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ABSTRACT

The study of desirable structural properties that define a marketable insurance
contract has been a recurring theme in insurance economic theory and prac-
tice. In this article, we develop probabilistic and structural characterizations
for insurance indemnities that are universally marketable in the sense that they
appeal to all policyholders whose risk preferences respect the convex order. We
begin with the univariate case where a given policyholder faces a single risk,
then extend our results to the case where multiple risks possessing a certain
dependence structure coexist. The non-decreasing and 1-Lipschitz condition,
in various forms, is shown to be intimately related to the notion of univer-
sal marketability. As the highlight of this article, we propose a multivariate
mixture model which not only accommodates a host of dependence structures
commonly encountered in practice but is also flexible enough to house a rich
class of marketable indemnity schedules.
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1. INTRODUCTION

Designing a menu of marketable insurance policies that appeal to policyhold-
ers with diverse risk preferences and risk profiles is a strategically challenging
but practically significant business decision central to the financial viability of
an insurance company. The quest for such policies in turn is closely related
to the question of what constitutes widely accepted desirable characteristics of
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indemnities. Common examples of such characteristics include nullity at zero
(no payment if there is no loss) and increasing monotonicity with respect to the
ground-up loss (the heavier the loss, the more the indemnity). Given these char-
acteristics, optimal (in a certain sense) insurance contracts can be formulated
via optimizing an objective functional capturing the interests (e.g., expected
utility of terminal wealth, risk measures of loss exposure) of relevant parties
(e.g., policyholders and/or insurers) over a set of admissible indemnities pos-
sessing the desirable characteristics identified in the first place. The structure
of the optimal contracts thus found hinges upon what fundamental properties
are imposed on the set of admissible indemnities, with vastly different results
obtained for different properties imposed a priori. The fact that the structure of
the optimal indemnity can differ drastically speaks to the strategic importance
of what insurance companies construe as favorable properties of an insurance
indemnity.

Among the wide spectrum of feasible insurance indemnity schedules, those
with the non-decreasing and 1-Lipschitz condition (i.e., those I such that 0≤
I(x)− I(y)≤ x− y for all y≤ x), also informally known as the slowly growing
condition, have unquestionably gained in popularity in the recent insurance
literature. Ensuring that the indemnified loss never increases faster than the
policyholder’s ground-up loss, the non-decreasing and 1-Lipschitz condition
has been used in an abundance of papers as a starting point for formulating
optimal (re)insurance policies, which are typically in the form of insurance lay-
ers, see, for example, Chi and Tan (2011), Cai et al. (2017), Cheung and Lo
(2017), and Lo (2017). For all the mathematical benefits it brings, theoretical
or empirical justifications of the economic suitability and practical relevance
of the non-decreasing and 1-Lipschitz condition to the insurance business have
long been lacking, undermining the conceptual foundation of many existing
results it underlies. The most common argument in favor of the condition is
concerned with the issue of ex post moral hazard. By making the policyholder
and the insurer both worse off when the ground-up loss becomes heavier, the
condition ensures that both parties have a stake in the contract and elimi-
nates their incentives to tamper with losses. In the expected utility paradigm,
Young (1999) showed that the indemnity for an optimal insurance contract is
necessarily a non-decreasing and 1-Lipschitz function.

As far as the authors are aware, the intimate connections between the non-
decreasing and 1-Lipschitz condition and the marketability of indemnities were
first formally brought out only recently in Cheung et al. (2014) as a natural
application of the concept of risk reducers (see also a further study of risk
reducers in He et al. (2016)). In a standard expected utility setting, Cheung
et al. (2014) introduced a class of indemnities which are acceptable to all poli-
cyholders in the sense that it is always possible to price the indemnity in such
a way to raise the expected utility of any given policyholder as well as to cover
the expected cost of the insurer. Such indemnities are termed universally mar-
ketable to recognize the fact that the acceptability by policyholders is universal,
which is of particular importance for the insurance business, where it is more
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common for an insurer to provide a fixed menu of indemnity schedules for pol-
icyholders of different risk profiles and risk preferences to choose from than to
design tailor-made policies for individual policyholders. It is shown in Cheung
et al. (2014) that an indemnity that is assumed to be non-decreasing a priori is
universally marketable if and only if it is a 1-Lipschitz function.

Building upon the preliminary study of universal marketability initiated in
Cheung et al. (2014), in this article we provide probabilistic and structural
characterizations for universal marketability in a more general setting and,
more importantly, generalize this concept from a single risk to a multivariate
framework. A recurring theme is the role played by the non-decreasing and 1-
Lipschitz condition and its multivariate counterparts in making an indemnity
marketable to as many policyholders as possible. In the first part of the article,
we extend the definition of universal marketability from Cheung et al. (2014)’s
standard expected utility framework to a more general one, where policyhold-
ers are allowed to assess their risk level using any desired risk functional that
preserves the convex order. The resulting decision-making framework encom-
passes preferences dictated by expected utilities as well as many other common
risk measures in practice. Armed with this generalized definition of universal
marketability, we formulate necessary and sufficient conditions for an indem-
nity to be universally marketable. It is established that a universally marketable
indemnity is universally risk-reducing in the sense that it reduces a policy-
holder’s risk with respect to convex order irrespective of his/her risk profile.
Structure-wise, such an indemnity is a non-decreasing and 1-Lipschitz func-
tion of the ground-up loss. These probabilistic and algebraic properties cast
light on the practical attractiveness of a universally marketable indemnity, lend
theoretical support to the many works that hinge on the non-decreasing and 1-
Lipschitz condition, and pave the way for the study of multivariate universally
marketable indemnities in the later part of the article.

On the basis of our univariate results, we extend the notion of universal
marketability to a multivariate framework, where policyholders are exposed
to multiple losses (such as in multiple-peril insurance) and are allowed to pur-
chase a multivariate indemnity from a given menu of policies, and characterize
multivariate universally marketable indemnities. Such a multivariate extension
is not only practically significant because of its intrinsic connections to port-
folios of losses, but also mathematically challenging because of the intricate
dependence between the different losses at work. We are particularly interested
in how the non-decreasing and 1-Lipschitz condition should be appropriately
modified for multivariate functions. As the first step, we pursue the extension
in the universal losses setting which accommodates multivariate losses of arbi-
trary marginal distributions and dependence structures. It turns out that for
a multivariate indemnity to be universally marketable, it is necessary and suf-
ficient that it is a non-decreasing and 1-Lipschitz function of the sum of its
arguments. That the indemnity is essentially univariate strips the problem of
its inherent multivariate character, excludes many feasible multivariate indem-
nities, and arises from the presence of strongly negatively dependent losses
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which rarely occur in the typical insurance business. To eliminate such patho-
logical cases with minimal relevance to the insurance business, we introduce,
as the highlight of this article, a mixture structure which not only provides a
unifying treatment of a wide variety of commonly used dependence structures
but also effectively captures policyholders’ exposure to systematic and systemic
risks. It is shown within the mixture structure that a multivariate indemnity is
universally marketable if and only if it is universally risk-reducing (as in the
univariate setting), and if and only if it is a non-decreasing and componentwise
1-Lipschitz multivariate function. These results suggest that the mixture struc-
ture strikes a reasonable balance between accommodating portfolio losses of
different kinds of dependence structures and allowing for a diversity of mul-
tivariate indemnities and have useful implications for the design of optimal
multivariate insurance contracts, the study of which is still in a nascent stage.

The rest of this article is organized as follows. In Section 2, we put forward
a general definition of universal marketability and present the accompanying
probabilistic and structural characterizations, for both the univariate (Section
2.1) and multivariate (Section 2.2) settings. Section 3, the highlight of this
article, formulates the multivariate mixture model, within which universally
marketable indemnities are investigated and characterized as non-decreasing
and componentwise 1-Lipschitz functions. Finally, Section 4 concludes the
paper. To maximize the readability of this article, all proofs are deferred to
the appendix.

2. UNIVERSALLY MARKETABLE INDEMNITIES

Throughout this article, all random variables are defined on a common proba-
bility space (�,F , P) with finite expectations and are interpreted as loss-profit
variables, with positive values corresponding to losses and negative values cor-
responding to profits. An indemnity is identified with a real-valued function
I :Rn →R for some positive integer n so that I(x) is the compensation that the
policyholder will receive from the insurer if x is the realization of the ground-up
loss, which is a random vector with n components (when n= 1, the ground-up
loss is simply a random variable). For the purpose of comparing the variability
of different losses, the convex order is utilized. For any two random variables
X and Y , we say that X is smaller than Y in convex order, denoted by X ≤cx Y ,
if E[v(X )]≤E[v(Y )] holds for any convex function v such that the expectations
exist. We also recall that X ≤cx Y is equivalent to any (and thus both) of the
following statements:

• E[X ]=E[Y ] and E[v(X )]≤E[v(Y )] for any non-decreasing convex function
v such that the expectations exist;

• E[X ]=E[Y ] and E
[
(X − d)+

]≤E
[
(Y − d)+

]
for any d ∈R, in which ( · )+

is the positive part function defined by x+ =max{x, 0}.
For more information about convex order, we refer the reader to Müller and
Stoyan (2002), Denuit et al. (2005), and Shaked and Shanthikumar (2007).
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2.1. The univariate case

We begin by formalizing and generalizing the notion of universal marketability
first proposed in Cheung et al. (2014) in the case of a single loss. This notion
plays a central role throughout this article.

Definition 2.1. An insurance indemnity function I :R→R is said to be univer-
sally marketable if for any integrable random variable X 1 and any risk functional
π that is defined on the space of integrable random variables and preserves the
convex order (i.e., Y1 ≤cx Y2 implies π(Y1)≤ π(Y2)), we can find a premium
P≥E[I(X )] (dependent on X and π) such that

π(X − I(X )+P)≤ π(X ). (2.1)

If we take π( · )= −E[u(− ·)], where u is an arbitrary non-decreasing and
concave utility function, then we retrieve Cheung et al. (2014)’s definition
confined to the expected utility paradigm.

It follows by definition that under a universally marketable indemnity, a
premium can always be found such that every risk-averse risk bearer, regard-
less of his/her risk preference (quantified by his/her convex-order-preserving
risk functional π) and risk profile (represented by the loss X he/she faces), will
be better off in the sense that he/she enjoys a lower level of risk2 as a result
of the purchase of insurance. In the insurance literature, this is commonly
known as the participation constraint (the policyholder has the incentive to
“participate” in the insurance contract). The qualifier “universal” is affixed to
acknowledge the fact that the insurance is marketable to all risk-averse policy-
holders in the economy. Meanwhile, the insurer, who relies on the law of large
numbers to diversify risks and is, for all intents and purposes, risk-neutral (see,
e.g., page 45 of Eeckhoudt et al. (2005)), also finds the indemnity acceptable3

with a premium that is sufficient for covering the expected indemnified loss.
It is often difficult to verify whether or not a given indemnity is universally

marketable directly by definition. In this regard, Theorem 2.2 below presents
two characterizations of universal marketability that not only point out the
connections of universally marketable indemnities to risk management, but
also provide them with an easily verifiable structural description. These char-
acterizations provide a convenient framework for developing the results in the
remainder of this article.

Theorem 2.2. Let I :R→R be an insurance indemnity function. The following
statements are equivalent:

(a) I is universally marketable;
(b) I is universally risk-reducing with respect to convex order, that is, for any

integrable loss X,4

X − I(X )≤cx X −E[I(X )];

(c) I is non-decreasing and 1-Lipschitz, that is, 0≤ I(x)− I(y)≤ x− y for all
y≤ x.
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Theorem 2.2 above integrates and generalizes several key results of Cheung
et al. (2014). Not only is it liberated from the expected utility paradigm to a
more general setting, but it also does not require that non-decreasing mono-
tonicity be imposed a priori on the indemnity function in question, but shows
that this mild property of the indemnity is a by-product of its universal mar-
ketability. Furthermore, our proof is self-contained and elementary without
recourse to the notion of risk reducers studied in Cheung et al. (2014).

The two characterizations given in Theorem 2.2 are of independent interest
and shed different light on what it takes for an indemnity to be universally
marketable. Referred to as the universally risk-reducing property, Statement
(b) compares the variability of the policyholder’s loss before the purchase of
insurance with that after the purchase of insurance with respect to convex
order and asserts that a universally marketable indemnity always lowers the
risk a policyholder faces irrespective of the type of risk he/she bears. This is
a mathematical manifestation of the universal appeal of such an indemnity.
Technically, the universal risk-reducing property is equally useful in that it
reveals the links between universal marketability and convex order and allows
us to analyze universally marketable indemnities using established tools in the
theory of stochastic ordering.

While Statement (b) offers a risk management interpretation of universal
marketability, Statement (c) translates the notion equivalently into the non-
decreasing monotonicity and 1-Lipschitzity of an indemnity. Such a structural
description is of practical importance because it showcases the concrete form of
universally marketable indemnities and significantly eases their identification.
For example, stop-loss contracts I1(x)= (x− d)+, d ∈R, quota-share contracts
I2(x)= ax, a ∈ [0, 1], and insurance layer contracts I3(x)= (x∧ u− d)+, d ≤ u
are all commonly used examples of universally marketable indemnities because
the corresponding indemnity functions are easily seen to be non-decreasing and
1-Lipschitz. Intuitively, the 1-Lipschitz condition can be viewed as a kind of
size constraint that avoids the possibility of over-insurance, that is, the situa-
tion that the purchase of a disproportionate amount of insurance backfires and
increases rather than decreases risk.

2.2. The multivariate case

In this subsection, we turn to multivariate insurance indemnities, which are
written on a portfolio of multiple losses, and strive to extend Theorem 2.2
by characterizing universally marketable indemnities in a multivariate setting.
Such an extension is not as straightforward as it seems at first sight and involves
more than cosmetic adjustments due to two significant challenges:

1. There are several possible notions of the non-decreasing and 1-Lipschitz
condition for multivariate functions.

2. There is a need to take into account the dependence structure between the
different losses in a given portfolio. This issue is absent in the univariate

https://doi.org/10.1017/asb.2020.41 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.41


UNIVERSALLYMARKETABLE INSURANCE UNDER MULTIVARIATEMIXTURES 227

framework. As we will see, the characterizations of multivariate univer-
sally marketable indemnities vary critically with the dependence structure
governing the random losses under consideration.

We first put forward the definition of a multivariate universally marketable
indemnity. To avoid over-generalizations, we have relaxed the requirement of
being universally marketable to being marketable only among a collection of
random vectors.

Definition 2.3. Let I :Rn →R be a multivariate insurance indemnity function and
X be a collection of integrable n-dimensional random vectors. Then I is said to
be universally marketable over X if for any X= (X1, . . . ,Xn)� ∈X and any risk
functional π that is defined on X and preserves the convex order, we can find a
premium P≥E[I(X)] such that

π ((X1 + · · · +Xn)− I(X)+P) ≤ π(X1 + · · · +Xn). (2.2)

Two remarks about this multivariate definition are in order:

1. We have chosen to work with the sum X1 + · · · +Xn, arguably the most
commonly used aggregating functional, due to its natural financial interpre-
tation as the total loss borne by a policyholder as well as its mathematical
tractability. Apart from the replacement of the single lossX to the aggregate
loss X1 + · · · +Xn, the mutually acceptable spirit of the multivariate defini-
tion parallels that in Definition 2.1, that is, a premium for the indemnity
can be set in a way attractive to a wide variety of policyholders as well as
the insurer.

2. Definition 2.3, unlike Definition 2.1, is stated in terms of a collection of
random vectors rather than the whole collection of random vectors. This
collection of random vectors has a large role to play in characterizing
universal marketability in the multivariate setting. Naturally, the larger
this collection, the more restrictive the requirement of being universally
marketable becomes. We will see this more clearly in the rest of this article.

In the single-risk setting, it has been established in Theorem 2.2 that the
universal marketability of a univariate insurance indemnity is equivalent to
the universally risk-reducing property as well as the non-decreasing and 1-
Lipschitz condition. Proposition 2.4 below shows that the first equivalence
continues to hold true in the multiple-risk setting. Its proof can be given by
going along the same line in the corresponding part of the proof of Theorem
2.2, and we omit it here for brevity.

Proposition 2.4. Let I :Rn →R be a multivariate insurance indemnity function
and X be a collection of integrable random vectors. The following statements are
equivalent:

(a) I is universally marketable over X ;
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(b) I is universally risk-reducing over X with respect to convex order, that is,

(X1 + · · · +Xn)− I(X)≤cx (X1 + · · · +Xn)−E[I(X)], (2.3)

for any random vector X= (X1, . . . ,Xn)� ∈X .

To develop the multivariate counterpart of Statement (c) in Theorem 2.2
requires the extension of the non-decreasing and 1-Lipschitz condition for mul-
tivariate functions, which is a more delicate issue. To this end, consider the
following three sets of multivariate indemnities, all of which generalize the uni-
variate non-decreasing and 1-Lipschitz condition in one way or another. For
any generic vector x= (x1, . . . , xn)� in Rn, define

I1 =
{
I :Rn →R

∣∣∣∣∣ I(x) is non-decreasing and 1-Lipschitz in
n∑

k=1

xk

}
,

I2 = {I :Rn →R | I(x)= I1(x1)+ · · · + In(xn), where each Ik is univariate
non-decreasing and 1-Lipschitz for k= 1, . . . , n},

I3 = {I :Rn →R | I is non-decreasing and componentwise 1-Lipschitz}.
Among these three sets, both I1 and I2 are proper subsets of I3; for example,
for d ∈R and n= 2, I(x, y) := (x+ y/2− d)+ ∈ I3 \ (I1 ∪ I2). Indemnities in I1,
each as a function of the sum of its arguments, are essentially univariate, mean-
ing that the insurer is hedging against the aggregate loss it faces. Indemnities in
I2 arise when the insurer hedges each loss on a standalone basis with the use of
univariate non-decreasing and 1-Lipschitz functions. I3 is the largest set, where
the non-decreasing and 1-Lipschitz condition plays its role on a componentwise
basis. For both theoretical and practical reasons, it is desirable to have a set of
indemnities that not only includes as many commonly used insurance policies
in practice as possible but is also marketable on as large a collection of ran-
dom losses as possible. In this subsection and the next section, we shall show
that each of these three sets produces marketable indemnities within a certain
collection of random losses.

Arguably the most natural conjecture when generalizing Statement (c) of
Theorem 2.2 to the multiple-risk setting is to impose the non-decreasing and 1-
Lipschitz condition on a multivariate indemnity function I in a componentwise
fashion, that is, we replace Statement (c) in Theorem 2.2 by

(c)′ I is a non-decreasing and componentwise 1-Lipschitz function, that is,
I ∈ I3.

While this condition is necessary for a multivariate indemnity function to
be universally marketable, it turns out to be not sufficient. Here is a simple
counter-example.

Example 2.5. Let n= 2, X1 =Z and X2 = −Z/2, where Z is a standard normal
random variable. Define I(x1, x2)= x1/4+ x2, which is a non-decreasing and
componentwise 1-Lipschitz function. However,
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X1 +X2 − I(X1,X2)= 3Z
4

�cx
Z
2

=X1 +X2 −E[I(X1,X2)].

By Proposition 2.4, I is not universally marketable.

Note that the two losses X1 and X2 in Example 2.5 are, by construction,
counter-monotonic. Here X2 may be interpreted as a strategy adopted by the
policyholder to hedge against X1. The given indemnity function, which entails
a high coverage on X2 and a low coverage on X1, turns out to weaken the risk-
reducing capacity of X2 as a hedging strategy. This explains the increase of
risk faced by the policyholder after the insurance is purchased. To ensure that
relation (2.3) holds for all portfolios of random losses, including those with
extreme negative dependence structures, Theorem 2.6 below shows that the
non-decreasing and componentwise 1-Lipschitz condition has to be strength-
ened to the condition that the indemnity is a non-decreasing and 1-Lipschitz
function of the aggregate loss. For completeness, this result is stated in the
form of a full characterization of universal marketability in the multivariate
framework.

Theorem 2.6. Let I :Rn →R be a multivariate indemnity function. The following
statements are equivalent:

(a) I is universally marketable (over the set of all integrable random vectors);
(b) I is universally risk-reducing with respect to convex order, that is,

(X1 + · · · +Xn)− I(X)≤cx (X1 + · · · +Xn)−E[I(X)], (2.4)

for any integrable random vector X= (X1, . . . ,Xn)�;
(c) I(x) is a non-decreasing and 1-Lipschitz function of

∑n
k=1 xk for any x=

(x1, . . . , xn)� ∈Rn, that is, I ∈ I1.

The message from Theorem 2.6 is that a multivariate universally mar-
ketable indemnity must be constructed through the aggregate loss and is essen-
tially no different from a univariate strategy. The cause of this unanticipated
phenomenon is the need to accommodate losses with all possible dependence
structures, including extreme negative dependence structures which are mainly
in a theoretical vacuum of little practical interest.

In a similar spirit, if we restrict a priori attention to only additively sepa-
rable indemnities, meaning that they can be written as the sum of univariate
indemnities, that is, I(x)=∑n

k=1 Ik(xk), and consider universally marketable
indemnities within this set in the hope that I2 is the appropriate set, then the
answer is again unexpected: The univariate indemnities are all constrained to
be coinsurance strategies with the same quota share.
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Corollary 2.7. Let I :Rn →R be a multivariate insurance indemnity function
such that I(x)= I1(x1)+ · · · + In(xn) for some univariate functions I1, . . . , In and
Ik(0)= 0 for all k= 1, . . . , n. The following statements are equivalent:

(a) I is universally marketable (over the set of all integrable random vectors);
(b) I is universally risk-reducing with respect to convex order, that is,

(X1 + · · · +Xn)− I(X)≤cx (X1 + · · · +Xn)−E[I(X)],

for any integrable random vector X= (X1, . . . ,Xn)�;
(c) Each Ik, with k= 1, . . . , n, takes the form Ik(x)= cx for some common

constant c ∈ [0, 1].

If we confine our study of multivariate universally marketable indemnities
to dependence structures which arise naturally in practical situations, then we
may expect that the resulting collection of indemnity policies will be larger
and include genuinely multivariate functions which insurance companies may
provide in their policy menus. This will be confirmed in the next section.

3. UNIVERSALLY MARKETABLE INSURANCE UNDER MIXTURES

In view of the somewhat disappointing results in Section 2.2, in this section we
introduce a mixture model which accommodates a wide variety of dependence
structures commonly encountered in practice. We show that when the univer-
sal marketability requirement is imposed only on losses within the mixture
model, it is necessary and sufficient that the multivariate insurance indem-
nity concerned is a non-decreasing and componentwise 1-Lipschitz function,
which is a substantially more general condition than being a non-decreasing
and 1-Lipschitz function of the sum of its arguments.

3.1. The mixture structure

In an attempt to develop a rich class of reasonable dependence structures,
we reason that insurance losses from different lines of business in practice
coexist in a stochastic environment that is vulnerable to changes in universal
macroeconomic factors and impacts of economy-wide exogenous events. These
losses are correlated in such a way that they are governed by certain common
risk factors while subject to their own idiosyncratic risk factors. Motivated
by these considerations, we introduce the following mixture structure for an
n-dimensional random vector X= (X1, . . . ,Xn)�:

X=Y+G(Z). (3.1)

In this model, Y= (Y1, . . . ,Yn)� and Z= (Z1, . . . ,Zm)� are two risk vectors,
with the components Y1, . . . ,Yn,Z1, . . . ,Zm assumed to be mutually indepen-
dent, and G :Rm →Rn is a function assumed to satisfy G(z1)≤G(z2) for any
z1, z2 ∈Rm with z1 ≤ z2, where the order ≤ is understood componentwise.
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The mixture structure (3.1) is a flexible modeling vehicle on both actuarial
and financial grounds. From an actuarial perspective, by suitably specifying
the function G and risk vectors Y and Z, we can easily achieve a wide variety
of commonly used dependence structures including mutual independence (by
setting G to the zero function), comonotonicity (by assuming that m= 1 and
Y is deterministic; see Dhaene et al. (2002) and Puccetti and Scarsini (2010)
for more information about comonotonicity), and hybrid structures with pos-
itive dependence (by assuming that Y and Z are non-deterministic and G is
non-zero). The use of (3.1) therefore offers a unifying treatment of univer-
sal marketability for random losses governed by various positive dependence
structures.

From a financial perspective, structure (3.1) also lends itself to model-
ing idiosyncratic and common risk factors. On a componentwise basis, each
individual loss Xk can be decomposed into two parts:

Xk =Yk +Gk(Z), k= 1, . . . , n,

in which the first part Yk represents Xk’s idiosyncratic risk (which, by def-
inition, is specific to Xk and independent of other losses) while the second
part Gk(Z), the kth component of G(Z), captures the impacts of the risk vec-
tor Z, which is common across all of the n random losses and induces their
interdependence. The common risk factors hosted by Z can be configured to
encompass different sources (hence the independence ofZ1, . . . ,Zm) of system-
atic as well as systemic risks, which are the main drivers of the interdependence
among losses a policyholder faces. Systematic risk is inherent in the market
and cannot be eliminated through diversification, whereas systemic risk is the
possibility of the collapse of the entire financial system due to certain external
events (a typical example being the bankruptcy of Lehman Brothers in 2008).
Mathematically, the function G quantifies the impact of Z on the individual
losses and can be designed to retrieve many models of practical interest. In the
important special case where each Zj impacts on Xk on a standalone basis so
that G can be identified with an n×m matrix of non-decreasing determinis-
tic functions gkj for k= 1, . . . , n and j= 1, . . . ,m, the mixture structure (3.1)
reduces to the additive model

Xk =Yk + gk1(Z1)+ · · · + gkm(Zm),

where the functions gkj can be further specified to reflect the loadings of the
individual losses to the common risk factors. In this form, the mixture model
covers, for instance, the following linear factor model as a special case upon
rescaling:

Xk = ρkYk +
√
1− ρ2

kβ
�
kZ, k= 1, . . . , n,

where ρk ∈ (0, 1) is a deterministic coefficient adjusting the relative weights of
idiosyncratic and common risk factors, while βk ∈Rm

+ is a deterministic loading
vector capturing the sensitivity of Xk to the common risk vector Z. In finance
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in general and in credit risk analysis in particular, the loading to the systematic
risk factor is often termed the market beta. See Chapter 9 of Cochrane (2005)
for the applications of this classic model in financial asset pricing.

3.2. Main results

Theorem 3.1 presents a complete characterization of universal marketability
within the mixture structure (3.1).

Theorem 3.1. Let I :Rn →R be a multivariate indemnity function. Restricted to
the mixture structure (3.1), the following statements are equivalent:

(a) I is universally marketable;
(b) I is universally risk-reducing with respect to convex order, that is,

(X1 + · · · +Xn)− I(X)≤cx (X1 + · · · +Xn)−E[I(X)], (3.2)

for any integrable random vector X= (X1, . . . ,Xn)� of form (3.1);
(c) I is a non-decreasing and componentwise 1-Lipschitz function, that is, I ∈ I3.

Comparing Theorems 2.6 and 3.1, we conclude that when the set X in
Definition 2.3 is relaxed from the set of all integrable random losses to the
set of random losses lying in the mixture model (3.1), the permissible multi-
variate indemnity functions are no longer confined to be essentially univariate
functions non-decreasing and 1-Lipschitz in the sum of the arguments (I1), but
are allowed to be genuinely multivariate functions which only have to be non-
decreasing and componentwise 1-Lipschitz (I3). Given the versatility of the
mixture model as discussed above, this enlargement of the set of permissible
indemnity functions is mathematically and practically important. By exclud-
ing pathological dependence structures that are of little practical interest, we
have established a much wider collection of marketable multivariate indem-
nity functions which insurance companies can profitably offer and which can
serve as the set of candidate functions for subsequent investigation in optimal
multivariate insurance studies.

In parallel with Corollary 2.7, if we only consider multivariate indemnity
functions that can be written as the sum of univariate indemnity functions,
then an equivalent condition for this multivariate function I to be universally
marketable within the mixture structure is that I is a member of I2, that is, each
individual univariate indemnity function is non-decreasing and 1-Lipschitz.

Corollary 3.2. Let I :Rn →R be a multivariate insurance indemnity function
such that I(x)= I1(x1)+ · · · + In(xn) for some univariate functions I1, . . . , In.
Restricted to the mixture structure (3.1), the following statements are equivalent:

(a) I is universally marketable;

https://doi.org/10.1017/asb.2020.41 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.41


UNIVERSALLYMARKETABLE INSURANCE UNDER MULTIVARIATEMIXTURES 233

(b) I is universally risk-reducing with respect to convex order, that is,

(X1 + · · · +Xn)− I(X)≤cx (X1 + · · · +Xn)−E[I(X)], (3.3)

for any integrable random vector X= (X1, . . . ,Xn)� of form (3.1);
(c) Each Ik is a non-decreasing and 1-Lipschitz function, that is, I ∈ I2.

Corollary 3.2 can be easily proved by applying Theorem 3.1 and the simple
fact that I(x)=∑n

k=1 Ik(xk) is non-decreasing and componentwise 1-Lipschitz
if and only if each Ik is non-decreasing and 1-Lipschitz. Hence, we omit the
proof here.

We remark that in the special but important case when X is a ran-
dom vector with comonotonic or independent components, the implication
(c) ⇒ (b) of Corollary 3.2 can be proved in a much simpler way without
relying on Theorem 3.1. Notice that when I ∈ I2, each Ik is non-decreasing
and 1-Lipschitz. By Theorem 2.2, for each Xk, we have Xk − Ik(Xk)≤cx Xk −
E[Ik(Xk)]. Then relation (3.3) can be established by the additive property
of convex order. For comonotonic random vectors, the additive property is
proved in Corollary 1 of Dhaene et al. (2002), while for random vectors with
independent components, the additive property is proved in Theorem 3.A.12
of Shaked and Shanthikumar (2007).

A result in the same vein as Corollary 3.2 for a different class of random
vectors can be formulated as an application of Theorem 3.4 of Cai and Wei
(2012). We first recall the concept of positive dependence through stochas-
tic ordering. A random vector X is said to be positively dependent through
stochastic ordering (PDS) if, for k= 1, . . . , n,

E[ f (X1, . . . ,Xk−1,Xk+1, . . . ,Xn)|Xk = xk],

is non-decreasing in xk for any non-decreasing function f :Rn−1 →R such that
the above conditional expectation exists. For more discussions on PDS and
other related positive dependence structures, we refer the reader to Block et al.
(1985), Section 2.1 of Joe (1997), and Section 3.10 ofMüller and Stoyan (2002).
In their Theorem 3.4, Cai andWei (2012) showed that for a PDS random vector
X, if there exist non-decreasing functions gk and hk such that gk(Xk)≤cx hk(Xk)
for each k= 1, . . . , n, then

∑n
k=1 gk(Xk)≤cx

∑n
k=1 hk(Xk). Consider a multivari-

ate indemnity function of the form I(x)=∑n
k=1 Ik(xk). We first assume that

I ∈ I2 and define non-decreasing functions gk = Id− Ik and hk = Id−E[Ik(Xk)]
for each k, in which Id represents the identity function. By Theorem 2.2 above
and Theorem 3.4 of Cai and Wei (2012), it is not hard to see that relation (3.3)
holds for any PDS random vector X. To show the converse, for each k, we fol-
low the proof of Theorem 2.6 to set all elements in X but Xk to be deterministic
and apply Theorem 2.2. Consequently, relation (3.3) holds for any PDS ran-
dom vector X, or, equivalently, the indemnity I(x)=∑n

k=1 Ik(xk) is universally
marketable among all n-dimensional PDS random vectors if and only if each
univariate indemnity function Ik is non-decreasing and 1-Lipschitz.
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Remark 3.3. In this article, we analyze multivariate universally marketable
indemnity schedules by extending the non-decreasing and 1-Lipschitz condition
to the multivariate case. There are alternative multivariate extensions that could
be explored, one of which is by means of the notion of comonotonic allocations.
To see this, observe from Theorem 2.2 that a univariate indemnity is universally
marketable if and only if the random vector (X − I(X ), I(X ))� is comonotonic
for any integrable loss X. In the language of bilateral risk-sharing problems,
(X − I(X ), I(X ))� is a feasible allocation of the aggregate risk X, and X − I(X )
and I(X ) are the policyholder’s and insurer’s allocations, respectively. Thus, one
way to characterize a univariate universally marketable indemnity is that it gives
rise to a comonotonic allocation regardless of the risk borne by the policyholder.

In a similar spirit, one may pursue a characterization of multivariate universal
marketability in the following form:

Let I :Rn →R be a multivariate indemnity function andX be a collection
of integrable random vectors. The following statements are equivalent:

(a) I is universally marketable over X .
(d) The allocation (X1 + · · · +Xn − I(X), I(X))� is comonotonic for

any X= (X1, . . . ,Xn)� ∈X .5

We distinguish two cases.

• When X is the entire collection of integrable random vectors, the two state-
ments are indeed equivalent. By Theorem 2.6, it is enough to prove that (d) is
true if and only if:

(c) I is a non-decreasing and 1-Lipschitz function of the sum of its argu-
ments.

The implication (c) ⇒ (d) is obvious. Now assume (d). If I is
not a function of the sum of its arguments, then there exist x1 =
(x11, . . . , x1n)� ∈Rn and x2 = (x21, . . . , x2n)� ∈Rn such that

∑n
k=1 x1k =∑n

k=1 x2k but I(x1) �= I(x2). This violates (d) and so I(x) must be a func-
tion of

∑n
k=1 xk for all x= (x1, . . . , xn)� ∈Rn. Then the comonotonicity of(∑n

k=1 Xk − I(
∑n

k=1 Xk), I(
∑n

k=1 Xk)
)�

for all integrable X1, . . . ,Xn implies
that (indeed, is equivalent to the statement that) I is non-decreasing and
1-Lipschitz in

∑n
k=1 xk.• When X is the collection of random vectors that follow the mixture structure

(3.1), the equivalence between (a) and (d) no longer holds. In fact, the same
proof above can be used to show that the following statements are equivalent:

(c) I is a non-decreasing and 1-Lipschitz function of the sum of its
arguments.

(d)′ The allocation (X1 + · · · +Xn − I(X), I(X))� is comonotonic for all X
within the mixture structure.

Since (c) is much stronger than the non-decreasing and componentwise
1-Lipschitz condition in Theorem 3.1 (c) and essentially strips I of its
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multivariate character, studying multivariate universal marketability via the
comonotonicity of (X1 + · · · +Xn − I(X), I(X))� may not produce fruitful
results. That is why in this article, we choose to characterize universal
marketability (univariate and multivariate) in terms of the non-decreasing
and 1-Lipschitz condition, which is a simple, concrete, and easily verifiable
structural property describing the behavior of an indemnity function.

4. CONCLUDING REMARKS

This paper provides a quantitative treatment of universally marketable indem-
nities, which not only appeal to any policyholders whose risk preferences
respect the convex order, but are also profitable to insurers relying on the
law of large numbers to evaluate insurance premiums. We start with lib-
erating the definition of universal marketability proposed in Cheung et al.
(2014) from the standard expected utility framework to a more general setting
which only assumes that policyholders’ risks are quantified by a convex-
order-preserving functional. Probabilistic and structural characterizations of
universal marketability are then developed. In the single-risk setting, it is shown
that an insurance indemnity is universally marketable if and only if it is a non-
decreasing and 1-Lipschitz function. In the multivariate framework, however,
the need to accommodate risk vectors with arbitrary dependence structures
makes universally marketable indemnities confined to functions that are non-
decreasing and 1-Lipschitz in the sum of the arguments, meaning that the
policyholder can only hedge against his/her risks by purchasing insurance
on the ground-up loss. As the highlight of this article, we propose a multi-
variate mixture structure which effectively captures policyholders’ exposure
to systematic and systemic risks and considerably enlarges the set of mul-
tivariate universally marketable indemnities. Within this mixture structure,
we show that the necessary and sufficient condition for a multivariate insur-
ance indemnity to be universally marketable can be relaxed to non-decreasing
monotonicity and componentwise 1-Lipschitzity.

We end this paper by discussing two future research directions.

1. In this paper, we assume that policyholders’ risk preferences are quantified
by convex-order-preserving functionals. This implies that policyholders
are risk-averse (in the sense of strong risk aversion) and excludes func-
tionals that are not law-invariant such as robust shortfall, general (non-
law-invariant) coherent risk measures, and general convex risk measures.
It will be of both theoretical and practical interest to extend the analysis
of this paper to such risk functionals, although the concomitant technical
challenges are likely significant.

2. As an application of Theorem 3.1, one may formulate the following
multivariate optimal insurance problem for a policyholder:

inf
I∈I3

π (X1 + · · · +Xn − I(X)+P) , (4.1)
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where the loss vector X= (X1, . . . ,Xn)� is of the mixture structure (3.1), π
is the convex-order-preserving risk functional adopted by the policyholder,
andP (dependent on I(X)) is the premium charged by the insurer. Theorem
3.1 guarantees that every I ∈ I3 is universally marketable in the sense that
P can be calibrated in a way acceptable to the insurer and the risk faced
by the policyholder drops following the purchase of I . We leave Problem
(4.1) as a future research problem.
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NOTES

1. In Definition 2.1, we could have defined univariate universal marketability over a class of
random variables to be prudent and gradually make this class bigger and bigger. In the light of
the results in Cheung et al. (2014), such a restriction is unnecessary in the univariate case, but this
approach is warranted in the multivariate case.

2. In inequality (2.1), we are comparing the risk exposure of a policyholder before and after the
purchase of insurance without taking into account his/her initial wealth. This does not lead to any
loss of generality. To account for the initial wealth w explicitly, one can consider the translated
risk functional πw(Y ) := π (Y −w), which quantifies the risk exposure net of the initial wealth,
and all the results in this paper can be stated equivalently in terms of πw.

3. A universally marketable indemnity makes a given policyholder and the insurer both better
off, but it may not be a Pareto-optimal indemnity.

4. Although Theorem 2.2 (b) can be written equivalently as X − I(X )+E[I(X )]≤cx X , it
should be pointed out that the premium charged by the insurer is, according to the definition of
universal marketability, some value larger than or equal to E[I(X )], not necessarily E[I(X )]. The
term E[I(X )] is there just to ensure that both sides have the same expected value, a precondition
for the use of convex order.

5. We use (d) to distinguish this statement from the three statements in Theorems 2.6 and 3.1.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 2.2

To see that (a) implies (b), we fix any integrable random variable X and take π (X )=E[v(X )]
for any fixed non-decreasing convex function v (such that all expectations that follow are
well-defined). By the definition of universal marketability, there exists P≥E[I(X )] such that

E[v(X − I(X )+E[I(X )])] = π (X − I(X )+E[I(X )])

≤ π (X − I(X )+P)

≤ π (X )

= E[v(X )],

where the first inequality is due to the monotonicity of v. Since X − I(X )+E[I(X )] and X
share the same expected value and convex order is closed under shifts, we have

X − I(X )≤cx X −E[I(X )].

The converse is obvious since Statement (b) implies that for any integrable random variable
X and any π that preserves the convex order, we have

π (X − I(X )+E[I(X )])≤ π (X ),

which means that (2.1) is true with P=E[I(X )].
To show that (c) implies (b), we assume that I is a non-decreasing and 1-Lipschitz func-

tion. Then (X − I(X ), I(X ))� is a comonotonic random vector for any integrable random
variable X . Because convex order is preserved under comonotonic addition, we have

[X − I(X )]+E[I(X )]≤cx [X − I(X )]+ I(X )=X ,

or X − I(X )≤cx X −E[I(X )].
Finally, we prove by contraposition that (b) implies (c). First, we suppose that I is not

non-decreasing. Then there exist a ∈R and η > 0 such that I(a+ η)− I(a)< 0. For any p ∈
(0, 1), define a discrete random variable X̃ by

X̃ =
{
a, with probability p,

a+ η, with probability 1− p.
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Themaximum value that X̃ −E[I(X̃ )] can attain equals a+ η −E[I(X̃ )]. Since [a+ η − I(a+
η)]− [a− I(a)]= η + I(a)− I(a+ η)> 0, the maximum value that X̃ − I(X̃ ) can attain is a+
η − I(a+ η). Notice that

a+ η −E[I(X̃ )] = a+ η − [pI(a)+ (1− p)I(a+ η)]

= a+ η − I(a+ η)+ p[I(a+ η)− I(a)]

< a+ η − I(a+ η),

which means that X̃ − I(X̃ )�cx X̃ −E[I(X̃ )]. Second, we assume that I is not 1-Lipschitz.
Then there exist b ∈R and ζ > 0 such that I(b+ ζ )− I(b)> ζ . Considering a similar discrete
random variable X̂ defined by

X̂ =
{
b, with probability q,

b+ ζ , with probability 1−q,

for some q ∈ (0, 1), we can easily show that the maximum value of X̂ − I(X̂ ) is b− I(b), which
is greater than the maximum value of X̂ −E[I(X̂ )]= b− I(b)+ ζ − (1− q)[I(b+ ζ )− I(b)]
whenever q is strictly positive but sufficiently small. Again we arrive at X̂ − I(X̂ )�cx X̂ −
E[I(X̂ )].

A.2. Proof of Theorem 2.6

The equivalence between Statements (a) and (b) is a consequence of Proposition 2.4, so it
suffices to show that Statements (b) and (c) are equivalent.

To show that (c) implies (b), we assume that I(x) is a non-decreasing and 1-Lipschitz
function of

∑n
k=1 xk for any x ∈Rn. Then relation (2.4) holds for any integrable random

vector X by applying Theorem 2.2 to the random variable
∑n

k=1 Xk.
Conversely, we now assume that (2.4) holds for any integrable random vector X. In par-

ticular, for a fixed k, it is true for the random vector (x1, . . . , xk−1,Xk, xk+1, . . . , xn)�, where
Xk is any given integrable random variable and x(k) = (x1, . . . , xk−1, xk+1, . . . , xn)� is a vec-
tor of any given real constants. If we write Ik(Xk; x(k)) for I(x1, . . . , xk−1,Xk, xk+1, . . . , xn),
then relation (2.4) implies that

Xk − Ik(Xk; x(k))≤cx Xk −E[Ik(Xk; x(k))],

which is true for any random variable Xk. By Theorem 2.2, Ik( · ; x(k)) is non-decreasing
and 1-Lipschitz. Thus, by the arbitrariness of k, the function I is non-decreasing and
componentwise 1-Lipschitz.

To further show that I is a non-decreasing and 1-Lipschitz function of the sum of
its arguments, we take X1, . . . ,Xn−1 to be any n− 1 random variables and set Xn :=
s−∑n−1

k=1 Xk for an arbitrarily given s ∈R. Then (2.4) reduces to

I(X)≤cx E[I(X)],

which implies that I(X) is a constant almost surely. From the arbitrariness of the ran-
dom variables X1, . . . ,Xn−1 and real number s, we deduce that I(x) depends on the
values of x only through the sum

∑n
k=1 xk, for any real vector x. It follows that I(x)=

I
(
0, . . . , 0,

∑n
k=1 xk

)
, which in turn is a non-decreasing and 1-Lipschitz function of the sum∑n

k=1 xk because I is non-decreasing and componentwise 1-Lipschitz.
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A.3. Proof of Corollary 2.7

The equivalence between Statements (a) and (b) follows from Proposition 2.4, so it suffices
to show that Statements (b) and (c) are equivalent. By Theorem 2.6, this is further equivalent
to proving that I(x)= I1(x1)+ · · · + In(xn) is a non-decreasing and 1-Lipschitz function of∑n

k=1 xk for any x ∈Rn if and only if Ik(x)= cx for all k= 1, . . . , n and some common
constant c ∈ [0, 1].

We first assume that each Ik takes the form Ik(x)= cx for some c ∈ [0, 1]. Then the
function I becomes

I(x)= I1(x1)+ · · · + In(xn)= c(x1 + · · · + xn),

which is obviously a non-decreasing and 1-Lipschitz function of
∑n

k=1 xk.
To show the converse, we now assume that I(x)= I1(x1)+ · · · + In(xn) is a non-

decreasing and 1-Lipschitz function of
∑n

k=1 xk for any x ∈Rn. This makes it legitimate
to write I(x)= I(

∑n
k=1 xk). For a fixed k ∈ {1, . . . , n}, taking all elements of x except xk to

be zero and making use of the fact that Ik(0)= 0 for all k= 1, . . . , n, we get I(xk)= Ik(xk)
for all xk ∈R, which implies that each Ik is identical to I . Thus, for any x ∈Rn, we have

I(x1 + · · · + xn)= I(x1)+ · · · + I(xn).

Combining the continuity (which is a consequence of 1-Lipschitzity) of I with the above
relation, we deduce from a well-known result on Cauchy’s functional equation (see, e.g.,
Section 5.2 of Kuczma (2009)) that I must be a linear function and null at zero. Since I is
non-decreasing and 1-Lipschitz, we conclude that Ik(x)= I(x)= cx for all k= 1, . . . , n and
some common constant c ∈ [0, 1].

A.4. Proof of Theorem 3.1

We first prepare a lemma for proving Theorem 3.1.

Lemma A.1. If I is non-decreasing and componentwise 1-Lipschitz, then relation (3.2) holds
for any mutually independent random variables X1, . . . ,Xn.

Proof. We first show that, for each j= 1, . . . , n,

n∑
k=1

Xk −E[I(X)|Xj, . . . ,Xn]≤cx

n∑
k=1

Xk −E[I(X)|Xj+1, . . . ,Xn], (A.1)

in which E[I(X)|Xj , . . . ,Xn]= I(X) when j= 1, while E[I(X)|Xj+1, . . . ,Xn]=E[I(X)] when
j= n. For any real vector (xj+1, . . . , xn)�, notice that

E[I(X)|Xj+1 = xj+1, . . . ,Xn = xn]=E[E[I(X)|Xj,Xj+1 = xj+1, . . . ,Xn = xn]],

and that E[I(X)|Xj,Xj+1 = xj+1, . . . ,Xn = xn] is a non-decreasing and 1-Lipschitz function
of Xj . Thus, by Theorem 2.2,
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Xj +
∑

1≤k≤n,k �=j
xk −E[I(X)|Xj,Xj+1 = xj+1, . . . ,Xn = xn]

≤cx Xj +
∑

1≤k≤n,k �=j
xk −E[I(X)|Xj+1 = xj+1, . . . ,Xn = xn],

holds for any real vector (x1, . . . , xj−1, xj+1, . . . , xn)�. Integrating both sides above with
respect to the joint distribution of X1, . . . , Xj−1, Xj+1, . . . , Xn yields relation (A.1). By
making use of the transitive property of the convex order, we have

n∑
k=1

Xk − I(X) ≤cx

n∑
k=1

Xk −E[I(X)|X2, . . . ,Xn]

≤cx

n∑
k=1

Xk −E[I(X)|X3, . . . ,Xn]

...

≤cx

n∑
k=1

Xk −E[I(X)|Xn]

≤cx

n∑
k=1

Xk −E[I(X)].

This ends the proof. �

Proof of Theorem 3.1 By Proposition 2.4, it then suffices to prove that Statements (b) and
(c) are equivalent, that is, relation (3.2) holds for all mixtures of form (3.1) if and only if I is
non-decreasing and componentwise 1-Lipschitz.

We first assume that relation (3.2) holds for any random vector of form (3.1). In par-
ticular, it is true for any deterministic vector Z, in which case the random vector X has
mutually independent components. From the proof of Theorem 2.6, we know that I must
be non-decreasing and componentwise 1-Lipschitz.

To show the converse, we now assume that I is non-decreasing and componentwise 1-
Lipschitz and that X is any random vector of form (3.1). Relation (3.2) can be proved by the
following two-step procedure:

n∑
k=1

Xk − I(X)≤cx

n∑
k=1

Xk −E[I(X)|Z]≤cx

n∑
k=1

Xk −E[I(X)]. (A.2)

For this purpose, denote by v any convex function and by 1 ∈Rn a vector with all elements
equal to one. Keeping in mind that the random vectors Y and Z are independent, we deduce
that

E

[
v

( n∑
k=1

Xk − I(X)

)]
=
∫
Rm

E
[
v
(
[Y+G(z)]�1− I(Y+G(z))

)]
dFZ(z)

≤
∫
Rm

E
[
v
(
[Y+G(z)]�1−E[I(Y+G(z))]

)]
dFZ(z)

= E
[
v
(
[Y+G(Z)]�1−E[I(Y+G(Z))|Z]

)]

= E

[
v

( n∑
k=1

Xk −E[I(X)|Z]
)]

,
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where FZ is the distribution of Z and the inequality is due to Lemma A.1. Hence, the first
convex order inequality in (A.2) is proved.

We now show the second inequality in relation (A.2). In view of the fact that both sides
have the same expectation, it suffices to prove that, for any d ∈R,

E

⎡
⎣( n∑

k=1

Xk −E[I(X)|Z]− d

)
+

⎤
⎦≤E

⎡
⎣( n∑

k=1

Xk −E[I(X)]− d

)
+

⎤
⎦ . (A.3)

It is easy to see that, for any x, y, d ∈R,

(x− d)+ − (y− d)+ ≤ 1{x>d} × (x− y),

in which the indicator function 1{x>d} equals 1 when x> d and 0 otherwise. Thus,

E

⎡
⎣
( n∑
k=1

Xk −E[I(X)|Z]− d

)
+

⎤
⎦−E

⎡
⎣
( n∑
k=1

Xk −E[I(X)]− d

)
+

⎤
⎦

≤E

⎡
⎢⎣1{ n∑

k=1
Xk−E[I(X)|Z]>d

} × (E[I(X)]−E[I(X)|Z])
⎤
⎥⎦

=E
[
E
[
1{[Y+G(Z)]�1−E[I(Y+G(Z))|Z]>d}

∣∣∣Z]× (E[I(Y+G(Z))]−E[I(Y+G(Z))|Z])
]
.

By the independence between the random vectors Y and Z, we rewrite the right-hand side
above as

E [h1(Z)(E[h2(Z)]− h2(Z))] , (A.4)

in which the functions h1 and h2 are defined as

h1(z) = E
[
1{h3(Y, z)>d}

]
,

h2(z) = E [I(Y+G(z))] ,

h3(y, z) = [y+G(z)]�1−E [I(Y+G(z))] .

To prove inequality (A.3), it then suffices to show that (A.4) is non-positive.
It is clear that h2 is non-decreasing. Now we show that h1 has the same property. Notice

that h3(y, z) is non-decreasing in each zi, i= 1, . . . ,m. To see this, for each i, fix any real
vectors y ∈Rn and (z1, . . . , zi−1, zi+1, . . . , zm)� ∈Rm−1. For any two real numbers s≤ t,
write

z1 = (z1, . . . , zi−1, s, zi+1, . . . , zm)
� and z2 = (z1, . . . , zi−1, t, zi+1, . . . , zm)

�

Then we have

h3(y, z2)− h3(y, z1) = [G(z2)−G(z1)]�1+E [I(Y+G(z1))]−E [I(Y+G(z2))]

≥ [G(z2)−G(z1)]�1+ [G(z1)−G(z2)]�1
= 0,

where the inequality is due to the non-decreasing and componentwise 1-Lipschitz property
of indemnity I as well as the monotonicity of the function G. Since the indicator function
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is non-decreasing, this componentwise monotonicity of h3(y, z) in each zi implies that h1 is
non-decreasing.

Hence, we have

E[h1(Z)(E[h2(Z)]− h2(Z))]= −Cov(h1(Z), h2(Z))≤ 0,

in which the inequality follows from Theorem 2.1 of Esary et al. (1967). This completes the
proof.
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