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Abstract

A common tool in the practice of Markov chain Monte Carlo (MCMC) is to use approx-
imating transition kernels to speed up computation when the desired kernel is slow to
evaluate or is intractable. A limited set of quantitative tools exists to assess the relative
accuracy and efficiency of such approximations. We derive a set of tools for such analysis
based on the Hilbert space generated by the stationary distribution we intend to sample,
L2(π ). Our results apply to approximations of reversible chains which are geometrically
ergodic, as is typically the case for applications to MCMC. The focus of our work is on
determining whether the approximating kernel will preserve the geometric ergodicity of
the exact chain, and whether the approximating stationary distribution will be close to
the original stationary distribution. For reversible chains, our results extend the results
of Johndrow et al. (2015) from the uniformly ergodic case to the geometrically ergodic
case, under some additional regularity conditions. We then apply our results to a number
of approximate MCMC algorithms.
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1. Introduction

The use of Markov chain Monte Carlo (MCMC) arises from the need to sample from prob-
abilistic models when simple Monte Carlo is not possible. The procedure is to simulate a
positive recurrent Markov process where the stationary distribution is the measure one intends
to sample, so that the dynamics of the process converge to the distribution required. Temporally
correlated samples may then be used to approximate various expectations; see e.g. [7] and
the many references therein. Examples of common applications may be found in hierarchical
models, spatio-temporal models, random networks, finance, bioinformatics, etc.

Often, however, the transition dynamics of the Markov chain required to run this process
exactly are too computationally expensive because of prohibitively large datasets, intractable
likelihoods, etc. In such cases it is tempting to instead approximate the transition dynamics
of the Markov process in question, either deterministically as in the low-rank Gaussian
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approximation of [18], or stochastically as in the noisy Metropolis–Hastings procedure of [1].
It is important then to understand whether these approximations will yield stable and reliable
results. This paper aims to provide quantitative tools for the analysis of these algorithms. Since
the use of approximation for the transition dynamics may be interpreted as a perturbation of
the transition kernel of the exact MCMC algorithm, we focus on bounds on the convergence
of perturbations of Markov chains.

The primary purpose of this paper is to extend existing quantitative bounds on the errors
of approximate Markov chains from the uniformly ergodic case in [18] to the geometrically
ergodic case (a weaker condition, for which multiple equivalent definitions may be found in
[29]). Our work will extend the theoretical results of [18] in the case that the exact chain
is reversible, replacing the total variation metric with L2 distances, and relaxing the uniform
contraction condition to L2(π )-geometric ergodicity.

1.1. Geometric ergodicity

When analyzing the performance of exact MCMC algorithms, it is natural to decompose
the error in approximation of expectations into a component for the transient phase error of
the process and one for the Monte Carlo approximation error. The former may be interpreted
as the bias due to not having started the process in the stationary distribution. A Markov chain
is geometrically ergodic if, from a suitable initial distribution ν, the marginal distribution of
the nth iterate of the chain converges to the stationary distribution, with an error that decays
as C(ν)ρn for some ρ ∈ (0, 1) and some constant depending on the initial distribution C(ν), in
some suitable metric on the space of probability measures. The geometric ergodicity condition
essentially dictates that the transient phase error of the nth sample decays exponentially quickly
in n. The chain is uniformly (geometrically) ergodic if C can be chosen independently of the
initial distribution. Geometric ergodicity is a desirable property as it ensures that the cumulative
transient phase error asymptotically does not dominate the Monte Carlo error, while still being
less restrictive than the uniform ergodicity condition, which often fails when the state space is
not finite or compact (for example, an AR(1) process is geometrically ergodic but not uniformly
ergodic).

When using approximate MCMC methods, one desires the approximation to preserve geo-
metric ergodicity, so that convergence to stationarity is still fast and the transient phase error
goes to zero quickly. This is an important issue, especially since Medina-Aguayo et al. [25]
have shown that intuitive approximations such as Monte Carlo within Metropolis may lead to
transient approximating chains.

1.2. Outline of the paper

The outline of this paper is as follows. Section 2 reviews related work. Then Section 3
contains our main theoretical results and their proofs. Theorem 1 therein provides bounds on
the distance between stationary distributions, and gives a sufficient condition for the perturbed
chain to be geometrically ergodic in L2(π ), where π is the stationary distribution of the unper-
turbed chain. Theorem 2 and Theorem 3 give sufficient conditions for the perturbed chain to be
geometrically ergodic according to several other variants of the definition of geometric ergod-
icity (for different metrics and families of initial distributions), and provide quantitative rates
when possible. The remainder of Section 3 establishes bounds on autocorrelations and mean
squared error for Monte Carlo estimates of expected values computed with the perturbed chain.

Finally, Section 4 considers noisy and/or approximate Metropolis–Hastings algorithms. It
provides sufficient conditions that one can check in order for our results from Section 3 to be
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applied. We use this to study Metropolis–Hastings with deterministic approximations to the
target density, as well as the Monte Carlo within Metropolis algorithm, as in [24], and provide
some examples of how these types of approximations might arise in practice.

2. Related work

This section presents a brief review of related work, discussing convergence of perturbed
Markov chains in the uniformly ergodic and geometrically ergodic cases with varying metrics
and additional assumptions. The results in the literature require a wide range of assumptions
and have a wide range of scopes. The results for uniformly ergodic chains have a simpler
aesthetic, in line with what intuition for finite-state-space chains might inspire, as they do not
require drift and minorization conditions to state. Our results cover the geometrically ergodic
and reversible case, and use properties of reversibility to match the simpler aesthetic found in
the literature for the uniformly ergodic case.

In close relation to the present paper, Johndrow et al. [18] derive perturbation bounds to
assess the robustness of approximate MCMC algorithms. The assumptions upon which their
results rely are as follows: the original chain is uniformly contractive in the total variation norm
(this implies uniform ergodicity), and the perturbation is sufficiently small (in the operator
norm induced by the total variation norm). The main results of their paper are as follows:

• The perturbed kernel is uniformly contractive in the total variation norm.

• The perturbed stationary distribution is close to the original stationary distribution in
total variation.

• Explicit bounds are proved on the total variation distance between finite-time approxi-
mate sampling distributions and the original stationary distribution.

• Explicit bounds are proved on the total variation difference between the original
stationary distribution and the mixture of finite-time approximate sampling distributions.

• Explicit bounds are proved on the mean squared error for integral approximation using
the approximate kernel and the true kernel.

The results derived by [18] are applied within the same paper to a wide variety of
approximate MCMC problems, including low-rank approximation to Gaussian processes
and sub-sampling approximations. In other work, Johndrow and Mattingly [16] use intu-
itive coupling arguments to establish similar results under the same uniform contractivity
assumption.

Further results on perturbations for uniformly ergodic chains may be found in [26]. This
work is motivated in part by numerical rounding errors. Various applications of these results
may be found in [1]. The only assumption of [26] is that the original chain is uniformly ergodic.
The paper is unique in that it makes no assumption regarding the proximity of the original and
perturbed kernel, though the level of approximation error does still scale linearly with the total
variation distance of the original and perturbed kernels. The main results are explicit bounds
on the total variation distance between finite-time sampling distributions, and explicit bounds
on the total variation distance between stationary distributions.

The work of Roberts et al. [31] (see also [6]) is also motivated by numerical rounding errors.
The perturbed kernel is assumed to be derived from the original kernel by a round-off function,
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which e.g. maps the input to the nearest multiple of 2−31. In such cases, the new state space is
at most countable while the old state space may have been uncountable, and so the resulting
chains have mutually singular marginal distributions at all finite times and mutually singular
stationary distributions (if they have stationary distributions at all). The results of [31] require
the analysis of Lyapunov drift conditions and drift functions (which we will avoid by working
in an appropriate L2 space). The key assumptions in [31] are as follows: the original kernel is
geometrically ergodic, and V is a Lyapunov drift function for the original kernel; the original
and perturbed transition kernels are close in the V-norm; the perturbed kernel is defined via
a round-off function with round-off error uniformly sufficiently small; and log V is uniformly
continuous. The main results of the paper include the following:

• If the perturbed kernel is sufficiently close in the V-norm, then geometric ergodicity is
preserved.

• If the drift function, V , can be chosen so that log V is uniformly continuous, and if the
round-off errors can be made arbitrarily small, then the kernels can be made arbitrarily
close in the V-norm.

• Explicit bounds are proved on the total variation distance between the approximate
finite-time sampling distribution and the true stationary distribution.

• Sufficient conditions are given for the approximating stationary distribution to be
arbitrarily close in total variation to the true stationary distribution.

Roberts et al. [31] also prove results that do not require closeness in the V-norm, or even
absolute continuity of the perturbed transitions; in such cases they show that a suitable drift
condition on the original chain together with a uniformly small round-off error yields perturbed
chains which are geometrically ergodic, and that the stationary measure varies continuously
under such perturbations in the topology of weak convergence.

Pillai and Smith [28] provide bounds in terms of the Wasserstein topology (cf. [11]).
Their main focus is on approximate MCMC algorithms, especially approximation due to sub-
sampling from a large dataset (e.g., when computing the posterior density). Their underlying
assumptions are as follows:

• The original and perturbed kernels satisfy a series of drift-like conditions with shared
parameters.

• The original kernel has finite eccentricity for all states (where eccentricity of a state
is defined as the expected distance between the state and a sample from the stationary
distribution).

• The Ricci curvature of the original kernel has a non-trivial uniform lower bound on a
positive measure subset of the state space.

• The transition kernels are close in the Wasserstein metric, uniformly on the mentioned
subset.

Their main results under these assumptions are as follows:

• Explicit bounds on the Wasserstein distance between the approximate sampling distri-
bution and the original stationary distribution.
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• Explicit bounds on the total variation distance of the original and perturbed stationary
distributions and bounds on the mixing times of each chain.

• Explicit bounds on the bias and L1 error of Monte Carlo approximations.

• Decomposition of the error from approximate MCMC estimation into components from
burn-in, asymptotic bias, and variance.

• Rigorous discussion of the trade-off between the above error components.

Rudolf and Schweizer [35] also use the Wasserstein topology. They focus on approximate
MCMC algorithms, with applications to auto-regressive processes and stochastic Langevin
algorithms for Gibbs random fields. Their results use the following assumptions: the origi-
nal kernel is Wasserstein ergodic; a Lyapunov drift condition for perturbed kernel is given,
with drift function Ṽ; Ṽ has finite expectation under the initial distribution; and the per-
turbation operator is uniformly bounded in a Ṽ-normalized Wasserstein norm. Their main
results are explicit bounds on the Wasserstein distance and weighted total variation distance
between the original and perturbed finite-time sampling distributions, and explicit bounds on
the Wasserstein distance between stationary distributions.

Ferré et al. [10] build upon the work of Keller and Liverani [20] to provide perturbation
results for V-geometrically ergodic Markov chains using a simultaneous drift condition. They
show that any perturbation to the transition kernel which shares its drift condition has a station-
ary distribution, that such a perturbation is also V-geometrically ergodic, and that the perturbed
stationary distribution is close to the original one. The assumption of a shared drift condition
may be difficult to verify or may not hold in some cases of interest related to approximate
or noisy MCMC. Hervé and Ledoux [12] consider finite-rank approximations to a transition
kernel. That work gives sufficient conditions for approximations to inherit V-geometric ergod-
icity; it provides a quantitative relationship between the rates of convergence and bounds the
total variation distance between stationary measures. It also provides sufficient conditions for
V-geometric ergodicity of a family of finite-rank approximations to a transition kernel to guar-
antee geometric ergodicity of the kernel, and provides quantitative rates of convergence. In
both of these results, as in [10], the results depend on a simultaneous drift condition for the
approximations and the original kernel.

Each of the above papers demonstrate bounds on various measures of error from using
approximate finite-time sampling distributions and approximate ergodic distributions to cal-
culate expectations of functions. On the other hand, the assumptions underlying the results
vary dramatically. The results for uniformly ergodic chains are based on simpler and more
intuitive assumptions than those for geometrically ergodic chains. Our work extends these
results to geometrically ergodic chains and perturbations while preserving essentially the
same level of simplicity in the assumptions. In particular we avoid the need to identify
a Lyapunov drift condition, and our assumptions are expressed directly in terms of tran-
sition kernels, rather than in terms of a relationship between drift conditions which they
satisfy.

3. Perturbation bounds

This section extends the main results from [18] to the L2(π )-geometrically ergodic case,
assuming the perturbation P− Pε has bounded L2(π ) operator norm.
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3.1. Definitions and notation

Let π be a probability measure on a measurable space (X , �). We make considerable use
of the following norms on signed measures and their corresponding Banach spaces:

‖λ‖TV = sup
A∈�
|λ(A)|, M(�)= {bounded signed measures on (X , �)},

‖λ‖L2(π ) =
(∫ (

dλ

dπ

)2

dπ

)1/2

, L2(π )= {ν� π : ‖ν‖L2(π ) <∞},

‖·‖L2,0(π ) = ‖·‖L2(π )|L2,0(π ), L2,0(π )= {ν ∈ L2(π ) : ν(X )= 0},
‖λ‖L1(π ) =

∫
| dλ

dπ
|dπ, L1(π )= {ν� π : ‖ν‖L1(π ) <∞},

‖λ‖L∞(π ) = ess sup
X∼π

dλ

dπ
(X), L∞(π )=

{
ν� π : (∃b > 0)

(
| dν

dπ
|< b πa.e.

)}
.

Note that L2,0(π ) is a complete subspace of L2(π ). Let

M+,1 = {λ ∈M : [∀A ∈� λ(A)≥ 0] and [λ(X )= 1]}
be the set of probability measures on (X , �). Note that for any probability measure π ,
L∞(π )⊂ L2(π )⊂ L1(π )⊂M(�), though in general they are not complete subspaces of each
other when their corresponding norms are not equivalent. For a norm ‖·‖ on a vector space, we
also write ‖·‖ for the corresponding operator norm on the space of bounded linear operators
from V to itself, B(V).

Definition 1. (Geometric ergodicity) Let P be the kernel of a positive recurrent Markov chain
with invariant measure π . Let λ be any measure with π� λ. Suppose that ρTV, ρ1, ρ2 ∈ (0, 1).

(i) P is π -a.e.-TV geometrically ergodic with factor ρTV if there exists CTV : X →R+
such that for π -almost every (π -a.e.) x ∈X and for all n ∈N,

‖δxPn − π‖TV ≤CTV(x)ρn
TV .

The optimal rate for π -a.e.-TV geometric ergodicity is the infimum over factors for
which the above definition holds:

ρ	
TV = inf

{
ρ > 0 s.t. .∃C : X →R+ with π ({x : C(x) <∞})= 1 and

∀n ∈N, π -a.e. x ∈X ‖δxPn − π‖TV ≤C(x)ρn
}

.
(1)

(ii) P is L2(λ)-geometrically ergodic with factor ρ2 if P : L2(λ)→ L2(λ) and there exists
C2 : L2(λ)∩M+,1→R+ such that for every ν ∈ L2(λ)∩M+,1 and for all n ∈N,

‖νPn − π‖L2(λ) ≤C2(ν)ρn
2 .

The optimal rate for L2(λ)-geometric ergodicity is the infimum over factors for which
the above definition holds:

ρ	
2 = inf{ρ > 0 s.t. ∃C : L2(λ)∩M+,1→R+ with

∀n ∈N, ν ∈ L2(λ)∩M+,1 ‖νPn − π‖L2(λ) ≤C(ν)ρn} .
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Remark 1. If P is π -reversible and aperiodic, then P is L2(π )-geometrically ergodic if and
only if it is π -a.e.-TV geometrically ergodic, as per [29]. In this case the optimal rate of L2(π )-
geometric ergodicity, ρ	

2, is equal to the spectral radius of P|L2,0(π ). In this case, the spectrum
of P is a subset of [− ρ	

2, ρ	
2]∪ {1}, and P is L2(π )-geometrically ergodic with factor ρ	

2 and
C(μ)= ‖μ− π‖L2(π ). For more details see Proposition 2 and [29].

We abbreviate geometric ergodicity and geometrically ergodic as ‘GE’ for brevity going
forward.

3.2. Assumptions

We assume throughout that P is the transition kernel for a Markov chain on a countably
generated state space X with σ -algebra �, which is reversible with respect to a stationary
probability measure π , and is π -irreducible and aperiodic. We call the Markov chain induced
by P the ‘original’ chain. The π -reversibility of P makes it natural to work in L2(π ), since in
this case P is a self-adjoint linear operator on a Hilbert space. This allows us access to the rich,
elegant, and mature spectral theory of such operators. See for example [33, Chapter 12] and
[9, Chapter 22]. We further assume that P is L2(π )-GE with factor 0 < (1− α) < 1. Equivalent
definitions of L2(π )-GE are given in Proposition 2. This assumption is weaker than the Doeblin
condition used by [18], which implies uniform ergodicity.

Next, we assume that Pε is a second, ‘perturbed’ transition kernel, such that

‖P− Pε‖L2(π ) ≤ ε

for some fixed ε > 0, and that
Pε |L2(π ) ∈B(L2(π )),

i.e. that the perturbed transition kernel maps L2(π ) measures to L2(π ) measures. The norm
condition quantifies the intuition that the perturbation is ‘small’. We assume that Pε is π -
irreducible and aperiodic. We demonstrate (in Theorem 1) that under these assumptions Pε has
a unique stationary distribution, denoted by πε , with πε ∈ L2(π ).

Note that when μ ∈ L1(π ) we have

‖μ− π‖TV = 1

2
‖μ− π‖L1(π ).

On the other hand, ‖·‖TV applies to all bounded measures, while ‖·‖L1(π ) applies only to the
subspace of L1(π ) measures. Note also that if π ∼ πε (the two measures are mutually abso-
lutely continuous), then L1(π ) and L1(πε) are equal as spaces and their norms are always equal,
so in this case we need not distinguish between them.

To summarize, we assume the following.

Assumption 1. (Assumptions of Section 3.2.)

• P is a Markov kernel that is

– π -reversible for a probability measure π ,

– irreducible and aperiodic,

– L2(π )-GE with factor (1− α);

• Pε is a Markov kernel that is

– irreducible and aperiodic,
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– Pε :L2(π )→ L2(π ), and

– ‖P− Pε‖L2(π ) < ε.

The assumption that Pε :L2(π )→ L2(π ) and that ‖Pε‖L2(π ) <∞ may seem difficult to ver-
ify. However, the following proposition shows us that it is satisfied for Pε constructed based
on the Metropolis–Hastings algorithm with suitable jump kernels. As long as the jump ker-
nel, J, has ‖J‖L2(π ) <∞, the assumption will be satisfied. Therefore, this assumption is not
excessively restrictive for MCMC applications. The jump kernel J describes the conditional
distribution of a new point in the chain proposed from x given that the proposal is accepted;
it is related to the proposal kernel, Q, by α(x)J(x, A)= ∫A a(x, y)Q(x, dy), where a(x, y) is
the Metropolis–Hastings acceptance ratio and α(x)= ∫X a(x, y)Q(x, dy) is the implied local
jump-intensity.

Proposition 1. If Pε(x, ·)= (1− α(x))δx + α(x)J(x, ·) with α :X → [0, 1] measurable, and
J : L2(π )→ L2(π ) and ‖J‖L2(π ) <∞, then

‖Pε‖L2(π ) ≤ 1+ ‖J‖L2(π ). (2)

Proof of Proposition 1. Consider the operator A on L2(π ) given by the formula [νA](C)=∫
C α(x)ν(dx) for all measurable sets C. Its adjoint, A′, is given by the formula [A′f ](x)=

α(x)f (x) for all x ∈X and f ∈ L′2(π ). Since α : X → [0, 1], we have A′ : L′2(π )→ L′2(π ) with
‖A′‖L′2(π ) ≤ 1. Thus A : L2(π )→ L2(π ) with ‖A‖L2(π ) ≤ 1. The same also holds for I − A. Now,
Pε = A+ (I − A)J, so

‖Pε‖L2(π ) ≤ 1+ ‖J‖L2(π ). �

Verifying that ‖P− Pε‖L2(π ) is finite and sufficiently small will be the main analytic burden
faced when trying to apply our results to more general settings. The development of further
tools to determine whether ‖P− Pε‖L2(π ) is finite and to bound it quantitatively would be an
interesting line of future research.

3.3. Convergence rates and closeness of stationary distributions

Theorem 1. (Geometric ergodicity of the perturbed chain and closeness of the stationary dis-
tributions in original norm, L2(π )) Under the assumptions of Section 3.2, if in addition ε < α,
then πε ∈ L2(π ),

0≤ ‖π − πε‖L2(π ) ≤ ε√
α2 − ε2

,

Pε is L2(π )-geometrically ergodic with factor 1− (α − ε), and for any initial probability
measure μ ∈ L2(π ),

‖μPn
ε − π‖L2(π ) ≤ (1− (α− ε))n‖μ− πε‖L2(π ) + ε√

α2 − ε2
.

The proof of this result is the content of Appendix A.1. We follow the derivation in [18] with
minimal structural modification, though the technicalities must be handled differently and
additional theoretical machinery is required. We use the fact that the existence of a spectral
gap for the restriction of P to L2,0(π ) yields an inequality of the same form as the uniform con-
tractivity condition, but in the L2(π )-norm as opposed to the total variation norm (cf. Theorem
2.1 of [29]).
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Remark 2. Bounds on the differences between measures in L2(π )-norm can be converted into
bounds on the total variation distance, since, by Cauchy–Schwarz, for any measure λ and any
signed measure ν ∈ L2(λ), we have

‖ν‖TV = 1

2
‖ν‖L1(λ) ≤ 1

2
‖ν‖L2(λ).

Thus, for example, under the assumptions of Theorem 1,

‖μPn
ε − π‖TV ≤ 1

2

[
(1− (α− ε))n‖μ− πε‖L2(π ) + ε√

α2 − ε2

]
.

Similarly, under the assumptions of Theorem 1, we find that Pε is (L2(π ), ‖·‖TV)-GE with
factor 1− (α− ε) (see Definition 2 below).

In some situations, such as the computation of mean squared errors in Theorem 5, it may
be inconvenient or impossible to use the L2(π ) norm when studying some aspects of Pε . The
next theorem will allow us to ‘switch’ to other norms which may be more natural for a given
task. First, however, we need to introduce one more notion of geometric ergodicity.

Definition 2. ((V, |||·|||)-geometric ergodicity.) Let P be the kernel of a positive recurrent
Markov chain with invariant measure π . Let V be a vector space of signed measures on (X , �)
containing π , and let |||·||| be a norm on V (for which V may not be complete).

P is (V, |||·|||)-geometrically ergodic with factor ρ if there exists C : V ∩M+,1→R+ such
that for every ν ∈ V ∩M+,1 and for all n ∈N,

|||νPn − π ||| ≤C(ν)ρn .

The optimal rate for (V, |||·|||)-geometric ergodicity is the infimum over factors for which the
above definition holds:

ρ	 = inf
{
ρ > 0 : ∃C : V ∩M+,1→R+ s.t. ∀n ∈N, ν ∈ V ∩M+,1 |||νPn − π ||| ≤C(ν)ρn} .

We will be interested in this definition for the cases that V = L∞(π ) and |||·||| is either ‖·‖L2(π )
or ‖·‖L1(π ).

Remark 3. (Relationships between (L∞(λ), ‖·‖Lp(λ))-GE, a.e.-TV-GE, and L2(λ)-GE.) Clearly
if P is L2(λ)-GE with factor ρ2 then it is also (L∞(λ), ‖·‖L2(λ))-GE with factor ρ2. Conversely,
Roberts and Tweedie [32] show that if P is (L∞(π ), ‖·‖L2(π ))-GE with factor ρ2, then it is also
a.e.-TV-GE with some factor ρTV ∈ (0, 1). However, the factor for a.e.-TV-GE may in fact be
worse than the factor for (L∞(π ), ‖·‖L2(π ))-GE or (L∞(π ), ‖·‖L1(π ))-GE. Baxendale [3] gives
a detailed exposition on the barriers to the comparison of factors for geometric ergodicity given
by different equivalent definitions.

In Appendix C we give an example where the optimal rates for L2(π )-GE and
(L∞(π ), ‖·‖L2(π ))-GE are distinct when P is not reversible. If P is π -reversible then the factors
for L2(π )-GE, (L∞(π ), ‖·‖L2(π ))-GE, and (L∞(π ), ‖·‖L1(π ))-GE must be the same. This result
combines a comment and Theorem 3 of [32], both stated but not proved. The formal statement
of that result and its proof may be found in Appendix D.

Finally, note that by definition L2(π )-GE is equivalent to (L2(π ), ‖·‖L2(π )) with the same
coefficient functions and factors, and that a.e.-TV-GE is equivalent to (D, ‖·‖TV)-GE where

https://doi.org/10.1017/apr.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.10


990 J. NEGREA AND J. S. ROSENTHAL

we can take D= span({π} ∪ {δx : x ∈X \N, r ∈R}) for some π -null set N. The null set N can
be taken to be the same for all factors ρ by taking the union over the null sets for factors ρ ∈Q
(since a countable union of null sets is still null).

Lemma 1. (Characterization of optimal rates for (V, |||·|||)-GE chains) If P is (V, |||·|||)-GE with
stationary measure π , then the optimal rate for (V, |||·|||)-GE is equal to

sup
μ∈V∩M+,1

lim sup
n→∞

|||μPn − π |||1/n . (3)

The proof of this result is found in Appendix D.

Remark 4. The quantity lim supn→∞ |||μPn − π |||1/n is the local spectral radius of P−� at
μ with respect to |||·|||, where � is the rank-1 kernel defined by �(x, A)= π (A) for all x ∈X
and A ∈�.

Lemma 2. (L2(π )-GE, (L∞(π ), ‖·‖L2(π ))-GE, and (L∞(π ), ‖·‖L1(π ))-GE are equivalent for π -
reversible chains, with equal optimal rates) Let ρ ∈ [0, 1). The following are equivalent for a
π -reversible Markov chain P:

(i) P is (L∞(π ), ‖·‖L1(π ))-GE with optimal rate ρ.

(ii) P is (L∞(π ), ‖·‖L2(π ))-GE with optimal rate ρ.

(iii) P is L2(π )-GE with optimal rate ρ.

(iv) The spectral radius of P|L2,0(π ) is equal to ρ.

Remark 5. Since either of (iii) or (iv) is equivalent to all the conditions listed in [29, Theorem
2.1], indeed all the items listed above are equivalent to all the items listed in their result. We
only included (iii) and (iv) here for brevity, since these are the conditions most relevant to the
present paper. Moreover, all of these conditions are implied by any of the equivalent conditions
for π -a.e.-TV-GE in [29, Proposition 2.1] (though with possibly different optimal rates for each
condition therein). The proof of this result is found in Appendix D.

Theorem 1 controls the convergence of the perturbed chain Pε in terms of the ‘original’
norm (from L2(π )). We also demonstrate that Pε is geometrically ergodic in the L2(πε) norm,
as this would also allow us to use the equivalences in [29]. The following two results allow
us to transfer the geometric ergodicity of Pε in L2(π ) to other notions of geometric ergodicity.
Theorem 3 handles the case that the perturbed kernel is reversible, while Theorem 2 handles
both the case that the perturbed kernel is reversible and the case that it is non-reversible.

Theorem 2. (Geometric ergodicity of the perturbed chain in the other norms: L1(πε), L2(πε),
total variation) Under the assumptions of Section 3.2, if ε < α, then the following hold:

(i) Pε is a.e.-TV-GE with some factor ρTV ∈ (0, 1).

(ii) Pε is (L∞(πε), ‖·‖L1(πε ))-GE with factor ρ1 = (1− (α− ε)) and with C1(μ)=
‖μ− πε‖L2(π ).

(iii) If π ∈ L∞(πε) then Pε is L2(πε)-GE with factor ρ2 = (1− (α− ε)) and with

C2(μ)= ‖π‖1/2
L∞(πε )‖μ− π‖L2(π ) .

The proof of this result is found in Appendix A.2.
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Example 1. For example, consider perturbations of a Gaussian AR(1) process. Let

Zi
iid∼N (0, σ 2) and let Wi

iid∼ μ. Take

Xt+1|Xt = (1− α)Xt + Zt+1,

Xε
t+1|Xε

t = (1− α)Xε
t +Wt+1.

(4)

Then the original chain {Xt}t∈N is not uniformly ergodic, but it is geometrically ergodic. Hence,
the results of [1,18] do not apply. The stationary measure of the exact chain is

π ≡N (0,
σ 2

α(2− α)
),

it is reversible, and the rate of geometric ergodicity is (1− α). Note that the perturbed chain,
which we will call a μAR(1) process, may not be reversible, and whether it is geometrically
ergodic generally depends on the distribution μ.

Now, letting φσ 2 be the N (0, σ 2) density, for any μ with dμ
dφ

σ2
∈ [1− ε, 1+ ε],

‖P− Pε‖2L2(π ) =
∫ ∞
−∞

∫ ∞
−∞

(
μ(y− (1− α)x)

π (y)
− φσ 2 (y− (1− α)x)

π (y)

)2

π (y)dy π (x)dx

≤
∫ ∞
−∞

∫ ∞
−∞

ε2
(

φσ 2 (y− (1− α)x)

π (y)
dy

)2

π (y)dy π (x)dx

= ε2‖P‖L2(π )

= ε2.

(5)

Therefore, when ε < α we can extend the geometric ergodicity of the Gaussian AR process to
the μ−AR(1) process using Theorem 2. We can also bound the discrepancy of the station-

ary measure of the perturbed chain from that N (0, σ 2

α(2−α) ) using Theorem 1. The subsequent
results, Corollary 1 and Theorem 4 of this section, may also be applied to this example to bound

the discrepancy between the marginal distributions of the μ-AR(1) from an N (0, σ 2

α(2−α) ) at
any time, as well as the approximation error of the time-averaged law of the μ-AR(1) from

N (0, σ 2

α(2−α) ).

Theorem 3. (L2(πε)-GE of the perturbed chain, reversible case.) Under the assumptions of
Section 3.2, if ε < α and Pε is πε-reversible, then Pε is L2(πε)-GE with factor ρ2 = (1− α + ε)
and coefficient function C(ν)= ‖ν‖L2(πε ). The proof of this result is found in Appendix A.2.

Corollary 1. (Closeness of stationary distributions in L2(πε).) If ε < α and ‖P− Pε‖L2(πε ) ≤
ϕ, then the following hold:

(i) If Pε is πε reversible and ϕ < α− ε, then

‖π − πε‖L2(πε ) ≤ ϕ√
(α− ε)2 − ϕ2

,

and for any μ ∈ L2(πε),

‖μPn
ε − π‖L2(πε ) ≤ (1− (α− ε))n‖μ− πε‖L2(πε ) + ϕ√

(α− ε)2 − ϕ2
.
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(ii) If π ∈ L∞(πε) and ϕ < 1, then

‖π − πε‖L2(πε ) ≤
ϕ + ‖π‖1/2

L∞(πε )
ε√

α2−ε2
(1− (α− ε))

1− ϕ
,

and for any μ ∈ L∞(πε),

‖μPn
ε − π‖L2(πε ) ≤ (1− (α − ε))n‖π‖1/2

L∞(πε )‖μ− πε‖L2(πε )

+
ϕ + ‖π‖1/2

L∞(πε )
ε√

α2−ε2
(1− (α− ε))

1− ϕ
.

The proof of this result is found in Appendix A.2. We turn our attention to bounds on the
error of estimation measures of the form 1

t

∑t−1
k=0 μPk, and estimates of the form 1

t

∑t−1
k=0 f (Xk).

Firstly, when computing Monte Carlo estimates, the bias is controlled by a time-averaged
marginal distribution of the form 1

t

∑t−1
k=0 μPk

ε . This leads us to the following result.

Theorem 4. (Convergence of time-averaged marginal distributions) Under the assump-
tions of Section 3.2, suppose ε < α and πε ∈ L2(π ). Then for any probability distribution
μ ∈ L2(π ),∥∥∥∥π − 1

t

t−1∑
k=0

μPk
ε

∥∥∥∥
L2(π )
≤ 1− (1− (α− ε))t

t(α− ε)
‖πε −μ‖L2(π ) + ε√

α2 − ε2
.

If additionally ‖P− Pε‖L2(πε ) ≤ ϕ, then the following hold:

(i) If Pε is πε-reversible and ϕ < α − ε, then∥∥∥∥π − 1

t

t−1∑
k=0

μPk
ε

∥∥∥∥
L2(πε )

≤ 1− (1− (α − ε))t

t(α− ε)
‖πε −μ‖L2(πε ) + ϕ√

(α− ε)2 − ϕ2
.

(ii) If π ∈ L∞(πε) and ϕ < 1, and if μ ∈ L∞(πε), then∥∥∥∥π − 1

t

t−1∑
k=0

μPk
ε

∥∥∥∥
L2(πε )

≤ 1− (1− (α− ε))t

t(α− ε)
‖π‖1/2

L∞(πε )‖πε −μ‖L2(πε )

+
ϕ + ‖π‖1/2

L∞(πε )
ε√

α2−ε2
(1− (α− ε))

1− ϕ
.

The proof of this result is found in Appendix A.3.1. Relative to the uniform closeness of
kernels (in total variation) required in [18], our assumption that the approximating kernel is
close in the operator norm induced by L2(π ) is non-comparable. This is because our bound is
in terms of the L2 distance, which always upper-bounds the total variation distance (up to a
constant factor of 1/2), but our assumption also does not require spatial uniformity, which that
of [18] does. Thus, this paper’s assumptions are neither weaker nor stronger than those in [18].
Comparing the above results to the corresponding L1 result of [18], we see that the transient
phase bias part of our L2 bounds differ from the L1 transient phase bias bound of [18] only by
a factor which is constant in time, but varies with the initial distribution (as is to be expected
when moving from uniform ergodicity to geometric ergodicity).
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3.4. Mean squared error bounds for Monte Carlo estimates

Suppose that (Xε
k )k∈N∪{0} is a realization of the Markov chain with transition kernel Pε and

initial distribution μ. The mean squared error of a Monte Carlo estimate of π f made using
(Xε

k )k≤t is given by

MSEε
t (μ, f )=E

⎡⎣(π (f )− 1

t

t−1∑
k=0

f (Xε
k )

)2⎤⎦ . (6)

Theorem 5. (Mean squared error of Monte Carlo estimates from the perturbed chain) Under
the assumptions of Section 3.2, if ε < α, Xε

0 ∼μ, Pε is πε-reversible, and ρ2 = (1− (α− ε)),
then for f ∈ L′4(πε),

(i) if f ∈ L′2(π ) as well, then

MSEε
t (μ, f )≤

2‖f − πε f‖2L′2(πε )

(1− ρ2)t
+

27/2‖μ− πε‖L2(πε )‖f − πε f‖2L′4(πε )

(1− ρ2)2t2

+ ‖f − πε f‖2L′2(π )

(
ε2

α2 − ε2
+ 2

ε√
α2 − ε2

1

t(α− ε)
‖πε −μ‖L2(π )

)
and

MSEε
t (μ, f )≤

4‖f − πε f‖2L′2(πε )

(1− ρ2)t
+

29/2‖μ− πε‖L2(πε )‖f − πε f‖2L′4(πε )

(1− ρ2)2t2

+ 2‖f − πε f‖2L′2(π )

ε2

α2 − ε2
;

(ii) if ‖P− Pε‖L2(πε ) ≤ ϕ < (1− ρ2), then

MSEε
t (μ, f )≤

27/2‖μ− πε‖L2(πε )‖f − πε f‖2L′4(πε )

(1− ρ2)2t2

+ ‖f − πε f‖2L′2(πε ).

(
ϕ2

(1− ρ2)2 − ϕ2
+2

1+ ϕ√
(1−ρ2)2−ϕ2

t(1− ρ2)
‖πε−μ‖L2(πε )

)
,

and

MSEε
t (μ, f )≤

29/2‖μ− πε‖L2(πε )‖f − πε f‖2L′4(πε )

(1− ρ2)2t2

+ ‖f − πε f‖2L′2(πε ).

(
2ϕ2

(1− ρ2)2 − ϕ2
+ 4

t(1− ρ2)
‖πε −μ‖L2(πε )

)
.

The proof of this result is found in Appendix A.3.3. Perturbation bounds based upon drift
and minorization conditions could provide similar mean squared error bounds for functions in
L2(πε) with

sup
x∈X

|f |√
V

<∞
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(where V is the function appearing in the drift condition), as in [17]. While that may be a
larger class of functions than L′4(πε) (depending on what V happens to be), the class L′4(πε) is
quite rich, making this bound still useful. Moreover, the class of functions to which our mean
squared error bounds apply, and the value of the bound itself, depend only on intrinsic features
of the Markov chains under consideration. In contrast, bounds based on drift and minorization
conditions include extrinsic features—introduced by the user for analytic purposes (such as
the drift function, V)—for which many choices might exist, each leading to different function
classes and different bounds.

4. Applications to Markov chain Monte Carlo

In this section we apply our theoretical results to some specific variants of MCMC algo-
rithms to obtain guarantees for noisy and/or approximate variants of MCMC algorithms.
MCMC is used to generate (correlated) samples approximately from a target distribution for
which the (unnormalized) density can be evaluated. The key insight is to construct a (typically
reversible) Markov chain for which the stationary distribution is the target distribution. This is
possible since the reversibility condition is readily verified locally (without integration).

The most commonly used family of MCMC methods is the Metropolis–Hastings (MH)
algorithm. The chain is initialized from some distribution X0 ∼μ0. At each step a proposal is
drawn from some transition kernel, Yt ∼Q(Xt−1, ·). Suppose that the kernel Q(x, ·) has density
q( · |x). The proposal is accepted with probability

a(Yt|Xt−1)=min

(
1,

π (Yt)q(Xt−1|Yt)

π (Xt−1)q(Yt|Xt−1)

)
.

If the proposal is accepted then Xt = Yt, and if it is rejected (not accepted) then Xt = Xt−1.
The combination of proposal and accept/reject steps yields a π -reversible Markov kernel, and
reversibility guarantees that the stationary distribution is the target distribution. The user has
freedom in selecting the proposal kernel, Q, and some choices lead to better performance than
others. The accept/reject step requires evaluating the target density, π , twice on each step.

A large body of research exists guaranteeing that specific MCMC algorithms will be
geometrically ergodic (see for example [13,22,30], and many more.). These typically ver-
ify geometric ergodicity for a collection of target distributions, π , and for a small family of
proposal kernels, Q.

If the target likelihood involves some integral which is computed numerically or by simple
Monte Carlo, then the numerical and/or stochastic approximation introduces a perturbation to
the idealized MCMC scheme. This occurs even in standard and widely used statistical models
such as generalized linear mixed effect models (GLMMs), since the random effects are nui-
sance variables which need to be integrated away, either using Laplace or Gaussian quadrature
schemes, or by simple Monte Carlo, in order to evaluate the likelihood. Since the MH algo-
rithm requires evaluation of the density, these each introduce a perturbation in the acceptance
ratio, and hence in the actual transition kernel of the MH scheme. We now consider the extent
to which our results from Section 3 can be applied to prove geometric ergodicity for certain
approximate MCMC algorithms.

4.1. Noisy and approximate MCMC

The noisy (or approximate) Metropolis–Hastings (nMH) algorithm, as found in [1] (see also
[25]), was briefly described above. The algorithm is defined exactly the same way as the MH
algorithm, except that the acceptance ratio, a(Yt|Xt−1), is replaced by a (possibly stochastic)
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approximation â(Yt|Xt−1, Zt). Here Zt denotes some random element providing an additional
source of randomness, so that a(Yt|Xt−1, Zt) is not σ (Yt, Xt−1)-measurable when the approx-
imation â(Yt|Xt−1, Zt) is stochastic. In the case of a deterministic approximation, Zt can be
ignored or treated as a constant. The approximation can typically be thought of as replacing
the target density in the acceptance ratio with some approximation. This includes most approxi-
mate MCMC algorithms which preserve the state space and the Markov property, such as those
replacing π with a deterministic approximation or an independent stochastic approximation at
each step (as in Monte Carlo within Metropolis). It does not include algorithms which retain
the Markov property only for an augmented state space, such as the pseudo-marginal approach
of [2].

For our analysis of these algorithms, P will represent the transition kernel for the MH algo-
rithm, while P̂ will represent the kernel for the corresponding nMH chain. The key step in
applying our results from Section 3 will be to show the L2(π ) closeness of the nMH transition
kernel to the MH transition kernel. Again, ‖·‖L2(π ) is the norm on L2(π ) and the correspond-
ing operator norm. We will assume that π and {Q(x, ·)}x∈X are all absolutely continuous
with respect to the Lebesgue measure and have densities π and {q( · |x)}x∈X respectively.
All arguments used would still apply if there were an arbitrary dominating measure in place
of the Lebesgue measure. Let Fy|x be the regular conditional distribution for Z given X = x
and Y = y, and let fy|x be its Lebesgue density. Define the perturbation function for the nMH
algorithm as

r(y|x)= E

Z ∼ Fy|x (a(y|x)− â(y|x, Z))=
∫

(a(y|x)− â(y|x, z)) fy|x(z)dz.

Theorem 6. (Geometric ergodicity and closeness of stationary distributions for nMH) Let P
be the transition kernel for an MH algorithm with proposal distribution Q, target distribu-
tion π , and acceptance ratio a( · | · ). Let P̂ be the transition kernel for a corresponding nMH
algorithm with approximate/noisy acceptance ratio â( · |·, ·). Let r( · | · ) be the corresponding
perturbation function.

If ‖Q‖L2(π ) <∞ and supx,y |r(y|x)| ≤ R, then

‖P̂− P‖L2(π ) ≤ R(1+ ‖Q‖L2(π )) . (7)

Furthermore, if P is reversible and L2(π )-GE with geometric contraction factor (1− α), and
ε = R(1+ ‖Q‖L2(π )) < α, then P̂ has a stationary distribution π̂ , and the assumptions outlined
in Section 3.2 hold with Pε = P̂ and πε = π̂ .

Therefore, Theorems 1 to 5 and Corollary 1 can all be applied. In particular, P̂ is L2(π )-GE
with factor 1− (α− R(1+ ‖Q‖L2(π ))), it is a.e.-TV-GE, and

‖π̂ − π‖L2(π ) ≤ R(1+ ‖Q‖L2(π ))√
α2 − R2(1+ ‖Q‖L2(π ))2

; (8)

furthermore, if P̂ is reversible, then it is L2(π̂)-GE with factor (1− (α− R(1+ ‖Q‖L2(π )))).

The above theorem provides an alternative to the analogous result of Corollary 2.3 from [1],
relaxing the uniform ergodicity assumption. In particular, it requires that Q ∈B(L2(π )) and that
R(1+ ‖Q‖L2(π )) < α. The first of these requirements is not dramatically limiting since the user
has control over the choice of Q. The second requirement is also not dramatically limiting, as
control over R may be interpreted as limiting the amount of noise in the nMH algorithm, and
such control is required regardless in order to ensure the accuracy of approximation in both the
geometrically ergodic and uniformly ergodic cases.
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4.2. Application to fixed deterministic approximations

Suppose we run a fixed MH algorithm, but replace the target density with one which is close
everywhere. Perhaps this alternative density is easier to compute (e.g. replacing an integral
with a Laplace approximation as in [19], or replacing a full sample with a coreset for sub-
sampled Bayesian inference as in [8]). By construction we would know that the approximate
target distribution is close to the ideal target distribution. The question still remains whether
geometric ergodicity is preserved. We resolve this question in the case that the approximation
has constant relative error.

Corollary 2. Suppose we can approximate the unnormalized target density, Cπ , by π̂ , with a
θ -bounded relative error:

sup
x∈X
|log

Cπ (x)

π̂ (x)
| ≤ θ . (9)

If the MH algorithm with proposal kernel Q is L2(π )-GE with factor (1− α), and if

θ <
α

2(1+ ‖Q‖L2(π ))
,

then the corresponding approximate transition kernel, P̂, is L2(π̂)-GE, and

‖π̂ − π‖L2(π ) ≤ 2θ (1+ ‖Q‖L2(π ))√
α2 − 4θ2(1+ ‖Q‖L2(π ))2

. (10)

Proof. Since the function x �→ 1∧ exp (x) is 1-Lipschitz, we have

|r(y|x)| = |a(y|x)− â(y|x)|

≤
∣∣∣∣log

π (y)q(x|y)

π (x)q(y|x)
− log

π̂(y)q(x|y)

π̂ (x)q(y|x)

∣∣∣∣
=
∣∣∣∣log

Cπ (y)

π̂ (y)
− log

Cπ (x)

π̂ (x)

∣∣∣∣
≤ 2θ .

(11)

So P̂ will be L2(π )-GE as long as P was geometrically ergodic with some factor 0≤ (1− α) <

1 and
θ <

α

2(1+ ‖Q‖L2(π ))
. (12)

Moreover, in this case, P̂ is reversible. Thus, we can use Theorem 3 to obtain L2(π̂)-GE of P̂,
with factor 1− α+ 2θ (1+ ‖Q‖L2(π )). �

In this scenario, we can also use Theorem 5 to get quantitative bounds for the mean squared
error of any Monte Carlo estimates made using P̂, or any of our other results in Theorems 1 to
4 and Corollary 1 as needed.

Example 2. (Independence sampler.) The previous result also immediately gives that if dπ̂
dπ

is
bounded above by C < exp (1/4) and below by c > exp (− 1/4), then the independence sam-
pler for π̂ with proposals from π is geometrically ergodic with factor 4max( log C,− log (c)).
This is, however, sub-optimal when compared to [36], which only requires a finite upper bound
on dπ̂

dπ
to establish uniform ergodicity.
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Example 3. (Laplace approximation for GLMMs.) Generalized linear mixed models
(GLMMs) (see [5,23], etc.) are widely used in the modelling of non-normal response vari-
ables under repeated or correlated measurements. They are the natural common extension of
generalized linear models and linear mixed effects models. They handle dependence between
observations by introducing Gaussian latent variables. These random effects are nuisance vari-
ables for the purpose of inference. In order to perform Bayesian inference for GLMMs, one
requires samples from the marginal posterior distribution of the parameters given the data. The
marginal posterior, here, is the posterior for the parameters given the observations, in contrast
to the joint posterior of the random effects and the parameters given the data.

This can be approached in two ways. One option is to obtain samples for the random effects
and parameters jointly given the data, and discard the random effects to get marginal posterior
samples for the parameters. The second option is to approximate the likelihood by integrating
(numerically) over the random effects, and using the resulting approximate likelihood in the
calculations involving the unnormalized posterior for the parameters.

In the second case, when the prior for the parameters is compactly supported, if one had
established a result saying that a particular MH procedure for the exact posterior distribution
of the parameters would be geometrically ergodic, then one could directly transfer this result to
the approximate posterior computed using a Laplace approximation, at least for large enough
samples. This is valid since the Laplace approximation has constant relative error on compact
sets, and the relative error decreases with sample size (see [37]). Hence, for a large enough
sample size, Equation (12) will be satisfied regardless of what the proposal kernel Q was (as
long as ‖Q‖L2(π ) was finite).

Example 4. (Uniform coresets.) In Bayesian inference with large samples, an approach to
reducing the computational burden of evaluating the likelihood in the unnormalized posterior
for MCMC accept/reject steps is to select a representative subsample of the data and to up-
weight the contributions of each of the selected samples in such a way as to best approximate
the original likelihood. These up-weighted subsamples are called coresets. They naturally give
rise to approximate MCMC methods in which the true posterior is replaced by an approxima-
tion based upon a coreset. Several methods for coreset construction exist; however, relatively
little work has been done to assess their impact upon approximate MCMC methods. We will
consider the uniform coreset construction of [14] (so named in [8]).

Theorem 3.2 of [8] provides the guarantee that, with probability (1− δ), the unnormalized
approximate posterior Ĉπ̂ based on a uniform coreset of size M will satisfy

sup
x∈X

1

|L(x)|

∣∣∣∣∣log
Ĉπ̂ (x)

Cπ (x)

∣∣∣∣∣≤ σ√
M

(
3

2
D+ η

√
2 log (1/δ)

)
, (13)

where σ =∑N
n=1 σn, N is the number of observations,

σn = sup
x∈X
|Li(x)

L(x)
|,

Li(x) is the log-likelihood of parameter x at the ith observation, L(x)=∑N
i=1 Li(x) is the log-

likelihood of the dataset

η= max
i,j∈{1,...,N} sup

x∈X
1

|L(x)| |
Li(x)

σi
− Lj(x)

σj
|, (14)

and D is the approximate dimension of {Li}ni=1 ([8, Definition 3.1]).
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If, in addition to assuming that {σi}Ni=1 are all finite as in [8, Section 3], one were to assume
that |L(x)| is bounded as a function of x, then the uniform coreset result would imply the
conditions of our Corollary 2, namely that

sup
x∈X

∣∣∣∣log
Cπ (x)

π̂(x)

∣∣∣∣≤ σ‖L‖∞√
M

(
3

2
D+ η

√
2 log (1/δ)

)
, (15)

with high probability. Consequently, for any proposal kernel Q : L2(π )→ L2(π ) we should be
able to choose M sufficiently large so that with high probability

σ‖L‖∞√
M

(
3

2
D+ η

√
2 log (1/δ)

)
<

α

2(1+ ‖Q‖L2(π ))
. (16)

Hence the approximating Markov chain will be geometrically ergodic with high probability.

4.3. Application to Monte Carlo within Metropolis

Following [24], we can get bounds for the simple Monte Carlo within Metropolis algorithm
(MCwM). This is the special case of nMH where we approximate the likelihood ratio

π (y)

π (x)
= E�(y, Z)

E�(x, Z)

by (̂
π (y)

π (x)

)
=

∑N
i=1 �(y, Zi)∑2N

i=N+1 �(x, Zi)

using a new independent sample taken each time the likelihood is evaluated. In the notation of
the previous section,

â(y|x, z)= 1∧ q(x|y)
∑N

i=1 �(y, zi)

q(y|x)
∑2N

i=N+1 �(x, zi)
. (17)

Let

Wk(x)= 1

kπ (x)

k∑
i=1

�(x, Zi),

ik(x)2 =E[Wk(x)−2],

s(x)= 1√
π (x)

StdDev(�(x, Z1)).

(18)

Lemma 14 of [24] tells us that if there is a k ∈N such that ik(x) <∞ for all x ∈X , then for
N ≥ k,

|r(y|x)| ≤ a(y|x)
1√
N

ik(y) (s(x)+ s(y))

≤ 1√
N

ik(y) (s(x)+ s(y)) .
(19)

Corollary 3. Let P be the MH transition kernel for the target density π and proposal ker-
nel Q. Let P̂N be the corresponding MCwM transition kernel when π ( · ) is approximated by
1
N

∑N
i=1 �(·, Zi).
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Assume that s and the ik as defined above are uniformly bounded for some k ∈N. Suppose
further that

N0 =max
(

k,
4‖ik‖2∞‖s‖2∞(1+ ‖Q‖L2(π ))2

α2

)
,

and N ≥ �N0� + 1.
Then P̂N is reversible and L2(π )-GE with factor

1− α + 1√
N/N0

,

and it has a stationary distribution

π̂N(x)∝ π (x)

N E

[(∑N
i=1 �(x, Zi)

)−1
]

with

‖π − π̂N‖L2(π ) ≤
√

N0

Nα2 −N0
. (20)

Proof. Suppose that N ≥ �N0� + 1. From Theorem 1, we know that the perturbed chain P̂N

is L2(π )-GE with factor 1− α + 1√
N/N0

and has a stationary distribution π̂N with

‖π − π̂N‖L2(π ) ≤
√

N0

Nα2 −N0
. (21)

Moreover, by inspection, P̂N is reversible with respect to

π̂N(x)∝ π (x)

N E

[(∑N
i=1 �(x, Zi)

)−1
] .

Thus, we can use Theorem 3 to obtain L2(π̂N)-GE of P̂N , with factor 1− α + 1√
N/N0

. �

Remark 6. A simple scenario under which these ik and s are uniformly bounded is when the
joint density of x and Z is bounded above and below by a multiple of the marginal of x, so that

�(x, z)

π (x)
∈ [c, C] (22)

for all (x, z) ∈X ×Z . This condition is essentially tight if we wish to take k= 1 and take
the base measure to be the Lebesgue measure restricted to U ⊂Rd; in this case the condition
‖ik(x)‖L∞ <∞ implies that∫

U

π (x)

�(x, z)
dz=EZ∼�(x,·)

π (x)

π (x)2

�(x, ·)2
<∞ (23)

for all x. That is, the reciprocal of the conditional density of Z given X = x has a finite integral
for each x.
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Remark 7. More generally, [24, Lemma 23] tells us that if E[Wk0 (x)−p] <∞ for some k0 ∈N
and p > 0, then for k≥ k0� 2

p�, ik(x)2 <E[Wk0 (x)−p]. Therefore, in order to uniformly bound

ik(x), it is sufficient to bound E[Wk0 (x)−p] uniformly in x for some k0 ∈N, p > 0. This is much
less restrictive than trying to bound i1(x). In the case that p < 1, k0 = 1, this is much less
restrictive than when p= 2, k0 = 1; it is equivalent to requiring that tempered versions of the
conditional distribution

�(x, ·)
π (x)

can be normalized by uniformly bounded normalizing constants. This would be true if, for
example, (Z|X = x)∼N (μ(x), σ 2(x)) with σ 2(x) uniformly bounded in x. More generally,
using 0 < p < 1 instead of p= 2, whenever the conditional law of Z has uniform exp-poly
tails, i.e.

�(x, z)

π (x)
≤ exp (−C|z−μ(x)|α)

with α > 0, the p-version of the condition would hold.

We could also use Theorem 5 to get quantitative bounds for the mean squared error of any
Monte Carlo estimates made using P̂N , or any of our other results in Theorems 1 to 4 and
Corollary 1 as needed.

Medina-Aguayo et al. [24] also consider a case where the assumption that s and the ik are
uniformly bounded is dropped, and instead, the perturbed kernel is restricted to a bounded
region. We do not address this case here.

Appendix A. Proofs

A.1 Proof of Theorem 1

The following lemma is contained in the remark after Theorem 2.1 of [29]; we prove it here
as well since the proof is so simple.

Lemma 3. (Remark in [29].) For any probability measure μ ∈ L2(π ),

‖μ− π‖2L2(π ) = ‖μ‖2L2(π ) − 1.

Proof.

0≤ ‖μ− π‖2L2(π ) =
∫ (

dμ

dπ
− 1

)2

dπ =
∫ ((

dμ

dπ

)2

− 2
dμ

dπ
+ 1

)
dπ

=
∫ (

dμ

dπ

)2

dπ − 2
∫

dμ+
∫

dπ = ‖μ2 − 1‖L2(π ).

�
We will make use of the following simplified version of Theorem 2.1 from [29] as well.

Proposition 2. (Equivalent definitions of L2(π )-GE from [29].) For a reversible Markov chain
with kernel P and stationary distribution π on state space X , the following are equivalent (and
ρ is equal in both cases):

(i) P is L2(π )-GE with optimal rate ρ and coefficient function C(μ)= ‖μ− π‖L2(π ).
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(ii) P has L2,0(π )-spectral radius and norm both equal to ρ:

sup
ν∈L2,0(π )\{0}

‖νP‖L2(π )

‖ν‖L2(π )
= ρ = r(P|L2,0(π )) ,

where

r(P|L2,0(π )) := sup{|ρ| : ρ ∈C and (P|L2,0(π ) − ρIL2,0(π )) is not invertible}. (24)

Note that while when the kernel is reversible we may take C(μ)= ‖μ− π‖L2(π ) in the
bound corresponding to L2(π )-GE with optimal rate ρ, this is not true for non-reversible chains.
By applying the above theorem in our context we have the following.

Lemma 4. Under the assumptions of Section 3.2,

‖ν1Pn − ν2Pn‖L2(π ) ≤ (1− α)n‖ν1 − ν2‖L2(π )

for any probability distributions ν1, ν2 ∈ L2(π ). In particular, taking ν2 = π ,

‖ν1Pn − π‖L2(π ) ≤ (1− α)n‖ν1 − π‖L2(π ) = (1− α)n
√
‖ν1‖2L2(π ) − 1,

and applying Cauchy–Schwarz yields

‖ν1Pn − π‖L1(π ) ≤ ‖ν1Pn − π‖L2(π ) ≤ (1− α)n‖ν1 − π‖L2(π ).

We begin with a first result giving sufficient conditions under which the stationary
distribution πε of the perturbed chain is in L2(π ).

Lemma 5. Under the assumptions of Section 3.2, if in addition ε < α, then Pε has a unique
stationary distribution, πε ∈ L2(π ), and ‖πε − π‖L2(π ) ≤ ε

α−ε
.

Proof. Since Pε is π -irreducible and aperiodic, it has at most one stationary distribution, πε ,
with πε� π (see for example [9, Corollary 9.2.16]).

Suppose for now that πPn
ε has an L2(π ) limit, πε . Then, using the triangle inequality, the

contraction property (‖Pε‖TV = 1), and Cauchy–Schwarz, we have

‖πεPε − πε‖TV ≤ ‖πεPε − πPn
ε‖TV + ‖πPn

ε − πε‖TV

≤ ‖πε − πPn−1
ε ‖TV + ‖πPn

ε − πε‖TV

≤ ‖πε − πPn−1
ε ‖L2(π ) + ‖πPn

ε − πε‖L2(π )
n→∞→ 0;

thus we find that πε must be stationary for Pε .
It remains to verify that {πPn

ε}n∈N is an L2(π )-Cauchy sequence, and thus from complete-
ness it must have an L2(π )-limit. To this end, define Qε = (Pε − P). Let 2k = {0, 1}k for all
k ∈N. We will expand π (P+Qε)n and use the following facts:

A. ∀R ∈B(L2(π )) [πPnR= πR].

B. Qε : L2(π )→ L2,0(π ).

C. P|L2,0(π ) ∈B(L2,0(π )) and ‖P|L2,0(π )‖L2,0(π ) ≤ (1− α).
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Since the operators P and Qε do not (necessarily) commute, when we expand (P+Q)n we
must have one distinct term per binary sequence of length n. We can then group terms by the
number of leading Ps, and use (A) to cancel the leading terms.

Let m, n ∈N be arbitrary with m≤ n. Then

‖πPn
ε − πPm

ε ‖L2(π )

= ‖π (P+Qε)n − π (P+Qε)m‖L2(π )

=
∥∥∥∥∥∥π

⎡⎣⎛⎝∑
b∈2n

n∏
j=1

PbjQ
1−bj
ε

⎞⎠−
⎛⎝∑

b∈2m

m∏
j=1

PbjQ
1−bj
ε

⎞⎠⎤⎦∥∥∥∥∥∥
L2(π )

=
∥∥∥∥∥π
[⎛⎝Pn +

n−1∑
k=0

Pn−k−1Qε

∑
b∈2k

k∏
j=1

PbjQ
1−bj
ε

⎞⎠
−
⎛⎝Pm +

m−1∑
k=0

Pm−k−1Qε

∑
b∈2k

k∏
j=1

PbjQ
1−bj
ε

⎞⎠]∥∥∥∥∥
L2(π )

=
∥∥∥∥∥∥
⎛⎝π +

n−1∑
k=0

πQε

∑
b∈2k

k∏
j=1

PbjQ
1−bj
ε

⎞⎠−
⎛⎝π +

m−1∑
k=0

πQε

∑
b∈2k

k∏
j=1

PbjQ
1−bj
ε

⎞⎠∥∥∥∥∥∥
L2(π )

=
∥∥∥∥∥∥π

n−1∑
k=m

Qε

∑
b∈2k

k∏
j=1

PbjQ
1−bj
ε

∥∥∥∥∥∥
L2(π )

≤ ε

n−1∑
k=m

∑
b∈2k

k∏
j=1

(1− α)bjε1−bj

= ε

n−1∑
k=m

(1− α+ ε)k

≤ ε

α − ε
(1− α+ ε)m.

Since this upper bound on ‖πPn
ε − πPm

ε ‖L2(π ) decreases to 0 monotonically in m=min(m, n),
the sequence must be L2(π )-Cauchy.

Now, to bound the norm of πε , we take m= 0 and we get that for all n ∈N,

‖πPn
ε − π‖L2(π ) ≤ ε

α − ε
.

From the continuity of the norm, it must be the case that ‖πε − π‖L2(π ) ≤ ε
α−ε

. �
Lemma 6. Under the assumptions of Section 3.2, if in addition ε < α, then

1≤ ‖πε‖L2(π ) ≤ α√
α2 − ε2
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and

0≤ ‖π − πε‖L2(π ) ≤ ε√
α2 − ε2

.

Proof. The two lower bounds are immediate from Lemma 3 and the positivity of norms:

0≤ ‖π − πε‖2L2(π ) = ‖πε‖2L2(π ) − 1.

To derive the first upper bound, we apply Lemma 3, our assumptions about the operators P and
Pε , and the triangle inequality to ‖π − πε‖2:√

‖πε‖2L2(π ) − 1= ‖π − πε‖L2(π ) = ‖πP− πεP+ πεP− πεPε‖L2(π )

≤ ‖πP− πεP‖L2(π ) + ‖πεP− πεPε‖L2(π )

≤ (1− α)‖π − πε‖L2(π ) + ε‖πε‖L2(π )

= (1− α)
√
‖πε‖2L2(π ) − 1+ ε‖πε‖L2(π ).

Collecting the square roots and squaring both sides yields

α2
(
‖πε‖2L2(π ) − 1

)
≤ ε2‖πε‖2L2(π ),

which implies that

‖πε‖2L2(π ) ≤
α2

α2 − ε2
.

Finally, the second upper bound is derived from the first one, again using Lemma 5.1:

‖π − πε‖2L2(π ) = ‖πε‖2L2(π ) − 1≤ α2

α2 − ε2
− 1= ε2

α2 − ε2
.

�
We next observe that our assumptions imply that for small enough perturbations, the

perturbed chain Pε is geometrically ergodic in the L2(π ) norm.

Lemma 7. Under the assumptions of Section 3.2, if ε < α, then we have that Pε is L2(π )-GE,
with factor ≤ 1− (α− ε).

Proof. Suppose that ν ∈ L2,0(π ). Then

‖νPε‖L2(π ) ≤ ‖ν(Pε − P)‖L2(π ) + ‖νP‖L2(π )

≤ ε‖ν‖L2(π ) + (1− α)‖ν‖L2(π )

= (1− α + ε)‖ν‖L2(π ) .

Thus, for any probability measure μ ∈ L2(π ), since πε ∈ L2(π ) we have

‖μPn
ε − πε‖L2(π ) = ‖(μ− πε)Pn

ε‖L2(π )

≤ (1− (α− ε))n‖μ− πε‖L2(π ) .

�
Combining Lemmas 5 to 7 together with the triangle inequality immediately yields

combinedthm.
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A.2. Proofs of Theorem 2, Theorem 3, and Corollary 1

Definition 3. Following [29], a subset S⊂X is called hyper-small for the π -irreducible
Markov kernel P with stationary measure π if π (S) > 0 and there exist δS > 0 and k ∈N such
that for all x, y ∈X ,

dPk(x, ·)
dπ

(y)≥ δS1S(x)1S(y),

or equivalently, if Pk(x, A)≥ δSπ (A) for all x ∈ S and A⊂ S measurable.

Lemma 4 of [15] states that on a countably generated state space (as we have assumed
herein), every set of positive π -measure contains a hyper-small subset.

Lemma 8. (Existence of hyper-small subsets from [15].) Suppose that (X , �) is countably
generated. Suppose that X is a φ-irreducible Markov chain on X with kernel P for some
σ -finite measure φ on X . Then any set K ⊂X with φ(K) > 0 contains a set SK such that
(for some nK ∈N)

inf
(x,y)∈SK×SK

dPnK (x, ·)
dπ

(y)= δ > 0.

In the case that a stationary distribution π for P exists, without loss of generality we can take
φ = π . In this case, it is immediate that any set (SK, nK) satisfying Lemma 8 also satisfies
Definition 3.

Also of importance to us is the following variant of Proposition 2.1 of [29], which provides
a characterization of geometric ergodicity in terms of convergence to a hyper-small set.

Proposition 3. (Equivalent characterizations of π -a.e.-TV-GE from [27,29].) Suppose that
(�, �) is countably generated, and that X is a φ-irreducible Markov chain on X with kernel
P with stationary distribution π . Then the following are equivalent:

(i) There exists ρTV ∈ (0, 1) such that P is π -a.e.-TV-GE with factor ρTV.

(ii) There exist a hyper-small set S⊂X and constants ρS < 1, CS ∈R+ such that∥∥∥∥∫ 1S(y)π (dy)

π (S)
Pn(y, ·)− π

∥∥∥∥
TV
≤CSρ

n
S ∀n ∈N.

(iii) There exist a π -a.e. finite, measurable function V : X → [1,∞] with π (V2) <∞, and
ρV ∈ (0, 1), and C > 0 such that

2‖δxPn − π‖TV ≤ ‖δxPn − π‖V ≤CV(x)ρn
V ,

where ‖μ‖V = sup
|f |≤V
|μ(f )|.

Proof of Theorem 2.

(i) Let S be a hyper-small set for Pε (which must exist from Lemma 8, since Pε is
πε-irreducible). Then the measure μS defined by

dμS

dπ
= 1S

πε(S)

dπε

dπ
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satisfies (by Hölder’s inequality, and since πε ∈ L2(π ))

‖μS‖2L2(π ) ≤ ‖πε‖2L2(π )πε(S)−2 <∞,

and hence μS ∈ L2(π ). Then (by Cauchy–Schwarz again)∥∥∥∥∫ 1S(y)πε(dy)

πε(S)
Pn

ε(y, ·)− πε

∥∥∥∥
TV
≤ 1

2
‖μSPn

ε − πε‖L2(π ) ≤ ‖μS − πε‖L2(π )(1− α + ε)n,

which, along with Proposition 3, establishes that Pε is πε-a.e.-TV-GE with some factor
ρTV ∈ (0, 1).

(ii) Suppose that μ ∈ L∞(πε). Then μ ∈ L2(π ) since

dμ

dπ
≤ ‖μ‖L∞(πε )

dπε

dπ
.

Since μPn
ε − πε ∈ L1(πε)⊂ L1(π ),

‖μPn
ε − πε‖L1(πε ) = ‖μPn

ε − πε‖L1(π ) = 2‖μPn
ε − πε‖TV. (25)

Applying this equality as well as Cauchy–Schwarz, we get

‖μPn
ε − πε‖L1(πε ) = ‖μPn

ε − πε‖L1(π )

≤ ‖μPn
ε − πε‖L2(π )

≤ ‖μ− πε‖L2(π )(1− α− ε)n.

(26)

(iii) If π ∈ L∞(πε) and μ ∈ L2(πε), then

‖μPn
ε − πε‖2L2(πε ) =

∫ (
dμPn

ε − πε

dπε

)2

dπε

=
∫ (

dμPn
ε − πε

dπ

)2 dπ

dπε

dπ

≤ ‖π‖L∞(πε )

∫ (
dμPn

ε − πε

dπ

)2

dπ

= ‖π‖L∞(πε )‖μPn
ε − πε‖2L2(π )

≤ ‖π‖L∞(πε )‖μ− πε‖2L2(π )(1− (α − ε))2n.

(27)

Proof of Theorem 3. From [4, Lemma 1], since Pε has stationary measure πε , we have
Pε : L2(πε)→ L2(πε). Since Pε is (L∞(πε), ‖·‖L1(πε ))-GE with factor ρ1 ≤ (1− (α− ε)) (as
established by Theorem 2) and Pε is reversible, it must also be L2(πε)-GE with factor ρ = ρ1
by Lemma 2. �

Proof of Corollary 1. Note that the assumption that ‖P− Pε‖L2(πε ) < ϕ implies P−
Pε : L2(πε)→ L2(πε).

(i) Since Pε is L2(πε)-GE with factor (1− (α− ε)) and πε-reversible, we can reverse the
roles of P and Pε , so the result follows by Theorem 1.
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(ii) Taking μ= π and n= 1 in Theorem(iii), we have

‖πPε − πε‖2L2(πε ) ≤ ‖π‖L∞(πε )‖π − πε‖2L2(π )(1− (α− ε))2

≤ ‖π‖L∞(πε )
ε2

α2 − ε2
(1− (α − ε))2.

(28)

Hence,

‖π − πε‖L2(πε ) ≤ ‖πP− πPε‖L2(πε ) + ‖πPε − πε‖L2(πε )

≤ ϕ‖π‖L2(πε ) + ‖π‖1/2
L∞(πε )

ε√
α2 − ε2

(1− (α− ε))

= ϕ

√
‖π − πε‖2L2(πε ) + 1+ ‖π‖1/2

L∞(πε )
ε√

α2 − ε2
(1− (α− ε))

≤ ϕ(‖π − πε‖L2(πε ) + 1)+ ‖π‖1/2
L∞(πε )

ε√
α2 − ε2

(1− (α − ε)).

(29)

Hence,

‖π − πε‖L2(πε ) ≤
ϕ + ‖π‖1/2

L∞(πε )
ε√

α2−ε2
(1− (α− ε))

1− ϕ
. (30)

Finally,

‖μPn
ε − π‖L2(πε ) ≤ ‖μPn

ε − πε‖L2(πε ) + ‖πε − π‖L2(πε ).

The first term is bounded by Theorem 2(iii), and the second term is bounded by (30).�

A.3. Proofs of Theorem 4 and Theorem 5

A.3.1 Time-averaging of marginal distributions. Proof of Theorem 4. The first result of
Theorem 4 follows from the triangle inequality and Theorem 1:∥∥∥∥∥π − 1

t

t−1∑
k=0

μPk
ε

∥∥∥∥∥
L2(π )

≤ 1

t

t−1∑
k=0

∥∥∥π −μPk
ε

∥∥∥
L2(π )

≤ 1

t

t−1∑
k=0

[
(1− (α− ε))k‖πε −μ‖L2(π ) + ε√

α2 − ε2

]

≤ 1− (1− (α− ε))t

t(α− ε)
‖πε −μ‖L2(π ) + ε√

α2 − ε2
.

The subsequent results follow similarly via Theorems 2 and 3 and Corollary 1. �
A.3.2 Covariance bounds. We turn our attention to the covariance structure of the original and
perturbed chains. There is an obvious isometric isomorphism between the space of measures
L2(π ) and the function space

L′2(π )= {f : X →R s.t.
∫

f (x)2π (dx) <∞}
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equipped with the norm ‖f‖2L′2(π ) =
∫

f (x)2π (dx), where a measure μ is mapped to its Radon–

Nikodym derivative, μ �→ dμ
dπ

. For this reason, we need not distinguish between these spaces,
and when dealing with a function f ∈ L′2(π ) we may occasionally abuse notation and treat it as
its associated measure. Let Xt and Xε

t denote the original and perturbed chains run from some
initial measure μ ∈ L2(π ).

Corollary 4. Under the assumptions of Section 3.2,

(a) if X0 ∼ π (the initial distribution is the stationary distribution), then for f , g ∈ L′2(π ),

Cov[f (Xt), g(Xs)]≤ (1− α)|t−s|‖f − π f‖L′2(π )‖g− πg‖L′2(π ) ; (31)

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1− (α− ε)), and Xε
0 ∼ πε , then for f , g ∈ L′2(πε),

Cov[f (Xε
t ), g(Xε

s )]≤ ρ
|t−s|
2 ‖f − πε f‖L′2(πε )‖g− πεg‖L′2(πε ) , (32)

where for a function h : X →R, πh is the constant function equal to
∫

h(s)π (ds)
everywhere.

Proof. The proof of this result follows that of Corollary B.5 in [18]. We only show the
proof for the original chain; however, the proof for the perturbed chain is the same, since it is
reversible and L2(πε)-GE with the appropriate factor, from Theorem 3.

Define the subspace

L′2,0(π )= {h ∈ L′2(π ) :
∫

h(s)π (ds)= 0},

and define the operator F ∈B(L′2,0(π )) by

[Ff ](x)=
∫

P(x, dy)f (y)=E[f (X1)|X0 = x].

From Lemma 12.6.4 of [21],

sup
f ,g∈L′2(π )

corr(f (X0), g(Xt))= sup
‖f‖L′2(π )=1=‖g‖L′2(π )

f ,g∈L′2,0(π )

〈f , Ftg〉 = ‖Ft‖L′2,0(π ).

Consider the canonical isomorphism between L2(π ) and L′2(π ). The restriction of this
isomorphism (on the right) to elements of L′2,0(π ) yields L2,0(π ) (on the left)—the signed
measures with total measure 0. The image of F under the restricted isomorphism is the adjoint
operator of P restricted to L2,0(π ). Since P is π -reversible, it is self-adjoint in L2(π ), so
‖F‖L′2,0(π ) = ‖P‖L2,0(π ). Thus

‖Ft‖L′2,0(π ) ≤ ‖F‖tL′2,0(π ) = ‖P
∣∣
L2,0(π )‖t ≤ (1− α)t.

Therefore

Cov(f (X0), g(Xt))≤ ‖f − π f‖L′2(π )‖g− πg‖L′2(π )(1− α)t.
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Since Cov is symmetric, the shifted and symmetrized result holds for any f , g ∈ L′2(π ):

Cov[f (Xt), g(Xs)]≤ (1− α)|t−s|‖f − π f‖L′2(π )‖g− πg‖L′2(π ). (33)

We present further bounds for the case that the initial distribution is not the stationary
distribution in Corollary 5.

Remark 8. Note in Corollary 4 that

‖h− πh‖L′2(π ) =
√
‖h‖2L′2(π ) − (πh)2 ≤ ‖h‖L′2(π ) .

Also note that
‖h‖L′2(π ) ≤ ‖h− π (h)‖L′2(π ) + |π (h)| . (34)

Corollary 5. Under the assumptions of Section 3.2,

(a) if X0 ∼μ, then for f , g ∈ L′4(π ),

Cov(f (Xt), g(Xt+s))

≤ (1− α)s‖f − π f‖L′2(π )‖g− πg‖L′2(π )

+ 23/2(1− α)t+s/2‖μ− π‖L2(π )‖f − π f‖L′4(π )‖g− πg‖L′4(π )

− (μPtf − π f )
(
μPt+sg− πg

)
;

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1− (α− ε)), and Xε
0 ∼μ, then for f , g ∈ L′4(πε),

Cov(f (Xε
t ), g(Xε

t+s))

≤ ρs
2‖f − πε f‖L′2(πε )‖g− πεg‖L′2(πε )

+ 23/2ρ
t+s/2
2 ‖μ− π‖L2(πε )‖f − πε f‖L′4(πε )‖g− πεg‖L′4(πε )

− (μPt
ε f − πε f )

(
μPt+s

ε g− πεg
)

.

Proof. This will use the following shorthand notation. Let

f0 = f − π f ,

g0 = g− πg,

‖h‖	 =
(∫

(h(x)− πh)2π (dx)

)1/2

,

‖h‖		 =
(∫

(h(x)− πh)4π (dx)

)1/4

,

Cμ = ‖μ− π‖2.

We can interpret ‖ · ‖		 as a centred 4-norm. It is certainly bounded above by ‖ · ‖4, the
norm on L′4(π ). For some results regarding the properties of a Markov transition kernel as an
operator on L′p(π ) for general p given an L2-spectral gap (as is implied by L2-GE), please refer
to [34].

We only show the proof for the original chain. The result for the perturbed chain has
essentially the same proof.
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By definition we can express the covariance by the triple integral below. We re-express this
integral as a sum of two integrals involving the chain run from stationarity. This will allow us
to apply Corollary 4. We have

Cov(f (Xt), g(Xt+s))

=
∫∫∫

(f (y)−μPtf )(g(z)−μPt+sg)μ(dx)Pt(x, dy)Ps(y, dz)

=
∫∫∫

(f (y)−μPtf )(g(z)−μPt+sg)

[
dμ

dπ
(x)− 1

]
π (dx)Pt(x, dy)Ps(y, dz)

+
∫∫∫

(f (y)−μPtf )(g(z)−μPt+sg)π (dx)Pt(x, dy)Ps(y, dz).

We will simplify each of these expressions separately, starting with the second term:

∫∫∫
(f (y)−μPtf )(g(z)−μPt+sg)π (dx)Pt(x, dy)Ps(y, dz)

=
∫∫

(f (y)−μPtf )(g(z)−μPt+sg)π (dy)Ps(y, dz)

=
∫∫

f (y)g(z)π (dy)Ps(y, dz)

− (μPtf )(πg)− (π f )(μPt+sg)+ (μPtf )(μPt+sg)

=
∫∫

f0(y)g0(z)π (dy)Ps(y, dz)+ (π f )(πg)

− (μPtf )(πg)− (π f )(μPs+tg)+ (μPtf )(μPt+sg)

= 〈f0, Fsg0
〉+ (μPtf − π f )(μPs+tg− πg).

For the first term we find that

∫∫∫
(f (y)−μPtf )(g(z)−μPt+sg)

(
dμ

dπ
(x)− 1

)
π (dx)Pt(x, dy)Ps(y, dz)

=
∫∫∫

f (y)g(z)

(
dμ

dπ
(x)− 1

)
π (dx)Pt(x, dy)Ps(y, dz)

− (μPtf )
∫∫

g(z)

(
dμ

dπ
(x)− 1

)
π (dx)Pt+s(x, dz)

− (μPs+tg)
∫∫

f (y)

(
dμ

dπ
(x)− 1

)
π (dx)Pt(x, dy)

+ (μPtf )(μPs+tg)
∫ (

dμ

dπ
(x)− 1

)
π (dx)

=
∫∫∫

f0(y)g0(z)

(
dμ

dπ
(x)− 1

)
π (dx)Pt(x, dy)Ps(y, dz)
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− (μPtf − π f )
∫∫

g(z)

(
dμ

dπ
(x)− 1

)
π (dx)Pt+s(x, dz)

− (μPs+tg− πg)
∫∫

f (y)

(
dμ

dπ
(x)− 1

)
π (dx)Pt(x, dy)

− (π f )(πg)
∫ (

dμ

dπ
(x)− 1

)
π (dx)

=
〈

dμ

dπ
− 1, Ft(f0 ⊗ (Fsg0))

〉
− (μPtf − π f )

〈
dμ

dπ
− 1, Ft+sg

〉
− (μPt+sg− πg)

〈
dμ

dπ
− 1, Ftf

〉
=
〈

dμ

dπ
− 1, Ft(f0 ⊗ (Fsg0))

〉
− 2(μPtf − π f )

(
μPt+sg− πg

)
,

where f0 ⊗ Fsg0 is defined by

[f0 ⊗ Fsg0](y)= f0(y)
∫

g0(z)Ps(y, dz).

Putting these together,

Cov(f (Xt), g(Xt+s))

= 〈f0, Fsg0
〉+ (π f −μPtf )(πg−μPs+tg)

+
〈

dμ

dπ
− 1, Ft(f0 ⊗ (Fsg0))

〉
− 2(μPtf − π f )

(
μPt+sg− πg

)
= 〈f0, Fsg0

〉+ 〈dμ

dπ
− 1, Ft(f0 ⊗ (Fsg0))

〉
− (μPtf − π f )

(
μPt+sg− πg

)
≤ (1− α)s‖f‖	‖g‖	 + (1− α)t‖μ− π‖2‖f0 ⊗ Fsg0‖2
− (μPtf − π f )

(
μPt+sg− πg

)
≤ (1− α)s‖f‖	‖g‖	 + (1− α)t‖μ− π‖2‖f0‖4‖Fsg0‖4
− (μPtf − π f )

(
μPt+sg− πg

)
≤ (1− α)s‖f‖	‖g‖	 + (1− α)t‖μ− π‖2‖f0‖4‖g0‖4

∥∥∥Fs
∣∣
L′4,0

∥∥∥
4

− (μPtf − π f )
(
μPt+sg− πg

)
≤ (1− α)s‖f‖	‖g‖	 + 23/2(1− α)t+s/2‖μ− π‖2‖f‖		‖g‖		
− (μPtf − π f )

(
μPt+sg− πg

)
.

The 〈f0, Fsg0〉 term is bounded using Corollary 4, where we have taken the result in its
equivalent form using the 〈·, ·〉 notation and the forward operator F. The term〈

dμ

dπ
− 1, Ft(f0 ⊗ (Fsg0))

〉
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is bounded following the methodology of the proof of [34, Lemma 3.39] (in order, the inequal-
ities are Cauchy–Schwarz, ‖Fsg0‖ ≤ ‖Fs‖‖g0‖ for any norm ‖ · ‖, and Proposition 3.17 of
[34]). �

The main motivation in establishing the covariance bounds in Corollaries 4 and 5 is that
we will need to sum up covariances in order to establish bounds on the variance component of
mean squared error for estimation of π (f ) via the dependent sample means

1

t

t−1∑
j=0

f (Xj),
1

t

t−1∑
j=0

f (Xε
j )

for an arbitrary starting measure. To this end we will be interested in the following summation
result.

Corollary 6. Under the assumptions of Section 3.2,

(a) if X0 ∼μ, then for f , g ∈ L′4(π ),

1

t2

t−1∑
m=0

t−1∑
n=0

Cov(f (Xj), f (Xk))

≤
2‖f − π f‖2L′2(π )

αt
+

27/2‖μ− π‖L2(π )‖f − π f‖2L′4(π )

α2t2
−
(

1

t

t−1∑
m=0

μPmf − π f

)2

;

(b) if ε < α, and Pε is πε-reversible, ρ2 = (1− (α− ε)), and Xε
0 ∼μ, then for f , g ∈

L′4(πε),

1

t2

t−1∑
m=0

t−1∑
n=0

Cov(f (Xε
j ), f (Xε

k ))

≤
2‖f − π f‖2L′2(πε )

(1− ρ2)t
+

27/2‖μ− π‖L2(πε )‖f − π f‖2L′4(πε )

(1− ρ2)2t2
−
(

1

t

t−1∑
m=0

μPm
ε f − π f

)2

.

Proof. We only show the proof for the original chain. The results for the perturbed chain
have essentially the same proof. The proof is largely an exercise in summation of geometric
series and meticulous bookkeeping. The first inequality is due to Corollary 5. The second
inequality makes use of the fact that 0 < α < 1. To simplify notation, Cμ = ‖μ− π‖L2(π ). We
have

1

t2

t−1∑
m=0

t−1∑
n=0

Cov(f (Xj), f (Xk))

= ‖f‖
2
	

t2

t−1∑
m=0

t−1∑
n=0

(1− α)|m−n| − 1

t2

t−1∑
m=0

t−1∑
n=0

(μPmf − π f )
(
μPnf − π f

)
+ 23/2Cμ‖f‖2		

t2

t−1∑
m=0

t−1∑
n=0

(1− α)(m+n)/2
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= ‖f‖
2
	

t2

t−1∑
m=0

(
1+ 2

t−m−1∑
s=1

(1− α)s

)
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

+ 23/2Cμ‖f‖2		
t2

t−1∑
m=0

(1− α)m

(
1+ 2

t−m−1∑
s=1

(1− α)s/2

)

= ‖f‖
2
	

t2

t−1∑
m=0

(
1+ 2

(1− α)− (1− α)t−m

α

)
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

+ 23/2Cμ‖f‖2		
t2

t−1∑
m=0

(1− α)m

(
1+ 2

√
1− α −√1− α

t−m

1−√1− α

)

= ‖f‖
2
	

t2

t−1∑
m=0

(
2− α

α
− 2

α
(1− α)t−m

)
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

+ 23/2Cμ‖f‖2		
t2

t−1∑
m=0

(
(1− α)m 1+√1− α

1−√1− α
− 2

√
1− α

t+m

1−√1− α

)

= ‖f‖
2
	

t2

(
2− α

α
t− 2

α

(1− α)− (1− α)t+1

α

)
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

+ 23/2Cμ‖f‖2		
t2

([
1+√1− α

1−√1− α

] [
1− (1− α)t

α

]

−
[

2
√

1− α
t

1−√1− α

] [
1−√1− α

t

1−√1− α

])

= (2− α)
‖f‖2	
αt
− 2(1− α)

1− (1− α)t

α2t2
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

+ 23/2Cμ‖f‖2		
t2

(
1+√1− α

α

)2

(1− (1− α)t/2)2

≤ 2‖f‖2	
αt
+ 27/2Cμ‖f‖2		

α2t2
−
(

1

t

t−1∑
m=0

(μPmf − π f )

)2

.

�
A.3.3 Mean squared error bounds.

Theorem 7. Under the assumptions of Section 3.2, if X0 ∼μ ∈ L2(π ), then

E

⎡⎣(π (f )− 1

t

t−1∑
k=0

f (Xk)

)2⎤⎦≤ 2‖f − π f‖22
αt

+ 27/2‖μ− π‖2‖f − π f‖24
α2t2

.
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Proof. The proof proceeds by partitioning the mean squared error via the bias-variance
decomposition, then bounding the variance term and noting that our bound for the variance
contains an expression which exactly cancels the bias term. We compute that

E

⎡⎣(π (f )− 1

t

t−1∑
k=0

f (Xk)

)2⎤⎦
=E

⎡⎣(π (f )− 1

t

t−1∑
k=0

[μPk](f )− 1

t

t−1∑
k=0

(f (Xk)− [μPk](f ))

)2⎤⎦
=
(

π (f )− 1

t

t−1∑
k=0

[μPk](f )

)2

+E

⎡⎣(1

t

t−1∑
k=0

(f (Xk)− [μPk](f ))

)2⎤⎦
=
(

π (f )− 1

t

t−1∑
k=0

[μPk](f )

)2

+ 1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f (Xj), f (Xk)).

The variance term is bounded using Corollary 6:

1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f (Xj), f (Xk))

2‖f − π f‖22
αt

+ 27/2‖μ− π‖2‖f − π f‖24
α2t2

−
(

1

t

t−1∑
m=0

μPmf − π f

)2

.

Putting these together yields the desired result. �
Remark 9. We note that, as per Remark 8, ‖f − π f‖ ≤ ‖f‖2. Similarly ‖f − π f‖4 ≤ ‖f‖4.
Also, in the case that f is is π -essentially bounded, ‖f‖2 ≤ ‖f‖∞ and ‖f‖4 ≤ ‖f‖∞. These
alternative norms may be substituted into the result as necessary in order to make the bounds
tractable for a given application.

Remark 10. Comparing our above geometrically ergodic results to the L1 results of [18] in the
uniformly ergodic case, we see that the L2 and L1 bounds we establish above differ from the
corresponding L1 bound of [18] only by a factor, which is constant in time, but varies with the
initial distribution (as is to be expected when moving from uniform ergodicity to geometric
ergodicity). For the mean squared error results, the ‖ · ‖	-norm in that paper is based on the
midrange-centred infinity norm, which as per Remark 9 is an upper bound on what we have.

Proof of Theorem 5. For the first result, we proceed via bias-variance decomposition, as
in the corresponding result for the exact chain. However, now the bias under consideration is
itself decomposed as the square of a sum of two components. The squared sum is expanded
simultaneously with the bias-variance expansion. We compute that

E

⎡⎣(π (f )− 1

t

t−1∑
k=0

f (Xε
k )

)2⎤⎦
=E

⎡⎣(π (f )− πε(f )+ 1

t

t−1∑
k=0

[
πε −μPk

ε

]
(f )− 1

t

t−1∑
k=0

(f (Xε
k )− [μPk

ε](f ))

)2⎤⎦
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= ([π − πε](f ))2 + 2 ([π − πε](f ))

(
πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )

)

+
(

πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )

)2

+ 1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f (Xε
j ), f (Xε

k )).

We bound the first component of the bias term using versions of Lemma 6:

([π − πε](f ))2 = ([π − πε](f − πε f ))2

≤
⎧⎨⎩‖π − πε‖2L2(π )‖f − πε f‖2L′2(π )

‖π − πε‖2L2(πε )‖f − πε f‖2L′2(πε )

≤
⎧⎨⎩

ε2

α2−ε2 ‖f − πε f‖2L′2(π )
ϕ2

(1−ρ2)2−ϕ2 ‖f − πε f‖2L′2(πε ) :given ( ∗ ).

We bound the variance term using Corollary 6:

1

t2

t−1∑
j=0

t−1∑
k=0

Cov(f (Xε
j ), f (Xε

k ))

≤
2‖f − πε f‖2L′2(πε )

(1− ρ2)t
+ 27/2‖μ− πε‖L2(πε )‖f − πε f‖L′4(πε )

(1− ρ2)2t2
−
(

1

t

t−1∑
m=0

μPm
ε f − πε f

)2

.

The negative term in this expression exactly cancels out the third bias term in the expansion.
Finally, we bound the second bias term using Lemma 6 and Theorem 4:

2 ([π − πε](f ))

(
πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )

)

= 2 ([π − πε](f − πε f ))

([
πε − 1

t

t−1∑
k=0

μPk
ε

]
(f − πε f )

)

≤ 2

⎧⎨⎩
ϕ√

(1−ρ2)2−ϕ2
‖f − πε f‖L′2(π )

1−(1−(α−ε))t

t(α−ε) ‖πε −μ‖L2(π )‖f − πε f‖L′2(π )

ϕ2

(1−ρ2)2−ϕ2 ‖f − πε f‖2L′2(πε )
1−ρt

2
t(1−ρ2)‖πε −μ‖L2(πε )‖f − πε f‖L′2(πε ) : given ( ∗ )

≤ 2

⎧⎨⎩
ε√

α2−ε2

1
t(α−ε)‖πε −μ‖L2(π )‖f − πε f‖2L′2(π )

ϕ√
(1−ρ2)2−ϕ2

1
t(1−ρ2)‖πε −μ‖L2(πε )‖f − πε f‖2L′2(πε ) :given ( ∗ ).

Putting these together yields the first and third results.
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For the second and fourth results we use the fact that for any random variable Z and for any
a, b ∈R the following holds:

E[(Z − a)2]= 2E[(Z − b)2]+ 2(a− b)2 −E[(Z + a− 2b)2]

≤ 2E[(Z − b)2]+ 2(a− b)2.

We have

E

⎡⎣(π (f )− 1

t

t−1∑
k=0

f (Xε
k )

)2⎤⎦
≤ 2([π − πε](f ))2 + 2E

⎡⎣(πε(f )− 1

t

t−1∑
k=0

f (Xε
k )

)2⎤⎦
= 2([π − πε](f − πε f ))2

+ 2E

⎡⎣(πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )− 1

t

t−1∑
k=0

(f (Xε
k )− [μPk

ε](f ))

)2⎤⎦
= 2([π − πε](f − πε f ))2 + 2

(
πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )

)2

+ 2E

⎡⎣(1

t

t−1∑
k=0

(f (Xε
k )− [μPk

ε](f ))

)2⎤⎦
= 2([π − πε](f − πε f ))2 + 2

(
πε(f )− 1

t

t−1∑
k=0

[μPk
ε](f )

)2

+ 2

t2

t−1∑
j=0

t−1∑
k=0

Cov(f (Xε
j ), f (Xε

k )).

Applying Corollary 5 to bound the sum of covariances, we find that we are able to exactly
cancel the second term in the final expression above. Using the same bound as before for the
first expression, we get the final result. �

Appendix B. Proof of Theorem 6

Let

γ (x)=Ey∼q(y|x)r(y|x)=
∫

r(y|x)q(y|x)dy,

[ν�](dy)= ν(y)γ (y)dy,

[νZ](dy)=
[∫

r(y|x)q(y|x)ν(x)dx

]
dy.

Lemma 9. P− P̂= Z − �.
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Proof. We first give expressions for the elements of measure for transitions of the original
chain. The first formula is the element of measure for transition from an arbitrary, fixed initial
point. It is defined for us by the mechanics of the MH algorithm. The second expression is the
element of measure for transition from a sample from an initial distribution, ν. It is derived
from the first expression by integrating over the sample from ν:

P(x, dx′)= δx(dx′)
[

1−
∫

(a(y|x)q(y|x)dy

]
+ a(x′|x)q(x′|x)dx′,

[νP] (dx′)=
∫ [

δx(dx′)
[

1−
∫

a(y|x)q(y|x)dy

]
+ a(x′|x)q(x′|x)dx′

]
ν(x)dx

=
[[

1−
∫

a(y|x′)q(y|x′)dy

]
ν(x′)+

∫
a(x′|x)q(x′|x)ν(x)dx

]
dx′.

The second form of the second expression is an application of Fubini’s theorem. The exchange
of the order of integration for the second term in the expression is immediate. For the first term,
for an arbitrary non-negative function f ,∫

s

∫
t
f (s, t)δt(ds)dt=

∫
t

∫
s

f (s, t)δt(ds)dt=
∫

t
f (t, t)dt=

∫
s

f (s, s)ds,

where the first equality is Fubini’s theorem, the second comes from integrating with respect to
s, and the third comes from a change of dummy variable.

Similarly, the elements of measure for transitions from the approximating kernel are
expressed below. The first expression, as above, is the element of measure for transition from
an arbitrary, fixed initial point. It is defined for us by the mechanics of the nMH algorithm. The
second expression is again derived by integrating the first against an initial measure, ν:

P̂(x, dx′)= δx(dx′)
[

1−
∫∫

â(y|x, z)q(y|x)fy(z)dzdy

]
+
∫

â(x′|x, z)q(x′|x)fx′(z)dzdx′,

[
νP̂
]

(dx′)=
∫ (

δx(dx′)
[

1−
∫∫

â(y|x, z)q(y|x)fy(z)dzdy

]
+
∫

â(x′|x, z)q(x′|x)fx′(z)dzdx′
)

ν(x)dx

=
[

1−
∫∫

â(y|x′, z)q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+
[∫∫

â(x′|x, z)q(x′|x)fx′(z)ν(x)dzdx

]
dx′.

The same applications of Fubini’s theorem occur as above.
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We may now leverage our notation defined above to simplify the difference of these
elements of measure:[

ν(P− P̂)
]

(dx′n)

=
[∫∫ (

â(y|x′, z)− a(y|x′)
)

q(y|x′)fy(z)dzdy

]
ν(x′)dx′

+
[∫∫ (

a(x′|x)− â(x′nnn|x, z)

)
q(x′|x)fx′(z)ν(x)dzdx

]
dx′n

=
[∫

r(x′|x)q(x′|x)ν(x)dx

]
dx′ −

[∫
r(y|x′)q(y|x′)dy

]
ν(x′)dx′

= [ν(Z − �)](dx′).

From this one may conclude that
(

P− P̂= Z − �
)

as operators. �
Proof of Theorem 6. It is obvious that if |r(y|x)| ≤ R uniformly in (x, y) ∈X 2, then(‖�‖L2(π ) ≤ R

)
(35)

and (‖Z‖L2(π ) ≤ R‖Q‖L2(π )
)

. (36)

By applying the previous lemma, given the assumptions stated, we have

‖P− P̂‖L2(π ) ≤ R(1+ ‖Q‖L2(π )). (37)

Appendix C. (L∞(π ), ‖·‖L2(π ))-GE is distinct from L2-GE for non-reversible chains

Let X =N∪ 0, and let a be a probability mass function on X . Define transition probabilities
by

pij =

⎧⎪⎨⎪⎩
aj :i= 0,

1 :i > 0, j= i− 1,

0 :otherwise.

(38)

Let bj =∑∞i=j aj. It is easy to verify that if
∑∞

j=1 bj <∞ then

πj = bj∑∞
j=1 bj

is the unique stationary probability mass function for P= [pij]ij∈X 2 .
In the special case where aj = 2−j−1, we have π = a. We continue this example working

exclusively with this choice of a. Now,

δjP
n =

{
π : n≥ j+ 1,

δn−j : n≤ j.
(39)

Thus, for any initial probability mass function μ,

[μPn]j =
n−1∑
i=0

μiπj +μj+n. (40)
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If dμ
dπ

(j)= μj
πj
≤ ‖μL∞(π )‖<∞ for all j ∈X , then

‖μPn − π‖2L2(π ) =
∞∑

j=0

πj

(
n−1∑
i=0

μi + μj+n

πj
− 1

)2

=
∞∑

j=0

πj

(
−
∞∑

i=n

μi + μj+n

πj+n

πj+n

πj

)2

=
∞∑

j=0

πj

(
−
∞∑

i=n

μi

πi
πi + μj+n

πj+n

πj+n

πj

)2

≤
∞∑

j=0

πj

( ∞∑
i=n

μi

πi
πi + μj+n

πj+n

πj+n

πj

)2

≤
∞∑

j=0

2−j−1

( ∞∑
i=n

‖μL∞(π )‖2−i−1 + ‖μL∞(π )‖2−n

)2

= ‖μ‖2L∞(π )

∞∑
j=0

2−j−1(2−n+1)2

= 4‖μ‖2L∞(π )(2
−n)2.

(41)

Hence P is (L∞(π ), ‖·‖L2(π ))-GE with optimal rate no larger than 1/2.
For any α <

√
0.5, let νj = (1− α)(α)j. Then ν ∈ L2(π ), since

‖ν‖2L2(π ) =
∞∑

i=0

0.5i+1
(

(1− α)(α)i

0.5i+1

)2

= 2(1− α)2
∞∑

i=0

(2α2)i = 2(1− α)2

1− 2α2
.

(42)

Moreover,

‖νPn − π‖2L2(π ) =
∞∑

j=0

πj

(
n−1∑
i=0

νi + νj+n

πj
− 1

)2

=
∞∑

j=0

0.5j+1

(
−
∞∑

i=n

(1− α)αi + (1− α)αj+n(0.5)−j−1

)2

= α2n
∞∑

j=0

0.5j+1 (−1+ 2(1− α)(2α)j)2

= α2n

2

∞∑
j=0

(
0.5j − 4(1− α)αj + 4(1− α)2(2α2)j)

(43)
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= α2n

2

(
2− 4(1− α)

1− α
+ 4(1− α)2

1− 2α2

)
= (2α − 1)2

1− 2α2
α2n.

Thus the convergence rate starting from this initial measure is α.
Since this is true for any α < 1/

√
2, this shows that the L2(π )-GE optimal rate is no smaller

than
√

0.5. Hence the (L∞(π ), ‖·‖L2(π ))-GE and L2(π )-GE optimal rates are different.

Appendix D. Proof of Proof of Lemma 2 and Lemma 1

Proof of Lemma 1. Let

ρ	 = {ρ > 0:∃C : V→R+ s.t. ∀n ∈N, ν ∈ V ∩M+,1 |||νPn − π ||| ≤C(ν)ρn} ,

ρ̂ = sup
μ∈V∩M+,1

lim sup
n→∞

|||μPn − π |||1/n. (44)

Proof that ρ̂ ≤ ρ	: Let ε > 0. We have

ρ̂ = sup
μ∈V∩M+,1

lim sup
n→∞

|||μPn − π |||1/n

≤ sup
μ∈V∩M+,1

lim sup
n→∞

|||μPn − π |||1/n

≤ sup
μ∈V∩M+,1

lim sup
n→∞

(Cε(μ)(ρ	 + ε)n)1/n

= ρ	 + ε.

(45)

Since ε is arbitrary, ρ̂ ≤ ρ	.
Proof that ρ̂ ≥ ρ	: For all ν ∈ V ∩M+,1, lim supn→∞ |||μPn − π |||1/n ≤ ρ̂. Let ε > 0. Then

for all μ ∈ V ∩M+,1, |||μPn − π |||1/n > ρ̂ + ε for at most finitely many n ∈N. Let

Cε(μ)=max
n∈N

(1∨ |||μPn − π |||
(ρ + ε)n

).

Then Cε(μ) <∞ since the maximum is over finitely many distinct elements. Therefore
|||μPn − π ||| ≤Cε(μ)(ρ̂ + ε)n for all n ∈N. This implies that ρ̂ + ε ≥ ρ	. Since ε is arbitrary,
ρ̂ ≥ ρ	. �

Proof of Lemma 2. The equivalence [(iii) ⇐⇒ (iv)] is proven in [29, Theorem 2.1]. The
implication [(iii) =⇒ (ii)] follows from the inclusion L∞(π )⊂ L2(π ), and [(ii) =⇒ (i)]
follows from Cauchy–Schwarz.

Proof that [(ii) =⇒ (iii)]:
Without loss of generality, assume that ρ is the optimal rate of (L∞(πε), ‖·‖L2(π ))-GE:

ρ = sup
ν∈L∞,0(π )

lim sup
t→∞

‖νPt‖1/t
L2(π ) . (46)

From the proof of [32, Theorem 1], P is π -a.e. geometrically ergodic with some unknown
optimal rate. From [29, Theorem 2.1], P is L2(π )-GE with some unknown optimal rate ρ2,
which is equivalent to the spectral radius of P|L2,0(π ):

ρ2 = r(P|L2,0(π )).
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It remains to be shown that ρ2 ≤ ρ. We will use the spectral measure decomposition of P, as
in [29]. Suppose, for a contradiction, that ρ2 > ρ. Let ρ = ρ+ρ2

2 . Let E be the spectral measure

of P, so that μPt = ∫ 1
−1 λtμE(dλ). If ρ2 > ρ then either E([− ρ2,−ρ)) "= 0 or E((ρ, ρ2])) "= 0.

Assume (replacing P by P2, ρ by ρ2, and ρ2 by ρ2
2 if necessary) that E((ρ, ρ2]) "= 0 and E((−

1, 0))= 0. Then there is some non-zero signed measure ν in the range of E((ρ, ρ2]). Since the
spectral projections are orthogonal and {1} ∩ (ρ, ρ2]=∅, we have ν ⊥ π , and hence ν(X )= 0.
Since L∞,0(π ) is dense in L2,0(π ), there is a μ ∈ L∞,0(π ) with ‖μ− ν‖L2(π ) < ‖ν‖L2(π )/2.
Then, from the polarization identity,

〈ν, μ〉L2(π ) ≥ 3

8
‖ν‖2L2(π ) > 0,

and μ "= 0.
Let R= range(

∫
(ρ,ρ2] E(dλ)). Then span(ν)⊂ R, so

‖projRμ‖L2(π ) ≥ ‖projνμ‖L2(π ) ≥ 3

8
‖ν‖L2(π ). (47)

Then
‖μPk‖2L2(π ) =

〈
μPk, μPk

〉
L2(π )

=
〈
μ, μP2k

〉
L2(π )

=
〈
μ, μ

∫
(0,ρ2]

λ2kE(dλ)

〉
L2(π )

≥
〈
μ, μ

∫
(ρ,ρ2]

λ2kE(dλ)

〉
L2(π )

≥
〈
μ, μ

∫
(ρ,ρ2]

ρ2kE(dλ)

〉
L2(π )

= ρ2k‖projRμ‖2L2(π )

≥ ρ2k 9

64
‖ν‖2L2(π ) .

(48)

Hence ρ ≥ ρ. This contradicts ρ2 > ρ.
Proof that [(i) =⇒ (ii)]:
Let the optimal rates of (L∞(πε), ‖·‖L1(π ))-GE and (L∞(πε), ‖·‖L2(π ))-GE be (respectively)

ρ = sup
μ∈L∞,0(π )

lim sup
n→∞

‖μPn‖1/n
L1(π ) , ρ2 = sup

μ∈L∞,0(π )
lim sup

n→∞
‖μPn‖1/n

L2(π ) . (49)

We want to show that ρ2 ≤ ρ.
Let ε > 0 be arbitrary. Let νε ∈ L∞,0(π ) with

lim sup
n→∞

‖νεPn‖1/n
L2(π ) ≥ ρ2 − ε . (50)

Then, for some c(νε) > 0, for infinitely many n ∈N,

‖νεPn‖L2(π ) ≥ (ρ2 − 2ε)n . (51)

https://doi.org/10.1017/apr.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.10


Approximations of geometrically ergodic reversible Markov chains 1021

Using the fact that
‖μ‖L1(π ) = sup

f∈L′∞(π )
‖f‖

L
′∞(π )

μf ,

and using the self-adjointness of P in L2(π ) (since P is reversible), as well as the fact that (a
version of) dνε

dπ
is some bounded function with∥∥∥∥dνε

dπ

∥∥∥∥
L′∞(π )

= ‖νε‖L∞(π ),

we have the following for infinitely many n ∈N:∥∥νεP2n
∥∥

L1(π ) = sup
‖f‖∞≤1

νεP2nf

≥ 1

‖νε‖L∞(π )
νεP2n dνε

dπ

= 1

‖νε‖L∞(π )
〈νεP2n, νε〉

= 1

‖νε‖L∞(π )
〈νεPn, νεPn〉

= 1

‖νε‖L∞(π )
‖νεPn‖2L2(π )

≥ 1

‖νε‖L∞(π )
(ρ2 − 2ε)2n.

(52)

Thus ρ2 − 2ε ≤ ρ. Since ε was arbitrary, we find that ρ2 ≤ ρ. �
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