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We analyze a continuous review inventory model with the marginal carrying cost of a unit
of inventory given by an increasing function of its shelf age and the marginal delay cost
of a backlogged demand unit by an increasing function of its delay duration. We show
that, under a minor restriction, an (r, q)-policy is optimal when the demand process is
a renewal process, and a state dependent (r, q)-policy is optimal when the demand is a
Markov-modulated renewal process. We also derive various monotonicity properties for
the optimal policy parameters r∗ and r∗ + q∗.

1. INTRODUCTION

One of the main objectives of any inventory planning model is to analyze the tradeoff
between competing risks of overage and underage. This requires an adequate representation
of the carrying costs associated with all inventories, as well as the cost and revenue conse-
quences of shortages. Early contributors, for example, the pioneering textbooks by Hadley
and Whitin [22] and Naddor [28], discussed possible paradigms to represent the carrying
and shortage costs.

One standard paradigm is to assume that carrying costs can be assessed, either contin-
uously or periodically, as a (possibly non-linear) function of the prevailing total inventory,
irrespective of its age composition. Similarly, shortage costs are assumed to accrue as a
(again, possibly non-linear) function of the total shortfall or backlog, irrespective of the
amount of time the backlogged demand units have remained unfilled. We refer to this type
of carrying and shortage cost structures as level-dependent inventory costs. After the above
mentioned early discussions in Hadley and Whitin [22] and Naddor [28], this paradigm has
been adopted in virtually every inventory model.

There are, however, many settings where carrying costs need to be differentiated on
the basis of the inventory’s shelf-age composition. First, inventories are often financed by
trade credit arrangements, where the supplier allows for a payment deferral of delivered
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orders, but charges progressively larger interest rates as the payment delay increases. For
example, the supplier frequently offers an initial interest-free period (e.g., 30 days) after
which interest accumulates. Moreover, interest rates often increase as a function of the
item’s shelf age. These trade credit schemes have been considered in Gupta and Wang [21]
as well as Federgruen and Wang [16]. We refer to the latter for a discussion of how prevalent
this practice is. Another setting with shelf age-dependent inventory cost rates arises when
the supplier subsidizes part of the inventory cost. For example, in the automobile industry,
manufacturers pay the dealer so-called “holdbacks”, that is, a given amount for each month
a car remains in the dealer’s inventory, up to a given time limit (see, e.g., Nagarajan and
Rajagopalan [29]). The resulting inventory cost rate for any stocked item is, again, an
increasing function of the item’s shelf age. Nahmias, Perry, and Stadje [30] consider settings
where the sales price of an item decreases as a function of its shelf age; this can be modeled by
assuming the sales price is an age-independent constant, but a shelf age-dependent carrying
cost is incurred to account for diminution of the item’s value.

Even when inventory costs grow as a linear function of the loan term or the amount of
time the purchased units stay in inventory, time-varying purchase prices or interest rates
necessitate disaggregating inventory levels according to the time at which the units were
purchased, that is, in accordance with the items’ shelf age. In the dynamic lot sizing lit-
erature, Federgruen and Lee [14], for example, modeled holding costs as proportional to
the items’ purchasing price, which varies with their purchase period. As a consequence,
holding costs depend on the items’ shelf age. An an example, assume a firm carries inven-
tories of a commodity which is procured periodically on a commodity exchange. The unit
purchase price varies as a function of the exchange index, fluctuating in accordance with
a Markov chain. Assume, at the end of a given period, that the firm carries 10 units of
stock, 5 of which were purchased at the beginning of the period at price p0, 3 in the prior
period at price p−1, and the remaining 2 units two periods earlier at price p−2; assume the
per period interest rate is ι. The period’s inventory carrying cost can not be expressed as
a function of the total inventory size, but depends critically on its age composition: it is
given by (5p0 + 3p−1 + 2p−2)ι. However,this setting is easily modeled with shelf age and
state-of-the-world dependent inventory cost rates, as in Section 5.

Even more general shelf-age dependencies are assumed in Levi et al. [26] and its general-
ization, that is, so-called metric holding costs, in Stauffer et al. [39]. Finally, beyond capital
costs, inventories often incur physical handling costs (see, e.g.,Richardson [32]); here, too,
the marginal rates often vary as a function of the items’ shelf age.

Similar to shelf age-dependent holding costs, backlogging costs may also depend on the
amount of time by which delivery of a demand unit is delayed. This may reflect the structure
of contractually agreed upon penalties for late delivery or, in case of implicit backlogging
costs, the fact that customers typically become more impatient over time. This type of
backlogging costs has been studied by Chen and Zheng [11], Perry and Stadje [31], Rosling
[33] and Huh et al. [23].

In this paper, we analyze a continuous review inventory model with general shelf age-
dependent carrying and delay-dependent backlogging costs. This means that the marginal
carrying cost of a unit of inventory is given by a general increasing function of its shelf
age; similarly, the marginal delay cost of a backlogged demand unit is specified by an
increasing function of the delay incurred, thus far. The principal features of the model are
as follows: demands are generated by a point process. In addition to the above general
holding and delay costs, there is a fixed and variable cost incurred for each replenishment
order. An order of arbitrary size may be placed at any demand epoch and arrives after a
given deterministic leadtime, or a stochastic leadtime generated by a so-called sequential
and exogenous leadtime process, defined below.
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In our base model, we assume that the times between consecutive demand epochs
are i.i.d., that is, the demand process is a renewal process. We show, under a minor policy
restriction, that, an (r, q)-policy is optimal, that is, an order of fixed size q is placed whenever
the inventory position drops to the reorder point r. A straightforward formulation of the
control problem results in a semi-Markov decision process (SMDP) with a state space of
infinite dimension; the state of the system records the vectors of outstanding orders, the
times at which these orders were placed as well as the amount of time any backlogging
demand units have been waiting, along with the current inventory level. We show, under
the above minor policy restriction, that the complexity of the state space notwithstanding,
an optimal policy can be found which acts on the inventory position only. Moreover, under
the above matching technique, the expected long-run average costs of any such policy can
be expressed as a function of the sequence of inventory positions encountered at consecutive
decision epochs. This establishes an equivalence with a one-dimensional SMDP; even more
remarkably, a simple (r, q)-policy is optimal for this as well as the original SMDP.

We also derive various monotonicity properties for the optimal policy parameters r∗ and
R∗ ≡ r∗ + q∗ as a function of various of the model’s primitives. The results are then extended
to settings where the consecutive inter-demand time distributions fail to be independent,
because they depend on an exogenous state of the world that evolves according to a given
Markov process. This gives rise to a model with Markov-modulated demands. We show that
an (r, q)-policy continues to be optimal, except that both the reorder point and the order
size depend on the prevailing state of the world.

Our approach is to assess all holding and delay-dependent costs by matching each
ordered unit with a unique demand unit, in the spirit of the approach taken by Axsäter
[2,3] as well as the single unit decomposition approach in Muharremoglu and Tsitsiklis [27].

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature. In Section 3, we describe preliminary results for Markov-modulated renewal Pro-
cesses. Section 4 addresses our basic model with a renewal demand process, while Section 5
develops the generalization to Markov-modulated renewal demand processes. Conclusions
and extensions are in Section 6.

2. LITERATURE REVIEW

We start with a review of the few papers that have characterized the structure of an opti-
mal policy in inventory models with shelf age-dependent holding and/or delay-dependent
backlogging costs. To our knowledge, the first and only structural result for models with
general shelf age-dependent carrying costs was obtained in the above-mentioned, recent
paper by Gupta and Wang [21]. This paper considers, at first, a standard periodic review
model with i.i.d. demands and linear, stationary order costs. Under a broad class of shelf
age-dependent inventory carrying cost functions, the authors establish the optimality of a
base stock policy. (In terms of the backlogging costs, the authors assume that they are pro-
portional to the amount of time a demand has been backlogged, as in standard inventory
models.) Gupta and Wang [21] also considers a special case of the continuous review model
considered here: a Poisson demand process with linear order costs and linear backlogging
costs. There, the authors assume that the optimal policy is of a base stock, or (r, 1)-type
and develop a method for the evaluation of any given base stock policy. In their concluding
section, the authors present, as a future challenge, the identification of the “structure of the
optimal policy when the retailer incurs a fixed ordering cost”. That question is resolved in
our paper, not just under Poisson demands, but under general renewal demand processes.
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Huh et al. [23] address a periodic review model with general delay-dependent backlog-
ging costs, but regular linear holding costs, and with unmet demand fully backlogged. The
authors show that, under i.i.d. demands and fixed-plus-linear order costs, as in this paper,
an (s, S)-policy is optimal. This structural result is obtained under a restriction guarantee-
ing either that no demand is delayed by more than the leadtime plus one periods, or that
the incremental backlogging cost rate is constant for delays in excess thereof. (We show
that our policy restriction is significantly weaker than the first restriction in Huh et al.
[23].) Again, focusing on periodic review models, but allowing full or partial backlogging of
stockouts, or lost sales, Federgruen and Wang [18] combine these types of delay-dependent
cost functions with general shelf age-dependent holding cost structures. That paper estab-
lishes the structure of an optimal policy in a variety of periodic review models. The analysis
approaches in Huh et al. [23] and Federgruen and Wang [18] are entirely distinct from the
one employed in this paper. For example, the approach in Huh et al. [23] is to show that the
part of the end-of-period backlog that is of a given age, may be expressed as a function of
the inventory position a leadtime earlier, as well as the intermittent demands. An analogous
approach, decomposing the end-of-the-period inventory on the basis of the units’ shelf age,
fails to work, however, in our continuous review model.

Most continuous review inventory models confine themselves to the case of Poisson or
compound Poisson demands where the interarrival times have an exponential distribution.
Recent examples include Chao, Xu, and Yang [8], Chao and Zhou [9], Xu and Chao [42] and
Shi, Katehakis, and Melamed [37]. Other authors have assumed that the demand process is
a Brownian motion; see, for example, Bather [4], Browne and Zipkin [7] and Dai and Yao
[13]. Several authors have considered general renewal demand processes in their papers; see,
for example, Tijms [40], Sahin [34,35], Federgruen and Schechner [15], Zipkin [44], Rosling
[33] and Chen and Simchi-Levi [12]. As mentioned, in Section 5, we consider an even more
general demand model where the inter-demand times depend on a state-of-the-world vari-
able, assumed to fluctuate in accordance with an independent Markov process. This model
has been studied by several authors, both in periodic and continuous review settings, going
back to the seminal papers by Karlin [25] and Iglehart and Karlin [24]. Song and Zipkin [38]
discuss how several important considerations, such as product demands that are sensitive
to underlying economic conditions, and product demand rates that fluctuate in accordance
with the stage in the product life cycle, can be modeled in this general framework. Benjaafar,
Cooper, and Mardan [5] and Gayon, Benjaafar, and Véricourt [20] invoke this model, with
the state-of-the-world given by the number of advance customer orders at various stages.
To our knowledge, all existing inventory models with Markov-modulated demands assume
standard, that is, level-dependent inventory carrying and backlogging costs.

3. PRELIMINARIES: MARKOV-MODULATED RENEWAL PROCESS

While our base model assumes that demands are generated by a renewal process, we extend
our results to settings where the inter-demand times are no longer identically and indepen-
dently distributed. More specifically, we assume that they depend on a state-of-the-world
variable, assumed to fluctuate in accordance with an independent Markov process.

Let {W (t), t ≥ 0} denote the independent Markov process, according to which the state
of the world W (t) = i, evolves, with transition rate matrix Q. Let W denote its finite state
space and assume that the Markov chain embedded on its state transition epochs has a single
recurrent class of states. If the state of the world at a given demand epoch t equals W (t) = i,
the interval until the next demand epoch is distributed like a random variable X(i), i ∈ W.
For general inter-demand distributions, we assume that the distribution of the inter-demand
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time only depends on the state of the world at its initiation. An important special case arises
when all inter-demand times are exponentially distributed. This gives rise to a so-called
Markov-modulated Poisson process. For the latter, it is usually assumed that the inter-
demand distribution is affected by any change in the state of the world, that is, whenever the
state-of-the-world switches to a state i, the remaining time until the next demand epoch is
distributed like the exponential X(i). Indeed, for Markov-modulated Poisson processes, the
alternative assumption of continuous dependence of the inter-demand time on the prevailing
state of the world may easily be accommodated in our analysis without affecting any of the
structural results and without complicating the required conditions.

The state process, embedded on demand epochs, has a transition probability matrix P ≡
[pii′ ], where pii′ = Pr[W (X(i)) = i′|W (0) = i]. Let λ = {λi, i ∈ W} denote its steady-state
distribution. The steady-state distribution of the embedded Markov chain with probability
transition matrix P is, in general, different from the time average stationary distribution
of the Markov process. This can be seen from the following simple example of a two-state
Markov chain: Assume the Markov process alternates between states 1 and 2, that is,
I = {1, 2}. Let the holding time in state 1(2) be exponential with mean 1(2). Under the
time average stationary distribution of the Markov process, the latter resides in state 1 with
probability 1/3 and in state 2 with probability 2/3. Let X(1) be deterministic with length
0.5 and X(2) be deterministic with length 2.5. The steady-state distribution of the Markov
process embedded on demand epochs, has λ1 > λ2, contrary to the time-average stationary
distribution.

The transition probabilities {pii′ : i, i′ ∈ W} may be computed by first determining
the transient distributions {qii′(t) : t ≥ 0} as the solution of a system of linear differen-
tial equations, the so-called Kolmogoroff’s forward differential equations; see, for example,
Theorem 4.5.1 in Tijms [41]. See there, for a discussion of numerical methods for the solu-
tion of these differential equations. Mixing the transient probability functions {qii′(t), t ≥ 0}
with the distribution of the {X(i), i ∈ W} variables enables us to compute the transition
probability matrix P .

In the analysis below, we often need to know the distribution of Ξj , the amount of
time elapsed between a given demand epoch and the jth subsequent demand epoch, both
when j ≥ 1 and when j < 0. (When j < 0, Ξj denotes how much time has elapsed since the

(−j)th preceding demand epoch.) d= denotes “equality in distribution”.

Lemma 1: Let j ≥ 1.

(a) The distribution of (Ξj | W (0) = i), i ∈ W, may be computed recursively as fol-
lows: Assume the distributions (Ξj−1 | W (0) = i′) are known. (Ξj | W (0) = i) is the
convolution of the random variable X(i) and a mixture of the random variables
{Ξj−1 | W (0) = i′} with mixing probabilities {pii′ : i′ ∈ W} from the matrix P .

(b) (Ξ−j | W (0) = i) d= (Ξj | W−(j) | W (0) = i) where W−(j) denotes the state-of-the-
world (−j) renewal epochs before time 0,

Pr[W−(j) = i′ | W (0) = i] =
p
(j)
i′i λi′∑

w∈W p
(j)
wi λw

, (1)

and P (j) denotes the jth power of the transition probability matrix P .

Proof: Part (a) is immediate, as is the characterization (Ξ−j | W (0) = i) d= (Ξj | W−(j) |
W (0) = i) in part (b). It thus suffices to verify the conditional probabilities in Eq. (1).
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However, the latter is a direct application of Bayes Law, recognizing that the unconditional
steady-state probabilities of the state of the world are given by the vector λ. �

Note that, in part (b) of Lemma 1, the conditional distribution (Ξj | W−(j)) can be
computed as described in part (a). When the demand process is renewal, the characterization
of the intervals {Ξj} simplifies, majorly, as a direct corollary of Lemma 1:

Corollary 1: When the demand process is a simple renewal process with all inter-demand
times distributed like the random variable X, Ξj is distributed like the | j |th convolution
of X.

4. THE BASE MODEL

In our base model, we assume that demands are generated by a renewal process, that
is, the interarrival times between demand epochs are i.i.d. random variables X1,X2, . . .,
distributed like X with mean τ ; without loss of generality, time is measured such that τ = 1.
A single unit is demanded at each demand epoch. In Section 5, we generalize our results
to settings where the times between consecutive demand epochs fail to be identical and
independent, because they depend on an underlying state variable which evolves according
to an independent Markov process. We assume that stockouts are backlogged.

Any order incurs a fixed cost K and a variable per unit cost c. It arrives after a leadtime
L which is assumed to be constant or, more generally, characterized by a stochastic process
{L(t) : t ≥ 0} with L(t) the leadtime experienced by an order placed at time t. We assume
the leadtime process is exogenous, that is, it is independent of the demand process, as well as
sequential, that is, t + L(t) ≤ t′ + L(t′) for all t < t′, with probability one. Under sequential
leadtime processes, orders do not cross. Let L denote a random variable distributed like
the steady-state distribution of the process {L(t) : t ≥ 0}. We refer to Zipkin [45] for an
extensive discussion of such processes and their applications.

The shelf age-dependent holding and delay-dependent backlogging cost structure is
characterized by two functions α(·) and β(·). α(t) denotes the marginal inventory cost rate,
incurred for an item that has a shelf age t, and β(t) the marginal backlogging cost rate,
when a unit of demand has been waiting for t time units. (The functions α(·) and β(·) are
defined on the full real line R, with the understanding that α(s) = β(s) = 0, when s < 0.)

Let H(t) ≡ ∫ t

0
α(u) du denote the total carrying costs incurred for a unit that remains

in stock for t time units and J(t) ≡ ∫ −t

0
β(u) du the total backlogging costs for a demand

unit filled with a delay of −t time units. The functions α(·) and β(·) are assumed to be
increasing. The monotonicity of α(·) reflects the fact that the rate at which capital and
maintenance costs of inventories are accrued increases as the inventory becomes older. Sim-
ilarly, the out-of-pocket and goodwill losses associated with delayed deliveries are incurred
at an increasingly larger rate, explaining the monotonicity of β(·). The monotonicity prop-
erties are satisfied in all application settings reviewed in the Introduction. Together with
the fact that orders do not cross, monotonicity of α(·) and β(·) guarantees that it is optimal
to deplete inventories and to clear backlogs on a FIFO base. (On any given sample path, if
a pair of supply units u1 and u2 are ordered at time s1 ≤ s2, but u1 is assigned to fill a later
demand unit than u2, a cost saving can be achieved by interchanging the assignments.)

Our objective is to minimize long-run average costs, considering the SMDP that arises
when embedding the system process on the demand epochs. As with all SMDPs, control of
the system is restricted to the sequence of time epochs on which the process is embedded
(in this case, the demand epochs); more specifically, an order may be placed at any demand
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epoch, but not between demand epochs. When the interarrival times of the demands are
exponential, that is, when the demand process is Poisson, this restriction is without loss of
generality, due to the memorylessness property of the exponential distribution. For general
inter-demand time distributions, this restriction is, potentially, with some loss of optimality,
in as much as it is standard in all semi-Markov decision problems, in general, and all of the
aforementioned inventory models with renewal demands, in particular.

The state space Σ of the SMDP is infinite dimensional with the following list of state
components:

I = inventory in stock;

al = shelf age of the lth item in stock, l = 1, . . . , I;

B = backlog size;

dl = delay experienced, thus far, by the lth most recently backlogged and

still unsatisfied demand unit,

l = 1, . . . , B;

for k = 1, 2, . . . ,

zk =

{
size of the kth most recent order placed, if still in process,
0, otherwise;

tk =

⎧⎪⎨
⎪⎩

time elapsed since the placement of the kth
most recent order placed, if still in process,
0, otherwise.

Let x = I − B +
∑∞

l=1 zl denote the inventory position. Note that since α(·) ≥ 0 and
β(·) ≥ 0, IB = 0, that is, it is never beneficial to have a positive inventory along side a
positive backlog.

Let U = {z ≥ 0 : z is integer} denote the action set of possible order sizes which may be
selected at any state σ ∈ Σ. As in standard dynamic program textbooks (see, e.g., Bertsekas
[6]), we define a policy π as a sequence of functions π = (μ1, μ2, . . .) where each μt : Σ → U
maps the state s into an action μt(σ) ∈ U . Let Π be the set of all policies.

This SMDP with its infinite-dimensional state space is completely intractable. We show
that, under a single minor restriction of the policy space, this intractable SMDP may be
replaced by an SMDP with a one-dimensional state space, referred to as the transformed
SMDP, which is equivalent in the sense that any policy that is optimal in the latter is
optimal in the original SMDP as well. The transformed SMDP uses the inventory position
as the single state variable, similar to the treatment of standard inventory models with
positive leadtimes, that is, models in which inventories do not need to be differentiated
based on the items’ shelf age or backlogs based on the delay durations. Moreover, an (r, q)-
policy is shown to be optimal in the transformed SMDP and, hence, in the original SMDP,
in view of the equivalency between the two models.

To introduce the restriction, we first need the following definition.

Definition: A pair of states σ′ and σ ∈ Σ are defined to be similar if they have the same
state components, with the possible exception of the vector d of delay durations.

Similarity is an equivalency relationship and partitions the state space Σ into
equivalency classes. Note that similar states have the same inventory position.
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Restriction equal orders for similar states with negative inventory positions (EOSSNIP)
Assume policy π prescribes an order of size z on some state σ ∈ Σ, such that x(σ) + z < 0.
Then policy π prescribes the same order size z in all states that are similar to σ.

This policy restriction may come at some loss of optimality: while, in general, the policy
may differentiate the order size among similar states, based on the vector of delay durations,
such differentiation is precluded when the inventory position after ordering remains negative.
We note that a considerably more restrictive assumption is imposed by Huh et al. [23]
in their treatment of periodic review models with delay-dependent (marginal) backlogging
costs. The authors require the inventory position after ordering to be non-negative, see their
remark after Lemma 3.1, in which case the EOSSNIP imposes no restriction, whatsoever.
Under Restriction EOSSNIP, negative inventory positions after ordering are permitted;
however, as long as a negative inventory position is maintained after ordering, the policy
may not discriminate on the basis of the specific vector of delay durations d.

Allowing for a negative inventory position after ordering is important: as we demon-
strate, an (r, q)-policy acting on the inventory position is optimal; however, when the fixed
order cost K is sizable relative to the backlogging costs, an optimal reorder point r∗ < 0
may arise: this means that modest negative inventory positions of less than r∗ units are
optimally tolerated. Let Π̃ denote the class of policies that satisfy EOSSNIP. Finally, con-
sider a further restriction Π0 of the policy class, consisting of all policies that prescribe
order sizes exclusively based on the current inventory position and, possibly, the index of
the current time period. Clearly,

Lemma 2: Π0 ≤ Π̃ ≤ Π.

We next show that an optimal policy in the class Π̃ can be found within the consider-
ably smaller and simpler policy space Π0. To this end, we employ a single-unit matching
approach, first introduced by Axsäter [2,3] and subsequently used by many others, for exam-
ple, Muharremoglu and Tsitsiklis [27]. More specifically, observe that every demand unit
is filled by a specific supply unit and all inventory and delay costs associated with that
demand unit are a function of the time elapsed between the arrival of the “assigned” supply
unit and the epoch at which the demand unit is requested. More specifically, assume time
t = 0 corresponds with a demand epoch, after which the system remains empty, that is,
without inventory, backlogs or outstanding orders. Since, as demonstrated, ordered units
are optimally used on a FIFO basis, the jth ordered unit (since time 0) is used to fill the
jth demand unit (again, since time 0). Without loss of optimality, we may restrict our-
selves to policies in Π̃ with a long-run average ordering rate, at least equal to the average
demand rate. (Otherwise, the policy has infinitely large backlogs in steady state, and infi-
nite long-run average costs, since β+ ≡ limt→∞ β(t) > 0.) This implies that every demand
unit is matched to a supply unit, ordered within a finite amount of time from the demand
epoch. This implies that if an order is placed that elevates the inventory position from x
to y > x at a given demand epoch, the (y − x) units in the order may be given an index
j = x + 1, x + 2, . . . , y, such that the jth item is used to satisfy the jth ((−j)th) demand
following (preceding) the order epoch if j > (≤)0.

Theorem 1: There exists an optimal policy in the class Π̃ which belongs to Π0, that is, it
prescribes orders strictly on the basis of the prevailing inventory position.

Proof: Consider first any ordering decision which elevates the inventory position to
y ≥ x(σ), with y ≥ 0, at an arbitrary demand epoch with a given system state σ ∈ Σ,
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and associated inventory position x(σ). The expected inventory costs associated with the
units ordered are given by:⎧⎪⎨

⎪⎩
∑y

u=x(σ)+1[EH(Ξu − L) + EJ(Ξu − L)], if x(σ) ≥ 0,

E{∑−x(σ)
j=1 J(dj + L) +

∑y
u=0[EH(Ξu − L) + EJ(Ξu − L)], if x(σ) < 0.

(2)

Note that these matching costs are independent of the vector of shelf ages of the items
in stock, (a1, . . . , aI), or the vector of outstanding order sizes, (z1, z2, . . .), or the timing
of the orders, (t1, . . . , tI), and so are all matching costs incurred at future demand epochs.
Therefore, nothing is gained by making the order size decision dependent on this part of
the state vector.

When x(σ) ≥ 0, the current and all future inventory costs are also independent of the
vector d of backlog durations since, when x(σ) ≥ 0, ordered units are matched with demand
units, yet to arise. Such dependence does arise when x(σ) < 0. However, it follows from
Eq. (2) that, for any possible order that results in an inventory y ≥ 0, the vector d impacts
only the constant term {J(d1 + L), J(d2 + L), . . . , J(d−x + L)} and has no impact on any
matching costs incurred at future decision epochs. We conclude that when considering
ordering decisions that result in an inventory position y ≥ 0, nothing is gained by making
the decision dependent on any part of the state information, other than the current inventory
position x(σ).

It remains to be shown that the same invariance result prevails when considering order
sizes that result in y < 0. Such ordering decisions are only relevant if x(σ) ≤ y < 0, in which
case the matching costs are given by

−x∑
l=−y+1

EJ(dl + L). (3)

Once again, the vector of shelf ages a, the vector of outstanding order sizes z and
the vector of order times t have no impact on the current or any future matching costs;
therefore, even when considering possible order sizes resulting in y < 0, nothing is gained
by making decisions dependent on those parts of the state information, while Restriction
EOSSNIP for the policy class Π̃ precludes differentiation of the order size decisions based
on the vector d, either.

We conclude that any order size decision is optimally based on the inventory position
x(σ), solely, that is, an optimal policy can be found in the class Π0. �

Optimality of an (r, q)-policy
In view of Theorem 1, we may confine ourselves to the policy class Π0. The proof of

Theorem 1, in particular expressions Eqs. (2) and (3), show that the expected matching costs
incurred when elevating the inventory position x(σ) to y ≥ x(σ), depend on the state vector
σ, only via the vector d of backlog durations, and this of course only when x(σ) < 0. Each of
the duration components dj , j = 1, . . . , B, in this vector d at an arbitrary demand epoch, is
simply Ξ−j which, based on Corollary 1 in Section 3, is distributed like the jth convolution
of X. Thus, the expected long-run average cost of any policy π ∈ Π0 may be determined by
replacing in the matching cost expressions Eqs. (2) and (3) the vector d = (d1, d2, . . .) by the
random variables (Ξ−1,Ξ−2, . . .) from which they are drawn. This substitution, also, allows
for a uniform representation of the expected matching cost of an ordered unit with index
j, whether j ≥ 0, or j < 0. Let Aj denote the difference between the arrival time of the
demand unit matched to ordered item j and that of item j. If Aj is positive, it represents
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the shelf age of item j. If it is negative, the jth item in the ordered batch arrives after the
associated demand epoch, so that this demand unit experiences a backlog time equal to
−Aj . Clearly,

Aj =
{

Ξj − L when j ≥ 0,
−Ξj − L when j < 0.

(4)

The total expected inventory and backlogging costs associated with the jth ordered
unit are thus given by

Ĝ(j) = EH(Aj) + EJ(Aj), for any integer j. (5)

Assumption: Ĝ(j) < ∞ for any integer j.
The Assumption is satisfied, for example, if the functions α(·) and β(·) are polynomially

bounded and the interarrival time distribution X and the leadtime distribution L have finite
moments.

With the uniform expression Ĝ(j) being the expected matching costs for the jth ordered
unit, we have that under any policy π ∈ Π0, at any demand epoch, both the expected
immediate inventory costs and the transition dynamics only depend on the prevailing inven-
tory position x(σ) rather than the full vector σ ∈ Σ itself. In other words, for policies in
Π0, a single-dimensional state description—via the inventory position—suffices, and, by
Theorem 1, this class of policies contains an optimal policy within the much broader class
Π̃. The optimal policy in Π0 can thus be found in an SMDP with the one-dimensional state
space Σ0 ≡ Z where Z denotes the set of integers, action sets U0(x) = {y ≥ x : y ∈ Z} and
one-step expected cost functions:

γ(x, y) = Kδ(y − x) + c(y − x) +
y∑

j=x+1

Ĝ(j), (6)

where

δ(x) =
{

1 if x > 0,
0 if x ≤ 0.

The first two terms in Eq. (6) represent the fixed and variable procurement costs while
the last one denotes the expected carrying and delay costs associated with an order that
elevates the inventory position from x to y ≥ x, according to the above described matching
scheme. Finally, when the inventory position is increased to the level y, the state at the
next decision epoch equals (y − 1) with probability one.

We now prove our main result, that is, the optimality of an (r, q)-policy. However, we
first need the following Lemma:

Lemma 3: The function Ĝ(j) is convex in j.

Proof: A sequence of random variables {E(θ) : θ ∈ Θ} is stochastically increasing linear
(SIL) if {E(θ) : θ ∈ Θ} is stochastically increasing and Ef(E(θ)) is increasing convex in θ for
all increasing convex functions f(·), and is increasing concave in θ for all increasing concave
functions f(·). The family of distributions {Aj : j ≥ 0} is SIL in j; see Example 8.A.16 in
Shaked and Shanthikumar [36]. Similarly, we can easily verify that {Aj : j ∈ Z−} is SIL
in j using Example 8.B.7 and Theorem 8.B.9 there. This implies that EH(Aj) is a convex
function since H(·) is increasing and convex in view of the monotonicity property of α(·), and
see Definition 8.A.1(e) in Shaked and Shanthikumar [36]. Similarly, EJ(Aj) = −E(−J(Aj))
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is convex in y since E(−J(Aj)) is a concave function of j, as −J(·) is increasing and concave
in view of the monotonicity property of β(s). �

Theorem 2:

(a) An (r, q)-policy is optimal among all policies in the class Π̃.
(b) The long-run average cost under any (r, q) policy is given by

c(r, q) = c +
K +

∑r+q
j=r+1 Ĝ(j)
q

. (7)

Proof: (a) In view of Theorem 1, it suffices to show that an (r, q)-policy is optimal within
the smaller class of policies Π0. Define

G(y) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y∑
j=1

Ĝ(j), if y > 0,

−
0∑

j=y+1

Ĝ(j), if y ≤ 0,

with the convention that
∑b

j=a u(j) = 0 when a > b for any sequence {u(j)}. (One can
easily verify that, with this definition, G(y) − G(x) =

∑y
j=x+1 Ĝ(j), regardless of the signs

of x and y.)
To show that a particular policy is optimal, it suffices, under certain conditions, to

show that the policy prescribes actions which satisfy the minima for a given solution of
the model’s optimality equation. The long-run average optimality equation in the one-
dimensional SMDP associated with this class Π0 is given by

v(x) = min
y≥x

{γ(x, y) − g + v(y − 1)}

= min
y≥x

{Kδ(y − x) + c(y − x) + G(y) − G(x) − g + v(y − 1)}, x is integer, (8)

where g denotes the minimum long-run average cost in the SMDP. Adding G(x) to both
sides of the optimality equation and defining v̂(x) ≡ v(x) + G(x), we obtain the following
transformed optimality equation in terms of {v̂(·), g}:

v̂(x) = min
y≥x

{Kδ(y − x) + c(y − x) + G(y) − G(y − 1) − g + v̂(y − 1)}

= min
y≥x

{Kδ(y − x) + c(y − x) + Ĝ(y) − g + v̂(y − 1)}, x is integer. (9)

Equation (9) may be interpreted as a variant of the optimality equation in the clas-
sical periodic review inventory model, with fixed-plus-linear ordering costs and immediate
expected cost Ĝ(y), whenever the inventory position after ordering equals y. By Lemma 3,
Ĝ(·) is convex, that is, −Ĝ(·) is unimodal. It follows from Zheng [43] that an (s∗, S∗)-policy
is optimal in this periodic review MDP. Since at every demand epoch a unit size demand
occurs, this (s, S) policy is of an (r, q)-type, say with reorder level r∗ = s∗ and fixed order
size q∗ = S∗ − s∗. Let g∗ denote its long-run average costs.

We now show that this (r∗, q∗)-policy is also optimal in the SMDP with optimality
Eq. (8), that is, the SMDP associated with the policy class Π0. Let π = (μ1, μ2, . . .) ∈ Π0

denote an arbitrary policy. Given a specific starting state x1, let {xt : t > 1} denote the
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sequence of states adopted under the policy π. Note that in period t, the inventory position
is raised from xt to yt ≡ xt+1 + 1. Since the (r∗, q∗)-policy is optimal (among all Markov
strategies) in the transformed periodic review model, we have

g∗ ≤ lim inf
T→∞

1
T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + Ĝ(yt)]

= lim inf
T→∞

1
T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt) − G(yt − 1))]

= lim inf
T→∞

1
T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt) − G(xt+1))]

= lim inf
T→∞

1
T

{
T∑

t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt) − G(xt))] − EπG(xT+1)

}

≤ lim inf
T→∞

1
T

T∑
t=1

Eπ[Kδ(yt − xt) + c(yt − xt) + (G(yt) − G(xt))]. (10)

This establishes that the long-run average cost under any policy π is bounded from
below by g∗. (To verify the last equality, note that limT→∞((G(x1))/T ) = 0. To verify the
last inequality, note that G(·) ≥ 0.)

Similarly, when the (r∗, q∗)-policy is selected for the policy π ∈ Π0, both inequalities in
Eq. (10) become equalities, so that g∗ denotes the long-run average cost of the (r∗, q∗) policy
in the SMDP with optimality Eq. (8). (When π is the (r∗, q∗)-policy, the first inequality in
Eq. (10) is an equality because g∗ denotes the long-run average cost of the (r∗, q∗)-policy
in the periodic review model. The last inequality in Eq. (10) holds as an equality because
limT→∞((G(xT+1)/T ) = 0, as r∗ ≤ xT+1 ≤ r∗ + q∗.) This proves that the (r∗, q∗)-policy is
optimal, in our SMDP, among all policies in Π0. We conclude that the (r∗, q∗) policy is
indeed optimal among all policies in the original model.

(b) The proof of part (a) shows that the long-run average cost of any given (r, q)-
policy is the same as that in the equivalent periodic review model. It is easily verified that
the steady-state inventory position after ordering is uniformly distributed on the integers
{r + 1, . . . , r + q}. It follows that the long-run average cost c(r, q) is given by Eq. (7). �

The proof of Theorem 2 by itself does not establish that the optimality Eq. (8) has a
solution and that the optimal (r∗, q∗)-policy prescribes actions that achieve the minimum
in Eq. (8), for every state x. Proposition 1, the proof of which is deferred to the Appendix,
establishes these results.

Proposition 1: The optimality Eq. (8) of the SMDP has a solution {v∗(·), g∗} and the
optimal (r∗, q∗)-policy achieves the minimum in Eq. (8) for any starting state x.

Given the cost representation in Eq. (7) and since the function Ĝ is convex
(see Lemma 1), the optimal policy can be computed efficiently with the algorithm in
Federgruen and Zheng [19], see also Zipkin [45] for a description of this algorithm. Finally, it
is of interest to characterize how various model parameters such as the shape of the marginal
inventory cost rate function α(·), that of the marginal backlogging cost rate function β(·)
and the leadtime or interarrival time distribution impact the optimal policy parameters r∗

and R∗ ≡ r∗ + q∗. To investigate the impact of any of these model primitives θ, we write
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the one-step expected cost function as Ĝ(y | θ). In the first two examples, θ is a real-valued
function in the space Θ of all increasing, non-negative functions, which we endow with the
partial order implied by point-wise dominance, that is, θ1 � θ2 if and only if θ1(t) ≤ θ2(t)
for all t ≥ 0; in the last two examples, θ is an element of the space Θ of all distributions
of non-negative random variables, endowed with the ≤st partial order or the ≤cx order.
(For any pair of random variables X and Y , X ≤cx Y means that Ef(X) ≤ Ef(Y ) for any
convex function f(·); X ≤cx Y implies that E(X) = E(Y ), while Var(X) ≤ Var(Y ).) We
define a function F (· | θ) to have increasing (decreasing) differences if F (y2 | θ) − F (y1 | θ)
is increasing (decreasing) in θ ∈ Θ for all y1 < y2.

Proposition 2:

(a) When the incremental inventory cost rate function α(·) is replaced by a new function
α̂(·) that is point-wise larger, that is, α(t) ≤ α̂(t) for all t ≥ 0, the optimal values r∗

and R∗ decrease.
(b) When the incremental backlogging cost rate function β(·) is replaced by a new func-

tion β̂(·) that is point-wise larger, that is, β(t) ≤ β̂(t) for all t ≥ 0, the optimal values
r∗ and R∗ increase.

(c) When the leadtime distribution L1 is replaced by L2 ≥st L1, the optimal values r∗

and R∗ increase.
(d) Assume the functions α(·) and β(·) are convex. When the interarrival time distribu-

tion X1 is replaced by X2 ≥cx X1, the optimal values r∗ and R∗ decrease.

Thus, while both r∗ and R∗ are guaranteed to increase when the leadtime distribution
increases in the general ≤st ordering sense, we obtain the opposite monotonicity properties
with respect to the inter-demand time distribution, only when the distribution increases in
the more restrictive ≤cv ordering. (The latter implies in particular that E(X1) = E(X2).)
One reason behind that restriction is that, if E(X1) 	= E(X2), the average demand rate
changes and its impact on the optimal policy parameters is ambiguous, a phenomenon
already noted in the standard inventory model, see Federgruen and Wang [17]. Proposition 2
covers all of the model primitives with the exception of the fixed cost K. For the latter,
Zheng [43] already showed that an increase of K results in an increase of R∗ and a decrease
of r∗. (The variable order costs are independent of the choice of the policy parameters; in
other words, r∗ and R∗ are independent of c.)

5. MARKOV-MODULATED RENEWAL PROCESSES

We now return to the general demand model described in Section 3, where demands are
generated by a Markov-modulated renewal process. In this case, the state of the system in
the original SMDP, includes all of the components listed in Section 4, as well as the state of
the “world” W (t) = w ∈ W, which evolves according to the continuous-time Markov chain
with transition rate matrix Q. Restriction EOSSNIP confines the policy space to Π̃. A
straightforward extension of Theorem 1 establishes that an optimal policy within Π̃ may be
found in the much smaller policy space Π0, now defined as all policies which prescribe an
order size, based exclusively on this prevailing inventory position, the index of the current
time period, as well as the state of the world w.

Moreover, analogous to the derivation in Section 3, we show that for policies π ∈ Π0,
a two-dimensional state description – via the inventory position x(σ) and the state of the
world W – suffices. The optimal policy in Π0 can thus be found in an SMDP with the
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two-dimensional state space S0 = Z ×W and action set U0(x,w) = {y ≥ x : y ∈ Z}. The
one-step expected cost when at an arbitrary demand epoch with a prevailing inventory
position x(σ) and state of the world w, an order is placed to elevate the inventory position
to y ≥ x(σ) units is given at follows:

γ(x, y, w) = Kδ(y − x) + c(y − x) +
y∑

j=x+1

Ĝw(j), (11)

where Ĝw(j) denotes the expected matching costs for the ordered unit with index j, which
is matched with the jth (-jth) demand following (preceding) the current demand epoch,
when the current state of the world is w ∈ I. Analogous to the function Ĝ(·) in the basic
model, we have Ĝw(j) = E[H(Aj(w)) | W (0) = w] + E[J(Aj(w)) | W (0) = w], and Aj(w)
again refers to the (positive or negative) age of the supply unit with index j, at the time it
satisfies its matched demand unit. More specifically, for j ≥ 0, let

Aj(w) = [Ξj | W (0) = w] − L, (12)

where the expression within squared brackets denotes the sum of j consecutive inter-demand
times, given that W (0), the state of the world at the current order epoch, is w. When j < 0,

Aj(w) = − [Ξj | W (0) = w] − L. (13)

See Section 3 for characterizations of the distributions of the random variables
(Ξj | W (0) = w) and (Ξj | W (0) = w) as well as an efficient procedures to compute their
distributions.

It follows, again, from the proof of Lemma 3 that the functions Ĝw(·) are convex for all
w ∈ W. By the proof of Theorem 2, our model is therefore equivalent to a periodic review
inventory model with state-dependent holding and backlogging cost functions Ĝw(·). It
follows from Chen and Song [10], Section 4, that a state-dependent (s, S)-policy is optimal.
Since the demand process is a point process, this implies that a state-dependent (r, q)-policy
is optimal. We conclude:

Theorem 3: In the model with a Markov-modulated demand process, a state-dependent
(r, q)-policy is optimal among all policies in Π̃.

6. CONCLUSIONS AND EXTENSIONS

We have discussed a continuous-time inventory model in which demands are generated by
a counting process. The distinguishing feature of the model is that the marginal inventory
carrying cost of a unit of inventory depends on its shelf age, in accordance with a general,
increasing function α(·). Similarly, the marginal delay cost incurred for a backlogged unit,
depends on the delay experienced, thus far, again in accordance with a general increasing
function β(·).

When the counting process is a renewal or a Markov-modulated renewal process, we have
shown, under standard fixed-plus-linear order costs, that an (r, q)-policy is optimal under
the long-run average cost criterion. (When the demand process is a Markov-modulated
process, both the reorder point r∗ and the order quantity q∗ are state-dependent.) We have
shown that a standard efficient algorithm can be used to compute the optimal parameter
values and we have derived monotonicity properties for the dependence of the optimal policy
parameter values, on the various model primitives.
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One natural extension of our results involves non-unit demand sizes at the demand
epochs. The simplest and most frequently used such process is a so-called compound renewal
process. Here, the demand sizes at consecutive demand epochs are generated by an i.i.d.
sequence of variables {Di}, which is also independent of the sequence of demand epochs. Let
N(·) denote the renewal process associated with this sequence of i.i.d. random variables,
that is, N(j) = min{k ≥ 1 :

∑k
i=1 Di ≥ j}. The above-described unit matching approach

continues to be optimal, where the expected cost of the jth unit continues to be given by
Ĝ(y) = EH(Aj) + EJ(Aj). The only difference is that under compound renewal demands,
the age variable is now given by:

Aj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N(j)∑
i=1

Xi − L, when j > 0,

−
N(−j)∑

i=1

Xi − L, when j ≤ 0.

Thus, assuming again that orders can be placed at demand epochs (only), the model can
again be formulated as an SMDP with the system’s inventory position as its one-dimensional
state variable, as opposed to having to disaggregate the inventory level according to the
items’ shelf age or the backlogged units’ delays, along with maintaining separate information
about the complete vector of outstanding orders. The one-dimensionality of the state space
allows one to compute the order policy with standard solution methods for SMDPs; see for
example, Aviv and Federgruen [1]. One might conjecture that an (s, S)-policy would now
be optimal, the natural extension of (r, q)-policies under demands of arbitrary rather than
unit size. However, the above proof technique can not be extended because the function
Ĝ(·) is no longer convex, that is, Lemma 3 may fail to hold. We refer to Federgruen and
Wang [18] for an alternative approach to address this model, under certain restrictions.
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APPENDIX

Proof of Proposition 1: Zheng [43] established that the existence of a solution v∗(·) to a relaxed
version of the optimality Eq. (9) of the transformed periodic review MDP, where the constraints
y ≥ x are relaxed:

v(x) = min
y

{Kδ(y − x) + c(y − x) + Ĝ(y) − g + v(y − 1)}. (A.1)

The solution v∗(·) is, in fact, bounded. A solution w∗ to the optimality Eq. (9) can be
constructed, recursively, from v∗(·) as follows:

w∗(x) ≡
{

v∗(x), if x ≤ R∗ ≡ r∗ + q∗,
Ĝ(x) − g∗ + w∗(x − 1), if x > R∗. (A.2)

We now show that the function w∗(·) satisfies the optimality Eq. (9). Note, first, from
Federgruen and Zheng [19, Lemma 2] that:

g∗τ ≤ Ĝ(R∗ + 1) < Ĝ(R∗ + 2) < Ĝ(R∗ + 3) < · · · . (A.3)

Equation (A.3) implies, by induction, that w∗(y) is increasing for y ≥ R∗. For x ≤ R∗ it is optimal,
in the relaxed problem, to select x ≤ y ≤ R∗. Thus, for all x ≤ R∗,

w∗(x) = v(x) = min
y

{Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + v∗(y − 1)}

= min
x≤y≤R∗{Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + v∗(y − 1)}

= min
x≤y≤R∗{Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + w∗(y − 1)}

= min
x≤y

{Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + w∗(y − 1)},

where the last equality follows from w∗(R∗) ≤ w∗(R∗ + 1) ≤ w∗(R∗ + 2) ≤ . . . and the second to
last equality follows from y − 1 ≤ R∗ − 1, so that v∗(y − 1) = w∗(y − 1). It remains to be shown
that w∗(·) satisfies the optimality Eq. (9) for x > R∗. For all x > R∗ and y ≥ x:

w∗(x) = Ĝ(x) − g∗ + w∗(x − 1) ≤ Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + w∗(y − 1).

(The equality follows from Eq. (A.2); the inequality follows from the fact that the first two terms
to its right are non-negative, while Ĝ(y) ≥ Ĝ(x) and w∗(y − 1) ≥ w∗(x − 1) for any y ≥ x > R∗.)
Thus, for x ≥ R∗:

w∗(x) = min
x≤y

{Kδ(y − x) + c(y − x) + Ĝ(y) − g∗ + w∗(y − 1)},

verifying that w∗(·) satisfies the optimality Eq. (9), also for x > R∗. Moreover, the policy (r∗, q∗)
achieves all minima in this optimality equation. Furthermore, it follows from the proof of Theorem 2
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that the function v∗(x) ≡ w∗(x) − G(x) satisfies the optimality Eq. (8) and the policy (r∗, q∗)
achieves all minima in this optimality equation as well. �

Proof of Proposition 2: (a) By Theorem 2 from Federgruen and Wang [17], it suffices to
show that Ĝ(y | α(·)) has increasing differences in (y, α(·)), or that EH(Ay | α(·)) has
increasing differences in (y, α(·)). Since

EH(Ay | α(·)) =

∫ ∞

0

∫ t

0
α(s) ds dFAy

(t) =

∫ ∞

0

∫ ∞

s
α(s) dFAy

(t) ds

=

∫ ∞

0
α(s)(1 − FAy

(s)) ds. (A.4)

We get

EH(Ay+1 | α(·)) − EH(Ay | α(·)) =

∫ ∞

0
α(s)(FAy

(s) − FAy+1(s)) ds

≤
∫ ∞

0
α̂(s)(FAy

(s) − FAy+1(s)) ds

= EH(Ay+1 | α̂(·)) − EH(Ay | α̂(·)),

where the inequality follows from the point-wise dominance α(·) ≤ α̂(·) and the fact that
the SIL property of Ay in y, see the proof of Lemma 3, implies that Ay ≤st Ay+1.

(b) Analogous to (a), it suffices to show that EJ(Ay | β(·)) has decreasing differences in (y, β(·)).
Since

EJ(Ay | β(·)) = E

∫ 0

−L

∫ −t

0
β(s) ds dFAy

(t) = E

∫ L

0

∫ −s

−L
β(s) dFAy

(t) ds

= E

∫ L

0
β(s)FAy

(−s) ds,

similar to part (a), we have

EJ(Ay+1 | β(·)) − EJ(Ay | β(·)) = E

∫ L

0
β(s)(FAy+1(−s) − FAy

(−s)) ds

≥
∫ ∞

0
β̂(s)(FAy+1(s) − FAy

(s)) ds

= EJ(Ay+1 | β̂(·)) − EJ(Ay | β̂(·)).

(c) Once again, it suffices to show that Ĝ(y | L) = EH(Ay | L) + EJ(Ay | L) has decreasing
differences in (y,L). We prove this for the first term EH(Ay | L); the proof for the second
term EJ(Ay | L) is analogous. Note that

EH(Ay+1 | L) − EH(Ay | L) = E

(∫ ∑y+1
i=1 Xi−L

∑y
i=1 Xi−L

α(s) ds

)

= E{Xi}

{
EL
∫ ∑y+1

i=1 Xi−L
∑y

i=1 Xi−L
α(s) ds

}
. (A.5)

Also, for any given realization of the renewal process of {Xi}, the function∫ ∑y+1
i=1 Xi−L∑y

i=1 Xi−L
α(s) ds is decreasing in L, since the function α(s) is increasing. This implies
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that

EL2

∫ ∑y+1
i=1 Xi−L2

∑y
i=1 Xi−L2

α(s) ds ≤ EL1

∫ ∑y+1
i=1 Xi−L1

∑y
i=1 Xi−L1

α(s) ds,

whenever L2 ≥st L1, thus implying that EH(Ay+1 | L2) − EH(Ay | L2) ≤ EH(Ay+1 |
L1) − EH(Ay | L1).

(d) Similar to part (c), it suffices to show that Ĝ(y | X) = EH(Ay | X) + EJ(Ay | X) has
increasing differences in (y, X) where X is the interarrival time distribution. As we did
in part (c), we only prove this for the first term of Ĝ(y | X), since the proof for the

second term is analogous. Define φ(r, t) ≡ ∫ r+t
r α(s) ds. Note that φ(r, t) is a convex

function of r(t > 0) for any given t > 0(r) since ∂2φ(r, t)/∂r2 = α′(r + t) − α′(r) ≥ 0 and
∂2φ(r, t)/∂t2 = α′(r + t) ≥ 0. The first inequality follows from the convexity of α(·), and the
second inequality follows from the monotonicity of α(·). Hence, it follows from Eq. (A.5) that

EH(Ay+1 | X1) − EH(Ay | X1) = Eφ

(
y∑

i=1

X1
i − L, X1

y+1

)
≤ Eφ

(
y∑

i=1

X2
i − L, X1

y+1

)

≤ Eφ

(
y∑

i=1

X2
i − L, X1

y+1

)

= EH(Ay+1 | X2) − EH(Ay | X2),

where the inequalities follow from
∑y

i=1 X1
i ≤cv

∑y
i=1 X2

i and X1
y+1 ≤cv X2

y+1.
�
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