The forecast function of W, associated with AY is obtained by
using this choice of 8 in
=2
W/1(0,6%T) = AT (0)X) + 2 (=6, ) (W, — AT (09X, ). (1.6)
j=0
With this formula, for any fixed 0*, conditional MLE yields a specification
0*" = arg mingep T 2 1 (W, = t\z 1(6,0%,7))°.
In this paper, we obtain formulas for the limiting values of average squared
one-step-ahead prediction errors obtained from these two types of MLEs,

T
lim min 7' > (W, = W1_,(6,6,7))* (1.7)

T—oo 0EO =1
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and, for fixed 07,

lim min 7~ 1E(W W/ii_1(60,0%,T))% (1.8)

T—o0 0EO

With Theorems 5.1 and 7.1, which are given later in the paper, we show, under
general assumptions on X, and X} given subsequently, that (1.7) is always less
than or equal to (1.8), typically less. This is the optimality property of GLS
referred to in the title of this paper. (By contrast, in the correct regressor
case, when all our assumptions hold except (2.9) requiring asymptotic non-
negligibility of the omitted regressors, the two limits are equal.) Further, using
OLS with the white noise model #* = (1,0,0,...) for y¥, as is often done,
usually leads to even worse forecasts, in the sense that lim,,,, 7' 3/ (W, —
,|, ,(0%,6%,T))? has a larger value than (1.8); see Section 7.1.1.

1.1. Overview of the Paper

The regressor sequence X,, t = 1 is required to satisfy the conditions of
Grenander (1954), which define a property we call scalable asymptotic station-
arity; see Section 2 and Appendix B. Grenander introduced this generalization
of stationarity to investigate the efficiency of OLS estimates for a large class of
nonstochastic regressors in models with a broad range of weakly stationary dis-
turbances. We indicate in Section 7.2 why efficiency in Grenander’s sense is
rarely applicable in the context of misspecified nonstochastic regressors. For
the models we consider, the regressor X in (1.2), which can be stochastic, is
taken to be a proper subvector of X;. The remaining entries of X, can be those
of any vector X, compatible with our assumptions, whose variables compen-
sate for the inadequacies of X in such a way that, for some A and A", the
regression function in (1.1) can be decomposed as

AX, = AMXM + ANXN, (1.9

Then, in (1.2), yM = ANXN +y,.

Our requirements for XM XN, and y, are comprehensively stated in Sec-
tion 2 and verified for some important classes of models in Sections 2.1 and
6.1.1. More information about ARMA model parameterization with innova-
tions coefficient sequences 6 = (1,6,,6,...) is provided in Section 3, which
includes some elementary examples. For diagonal scaling matrices D, r such
that a.s.-limy_,., Dy, 7 >,—1 XXM D,, ; is nonsingular, Theorem 4.1 gives a
formula for lims_,., (AY¥(6) — AM)T~'2D,,'; and establishes that conver-
gence is uniform on the compact sets ® defined in Appendix A. For a given 6,
this limit is called the asymptotic bias characteristic of AY(6) for AM. Sec-
tion 5 obtains formulas for the limits of the sample second moments of the
forecast errors W, — |, 1(6,0,T) and W, — ‘, 1(6,6%T). The analogous
results for regARIMA-type nonstationary models, for situations in which the
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disturbance process requires a differencing transformation prior to ARMA mod-
eling, are discussed in Section 6. We describe, in Theorem 7.1 in Section 7,
how the optimality property of GLS mentioned previously arises: the better
performance of GLS relative to OLS occurs when the OLS estimate has an
asymptotic bias characteristic different from that of the GLS estimate. These
results provide support for an imputation procedure used by Statistics Nether-
lands (Aelen, 2004), which uses one-step-ahead forecasts from regARIMA mod-
els with stochastic distributed lag regressors to impute the net contribution of
late-reporting firms to economic time series from certain monthly surveys; see
Section 6.1. Section 7.1 provides elementary expressions for some asymptotic
quantities associated with GLS and OLS estimation when y is modeled as a
first-order autoregression. These are used to illustrate the generality of GLS’s
optimality. Section 8 discusses related results and extensions.

Proofs of the theorems are given in Appendix E. They use the auxiliary results
of Appendix D obtained mainly from Findley, Pétscher, and Wei (2001).

2. THE DATA AND REGRESSOR ASSUMPTIONS

In (1.1), we require y,, t = 1 to be asymptotically stationary (A.S.) in the sense
of Potscher (1987), meaning that for each k = 0,£1,..., the lag k sample sec-
ond moments have asymptotic limits almost surely (i.e., with probability one),
denoted a.s. That is, the limits

1 T—|k|
yi=lm — >y, as. 2.1

T—oo T t=k|+1

exist. (By convention, Ef:a =0, if @ < b.) From a well-known result of Her-
glotz, the sequence of asymptotic lag k second moments vy; has a spectral dis-
tribution function G,(A) such that v = [7_e~* dG () for k = 0,%1,....

We require X,, = 1 in (1.1) to be scalably asymptotically stationary (S.A.S.),
meaning that the limits

T— k|
XY= lim Dy, > X, X/Dyr as., k=0,+1,... 2.2)
T—o0 r=|k|+1

exist, where the Dy ; are diagonal scaling matrices, Dy r = diag(d; r,...,
dgimx. 1), Which are positive definite, decrease to zero (Dy r ~ 0), and satisfy
lim;_,., Dy 7. Dx.7 = Ix for each k = 0. Here Iy is the identity matrix of order
dim X. (Ordinary convergence is meant in (2.2) if no coordinate of X, is sto-
chastic.) The resulting sequence I}X has a spectral distribution matrix function
Gx(A): T = [T e " dGy(A) for k = 0,%1,...; see Appendix B for further
background, including examples.
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Partition X, as
X"
X, = XN , 2.3)

where, as in the Introduction, the superscript N designates regressors not in the
model (1.2). Let the corresponding partition of A in (1.1) be A = [AM AV]
and let those of Dy 7, I}*, and Gx(A) be, respectively,

Dy, 0
Dy, = ,
X, T 0 Dy,

M L v G"™(A)  G"™())
Lo = | A A ’ Gx(A) = GM™()) G (\) : 2.4

From Dy r ™~ 0, we have

Dy N 0. (2.5)

We require Tg™ to be positive definite,
M = 0, (2.6)

and restrict X" to being A.S.,

1 T—|k|
IV=1lim — > XY, XV as, k=0,%1,.... (2.7)

T=oo T —{i]+1

Of course, (2.7) is equivalent to Dy = T~ '/?Iy, with I the identity matrix
of order dim X". We exclude omitted regressors of larger order, e.g., t” with
p > 0, because they yield unbounded y dominated by A¥X", which would
clearly reveal the inadequacy of XM with large enough 7.

Further, the two series y, and X, must be asymptotically orthogonal, meaning

that

T— k|
lim 77172 E Vi X/ Dx 7 =0 as., k=0,%1,.... (2.8)
T—x r=|k|+1

Finally, to keep the focus on the incorrect regressor situation, we assume that
ANTN AN > 0. 2.9)

In summary, our assumptions concerning (1.1) are (2.1), (2.2), and (2.5)-(2.9).
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2.1. Consequences of (2.1), (2.8), and (2.9) for y, and th

First we note that, when X, contains an entry equal to 1 for all 7, then the cor-
responding scaling factor in Dy, ; can be taken to be 7~ '/2, and so (2.8) yields
lim,,, 7' >",y, = 0 as. In this sense, y, in (1.1) can be thought of as an
asymptotically mean zero process. A similar result holds for the disturbances
= AMXY + y, of the misspecified model (1.2); see Section 4.

Now we establish the asymptotic stationarity of the y™. From the require-
ment (2.7) that X" be A.S. and from (2.1) and (2.8), for each k, y) =
limy,,, T S8 3,32 is given by

M= ANDIVAN 4 ) = f e~ dGyu (), (2.10)

where G,u(A) = ANG"™(A)AN + G,(A). From (2.9), we have y}’ > 0. (The
term 7y, can be zero.)

Finally, we note that, except in special situations such as that of Section 7.2,
the disturbances and regressors in (1.2) will be asymptotically correlated, mean-
ing lim, ,, T-'"? 3 \‘kk||+1 v XM Dy = ANTYM # 0 for some k, which will
usually cause A} () defined in (1.3) to be biased asymptotically for some 6;
see Theorem 4.1.

2.2. Sufficient Conditions for (2.1) and (2.8)

The properties (2.1) and (2.8) hold under reasonably general assumptions on y,
and X,. The verification of (2.8) for a common type of stochastic regression
model is discussed in Section 6.1.1. Here we consider the case in which y,
is weakly stationary with mean zero and X, is nonstochastic with T¥ > 0.
Then, for almost sure convergence in (2.1) and (2.8), it suffices to have y, =
270bje,j, with 272 1]b2 < oo for some independent white noise process &,
such that sup, E|&,|” < oo with r > 2 if y, has a bounded spectral density or, if
the spectral density of y, is unbounded but square integrable, with r > 4; see
Section 3.1 of Findley et al. (2001).

3. THE -PARAMETERIZATION OF ARMA MODELS

Three features of our ARMA model situation may be new to readers not famil-
iar with the vein of research literature of which the papers by Potscher (1987,
1991) are representative: (a) the disturbances y¥, 1 < ¢t < T are not required
to have means or covariances but only the asymptotic stationarity property;
(b) no ARMA model is assumed to be correct in the sense of being able to
exactly model the asymptotic lagged second moment sequence (2.10); (c) the
ARMA coefficients of a model envisioned as ¢(L)y™ = a(L)a, are replaced
by the innovations filter 8 = (1,6,,6,,...) defined by the property that 6(z) =
27;0 0,z satisfies 0(z) = ¢(z)/a(z) for [z| < 1. In this section, we provide
some orienting discussion and examples.
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We assume that a(z) # 0 for all |z| < 1, i.e., that the model is invertible.
When y™ is weakly stationary with mean zero and defined for all ¢, then there
always exists a weakly stationary series a, = a,(f) such that the pre-
ceding ARMA model formula holds, namely, a, = 27,6y .. When y is
only A.S. and defined only for r = 1, we define a,[0] = Ej;(l) ij,[‘fj, t=1.
This series is A.S. with asymptotic lag k second moment given by y{(0) =
J7 e "0 (e™)[? dGym(A), with G () as in (2.10); see (ii) of Proposi-
tion D.1 in Appendix D. We would call the #-model correct if the white noise
property, y(#) = 0 for k # 0, obtains or, equivalently, if yY =
a?f7 e **f(e™)| " dA for all k for some o > 0. However, our theorems
do not require any model for y*, t = 1 to be correct in this sense.

For subsequent discussions, it will be useful to have in mind the 6’s of
some simple ARMA models. As was indicated in Section 1, a white noise model
has 6§ = (1,0,0,...). For the invertible ARMA(1,1) model, (1 — ¢L)y™ =
(1—aL)a,, with |a|,|¢| < 1, one has 6, = o/~ '(a — ¢), j = 1. For AR(1) and
MA (1) models, we have 8 = (1,—¢,0,0,...) and 8 = (1,a,@?, .. .), respectively.

Model parameterization by 6 is useful because the #’s that are determined by
likelihood-maximizing ARMA coefficients have uniquely defined large-sample
limits in situations where the ARMA coefficients themselves do not, because
of common zeroes in limiting AR and MA polynomials. For example, when an
ARMA (1,1) model is fitted to white noise, the sequence of maximum like-
lihood pairs (¢7,a”) has multiple limit (or cluster) points, all on the line
{(a, ) : |a| = 1}; see Hannan (1982). However, when ¢ = « for an ARMA(1,1)
model, then 8 = (1,0,0,...), and so this is the only limit point of the filter
sequence 07 defined by the maximum likelihood estimates ¢”, a”. That is,
0T — 6 a.s. coordinatewise, i.e., ﬁjT — 0;as., j=0.

As in the preceding examples, the coordinates of 6 are always continuous
functions of the ARMA coefficients. The converse holds only if the ARMA
model is identifiable, i.e., the AR and MA polynomials have no common zero;
also see the Appendix of Potscher (1991) for additional background on the
f-parameterization. (Potscher’s parameter is the coefficient sequence of 6(z) =
a(z)/¢(z). The relationship between # and 6 is continuous and invertible; see
Section 3 of Findley, Potscher, and Wei, 2004.)

To obtain the uniform convergence and continuity properties needed to estab-
lish the results indicated in the Introduction, ARMA (p,q), model coefficient
estimation is restricted to compact sets of AR and MA coefficient vectors whose
polynomials have all zeroes in {|z| =1 + &} for some & > 0. Such sets specify
compact sets O of the type discussed in Appendix A.

4. UNIFORM CONVERGENCE OF GLS ESTIMATES

We now present a fundamental convergence property of the AY(6) defined in
(1.3). A generalized inverse is to be used in (1.3) when the inverse matrix fails
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to exist. This can (with probability one when X is stochastic) only happen for
a finite number of T values, because of (2.6) and (iv) of Proposition D.I in
Appendix D. For any matrix M, define | M| = A2 (MM"), with A, () denot-
ing the maximum eigenvalue. If M is a vector with real coordinates m,...,m,,
then [M| = (Z7m?)"2.

Partition I;(6) = [”_|0(e™)|* dGx(A) analogously to (2.4), i.e.,

L™M(6) T1,N(0)
I(6) = ,
L™M(0)  1™6)
with I[;"™(0) = [7_16(e™)|* dG(A), etc. For 6 from an invertible model,
define
CN(9) = T (9)TMM(g) @.1)

In Appendix E, we prove the theorem that follows.

THEOREM 4.1. Let © be a compact set of models as described in Appen-
dix 1_4 Under the assumptions (2.1), (2.2), and (2.5)—(2.8), we have, uniformly
on 0,

lim (AY(0) — AM)T~'2D,,}, = ANCYM () a.s. 4.2)
T—o0

The function C™M(0) is continuous on O and thus bounded there,
maxyep|CY™(0)] < co.

For a given 0, limy_,., (AY(8) — AM)T~'2D,,", = ANC"™(6) is called the
asymptotic bias characteristic of AY(0) for AM. It is nonzero for some 6 if
I # 0 for some k, i.e., if the series ANX}Y and X} are asymptotically corre-
lated. When Dy, 7 = T~ '/2, then ANC™ () is the asymptotic bias of A} (6) for
AM_ Omitted variable bias is a fundamental modeling issue; see, e.g., Stock and
Watson (2002, pp. 143-149). Section 7 will show that, when ANC™ () varies
with 6, there is usually an optimal value of AXC™" () for one-step-ahead fore-
casting that is determined by the 67 sequence of (1.4).

If X has one or more coordinates that are A.S., then for any AM that differs
from AM only in these coordinates we have, uniformly on @,

lim (AY(0) — AM)T~'2D,, 1 = ANC™(9) + (AM — AM) . 4.3)
T—oo

This reveals the important fact that the asymptotic bias characteristic associ-
ated with an alternative omitted-regressor decomposition, AX, = AMX,M + )V(,N
with XV = ANXN + (AM — AM)XM _ differs from the right-hand side of (4.2) by
a term that is independent of 6.

Except in special situations, e.g., when the omitted regressors are precisely
known, there is always ambiguity concerning X and AM. However, it is useful
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to note that if a coordinate X, of X} is constant with value one, then X" =
lim, ., T~' 3", X" can be assumed to be zero: by defining AM 1o differ from
AM in that AY = AM + ANXN replaces A, and by defining X" = XV — XV, one
obtains AX, = AX, + ANX" with 1imTw T7'>" XY = 0. Then, for y¥ =
ANXN +y, we have lim,,, T~ ' 32, 3™ = 0.

5. UNIFORM ASYMPTOTIC STATIONARITY OF FORECAST ERRORS

We consider sample second moments of the errors of the one-step-ahead
forecasts W/i_1(0,6%T) from (1.6). For 1 = ¢ = T, the forecast errors W, —

W/i_,(0,6%T) are observable and equal to W,[0] — AY(6*)X[6], which
yields

W, = Wii-1(0,0%T) = y,[0] +{AX, — A7 (0")X"}[6], 1=t=T. (5.1)

Thus, setting U(T) = [y, T"Y?Dy X" XN, 1 =t =T and B(6*) =
[1 (AM — AY(6*)T"?Dy's AM], we have

W, — W/i_(0,6%T) = B(0")U,[01(T), 1<:=<T (5.2)

Let ®* be a compact set in the sense of Appendix A. For B(8*) =
[1 —ANCMM(9*) AN], Theorem 4.1 yields

sup [|B(6%)] < oo, sup |Br(87) —B(67)| >0 as. (5.3)
0"e®” 0"e®*

This fact and the properties of the U,(T') array described in Appendix C lead
to the following theorem, which is proved in Appendix E. Define

BM™(9*) = AN[-CMM(0*) 1] (5.4)
and
G+ (A) = G (A) + B™(0%)Gx(M)B"™(6%)". (5.5)

For any 0,07, let ® X O* denote the Cartesian product set {(6,0%):0 € 0,
6* € ©*} and define convergence (#7,0*7) — (0,6*) in ® X ©* to mean
0 — 6, and ;" — 6 for all j = 0.

THEOREM 5.1. Let ® and ©* be compact sets of models as described in
Appendix A. Under the assumpttons (2.1), (2.2), and (2.5)—(2.8), the forecast—

error arrays W, — W}1_,(0,0%T), 1 =t = T are continuous on © X ©*
and also jointly uniformly A.S. there. Specifically, for each k = 0,%1,..., as
T — oo, with

0,69 = [ e b Gy, 66
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for Gy ¢+(A) as in (5.5), the limits

1 7- | k|
F ‘Ell (W'Hk t+k\t+k 1(0 0" T))(W r\t 1(0 6", T))%FkM(O 0" )
t=|k|+1

5.7

hold uniformly a.s. on ® X ©*. Further, the functions TM(0,0*) are continuous
and uniformly bounded on ® X @*. Also, from (5.7) and (5.1), for given 6 and
0%, the values of T}(60,0%) depend only on the values of the series AX,, XM
and y, = W, — AX,, not on the specification of the compensating regressor X~
in decompositions AX, = AMXM + ANXY (see Sect. 4).

Theorem 5.1 shows that the quantities I¥(8,0*) are of special interest be-
cause they describe limiting average squared one-step-ahead forecast errors. With

vi®) = | lote) 2,0, 5:8)

(5.5) yields the decomposition
I57(0,0%) = 3(0) + BM(0")I5(0) B™ (6")" (5.9)

By specializing the argument used to establish Theorem 5.1, y3(6) is seen to
be the limiting average squared error of the #-model’s one-step-ahead forecast
of W, when X = X,. Similarly, using (4.2), the final quantity in (5.9) is seen to
be the limit of the average of the squares of one-step-ahead forecast errors of
the regression-function error array AX, — AY(6*)X”, 1 =t =T,

lim L ((AX, - A¥(6") XM} 0])?

T—oo =1

= B"™(6*) [fﬂ |0(e’“)|2dGX(/\)}BNM(0*)’ a.s. (5.10)

It follows from the results for kK = 0 in Theorem 5.1 by standard arguments
(see Potscher and Prucha, 1997, Ch. 3 and Lem. 4.2) that the conditional max-
imum likelihood estimators 7 of (1.4) converge a.s. to the compact set ®, of
minimizers of [M(6,6) over O,

07 -0, as. (5.11)

That is, on a set of realizations of the random variables in (1.1) with probabil-
ity one, the limit point of each (coordinatewise) convergent subsequence of
67,7 = 1 belongs to ©,. (So if there is a unique minimizer @, then 87 — @
a.s.) Equivalently, in terms of the /'-norm (see Appendix A), lim;.,,, minyeg,
167 — 6], = 0 as.
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Similarly, the conditional maximum likelihood estimators 0*T associated with
AY(6*) for fixed 6* € © converge a.s. to the set of minimizers of I}?(6,0"),
which usually does not include 6; see Section 7.1.1.

6. EXTENSION TO ARIMA DISTURBANCE MODELS

Now suppose the observed data are W,, | — d < ¢ = T from a time series of the
form W, = AX, + ¥, to which a model of the form W, = AMXM + $M is being
fit. Suppose also that it has been correctly determined that the disturbances 7
require “differencing” with an operator §(L) = Ej’«izo 8; L/, whose zeroes are on
the unit circle, to obtain residuals for which an ARMA model can be consid-
ered. The resulting model is called a regARIMA model for W,. Such models
are extensively used for seasonal time series in the context of seasonal adjust-
ment (see Findley et al., 1998; Pefia, Tiao, and Tsay, 2001), often with §(L) =
(1—=L)1 = L?%),s = 4,12. We assume that (2.1), (2.2), and (2.5)—(2.8) hold
for W, = 8(L)W,, y, = 8(L)¥,, X, = 8(L)X,, and X* = §(L)X and that X is
a subvector of X,. For any 1 <t < T, because W, = W, — X, §,W,_, for
given @ and #* a natural one-step-ahead forecast for W, is W,Tf,l(aﬂ*,T) =
W/ (0,6%T) — Zle 0; VT/,,/-, with W,}{_,(6,6%T) defined by (1.6). This
leads to W, — W/}{_,(6,0%T) = W, — W;!'_,(6,6*T) for 1 == T and there-
fore to forecast-error limiting results as in Theorem 5.1 with the same func-
tions T;(0,0%).

6.1. Forecasting a Stochastic Regressor to Impute Values
for Late Survey Responders

We briefly consider an application involving regARIMA models with stochas-
tic regressors. Section 3.3 of Aelen (2004) provides an interesting one-step-
ahead forecasting application involving a variety of seasonal time series W, whose
values come from enterprises that report economic data to Statistics Nether-
lands a month late, and X includes the sum of the values for month ¢ from all
enterprises of the same type that report on time, i.e., in the desired month, and
sometimes also lagged values of these sums. Thus X is stochastic. In con-
junction with the following discussion of distributed lag models, Theorem 5.1
and Theorem 7.1 in Section 7 provide theoretical support for Aelen’s use of the
regARIMA model GLS estimation and one-step-ahead forecasting procedures
of X-12-ARIMA (Findley et al., 1998) to obtain Statistics Netherlands’ imputed
value for W, in the month in which X becomes available.

6.1.1. A Class of Distributed Lag Models Satisfying the Assumptions of

Theorem 5.1. After differencing, Aelen’s model becomes a distributed lag
model with regressors and correlated disturbances that are both treated as
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stationary. We consider a broad class of such models. Suppose that W, and Z,
are jointly covariance stationary variates with zero means and that the spec-
tral density matrix of Z, is Hermitian positive definite at all frequencies.
Then, when the autocovariance sequence IV of V, = [W, Z!]’ satisfies
ST < oo, there exist coefficients Ay satisfying >~ _., | A, < co such
that W, = 272 A.Z,_, + y, holds, with Ey,Z,_, = 0, k = 0,+1,...; see
Theorem 8.3.1 of Brillinger (1975). For any m,n = 0, setting X =[Z, ...
Z XN = D oA Zi, AM =[A_, ... A,], and AV =1 leads to
(1.1) and (1.2) having the form of a distributed lag model with stationary dis-
turbances (see, e.g., Stock and Watson, 2002) and to the assumptions of Theo-
rem 5.1 holding under Gaussianity or weaker assumptions on V;; see Theorem
1V.3.6 of Hannan (1970).

7. OPTIMALITY OF GLS

Because of the uniform convergence and continuity results established in Theo-
rem 5.1, for any compact © as described in Appendix A, we have

1 T
min{— > (W, — W)l (6,6, T))z} — minI(6,0) as., (7.1)
T = €6

€6

and, for any fixed 6* € 0,

0E0

1 T

min{ — > W, - W,?f_l(e,a*,T))Z} —min[}(6,0%) as. (7.2)
T = 0€6

In Appendix E, we establish the theorem that follows.

THEOREM 7.1. Let ©® be a compact set as described in Appendix A and
suppose that (2.1), (2.2), and (2.5)—(2.8) hold. Then for any fixed 6* € O,

min I7(0,0) = min I}*(0,6%), (7.3)
0EO IS(C)

with equality holding if and only if a minimizer 6* of T(0,0%) over ® is
always a minimizer of 1J"(6,0),

I(6%,6%) = minT;"(6,0), (7.4)
0E®

and, simultaneously, the asymptotic bias characteristic of A¥(0*) as an esti-
mator of AM coincides with that of A¥(6*),

ANCMM (%) = ANCNM (%), (7.5)
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As a consequence, strict inequality obtains in (7.3) if and only if
ANCMM (%) = ANCM™M () (7.6)

holds for every minimizer 6 of T)"(0,0) over ©. For the maximum likelihood
estimators 07 of (1.4), this condition implies

lim inf [(A%(67) — A¥(0*)T Dy, >0 as. (7.7)
T—oo

Conversely, ifFOM(G,H) has a unique minimizer 0, then (7.7) implies (7.6).

Unless 6* is a minimizer of I/ (6, #), we expect that both min,cg I (0, 0) <
I(6%,6*) and ANC™M™(6*) # ANCM(9*) will hold except in quite special sit-
uations, the only one known to us being when ANC(9*), and therefore also
1"5”(6,0*), does not depend on #*. In Section 7.1, this is shown to occur with
AR(1) models for y™ only in a singular situation. Otherwise #* is unique.
Whenever 6* is unique, failure of (7.5), which implies minycg I(6,6) <
IM(6*60*) and 6* # 6*, also yields I}(6%,6*) < T(6%6%).

Model sets © usually include the white noise model 8* = (1,0,0,...) as a
degenerate case. Hence the conclusions of Theorem 7.1 are generally applica-
ble to OLS as an alternative to GLS. They indicate the following optimality
property of GLS: In conjunction with maximum likelihood estimation of 6,
asymptotically, OLS estimation is never better than GLS estimation for one-
step-ahead forecasting. When the regressor is underspecified and ANCM (0) is
nonconstant, OLS will typically have greater average mean square error than
GLS, for large enough T, because of its asymptotic bias characteristics being
different from that of GLS.

Thursby (1987) provides comparisons of OLS and GLS biases when y, is
known to be independent and identically distributed (i.i.d.) (white noise),
dim XM = 2, dim X = 1, the coordinates of X, are correlated first-order AR
processes, and the loss function is the posterior mean squared bias associated
with a prior for the parameters that determine the covariance structure between
X} and X. With the aid of numerical integrations for the GLS quantities, he
establishes that, depending on the choice of the autocovariance structure of
XM, the mean squared asymptotic bias of GLS is sometimes less and some-
times greater than that of OLS. Theorem 7.1 shows that, for either outcome,
GLS has an asymptotic advantage over OLS for one-step-ahead forecasting.

7.1. Examples Involving AR(1) Models and dim X} = dim X}V =1

The condition (7.5) is the easiest to investigate, because, for AR models, 0*
is the solution of a linear system of equations. For simplicity, we consider only
the case in which dimX» = dim X" = 1 and a first-order AR model, i.e.,
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0 =6(p) = (1,—¢,0,0,...), is used for the disturbance series y™ in (1.2).
From (5.8) and (5.9), this leads to

1y(6,0%) = f |1 — e [*dG,(A) + BN (6%)

X fﬂ 11— pe™|> dGy(A)BM™(6*), (7.8)

where [7 |1 — ¢e™|?dG,(A) = (1 + ¢?)yy — 2¢yi and [7_|1 — pe*|?
dGy(\) = (1 + $)TX — ¢(TX + TX,). Also, with 6 = (1,—$*",0,...), the
C™(9*) component of B (6*) is

(14 ¢")T — ¢ (1™ + T

CNM 0*) =
( ) (1+¢*2)1—~0MM_2¢*1—~1MM
When
2T — (T + TA ™ # 0, (7.9)

the derivative of C™(6*) is nonzero on —1 < ¢* < 1 and C™(6*) is strictly
monotonic; see Section 6.3 in the paper by Findley (2005), whose derivation
also shows that the unique 6* = (1,—¢*0, ...) minimizing (7.8) is the lag one
autocorrelation of Gy, 4+(A) in (5.5),

ey

B yiv + (AN)Z{FINN + (CNM(G*))2F1MM _ CNM(a*)(FlNM + ri\/{\/[)}

- (7.10)
yo + (AN — (CM(67))* 17"}

There is no such simple formula for ¢ minimizing I';¥(6, #) because the crit-
ical point equation for ¢ provides ¢ as a zero of a polynomial of degree five in
general. However, from strict monotonicity of C™(8*(¢*)), if ¢* # ¢* then
(7.5) fails, and therefore strict inequality holds in (7.3) by Theorem 7.1. For
the OLS choice, ¢* = 0, when C"(§*) = C™™, (7.10) shows that ¢* # 0
(except possibly at a single value of (AY)?), when either y; or AN = "V +
(CNM)2T MM — CNM(T VM + TN is nonzero, which will usually be the case. A
periodic X, satisfying (7.9) and A™ # 0 is given in Section 7.1.2.

When (7.9) fails, CM(6*) = C™™ = ™ /T™ for all 6%, and so equality
holds in (7.3).

7.1.1. The Inferiority of White Noise Modeling with OLS when ¢* # 0. If
O is a compact model set containing the AR(1) models § = 6(¢), then
I(6%6%) = I37(0*(¢*),0%). So, under (7.9) and ¢* # ¢*, we have, from
(7.3), that minyeg I(0,0) = T2(6%6%) < TM(0%60*). Thus, for 6* =
(1,0,0,...), it follows from (7.1) and (7.2) that when ¢* # 0, using OLS
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estimation of AM with the white noise model for y* leads to asymptotically
worse one-step-ahead forecasts than GLS with (1.4), for any such model set 0.

7.1.2. Periodic X, and an Example of A". The trading day and holiday
regressors discussed in Findley et al. (1998), Bell and Hillmer (1983), and Find-
ley and Soukup (2000) are effectively periodic functions; i.e., X, = X™ holds
for all ¢, for rather large periods P (e.g., 12 X 28 = 336 months for trading day
regressors, 12 X 19 = 228 months for some lunar holiday regressors, more for
other holidays, e.g., Easter). The simplest holiday regressors are one-dimensional
and specify that the effect of the holiday is the same for each day in some
interval near the holiday, a dubious but simplifying assumption. For such regres-
sors, the compensating XV can be assumed to be one-dimensional and have the
same period.

Every regressor of period P has a Fourier representation X; a;cos(2jt/
P) + B;sin(27jt/P) with at most P nonzero coefficients, which are uniquely
determined linear functions of P consecutive values of the regressor; see Sec-
tion 4.2.3 of Anderson (1971). To give a more complete analysis of (7.3) for
the function (7.8), we consider a simplified period P = 4 regressor X having
the representation X = a}' cos(m/2)t + a? ( 1), with a¥, a¥ # 0, for which
XN = al cos(m/2)t + bY sm(7r/2)t, with ay, bY # 0. Thus X, = [XM XN]' =
ajcos(m/2)t + a,(—1)" + Bysin(w/2)t, where a; = [a}  aV], an =[a’ 0],
and B; = [0 bV]. Consequently, T = a|a, cos(m/2)k + aja,(—1)* +
3B, B, sin(w/2)k, k = 0,%1,..., and Gy(A) is piecewise constant with upward
jumps at A = +7/2,7; see Anderson (1971, p. 581).

For this X,, the left-hand side of (7.9) has the value —a¥'ay(a?")?, and
so (7.9) holds. Further, C™ = a¥a¥{(a¥)?> + 2(a3)?}™' and AV =
—(aM CMM)2 Strict inequality holds in (7 3) for OLS estimation except when
yi > 0and (A)? = y{(a}’ C"™)2, in which case ¢* = 0 = ¢*.

7.2. Regarding Asymptotic Efficiency in the Sense
of Grenander (1954)

Here we restrict attention to nonrandom regressors X, in (1.1) whose compo-
nents are polynomials, periodic functions, or realizations of stationary pro-
cesses with continuous spectral densities and with convergent sample second
moments. The disturbance process y, is assumed to be a mean zero stationary
process with the last-mentioned properties. Grenander (1954) considers the cor-
rect regressor case and calls the OLS estimates AY = > W, X/(Z_, X, X])™!
asymptotically efficient if lim,_,.. D; ' E{(A; — A)' (A7 — A)}D;" is minimal
(in the ordering of symmetric matrices) among all linear, unbiased estimates
A7 of A. For this situation, his result, given on p. 244 of Grenander and Rosen-
blatt (1984), is that OLS is efficient if and only if the spectral distribution func-
tion Gx(A) has at most dim X, jumps and the sum of the ranks of the jumps
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Gx(A+) — Gx(A+), 0 = A = 7 is equal to dim X,. These conditions are not
satisfied, and OLS is not efficient, for most of the regressors discussed in Sec-
tion 7.1.2, including the calendar effect regressors and the period four regres-
sor with b # 0; see Chapter 7.7 and case (1) on p. 253 of Grenander and
Rosenblatt (1984): usually, the number of terms in the Fourier representation
of X,, and thus also the number of jumps in Gx(A), exceeds dim X,.

To be able to apply Grenander’s result to our underspecified regression situ-
ation, assume that X and y have the properties hypothesized previously for
X, and y,. Thus X" has a continuous spectral density and so cannot have
periodic components. If we consider X having only polynomial and periodic
components, then X and X are asymptotically orthogonal; see Section 6.1 of
Findley (2005). This implies ANC¥™(9*) = 0 for all §*, resulting in equality in
(7.3) always, because I)7(6,6*) does not depend on 6*.

On the other hand, with regressors in X that are realizations of station-
ary processes, if ANC™(6*) is nonzero, then the analogue for AY(6*) of
Grenander’s efficiency measure fails by being infinite, because some entries of
(AY(6*) — AM)D,,' will have order T'/?; see (4.2).

Thus this concept of efficiency is not useful in our context.

8. EXTENSIONS AND RELATED RESULTS

From their connection to one-step-ahead forecast error filters, it is not very sur-
prising that GLS estimates of regARMA and regARIMA models have an opti-
mality property for one-step-ahead forecasting. Yet a systematic investigation
of the topic has been lacking. A pleasingly simple result, such as Theorem 7.1’s
connection of optimality with asymptotic bias characteristics, seems possible
only for the incorrect regressor case. Indeed, if asymptotic efficiency results
are indicative, the correct regressor case will be quite complex. In this case,
when the ARMA model for y, is incorrect, GLS can be more or less efficient
than OLS; see Koreisha and Fang (2001). Even when the ARMA model is also
correct, the analysis and examples of Grenander and Rosenblatt (1984) and of
Section 7.2 show, for nonstochastic regressors, that OLS is asymptotically effi-
cient only for a limited range of relatively simple regressors.

For any fixed #*, in the incorrect nonstochastic regressor case, a referee con-
jectures that, under additional assumptions and with the aid of a result like Theo-
rem 4.1 of West (1996), it can be shown that the limit as 7 — oo of the variance
of T-'2 3, (W, — W}'_(6%6%T)) does not depend on 6*.

So far, we have only provided asymptotic results for the most simply defined
GLS estimates, which are obtained by truncating the infinite-past forecast error
filters and using conditional maximum likelihood estimation of the ARMA
model. Section 2.4 of Findley (2005) and (d) of Lemma 10 of Findley (2005)
reveal that the same limits are obtained if the errors of the finite-past one-step-
ahead forecasts discussed in Newton and Pagano (1983) are used to define GLS
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estimates in conjunction with unconditional maximum likelihood estimation of
the ARMA model. (Analogous GLS estimates from AR models were consid-
ered in Amemiya, 1973.) See Section 9 of the technical report Findley (2003)
for additional details, including details about how to weaken the assumptions
on XM to include the frequently used intervention variables of Box and Tiao
(1975). These decay exponentially to zero and so have weight one in Dy, 7,
causing (2.5) to fail. Also, with the restriction to measurable minimizers 67
discussed in Findley et al. (2001, 2004), in the case of nonstochastic X,, all
almost sure convergence results hold with convergence in probability when con-
vergence in (2.1) holds only in this weaker sense.

Findley (2003) also shows how to use the results of Appendix D to general-
ize Theorem 5.1 to the case of multi-step-ahead forecast errors and to establish
the convergence of #-parameter estimates that minimize average squared multi-
step-ahead forecast errors (allowing for y the more comprehensive model
classes of Findley et al., 2004).

Findley (2005) uses the results of Theorems 4.1 and 7.1 to obtain formulas
and GLS optimality results for the limiting average of squared out-of-sample
(real time) forecast errors of regARIMA models under assumptions on the regres-
sors X, that are slightly more restrictive than those of Section 2 but are satis-
fied by all of the specific regressor types we have mentioned. The limit formulas
are the same as those of the present paper when XM is A.S. Empirical results
are available from the author showing that GLS usually leads to better one-step-
ahead out-of-sample forecasting performance than OLS for a suite of monthly
series that are modeled with trading day and Easter holiday regressors by the
U.S. Census Bureau for the purpose of seasonal adjustment.
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APPENDIX A. Compact 6-Sets for Estimation

For each & > 0 and integer pair p,q = 0, we define 0, , . to be the set all of 6 =
(1,6y,0,,...) from invertible ARMA(r, s) models with r < p, s = ¢ such that the zeroes
of the minimal degree AR and MA polynomials ¢(z) and «(z) such that 0(z) = ¢(z)/
a(z) all belong to {|z| = 1 + &}. Every sequence 07 = (1,0],07,...), T=1,2,... in
0,4, has a subsequence 65 that converges coordinatewise to some 6 € 0,40 1.€.,
OJS(T) — 0;, j = 1. Thus 0, , . is compact for coordinatewise convergence. Further,
for 0 = gy < &, the sums 2.2,(1 + &)7]6;| converge uniformly on ©,,,; i.e.,
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SUPyeo, ., Zieo(l + £0)716;] < oo and lim,_,, supyee,,, 2;2,(1 + £9)7|6;| = 0. See
Lemmas 2 and 10 of Findley (2005) for these and other properties mentioned. Our uni-
form convergence results that are presented subsequently follow from these facts as do
some other important properties. First, the functions 6(e™) = 377 6; e are continuous
on —7 = A = 7 and uniformly bounded and bounded away from zero on 0, , ,:

min [0(e™)| >0, max |0(e™)| < co.

—r=A=m,0€0 —r=A=m,0€0

Psq, € Psq, €

Second, if a sequence 07, T =1,2,... in 0,4, converges coordinatewise to some 0,
then it also converges in the stronger sense that lim;_,, X7 ,(1 + &)/ — 6;| = 0
whenever 0 = gy < e. In particular, the topology of coordinatewise convergence on
0,4 - coincides with that of the /'-norm ||6]; = 272,16,|.

Our theorems apply to any compact ® for which ® C 0, , . holds, for some & > 0
and p,g = 0. A typical ® would arise from constraints on the zeroes of the AR and MA
polynomials of the kind of ARMA model of interest.

APPENDIX B. Scalable Asymptotic Stationarity

Under the data assumptions made in Section 2, X, and y, in (1.1) together form a multi-
variate sequence that is S.A.S., a property we now consider in some detail. Let U, t =1
be a real-valued column vector sequence that is S.A.S. and let /;; denote the identity
matrix of order dim U, the dimension of U,. Thus there is a decreasing sequence D; =
D, = ... of positive definite diagonal matrices, for which D ~ 0 and

lim Dy D, =1,, k=1.2,... (B.1)
T—o0

hold, such that, for each k = 0,%1,..., the limits

T—|k|
LV=1lim D; > U, UD; as. (B.2)

T p=lk|+1

exist (finitely). The properties (B.1) and (B.2) yield limy,., Dy Ur—; = 0 a.s., j = 0. For
example, when j = 0, as T — oo,

T T—1
DyUpUpDy = Dy 2, U, U/ Dy = (D7 Dy !)Dyy 2 U, U/ Dy—y(D7!, Dy)

=1 t=1

converges a.s. to I,” — I,/ = 0, whence DyUy — 0 a.s. Further, Dy ~ 0 leads to
limy_,o, Dy U4 = 0 a.s. for all j = 0.

Without a formal name, this generalization of stationarity was introduced for regres-
sors in Grenander (1954) to encompass a variety of nonstochastic regressors, including
polynomials. (Our notation is the inverse of his, using D where he uses D, '. He only
requires the diagonal elements of T, to be positive, which is the nature of (2.9) for
XN = ANXN. Our requirement (2.10) for X is stronger.) Grenander shows that the real
matrix sequence [V, k = 0,%1,... has a representation [[’ = [”_e ** dG (1) in which
Gy(A) is a Hermitian-matrix-valued function such that the eigenvalues of increments
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Gy(da) — Gy(Ay), A, = Ay, are nonnegative, or, equivalently, the increments are Her-
mitian nonnegative; see also Grenander and Rosenblatt (1984), Chapter II of Hannan
(1970), and Chapter 10 of Anderson (1971). For example, if U, = t?, p = 0, then, with
Dy =T~ P*1/2 one obtains [,V = (2p + 1)~! for each k, and so G (A) can be taken to
be 0 for A < 0 and (2p + 1)~! for A = 0. Grenander (1954) and Grenander and Rosen-
blatt (1984, Ch. 7) verify the joint scalable asymptotic stationarity property for regres-
sors whose entries X;, are polynomials, linear combinations (perhaps infinite) of
sinusoids, i.e., of cos w; ¢ and/or sin w; 1, for various 0 = w; = 7 (scaling sequence T-2),
and, finally, products of polynomials z” with linear combinations of sinusoids (scaling
sequence T 7~ 1/2), By contrast, exponentially increasing regressors, e.g., U, = ¢ with
b > 0, are not S.A.S. because (B.1) fails for Dy = (37, ¢2?)7/2; see Hannan (1970,
p. 77).

APPENDIX C. Vector Array Reformulation
of Assumptions
The following reformulation of our assumptions (2.1), (2.2), and (2.5)-(2.9) concerning

y: and X, will enable us to make use of the results of Findley et al. (2001, 2004). The
vector array

Vi
Y
/
U(T) = |:T1/2D X:| =| T"?Dyr X" |, l=1=T, (C.D
X, Tt XN

t

is A.S. More specifically, for each k = 0,%1,...,

T—|k|
FkU=Tlim 7! ; U, (TYU(T) as. (C.2)
—® 1=k|+1
i 0 0
=| 0 TIMM TMN|, (C.3)

0 "™ ™
with I > 0 and ANT™NAM > 0. Further, from Appendix B,

lim 7-Y2U, (T) = 0= lim T~"?U;_(T) as., j=0. (C.4)

T—oo T—co

Because of (C.3), the spectral distribution matrix of the I}V sequence has the block
diagonal form G (A) = blockdiag(G,(A),Gx(A)).

APPENDIX D. Uniform Convergence Results
for Filtered A.S. Arrays

The proposition and lemma that follow are formulated for proving some of the more
general results indicated in Section 8.
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PROPOSITION D.1. Let U,(T), 1 =t =T be an A.S. column vector array satisfying
(C.4) and let Gy(A) denote the spectral distribution matrix of the asymptotic lagged
second moments matrices TV defined by (C.2). Let H and Z be sets of filters n =
(Mo, m,...) and { = ({0,414, . ..) such that 72| n;| resp. 22| m;| converges uniformly
on H resp. Z. Then the filter output arrays U,[q](T) = ]t;(l)nj U,_; and U[{1(T) =
E};é §iU_;, 1=t=T n € H, { €Z have the following properties:

(i) limTHooSupn€H||T_l/2Ul+j,T[7I]” = limTﬁooSuanH”T_l/zUT*j,T[n]“ =0as.
for all j = 0, and analogously for U,[{](T).
(ii) As T = o0, sup,ep rez T~ S0 Uil (MU LNTY = T (0,0 = 0
a.s., where TV (m,0) = [7_e *n(e™){(e ™) dG (M), for k =0,%1,....
(iii) The functions T,V (n,{) are bounded on H X Z,

ITE (n, Ol = 5[ sup[n(e™)] sup[{ (e™)] < oo,
nEH ez

and are jointly continuous in m,{ in the sense that, if n” € H, {T € Z are such
that nT — n and {T — { (coordinatewise convergence) with p € H, { € Z,
then TV (n",¢") - TV (m,{). Also, if Z = H, then inf,cyy _,r<r|m(e™)|?Ty =
FOU("L n) = SuPneH,—wsASw‘77(@“)|2F0U~

(iv) Let H be an index set for a family of arrays U,(n,T), | =t =T, n € H such
that, as T — oo,

sup -0 a.s., (D.1)

nEH

1 T
; 1:21 Ut(n5T)Ur(7]3T), - Fo(”fl)

where the Ty(n) are positive definite matrices whose minimum eigenvalues are
bounded away from zero; i.e.,

inf /\min(ro(’n)) = mey (D'Z)
neH
holds for some my > 0. Then

sup
neEH

1 T —1
(; > Ut(n»T)U,(n,T)’> — L™ ” -0 as. (D.3)

=1

Proof. Parts (i)—(iii) are straightforward vector extensions of special cases of
Theorem 2.1 and Proposition 2.1 of Findley et al. (2001). For (iv), it follows from
(D.1) and (D.2) that, given & > 0, for each realization except those of an event with
probability zero, there is a T such that for T = T, the inequalities sup,cy |71

U, T)U,(n,T) — Ty < (e/2)m}y and inf,cy Apin(T ' =2, U, (0, T)
U,(n,T)") = 3my hold. Hence for these T and all n € H,
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sup
neH

1 T —1
<;E (n,T)U(n,T)> — L)™'

IA

1 T —1
SUP{ H (; > U,(n,T)U,(n,T)’> H

neH

1
2 U, T)U,(n,T) — T(n)

=1

1 1
— sup {Amm( 2 U,(n,T)U,(n,T) )}

My n€EH

ITo(m ™" }

IA

X SUP{ H E U, T)U,(n,T) = T,(n) } <e,
neH
which establishes (D.3).
We also need the following lemma, whose proof can be obtained by standard argu-
ments, as in the proof of (5.18) of Findley et al. (2004).

LEMMA D.2. Suppose that, on a set ©%, the sequence Br(0%), T = 1,2,... of row
vector functions converges uniformly a.s. to a bounded function B(0%), i.e., (5.3) holds,
and similarly for (0%), T = 1 and its limit 7(6*). Let U,(n,T), 7 € H and W,({,T),
{ €7 1=1t=T be families of column vector arrays of the same dimension as (6%)
and 7(0%), respectively, such that, for k = 0,£1,...,

1 T—|k|

sup - 2 U,+k(7),T)VV,(§,T)'—11(71,5)”—>0 a.s.

nem ez || T =[k+1

holds for functions Ti(n, ) with sup,ep sez|To(n, ()| < co. Then, as T — oo,

1 T—|k|
sup || = X Br(0)Ui(n, TIW,(LT) 7,(0%) — B(O")Ti(n, {)T(67)
orco* || T =k)+1
nEH,{EZ
-0 a.s. [ ]

APPENDIX E. Proofs

Proof of Theorem 4.1. We have
(AY(0) — AM)T V2D,

=712 i er[B]X,[W[a]’DM,T<DM,T éXtM[e]XtM[B],DM’T>71

=1 =1

=1 S 0K 107Dy (D S X001 D )

=1 =1

A <T*”2 ﬁXfV[o]x%[e]'DM,T>(DM,T ﬁXﬂmxﬂo]'DM,T)ﬂ.

=1 =1
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By (ii) and (iii) of Proposition D.1, T-"2X/_, y,[0]1X¥[0]'D,,; converges uni-
formly a.s. to 0 and 7-2 3 XN[01XM[0]'Dy, r and Dy, =1, XM[01XM[0]'Dy; 1
converge uniformly a.s. to the continuous limits T,"™(0) and T™(6), respectively,
with I"™(0) bounded below by the positive definite matrix m3 )™, where mg =
Min, < = 9e5|0(e)| > 0; see Appendix A. It follows from (iv) of Proposition D.1
that (Dy, 7=/~ XM[01X[6]'Dy,7)"" converges uniformly to Tj3™(6)~!, which is
therefore continuous (and bounded above by mgz*(I}™)~!). Hence (A¥(9) — AM)
T~'2D,,'; converges uniformly a.s. to ANC(6), which is continuous on ® and also
bounded. n

Proof of Theorem 5.1. The assertions follow from (5.2) and Lemma D.2 with
7(0%) = Br(0%), H=Z = ©, and U,(6,T) = W,(0,T) = U,[01(T) = 2=, 6,U, ,(T),
for U,_;(T) defined by (C.1), because the uniform convergence of T ! E,T;“kﬁhl
U 01T U[01(T) to TY () = [7_e **|6(e™)]? dG,(A) and the boundedness of
ITY(6)| on ®, which are required to apply Lemma D.2, follow from (ii) and (iii),
respectively, of Proposition D.1. The uniform convergence of Eﬁ0|9j| required by the
proposition is the special case gy = 0 in Appendix A. The fact that Gy(A) =
blockdiag(G,(A),Gx())), because of (C.3), yields the form of G, 4+(A) in (5.5). |

Proof of Theorem 7.1. We start by establishing that, for any invertible # and 6,
we have 137(0,0) = I37(0,60%) with equality holding if and only if ANCM(9*) =
ANCM (). Indeed, the component of I}7(6,6*) that depends on 8* can be reexpressed
in terms of the analogues of C™™(9*) and I;}(6) obtained by replacing X~ with XV =
ANXN. Denoting these analogues by C¥(6*) and I;(6), we have

AV[-CY(6°) I IENO)[-CM(6) 1,]'AV
=[=EM(0") 1IO)[-C™ (o) 1]
By a standard calculation, for any C with the dimensions of cnM (),
[-CM™(0) 1T O[-C™(0) 11'=[-C ULXBO[-C 1], (E.1)
with equality holding in (E.1) if and only if C = C™(9) (= ANCM™(9)).

Next, note that because I?(6, ) and I*(6,0*) are continuous functions of 6 on 9,
they have minimizers 6, resp. * over 0. From the result just established, we obtain

I(0,0) = TM(6%6%) =TM(6%60%). (E.2)

Thus I7(6,0) = T7(6%6%) holds, i.e., equality in (7.3), if and only if (7.4) and
I(6%6%) = TM(6* 6*) do, and the latter is equivalent to (7.5), as was just shown.

In particular, equality in (7.3) implies the failure of (7.6) for § = #* satisfying (7.4).
Conversely, failure of (7.6) for some minimizer 8, i.e., ANCYM(9*) = ANCM(§), implies
I(6%0%) = T(0,0") = I2(0,0), which, from (E.2), yields T2/ (0% 6*) = TM(0,0) =
I7(6%,6"), i.e., equality in (7.3). Therefore (7.6) for all # minimizing Ig?(6,6) is nec-
essary and sufficient for strict inequality in (7.3).
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From Theorem 4.1 and (5.11), it follows that the left-hand side of (7.7) is equal a.s.
to the left-hand side of

lim inf [AN(CM(07) = C™(6%))] = min|[AN(CM(8) — CM™(6%)) as. (E.3)
T—o0 6€6,

The assertions concerning (7.7) follow from (E.3) and the fact that, when ®, = {6},
equality holds in (E.3) because 7 — 6 a.s., from (5.11). u
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