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Course keeping for ships is vital for automatic navigation in marine transportation. To improve
the control effect and reduce the energy output of the controller, this article proposes an improved
concise backstepping controller based on a Lyapunov candidate function by introducing a non-
linear function of course error to replace the course error itself in the feedback loop. The
procedure of nonlinear controller design has been reduced from two steps to one step using infor-
mation from controlled plant to construct the Lyapunov candidate function. Compared with the
pure backstepping control, the proposed improved algorithm reserves the nonlinear item of the
system, and possesses a strong disturbance rejection ability and robustness to the mathematical
model uncertainty. The algorithm given here has advantages of simplified construction method,
satisfactory control effect, robustness and energy saving.
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1. INTRODUCTION. A ship’s course must be controlled to reach its destination in a
fast and efficient manner. Due to the uncertainty of wind, wave, current and so on, a ship
always presents a nonlinear motion (Fossen, 2002). Backstepping is a powerful tool for
nonlinear control, and it is a design method of regression which combines the theories
of Lyapunov stability and controller design. Making use of the characteristics of system
structure, backstepping is a recursively structured Lyapunov candidate function for overall
system control (Krstic and Smyshlyaev, 2008; Nejati et al., 2012; Tsai et al., 2015; Zhu
et al., 2015). Lin (2007) designed a nonlinear robust adaptive controller for ship course-
keeping based on backstepping by introducing an integral item to eliminate the static error.
To linearize the ship motion system, the nonlinear item of the system was cancelled dur-
ing the controller design. Liu et al. (2012) proposed a linear tracking controller using the
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backstepping method and Lyapunov’s direct method, and the linear track-keeping control
effect was made satisfactory by altering the designed parameters while the environmental
disturbances, such as the wind, waves and current were ignored. Considering the Lya-
punov candidate function and the Hurwitz conditions, Perera and Guedes Soares (2013)
proposed a control algorithm based on a second-order Nomoto model which was simu-
lated on a ship steering system and performed successfully. Li et al. (2015) proposed a
finite-time output feedback trajectory tracking control scheme for Autonomous Underwa-
ter Vehicles (AUVs), based on the proposed state feedback backstepping controller. To
get a faster convergence rate and a higher tracking accuracy for trajectory tracking control
for AUVs, the control scheme design procedure was complicated. At the same time, Xia
et al. (2015) developed a nonlinear robust passive observer for surface ships in surge, sway
and yaw. To verify the efficiency of the observer, backstepping and Lyapunov redesign
techniques were utilised. Peng et al. (2014) proposed a nonlinear inverse H-infinity opti-
mal control algorithm, which was used to transform the global optimisation into finding
the Lyapunov candidate function of the closed-loop system. Simulation results demon-
strated that the heading overshoot decreased, and the maximum rudder angle reduced to
25◦ from 29◦ in the case of course turning from 000◦ to 030◦ at full speed, when applied
to the Dalian Maritime University training ship Yulong. It could be concluded that the
algorithm realised the control optimisation of course keeping for ships, as well as saving
energy with a relatively complex calculation process. It is difficult for researchers to design
a controller considering the concepts of reserving the nonlinear item of system, a simplified
construction method and energy saving when applied to a practical control system.

However, it is worth mentioning that Zhang (2010) designed a concise backstepping
controller of course keeping for ships based on Lyapunov stability. This concise back-
stepping controller did not cancel the nonlinear item of the system and the procedure of
controller design reduced from two steps to one step. Due to the experience of teaching and
researching in recent years, it was found that the effect of the controller clearly improved if
nonlinear feedback driven by the sine function was added (Zhang and Zhang, 2016). Com-
bining the special backstepping construction method based on the Lyapunov candidate
(Zhang, 2010) with the nonlinear feedback (Zhang and Zhang, 2016), an improved back-
stepping controller is acquired with theoretical proof in this article. Applying the improved
concise backstepping controller to a simulation experiment of the training ship Yulong, the
results indicate that the maximum rudder angle drops from 22◦ to 13◦, 40.9% down, the set-
tling time falls to 150 s from 200 s and the heading overshoot disappears. The control effect
is more satisfactory and the improved concise backstepping controller has some robustness.

2. NONLINEAR SHIP MODEL. In this section, the Dalian Maritime University train-
ing ship Yulong is taken as an example because of its substantial sea trials, which are
convenient to verify the precision of the nonlinear ship model adopted in this section. The
ship’s main particulars are shown in Table 1. This article adopts a response model con-
sidering a rudder servo system to represent the nonlinear ship model (Van, 1982; Zhang
and Jin, 2013) shown in Figure 1, which is composed of a first order Nomoto model with
a nonlinear feedback compensating item. For the purpose of making the simulation closer
to marine practice, a rudder servo system is considered, which covers the rudder trans-
port delay, angle limiter and revolution rate limiter. Rudder transport delay Tr = 6s, rudder
angle δ ∈ [−35◦, 35◦], and the revolution rate of the rudder is 2.3◦/s. The first order Nomoto
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Table 1. Simulation particulars for training ship Yulong.

Length between perpendiculars L (m) 126
Breadth (moulded) B(m) 20·8
Designed draught d(m) 8·0
Volume of displacement ∇(m3) 14278·1
Trial speed V(kn) 15
Rudder area AR(m2) 18·8
Block coefficient Cb 0·681
Longitudinal centre of gravity xG(m) 0·25

Figure 1. Nonlinear ship model considering the rudder servo system.

Table 2. Ship mathematical model parameters.

Turning ability index K(1/s) 0·48
Following index T (s) 216·58
α 9·14
β 10836·12

model from δ to yaw rate r is presented as

Grδ(s) =
K

Ts + 1
(1)

while the nonlinear feedback compensating item f (u) is expressed as

f (u) = (α − 1/K)ψ̇ + βψ̇3 (2)

where K , T are the ship manoeuvrability indices and α and β are the proportional coeffi-
cients of yaw rate ψ̇ . The parameters K , T, α, β are calculated by a Visual Basic program,
utilising the principle illustrated in Nomoto et al. (1957) and Zhang (2012) Hence, the
model parameters are listed in Table 2.

To describe the precision of the mathematical model, the concept of conformity CM is
formed as

CM =
min(SD, RD)
max(SD, RD)

× 100% (3)

where SD and RD are the simulation tactical diameter and tactical diameter of the real ship.
According to the comparison of the ship turning tests with the rudder angle δ = −35◦ shown
in Figure 2 and Table 3, the horizontal SD is 518·3 m, while the horizontal RD is 542·2 m,
so CM_horizontal = 95.6%. The vertical SD is 473·8 m, while the vertical RD is 443·9 m, then
CM_vertical = 93.7%. Hence, the average conformity CM in the horizontal and vertical direc-
tions is 94·6%. The precision of the nonlinear mathematical model is acceptable for a ship
with large inertia and nonlinearity.
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Figure 2. Comparison of the ship turning tests.

Table 3. Data comparison of the ship turning tests.

Test state Horizontal Vertical

Turning test on sea (Liu, 2007) 542·2 m 443·9 m
Nonlinear ship model turning test 518·3 m 473·8 m
CM 95·6% 93·7%
C̄M 94·6%

Figure 3. Diagram of the closed loop system in ship motion.

3. IMPROVED BACKSTEPPING CONTROLLER DESIGN VIA NONLINEAR
FEEDBACK TECHNIQUE. Considering the uncertainty of the ship motion parameters,
the nonlinear control scheme of the course keeping for ships is first designed. The ship
heading angle is defined as ψ set course ψr course error e and yaw rate r. Figure 3 presents
a diagram of the closed loop system in ship motion.
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Then a special algebraic coordinate transformation can be proposed as

⎧⎪⎨
⎪⎩

e = ψr − ψ

x1 = ψ
x2 = ẋ1 = ψ̇ = r

(4)

Hence, the state space equation and output equation of the system is represented as

⎧⎪⎨
⎪⎩

ẋ1 = x2

ẋ2 = f(x2) + bu
y = x1

(5)

where the output of system can be defined as y, and the nonlinear function f (x2) can be
further written as ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f (x2) = −K
T

H (ψ̇)

H (ψ̇) = αψ̇ + βψ̇3

b =
K
T

u = δ

(6)

where δ is the input of rudder angle and u is the designed control scheme of course keeping
for ships. Assuming {

z1 = x1 − ψr

z2 = x2
(7)

if the controller can stabilise the state variables z1 and z2, the original system reaches the
uniform asymptotic stability at the equilibrium point shown in Equation (8)

{
x1 = ψr

x2 = 0
(8)

A Lyapunov function can be structured according to Zhang (2010), which is per-
formed as

V1 =
1
2

z2
2 (9)

The differential relationship between z1 and z2 has been considered, which possesses a
certain universality. If z2 is stabilised on the equilibrium point of zero, z1 is stabilised
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simultaneously. V̇1 contains the information of z1 implicitly so as to ensure the proper
control scheme and stabilise z1 and z2 simultaneously, though V1 does not contain z1
directly.

V̇1 = z2ż2 (10)

ż2 = ẋ2 = f (x2) + bu (11)

To make V̇1 ≤ 0, the designed control scheme u is constructed as follows.

u =
1
b

[ f (x2) − k1 sin(ωz1)] (12)

where ω, k1 are the designed parameters of the controller, which satisfy k1 > 0, ω ∈ (0, 1).
According to the Taylor series expansion and restricting to the third order (Arunnehru and
Paramasivam, 2014), Equation (13) is derived.

sin(ωz1) ≈ ωz1 − (ωz1)3

3!
(13)

Substituting Equation (13) into Equation (12), we obtain Equation (14) by combining
Equations (4)–(7) and (12).

V̇1 = z2 ( f (x2) + bu)

≈ z2

{
f (x2) + b · 1

b

[
f (x2) − k1ωz1 +

k1ω
3z3

1

6

]}

= 2x2 f (x2) − k1ωz1z2 +
k1ω

3z3
1z2

6

= −2b(αx2
2 + βx4

2) − k1ω
x1 − ψr

h
hx2 +

k1ω
3

6

(
x1 − ψr

h

)3

h3x2

≈ −2b(αx2
2 + βx4

2) − k1ωhx2
2 +

k1ω
3h3

6
x4

2

= − (2bα + k1ωh) x2
2 −

(
2bβ − k1ω

3h3

6

)
x4

2

(14)

where b, α, β, h are positive, h is the sample time. Noting that the first item of V̇1

− (2bα + k1ωh) x2
2 ≤ 0 (15)

and in marine practice, ω ∈ (0, 1), h ≤ 1s, if taking k1 ≤ 0.6 then Equation (16) can be
derived

k1ω
3h3

6
< 0.1 (16)

In a general way, b ≥ 5 × 10−5, β ≥ 103 in marine practice (Van, 1982; Zhang and
Jin, 2013), therefore 2bβ ≥ 0·1. In this article, b = K/T = 0·48/216·58 = 2·2 × 10−3,
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β = 10836·12, therefore 2bβ = 25·8. The latter item of V̇1 follows that

−
(

2bβ − k1ω
3h3

6

)
x4

2 ≤ 0 (17)

Combining Equations (14), (15) and (17), we obtain

V̇1 ≤ 0 (18)

In summary, the system will reach uniform asymptotic stability at the equilibrium
point of x1 = ψr, x2 = 0. The control scheme of Equation (12) meets the requirements
and reserves the nonlinear item of the system without normal cancellation. The procedure
of nonlinear controller design has been reduced from two steps to one step by choos-
ing the simple Lyapunov candidate function rather than the conventional backstepping
construction approach.

In addition, Equation (19) is formulated in Zhang (2010).

u =
1
b

[ f (x2) − k1z1] (19)

Comparing Equation (19) with Equation (12), the sine function of z1 with the same
controller is constructed, which makes up a new mode of nonlinear feedback

4. SIMULATION STUDIES. In this section, the Simulink toolbox is used to illustrate
the effectiveness of the designed controller in a MATLAB environment. The control effects
of course keeping for ships and energy saving situation are analysed in the case of standard
feedback and nonlinear feedback.

4.1. Course Keeping Control. Taking k1 = 0·001, ω = 0·6 in the control scheme
Equation (12) and ψr = 050◦ in Equations (4), we can obtain results for comparison under
two different control schemes, which are shown in Figure 4 and Table 4. Figure 4(a) indi-
cates that the heading overshoot is eliminated as well as the settling time ts drops to 150 s
from 200 s under the nonlinear feedback control. Figure 4(b) shows that the maximum rud-
der angle δmax drops to 13◦ from 22◦ while the mean rudder angle δ̄ falls to 2·3◦ from
3·6◦ 36·1% down. Referring to Tu (2008), energy consumption lies in the fields of steer-
ing stability, the manoeuvring times (when rudder angle exceeds 0·5◦ ), the acting time
and the revolution amplitude of the rudder blade. In Figure 4(b), the dotted line of rudder
angle controlled by the nonlinear feedback is smoother than the other, which stands for a
smaller revolution amplitude of rudder blade and less wear of steering gear, saving energy
indirectly. Considering the cost-function

J =
∫
δ2dt (20)

discretising Equation (20), Equation (21) is derived

J =
∑

k

δ2(k) (21)

The cost-function J = 4291 with nonlinear feedback while J = 10764 without nonlinear
feedback, dropping by around 60.1%. Also the reduction of rudder angle means safer
sailing and energy saving on account of the smaller rolling angle.
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Figure 4. Comparison of the control effects: backstepping control (solid line) and nonlinear feedback control
(dotted line).

4.2. Energy Saving Validation. We set a simulation experiment of sine wave course
tracking to verify the energy saving of nonlinear feedback. The simulation parameters are
chosen as ψr = 30 sin[(2π/600)t] deg, ψ0 = 010◦. Control scheme u remains the same, but
we take k1 = 0.008 because of the sharp variation of ship set course, thus the gain coeffi-
cient k1 needs to be larger to improve the system response rate. Figure 5(a) shows that the
heading angle with nonlinear feedback control is almost capable of tracking the set course.
Figure 5(b) shows that a variety of energy-consuming indices decrease, which results in
falls in the value of the maximum rudder angle δmax from 24◦ to 15◦ referred to in Table 4.
The mean rudder angle δ̄ drops to 2·8◦ from 3·3◦, 15·2% down while the cost function
J falls to 13391 from 22420, 40·3% down, with the nonlinear feedback control. Hence,
the control effectiveness of the nonlinear feedback control is better than the conventional
backstepping control.

5. ROBUSTNESS ANALYSIS.
5.1. External Disturbances Rejection Test. It is clear that wind and wave disturbances

exist in practical engineering, therefore these cannot be neglected when the sway motion
and heading deviation of a ship are considered. Whether the designed controller behaves
well or not should be verified in a higher sea state. The wind disturbance is divided into
the average wind and the impulse wind. The average wind can be deemed as an equiva-
lent rudder angle δwind (Guo, 2009) while impulse wind or gusts are considered as white
noise (Kallstrom, 1982) According to Zhang and Zhang (2013a; 2013b; 2014), δwind can be
calculated through an empirical formula as follows

δwind = K0
(

VR

V

)2

sin γR (22)
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Figure 5. Simulation results of the sine wave course tracking: set course (dash dot line), backstepping control
(solid line) and nonlinear feedback control (dash line).

Table 4. Comparison of the closed loop performance.

Course keeping control Energy saving validation

Control method ts δmax δ̄ J δmax δ̄ J

Backstepping control 200s 22◦ 3·6◦ 10764 24◦ 3·3◦ 22420
Nonlinear feedback control 150s 13◦ 2·3◦ 4291 15◦ 2·8◦ 13391
Decline (%) 25 40·9 36·1 60·1 37·5 15·2 40·3

where K0, VR, V, γR are the leeway coefficient, relative wind speed, ship speed, and wind
angle on the bow respectively. δwind = 3◦ when the wind scale is equal to Beaufort scale 6
and the wind bearing is 030◦ by computation.

For wave disturbance, a simplified transfer function model shown in Equation (23) is
capable of simulating it under the Beaufort scale 6, which is a second-order oscillating
system driven by a Gaussian white noise (Zhang et al., 2014)

ψH =
0.4198s

s2 + 0.3638s + 0.3675
wH (23)

where wH, s,ψH are the Gaussian white noise, Laplace operator and high frequency wave
disturbance. As shown in Figure 3, ψH directly acts on the ship heading angle ψ .
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Figure 6. Comparison of the control effects with the wind and wave disturbances: backstepping control (solid
line) and nonlinear feedback control (dotted line).

Suppose the Gaussian noise power wH is 0·001 and the sample time equals 10 s, the
same as that in the simulation of impulse wind. The curves of the heading angle and rud-
der angle of ship are given in Figure 6 under the different control schemes. The curves
indicate that the two control schemes achieve a good performance in course keeping con-
trol with wind and wave disturbances. However, the dotted one with nonlinear feedback
control possesses less overshoot and smaller mean rudder angle than with backstepping
control.

5.2. Internal Parameter Perturbation Rejection Test. The ship manoeuvrability
indices K , T(K = 0·48s−1, T = 216·58s) in Figure 1 and Table 2 are calculated when ship
speed is 15 knots. However, the ship speed usually reduces because of the fouling on the
bottom surface of the hull and external disturbances. Based on the theoretical analysis and
Visual Basic program validation, K decreases while T, α, β increase proportionally along
with the reduction of ship speed (Zhang, 2012). Assume the external disturbances remain
unchanged, the sample time equals 200 s for the sake of a more visual simulation (Lei and
Guo, 2015). Suppose that K , T vary in a series of K1 = K , T1 = T(solid line) K2 = 0·7K ,
T2 = T/0.7(dash line) K3 = 0·5K , T3 = T/0·5(dotted line) K4 = 1·5K , T4 = T/1·5(dash
dot line) (Figures 7 and 8). α, β change simultaneously.

It can be concluded from Figures 7 and 8 that the overshoot and mean rudder angle
increase together when K decreases. Meanwhile the controller with nonlinear feedback
performs better than that with backstepping control, which possesses less overshoot and
smaller mean rudder angle. The multiple simulation tests show that the heading angle
stabilises after long oscilation when K5 = 0·3K , T5 = T/0·3. However the ship steering
system is acting over a long time to hold a large rudder angle which is accepted in marine
practice. Although the settling time extends when K increases, mean rudder angle also
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Figure 7. Simulation results with backstepping control.

Figure 8. Simulation results with nonlinear feedback control.

reduces. Since K tends to decrease with reduction of ship speed, the robustness of nonlinear
feedback control is stronger than with backstepping control.

5.3. The Effectiveness of the Improved Control Algorithm on a Complex Mathemati-
cal Model. As mentioned above, the improved concise backstepping control algorithm is

https://doi.org/10.1017/S0373463317000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000352


1412 XIANKU ZHANG AND OTHERS VOL. 70

Table 5. The non-dimensional hydrodynamic coefficients for the vessel Yulong.

The structure of hydrodynamic force (or moment)
X : u2, v2, vr, r2

Y : v, r, v2, vr, r2

N : v, r, r2, v2r, vr2

The hydrodynamic coefficients normalised using the Prime-system I
X ′

uu = −0·00008 Y′
v = −0·3569 N ′

v = −0·1270
X ′
vv = −0·0285 Y′

r = 0·0997 N ′
r = −0·0524

X ′
vr = −0·0635 Y′

vv = −0·7238 N ′
rr = −0·0242

X ′
rr = 0·0047 Y′

vr = −0·2221 N ′
vvr = −0·0823

Y′
rr = −0·0501 N ′

vrr = 0·0563

tested on a Nomoto model with a nonlinear item, and the effectiveness of the algorithm has
been affirmed. In this section, the above-mentioned improved control algorithm is exerted
on the controlling of a more complex nonlinear mathematical model Equation (24) of ship
dynamics, which can denote a situation similar to the motion of a full scale ship (Fos-
sen, 2011). To some extent, if the improved control algorithm still works, its robustness is
further proven. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(m + mx) u̇ − (

m + my
)
vr − mxGr2 = XH + XP + XR(

m + my
)
v̇ + (m + mx) ur + mxGr2 = YH + YP + YR

(Izz + Jzz) ṙ + mxG (v̇ + ur) = NH + NP + NR

ψ̇ = r

(24)

where u, v, r,ψ express the linear velocities, angular velocity and heading angle respec-
tively; m and Izz are the ship’s mass and mass moment of inertia; mx, my , Jzz are the added
mass and added moment of inertia. XH , YH , NH , XP, YP, NP, XR, YR, NR are the hydrody-
namic forces and the corresponding moments acting on the ship’s hull, propeller and rudder.
The related non-dimensional hydrodynamic coefficients for the training vessel Yulong are
listed in Table 5. More details about the nonlinear mathematical model Equation (24) can
be found in Jia and Yang (1999) and Fossen (2011).

We assume the external disturbances remain unchanged, and take k1 = 0·001, ω = 0·6
in control scheme Equation (12), ψr = 050◦ in Equations (4) and then we can get the com-
parison results under two different control schemes, which are shown in Figure 9. Based
on the mathematical model of ship dynamics, both control schemes achieve a good course
keeping performance with wind and wave disturbances. However, the nonlinear feedback
control possesses less overshoot and smaller mean rudder angle than the solid one. This
means that the control energy is reduced with the introduction of nonlinear feedback.

6. CONCLUSIONS. In this article, an improved concise backstepping control
algorithm is proposed to solve the problem of course keeping for ships by virtue of the
two regulating parameters: gain coefficient k1 and angular frequency ω. The procedure of
nonlinear controller design has been reduced from two steps to one step by choosing the
simple Lyapunov candidate function rather than the conventional backstepping construc-
tion approach. Meanwhile the final controller does not cancel the nonlinear item of the
system since the existing nonlinear information of the system has been utilised. The con-
trol energy is reduced with the introduction of sine function feedback, while the simulation
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Figure 9. Comparison results of complex nonlinear mathematical model.

results validate the strong ability of the proposed improved algorithm with disturbance
rejection and robustness to the nonlinear mathematical model. Furthermore, the procedure
of nonlinear controller design is to some extent universal by taking full advantage of the
systematic nonlinear information and structural characteristics. This work cannot deal with
every detail of the control task, e.g., the proposed algorithm may not obtain its targets
because of the saturation of control actions, and this will be addressed in future research.
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