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We consider two-stage tandem queuing systems with dedicated servers in each
station and flexible servers that can serve in both stations. We assume exponential
service times, linear holding costs, and operating costs incurred by the servers at
rates proportional to their speeds. Under conditions that ensure the optimality of
nonidling policies, we show that the optimal allocation of flexible servers is
determined by a transition-monotone policy. Moreover, we present conditions
under which the optimal policy can be explicitly determined.

1. INTRODUCTION

We study the optimal dynamic assignment of flexible servers in two-stage tandem
queuing systems, both without arrivals (clearing systems) and with arrivals. The
problem we consider is motivated by applications in manufacturing systems where flex-
ible resources (e.g., cross-trained workers, reconfigurable machines) are used to
improve performance under varying demand and operating conditions.
Narongwanich, Duenyas, and Birge [16] considered the optimal allocation of capacity
investments between dedicated and reconfigurable systems for firms that make products
with random demands and introduced new generations of products in random future
times. Hopp and Van Oyen [13] provide a framework for justifying workforce cross-
training in an organization. They established the connection of cross-training to the
organization’s objectives and discussed methods of implementation appropriate for
the specific application. Models of serial production systems with throughput maximi-
zation as the objective have been analyzed by Van Oyen, Gel, and Hopp [22],
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Andradottir, Ayhan, and Down [4–6], Gel, Hopp, and Van Oyen [10,11], Hopp, Tekin,
and Van Oyen [12], Iravani, Van Oyen, and Sims [15], and Ahn and Righter [3]. These
models include collaborative and noncollaborative work disciplines, open systems with
external arrivals that are independent of the system state, closed systems (e.g., CONWIP
systems where a departure triggers a new arrival), and various forms of cross-training
(e.g., full, zone, or hierarchical cross-training).

There is also much research on the optimal use of flexible servers in tandem
systems with holding costs. Because the mathematical models involved are quite
complex, most results refer to two-stage systems and exponential service times.
Rosberg, Varaiya, and Walrand [19] considered a system with Poisson arrivals, a
server with a constant service rate in the downstream station, and a server with a con-
trollable service rate in the upstream station. They showed that the optimal service rate
is nondecreasing in the length of the first queue and nonincreasing in the length of the
second queue. Weber and Stidham [23] considered a system of n stations with arrivals
at each station, where, in addition to convex holding costs, servers incur operating
costs that are convex functions of their service rates. They showed that the optimal
policy is transition-monotone; that is, when a job leaves a queue, the optimal
service rate in that queue is not increased and the optimal service rates in the other
queues are not decreased. Duenyas, Gupta, and Olsen [7] and Iravani, Posner, and
Buzacott [14] characterized optimal policies for models of n and two-stage
systems, respectively, with one flexible server and setup costs. Pandelis and
Teneketzis [18] studied two-stage clearing systems with multiple flexible servers
where jobs join the second queue with probability p after completing service in the
upstream station. They derived conditions under which the policy that gives priority
to jobs in the upstream station is optimal for general service times. For a two-stage
clearing system with two flexible servers, Ahn, Duenyas, and Zhang [2] provided
necessary and sufficient conditions under which an exhaustive policy for the upstream
or the downstream station is optimal. Similar results were obtained by Ahn, Duenyas,
and Lewis [1] for the model with arrivals. The results of Ahn et al. [2] have been
extended in two more directions. First, Schiefermayr and Weichbold [20] obtained
the optimal policy for all values of holding costs and service times. Second,
Weichbold and Schiefermayr [24] derived conditions for the optimality of exhaustive
policies when jobs require the second stage of service with a certain probability.

With the exception of Rosberg et al. [19] where there is a dedicated server in the
downstream station, the aforementioned articles have assumed no dedicated capacity.
Farrar [8,9] studied two versions of a clearing system with dedicated servers in both
stations and one flexible server. In the constrained version, the flexible server can only
work in the upstream station, whereas in the unconstrained version, the server can
work in both stations. For both versions, he showed that the optimal policy is charac-
terized by a switching curve; the flexible server is idled or assigned to the downstream
station when the number of jobs there exceeds a certain threshold that depends on the
number of jobs in the first queue. He also showed that the slope of the switching curve
is greater than or equal to 21. Pandelis [17] showed the validity of the results
obtained by Farrar [8,9] for the case when jobs might leave the system after
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completing service in the first station and specified subsets of the state space where the
optimal policy can be explicitly determined. The same structure for the optimal policy
was derived by Wu, Lewis, and Veatch [26] for a system with a number of flexible
servers with the additional feature that all servers are subject to breakdowns. In
their model, they assumed that processing requirements are the same in both stations,
so actual processing times depend on the servers’ speeds. Finally, Wu, Down, and
Lewis [25] showed the optimality of a transition-monotone policy for the previous
model with arrivals and no dedicated servers in the upstream station.

For clearing systems with no server breakdowns, we extend the results of Wu et al.
[26] in two directions. First, we relax the assumption that the two stations are identical
in terms of jobs’ processing requirements. Second, we assume that all servers incur
operating costs, different for each station, during the time they work. To the best of
our knowledge, Weber and Stidham [23] is the only previous work that has considered
operating costs. Under the additional assumption that operating costs for flexible
servers are proportional to their speeds, we get an equivalent problem with one flexible
server. Depending on holding costs, operating costs, and service rates, there might
be situations when it is optimal to idle the flexible server (e.g., when the number of
jobs in the two stations is low enough to yield higher operating than potential
holding costs). We derive a condition under which idling the flexible server is not
optimal when there are jobs in the downstream station. For this instance of the
problem, we show that when the flexible server has higher relative operating cost
than the dedicated server in the same station, the optimal policy possesses the switch-
ing curve properties proven by Farrar [8]. We also show for the case of no dedicated
capacity in one of the two stations that it might be possible to determine the optimal
policy explicitly. Specifically, the flexible server is always assigned to the station with
no dedicated servers if the reduction in holding cost rate is larger in that station.

Assuming dedicated capacity in only one of the two stations, we obtain similar
results for the problem with arrivals under the expected average cost criterion.
After specifying the maximal arrival rate for which the problem has a solution and
a condition for the optimality of nonidling policies, we show the following: (1) For
dedicated capacity in the second stage only, the incentive to use the flexible server
at the first stage is nonincreasing in the number of jobs at the second stage and (2)
priority should be given to the station with no dedicated servers if the reduction in
holding cost rate is larger and the operating cost is smaller there.

The article is organized as follows. In Section 2 the clearing model is formulated
as a discrete-time Markov decision process and the structure of optimal nonidling
policies is derived. The model with arrivals is analyzed in Section 3. Extensions
are discussed as part of our concluding remarks in Section 4.

2. CLEARING SYSTEMS

We consider a tandem queuing system consisting of two stations. There is a number of jobs
initially present in the system and no other external arrivals. Jobs that complete service in
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the upstream station (station 1) transfer to the downstream station (station 2) where they
receive additional service and then leave the system. Every job in station i, i ¼ 1, 2, requires
an exponentially distributed amount of service with mean Yi. There are dedicated servers,
one for each station, working at speeds sd1 and sd2; these servers are forced to work when
there are jobs present in their corresponding station. There are also N additional servers that
can serve in both stations; we assume that these servers can move from station to station
instantaneously without any cost and work at speed si, i ¼ 1, 2, . . ., N—the same
for both stations. Let m1, m2 and m1i, m2i denote the processing rates for jobs served by
the dedicated servers and flexible server i respectively at stations 1 and 2. We have

m1 ¼
sd1

Y1
, m2 ¼

sd2

Y2
(1)

and

m1i ¼
si

Y1
, m2i ¼

si

Y2
, i ¼ 1, 2, . . . , N: (2)

Each job in station i, i ¼ 1, 2, incurs a linear holding cost at rate hi. Moreover,
dedicated servers incur linear operating costs at rates b1 and b2 during the time
they work, whereas flexible servers incur costs at rates c1i and c2i, i ¼ 1, 2, . . ., N,
during the time they work in stations 1 and 2, respectively. Our objective is to deter-
mine an allocation strategy for the flexible servers that minimizes the total expected
holding and operating costs until the system is cleared of all jobs. Allowing preemp-
tions at times of service completions and assuming that work prior to completions
is lost, we formulate the problem as a Markov decision process with state space
f(x1, x2) : x1, x2 � 0g, where x1 and x2 are the number of jobs in station 1 and
station 2, respectively, including those in service. Starting from state (x1, x2), we let
V(x1, x2) be the minimum total expected holding and operating cost incurred until
the system empties, where V(0, 0) ¼ 0. Let also M ¼ f1, 2, . . . , Ng be the set of
flexible servers. To get an expression for the minimum cost function V(x1, x2), we
minimize over all possible assignments of flexible servers to the two stations. After
applying uniformization to convert the continuous-time problem to an equivalent
discrete-time problem (see Serfozo [21]), we obtain dynamic programming equations
(3)–(5), where terms VF

1(x1, x2) and VG
2(x1, x2) correspond to machines in subsets

F and G of M being assigned to stations 1 and 2, respectively. In deriving (3)–(5),
we have assumed that the uniformization rate is m1 þ m2 þ n1 þ n2 ¼ 1, where
n1 ¼

P
im1i and n2 ¼

P
im2i. We have also assumed that servers in the same

station can collaborate to work on the same job, so that processing rates are additive.
For x1, x2 �1, we have

V(x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2 þ m1V(x1 � 1, x2 þ 1)

þ m2V(x1, x2 � 1)þ (n1 þ n2)V(x1, x2)

þ min
F,G,M

F>G¼1

{V1
F(x1, x2)þ V2

G(x1, x2)}, (3)
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V(x1, 0) ¼ h1x1 þ b1 þ m1V(x1 � 1, 1)

þ (m2 þ n1 þ n2)V(x1, 0)þ min
F,M

{V1
F(x1, 0)}, (4)

V(0, x2) ¼ h2x2 þ b2 þ m2V(0, x2 � 1)þ (m1 þ n1 þ n2)V(0, x2)

þ min
G,M

{V2
G(0, x2)}, (5)

where

V1
F(x1, x2) ¼ c1F þ m1F[V(x1 � 1, x2 þ 1)� V(x1, x2)], (6)

V2
G(x1, x2) ¼ c2G þ m2G[V(x1, x2 � 1)� V(x1, x2)], (7)

and

c1F ¼
X
i[F

c1i, c2G ¼
X
i[G

c2i, m1F ¼
X
i[F

m1i, m2G ¼
X
i[G

m2i: (8)

We assume that the following conditions hold.

(A1)

c1i

si
¼ ~c1,

c2i

si
¼ ~c2, i ¼ 1, 2, . . . , N, for some constants ~c1 and ~c2:

(A2)

c2

n2
� h2 þ b2

m2
:

(A3)

c1

n1
� b1

m1
,

c2

n2
� b2

m2

Condition (A1) implies that operating costs incurred by flexible servers are pro-
portional to their speeds. According to condition (A2), the mean operating cost for
a job served in station 2 by the flexible server alone is no more than the corresponding
mean holding and operating cost incurred during this job’s service by the dedicated
server alone. According to condition (A3), the operating cost per unit speed is
greater for the flexible server compared to the dedicated server in the same station.

We show in the following proposition that under condition (A1), there exists an
optimal policy that prescribes the same action for all flexible servers.

PROPOSITION 1: Assume that condition (A1) holds. Then there exists an optimal policy
that either idles all flexible servers or assigns them all to a single station.
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PROOF: Assuming F = 1 and m [ F and letting Fm ¼ F 2 fmg, we obtain from
condition (A1) and (1), (2), (6), and (8)

V1
F(x1, x2)� V1

Fm
(x1, x2) ¼ c1m þ m1m[V(x1 � 1, x2 þ 1)� V(x1, x2)]

¼ m1mV1(x1, x2),

where

V1(x1, x2) ¼ ~c1Y1 þ V(x1 � 1, x2 þ 1)� V(x1, x2):

Similarly, for G = 1, n [ G, and Gn ¼ G 2 fng, we obtain from condition (A1)
and (1), (2), (7), and (8)

V2
G(x1, x2)� V2

Gn
(x1, x2) ¼ c2n þ m2n[V(x1, x2 � 1)� V(x1, x2)]

¼ m2nV2(x1, x2),

where

V2(x1, x2) ¼ ~c2Y2 þ V(x1, x2 � 1)� V(x1, x2):

We have the following cases.

(i) V1(x1, x2) � 0, V2(x1, x2) � 0: It is optimal to idle all flexible servers.
(ii) V1(x1, x2) � 0, V2(x1, x2) , 0: It is optimal to assign all flexible servers to

station 2 when there is at least one job present there, otherwise idling is optimal.
(iii) V1(x1, x2) , 0, V2(x1, x2) � 0: It is optimal to assign all flexible servers to

station 1 when there is at least one job present there, otherwise idling is optimal.
(iv) V1(x1, x2) , 0, V2(x1, x2) , 0: Idling any flexible server is not optimal.

Therefore, it is optimal to either idle or use all flexible servers. It remains to show that
when case (iv) holds, it is optimal to assign all servers to a single station. Let F and G
be such that F < G ¼ M and G =1. For i [ G, we denote by Fi and Gi the sets of
servers assigned to stations 1 and 2, respectively, after moving server i from station 2
to station 1 (i.e., Fi ¼ F < fig, Gi ¼ G 2 fig). From condition (A1) and (1), (2), and
(6)–(8), we get

V1
Fi

(x1, x2)þ V2
Gi

(x1, x2)� [V1
F(x1, x2)þ V2

G(x1, x2)]

¼ c1i þ m1i[V(x1 � 1, x2 þ 1)� V(x1, x2)]� c2i

� m2i[V(x1, x2 � 1)� V(x1, x2)]

¼ m2iV12(x1, x2), (9)

where

V12(x1, x2) ¼ (~c1 � ~c2)Y2 þ
Y2

Y1
[V(x1 � 1, x2 þ 1)� V(x1, x2)]

� [V(x1, x2 � 1)� V(x1, x2)]:
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Equation (9) implies that when V12(x1, x2) � 0, it is optimal to assign all flexible
servers to station 2; otherwise, assign them to station 1. B

As a consequence of Proposition 1, replacing the N flexible servers with one
server working at rates n1 and n2 and incurring operating costs at rates c1 and c2

given by c1 ¼
P

ic1i and c2 ¼
P

ic2i results in an equivalent problem. The optimality
equations for this problem take the following form:

V(x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2 þ m1V(x1 � 1, x2 þ 1)

þ m2V(x1, x2 � 1)þ (n1 þ n2)V(x1, x2)

þmin{0, V1
M(x1, x2), V2

M(x1, x2)}, (10)

V(x1, 0) ¼ h1x1 þ b1 þ m1V(x1 � 1, 1)þ (m2 þ n1 þ n2)V(x1, 0)

þmin{0, V1
M(x1, 0)}, (11)

V(0, x2) ¼ h2x2 þ b2 þ m2V(0, x2 � 1)þ (m1 þ n1 þ n2)V(0, x2)

þmin{0, V2
M(0, x2)}: (12)

Next, we show that, under condition (A2), idling the flexible server is not optimal
when there is at least one job in station 2. Actually, condition (A2) is the condition
under which it is optimal to use the flexible server when there are no jobs in
station 1. To see this, note that when there are no jobs present at one of the two
stations, we can derive the following expressions for the value function by condition-
ing on the time of the first service completion:

V(x1, 0) ¼ min
h1x1 þ b1

m1
,

h1x1 þ b1 þ c1

m1 þ n1

� �
þ V(x1 � 1, 1), (13)

V(0, x2) ¼ min
h2x2 þ b2

m2
,

h2x2 þ b2 þ c2

m2 þ n2

� �
þ V(0, x2 � 1): (14)

Therefore, when station 1 or station 2 is empty of jobs, idling the flexible server is
optimal for x2 , X2 and x1 , X1, respectively, where

X2 ¼
c2m2 � b2n2

h2n2
, X1 ¼

c1m1 � b1n1

h1n1
:

Therefore, if condition (A2) holds, idling the flexible server is not optimal when x1 ¼ 0.
We show in Proposition 2 that this is also true for x1 . 0, provided that there are jobs in
station 2. First, we need the following lemma (for the proof, see Appendix A).

LEMMA 1: Assume that condition (A2) holds. Then, for x1, x2 � 1,

V(x1, x2)� V(x1, x2 � 1) � h2x2 þ b2 þ c2

m2 þ n2
:
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PROPOSITION 2: Condition (A2) is a sufficient condition under which the optimal
policy always uses the flexible server when there are jobs present in the downstream
station.

PROOF: Lemma 1 and condition (A2) yield

n2[V(x1, x2)� V(x1, x2 � 1)]� c2 � 0

[i.e., VM
2(x1, x2) � 0], which by (10) implies that for x1, x2 � 1, the policy that assigns

the flexible server to station 2 has no more cost than the one that idles the server. B

Assuming condition (A2) holds and using (6)–(8), optimality equations
(10)–(12) are reduced to the following. For x1, x2 � 1,

V(x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2 þ m1V(x1 � 1, x2 þ 1)

þ m2V(x1, x2 � 1)þmin{c2 þ n2V(x1, x2 � 1)

þ n1V(x1, x2), c1 þ n1V(x1 � 1, x2 þ 1)þ n2V(x1, x2)}: (15)

For x2 ¼ 0 or x1 ¼ 0,

V(x1, 0) ¼ h1x1 þ b1 þ m1V(x1 � 1, 1)þ (m2 þ n2)V(x1, 0)

þmin{n1V(x1, 0), c1 þ n1V(x1 � 1, 1)}, (16)

V(0, x2) ¼ h2x2 þ b2 þ m2V(0, x2 � 1)þ (m1 þ n1)V(0, x2)

þmin{c2 þ n2V(0, x2 � 1), n2V(0, x2)}: (17)

The first (resp. second) argument in the minimization terms corresponds to
assigning the flexible server to station 2 (resp. station 1). When there are no
jobs present in a station, assigning the additional server to that station is equiv-
alent to idling. Although we have established that idling is not optimal when
condition (A2) is true, we have left the corresponding term in (17) to facilitate
subsequent analysis.

Based on (15)–(17), we define the decision function d(x1, x2) as follows:

d(x1, x2) ¼ c2 � c1 þ n2[V(x1, x2 � 1)� V(x1, x2)]

þ n1[V(x1, x2)� V(x1 � 1, x2 þ 1)], x1, x2 � 1,

d(x1, 0) ¼ n1[V(x1, 0)� V(x1 � 1, 1)]� c1, x1 � 1,

d(0, x2) ¼ n2[V(0, x2 � 1)� V(0, x2)]þ c2, x2 � 1:

The definition of the function d(x1, x2) implies that it is optimal to assign the flexible
server to station 1 (resp. station 2) when d(x1, x2) . 0 (resp. d(x1, x2) � 0); d(x1, x2)
denotes the incentive to have the flexible server work in station 1 instead of station 2 in
state (x1, x2).
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Remark: We can explicitly determine d(x1, 0) and d(0, x2) using (13) and (14). We
have

d(x1, 0) ¼ n1h1x1 þ n1b1 � m1c1

m1 þ n11(x1 � X1)
, (18)

d(0, x2) ¼ � n2 h2x2 þ n2b2 � m2c2

m2 þ n2
: (19)

It can be easily verified that condition (A2) yields d(0, x2) � 0; that is, it does not pay
to idle the flexible server. Also, d(x1, 0) � 0 for x1 � X1 and d(x1, 0) � 0 for x1 � X1.

Using optimality equations (15)–(17) and identities min(a, b) ¼ b þ (a 2 b)2

and min(a, b) ¼ a 2 (a 2 b)þ for the first and second terms, respectively, of the
differences appearing in the definition of d(x1, x2), we obtain the following recursive
expressions for function d(x1, x2), x1, x2 � 1:

d(x1, x2) ¼ f (x1, x2)þ n1d(x1, x2)� þ n2d(x1, x2)þ, (20)

where

f (x1, x2) ¼ n1(h1 � h2)� n2h2 þ m1d(x1 � 1, x2 þ 1)þ m2d(x1, x2 � 1)

þ n1d(x1 � 1, x2 þ 1)þ þ n2d(x1, x2 � 1)�

þ (n1b1 � m1c1)1(x1 ¼ 1)þ (m2c2 � n2b2)1(x2 ¼ 1): (21)

The expressions derived for d(x1, x2) provide an efficient way for the numerical
computation of the optimal policy; starting with the values of d(x1, 0) and d(0, x2)
obtained from (18) and (19), we can successively use (20) and (21) to compute
d(x1, x2) for any x1, x2 � 1. Furthermore, they provide the basis for proving qualitative
properties of the optimal policy. Specifically, the optimal policy is characterized by a
single switching curve (when the number of jobs present in the downstream station
exceeds a certain threshold, it is optimal to assign the flexible server to that
station), which is the main result of this section given in the following theorem.

THEOREM 1: Assume conditions (A2) and (A3) are true. Then, for each x1 � 1, there
exists a positive integer t(x1) such that it is optimal to assign the flexible server to
the downstream station only when x2 � t(x1). Moreover, t(x1) ¼ 1 for x1 � X1, and
the slope of t(x1) is greater than or equal to 21.

Remarks: We believe that the slope of the switching curve ia actually nonnegative and
the lower bound of 21 is only the most we can prove. To verify our intuition, we used
(18)–(21) to determine the optimal policy for several thousand cases, where, for each
case, the parameter values were selected randomly. Not even one case exhibited a
decreasing switching curve. On the other hand, condition (A3) is not just a technical
condition needed for the proof. The following example illustrates that if condition
(A3) is not satisfied, the existence of a single switching curve is not guaranteed.
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Example: Consider a system with m1 ¼ 0.2, m2 ¼ 0.3, n1 ¼ n2 ¼ 0.25, h1 ¼ 2, h2 ¼

1, b1 ¼ 6, b2 ¼ 10, c1 ¼ 3, and c2 ¼ 4. It is easy to verify that condition (A2) is sat-
isfied, but not condition (A3). Using (18)–(21) to compute the decision function for
x1 ¼ 1, we get d(1, 0) ¼ 3.1111, d(1, 1) ¼ 20.1616, d(1, 2) ¼ 0.0875, d(1, 3) ¼
0.1199, d(1, 4) ¼ 0.0116, and d(1, 5) ¼ 20.1529. We see that the optimal policy
is switching between stations 1 and 2 three times, so it is not characterized by a
single switching curve.

The proof of Theorem 1 requires the use of Lemmas 3–5, whose proofs are given
in Appendix A. Lemma 2 is an auxiliary result.

LEMMA 2: Assume A 2 B ¼ g þ l(A2 2 B2) þ m(Aþ 2 Bþ) with 0 , l, 1 and
0 , m, 1. Then A 2 B and g have the same sign.

PROOF: Assuming that A = B, A � B, and A � B for g ¼ 0, g . 0, and g , 0,
respectively, we are led to contradictions. B

LEMMA 3: For all x1 � 1 and x2 � 0,

d(x1, x2 þ 1) , d(x1, x2):

LEMMA 4: For all x1 . 0,

lim
x2!1

d(x1, x2) ¼ �1:

LEMMA 5: For all x1, x2 � 1,

d(x1, x2) . 0) d(x1, x2) � d(x1 þ 1, x2 � 1):

PROOF OF THEOREM 1: For x1 � X1, we have d(x1, 0) � 0, which implies that
d(x1, x2) , 0 for all x2 � 1 (Lemma 3). Therefore, t(x1) ¼ 1, x1 � X1. For x1 . X1,
we have d(x1, 0) . 0, d(x1, x2) decreasing in x2 (Lemma 3), and d(x1, x2) , 0
for x2 sufficiently large (Lemma 4), so there exists an integer t(x1) such that
d(x1, x2) � 0 for x2 � t(x1). Finally, by Lemma 5, we have for any x1, x2 � 1,

d(x1, x2) . 0) d(x1 þ 1, x2 � 1) . 0:

Therefore, the slope of the switching curve t(x1) defined by the optimal policy is
greater than or equal to 21. B

We end this section by considering systems with no dedicated capacity at the
upstrean (resp. downstream) station. We show that the optimal policy assigns the
flexible server to the upstream (resp. downstream) station when the reduction in
holding cost rate resulting from the use of the flexible server is larger in that station.
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THEOREM 2: Let m1 ¼ 0 and n1(h1 2 h2) � n2h2. Then it is optimal to assign the
flexible server at station 1 for all x1 . 0.

PROOF: We will show that d(x1, x2) � 0 for x1 . 0. From (20) and (21), we have for
x1, x2 � 1,

d(x1, x2) ¼ n1(h1 � h2)� n2h2 þ m2d(x1, x2 � 1)

þ n1d(x1 � 1, x2 þ 1)þ þ n1d(x1, x2 � 1)�

þ n1b11(x1 ¼ 1)þ (m2c2 � n2b2)1(x2 ¼ 1)

þ n1d(x1, x2)� þ n2d(x1, x2)þ:

We prove the result by induction on x2. We start the induction by noting that
d(x1, 0) ¼ h1x1 . 0. Then the induction step follows from condition (A3) and
Lemma 2. B

THEOREM 3: Let m2 ¼ 0 and n1(h1 2 h2) � n2h2. Then it is optimal to assign the
flexible server at station 2 for all x2 . 0.

PROOF: We show d(x1, x2) � 0 for x2 . 0 by induction on x1. We have
d(0, x2) ¼ 2h2x2 , 0, and for x1, x2 � 1,

d(x1, x2) ¼ n1(h1 � h2)� n2h2 þ m1d(x1 � 1, x2 þ 1)

þ n1d(x1 � 1, x2 þ 1)þ þ n2d(x1, x2 � 1)�

þ (n1b1 � m1c1)1(x1 ¼ 1)� n2b21(x2 ¼ 1)

þ n1d(x1, x2)� þ n2d(x1, x2)þ:

The result is proven by the induction hypothesis, condition (A3), and Lemma 2. B

3. SYSTEMS WITH ARRIVALS

In this section we consider the previous model with Poisson arrivals of rate l. We
assume that condition (A1) holds and there are no operating costs for the dedicated
servers (b1 ¼ b2 ¼ 0). Let b, 0 � b � 1, be a discount factor. We define by
Vn,b
u (x1, x2) and Vb

u(x1, x2) the expected n-step discounted cost and the expected infi-
nite horizon discounted cost, respectively, under policy u starting at state (x1, x2). We
also define the expected average cost under u by

Ju(x1, x2) ¼ lim sup
n!1

Vu
n,1(x1, x2)

n
:

Our objective is to characterize an allocation strategy for the flexible servers that
minimizes the expected average cost. We were not able to do so for the general
model with dedicated servers in both stations, but for special cases with a dedicated
server in one of the two stations.
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Assuming that the uniformization rate is l þ m1 þ m2 þ n1 þ n2 ¼ 1, we obtain
optimality equations (22)–(24) for the three aforementioned problems. In deriving
these equations we have taken into account condition (A1), under which the
optimal policy prescribes the same action for all flexible servers, either idling them
or assigning them to the same station (the proof is along the lines of that of
Proposition 1).

Vn,b(x1, x2) ¼ h1x1 þ h2x2 þ TbVn�1,b(x1, x2) (22)

Vb(x1, x2) ¼ h1x1 þ h2x2 þ TbVb(x1, x2) (23)

J þ w(x1, x2) ¼ h1x1 þ h2x2 þ T1w(x1, x2), (24)

where the operator Tb is defined by

TbV(x1, x2) ¼ b[lV(x1 þ 1, x2)þ m1V(x1 � 1, x2 þ 1)

þ m2V(x1, x2 � 1)]

þmin{b(n1 þ n2)V(x1, x2),

c1 þ b[n1V(x1 � 1, x2 þ 1)þ n2V(x1, x2)],

c2 þ b[n2V(x1, x2 � 1)þ n1V(x1, x2)]}, (25)

TbV(x1, 0) ¼ b[lV(x1 þ 1, 0)þ m1V(x1 � 1, 1)þ m2V(x1, 0)]

þmin{b(n1 þ n2)V(x1, 0),

c1 þ b[n1V(x1 � 1, 1)þ n2V(x1, 0)]}, (26)

TbV(0, x2) ¼ b[lV(1, x2)þ m2V(0, x2 � 1)þ m1V(0, x2)]

þmin{b(n1 þ n2)V(0, x2),

c2 þ b[n2V(0, x2 � 1)þ n1V(0, x2)]}, (27)

TbV(0, 0) ¼ b[lV(1, 0)þ (m1 þ m2 þ n1 þ n2)V(0, 0)]: (28)

The solution of (22) gives the minimum expected n-step discounted cost (with
V0,b(x1, x2) ¼ 0), whereas the solution of (23), if it exists, gives the minimum infinite
horizon discounted cost. Finally, if a solution (J, w) of (24) exists and p is the policy
that attains the minimum on its right-hand side, p is the optimal policy and J is the
minimum average cost satisfying

J ¼ inf
u

Ju(x1, x2) ¼ Jp(x1, x2) for all x1 and x2:

Propositions 3 and 4 make statements about the existence of solutions to (23) and
(24), respectively, and their properties. For the proofs, we refer readers to Wu et al.
[25], where analogous results are proven for the problem with holding costs and
unreliable servers. The same arguments remain valid for our problem because
linear operating costs make a finite contribution to the infinite horizon discounted
cost and the average cost.
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PROPOSITION 3: For 0 , b , 1, (23) has a unique solution given by

Vb(x1, x2) ¼ lim
n!1

Vn,b(x1, x2):

We define the maximal throughput L as the largest value of the arrival rate that is
less than or equal to the average service rate at each station. The maximal throughput
can be obtained from the solution of the linear program

max L

s.t. L � mi þ nidi, i ¼ 1, 2,
d1 þ d2 � 1,
d1, d2 � 0,

where d1 and d2 are the proportions of time the flexible server is assigned to the
upstream and downstream station, respectively. It is straightforward to show that

L ¼

m1 þ n1 if m1 þ n1 � m2
m2 þ n2 if m2 þ n2 � m1
m1n2 þ n1m2 þ n1n2

n1 þ n2
otherwise:

8>><
>>:

PROPOSITION 4: For l , L (24) has a solution (J, w), where J is given by limn!1Vn,1

(x1, x2)/n. Moreover, for a fixed state (x1
*, x2

*), there exists a sequence bl! 1 for which

lim
l!1

[Vbl
(x1, x2)� Vbl

(x�1, x�2)] ¼ w(x1, x2):

We prove that when the reduction in holding cost rate resulting from using the
flexible server in the downstream station is larger than the corresponding operating
cost, idling the flexible server is not optimal when there are jobs present there.

PROPOSITION 5: Assume n2h2 . c2. Then idling the flexible server is not optimal for
x2 . 0.

PROOF: We start byshowing that forb sufficiently close to 1, the result is true for the finite
horizon problem, except for n ¼ 1, in which case, idling the flexible server is optimal
because there is nothing to be gained in terms of potential holding costs savings. In par-
ticular, wewill show that the policy that assigns the flexible server to station 2 has no more
cost than the one that idles the server, which by (25) and (27) implies that for n � 1,

bn2[Vn,b(x1, x2)� Vn,b(x1, x2 � 1)] � c2: (29)

A sufficient condition for (29) to be true is

Vn,b(x1, x2)� Vn,b(x1, x2 � 1) � h2, (30)

because then (29) would be satisfied for b � c2/n2h2. We prove (30) by induction on n.
For n ¼ 1, it is satisfied with equality. For n . 1, we have from (22),

Vn,b(x1, x2)� Vn,b(x1, x2 � 1) ¼ h2 þ TbVn�1,b(x1, x2)

� TbVn�1,b(x1, x2 � 1):
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Using (25)–(28) and the induction hypothesis, we get by a straightforward term-by-term
comparison that TbVn21,b(x1, x2) � TbVn21,b(x1, x2 2 1), which completes the induc-
tion. Letting n!1 in (29) and applying Proposition 3, we obtain for b � c2/n2h2,

bn2[Vb(x1, x2)� Vb(x1, x2 � 1)] � c2: (31)

Applying now Proposition 4 to (31), we get

n2[w(x1, x2)� w(x1, x2 � 1)] � c2,

which by (24), (25), and (27) proves the result for the average cost problem. B

To further characterize the policy that minimizes the average cost, we determine
properties of the optimal policy for the finite horizon problem and then use
Propositions 3 and 4 to show that the same properties are valid under the average
cost criterion. We define decision function dn,b(x1, x2) as in the previous section
for clearing systems:

dn,b(x1, x2) ¼ c2 � c1 þ b{n2[Vn,b(x1, x2 � 1)� Vn,b(x1, x2)]þ n1[Vn,b(x1, x2)

� Vn,b(x1 � 1, x2 þ 1)]}, x1, x2 � 1,

dn,b(x1, 0) ¼ bn1[Vn,b(x1, 0)� Vn,b(x1 � 1, 1)]� c1, x1 � 1,

dn,b(0, x2) ¼ bn2[Vn,b(0, x2 � 1)� Vn,b(0, x2)]þ c2; x2 � 1:

Under the assumption of Proposition 5, dn,b(x1, x2), n � 1, determines the optimal
policy at stage n þ 1; the flexible server is assigned to the upstream station if
dn,b(x1, x2) � 0, and downstream otherwise. The following three lemmas characterize
that optimal policy for large values of the discount factor when there is no dedicated
capacity in one of the two stations. Their proofs can be found in Appendix B.

LEMMA 6: Let m1 ¼ 0, c2 , n2h2, and b � b1, where

b1 ¼ max
c2

n2h2
,

2c1 � c2

n2h2 � (n1 þ m2)c2 þ 2c1 � c2

� �
if 2c1 . c2,

b1 ¼
c2

n2h2
, otherwise:

Then for n � 1, x1 � 1, and x2 � 0,

dn,b(x1, x2 þ 1) � dn,b(x1, x2):

LEMMA 7: Let m1 ¼ 0, c1 � c2 , n2h2 , n1(h1 2 h2), and b � b2, where

b2 ¼ max
c2

n2h2
,

c2 � c1

n1(h1 � h2)� n2h2 þ c2 � c1

� �
:

Then for n � 1, x1 � 1, and x2 � 0,

dn,b(x1, x2) � 0:
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LEMMA 8: Let m2 ¼ 0, c2 , n2h2, c2 � c1, n1(h1 2 h2) , n2h2, and b � b3, where

b3 ¼ max
c2

n2h2
,

c1 � c2

n2h2 � n1(h1 � h2)þ c1 � c2

� �
:

Then for n � 1, x1 � 0, and x2 � 1,

dn,b(x1, x2) � 0:

When there is no dedicated server in station 1, Lemma 6 implies that the gain
from having the flexible server work at station 1 is nonincreasing in the number of
jobs in station 2. According to Lemma 7, it is always optimal to assign the flexible
server at station 1 if the operating cost is smaller and the reduction in holding cost
rate is larger in that station. By reversing these conditions, we show in Lemma 8
that the optimal policy always assigns the flexible server at station 2. Theorems 4–6
are the counterparts of Lemmas 6–8 for the average cost criterion.

THEOREM 4: If m1 ¼ 0 and c2 , n2 h2, the incentive to use the flexible server at station
1 does not increase as the number of jobs in station 2 increases.

PROOF: Applying successively Propositions 3 and 4 to the result of Lemma 6, we get

c2 þ n2[w(x1, 0)� w(x1, 1)]þ n1[w(x1, 1)� w(x1 � 1, 2)]

� n1[w(x1, 0)� w(x1 � 1, 1)],

and for x2 � 1,

n2[w(x1, x2)� w(x1, x2 þ 1)]þ n1[w(x1, x2 þ 1)� w(x1 � 1, x2 þ 2)]

� n2[w(x1, x2 � 1)� w(x1, x2)]þ n1[w(x1, x2)

� w(x1 � 1, x2 þ 1)],

which in view of (24)–(26) proves the statement of the theorem. B

THEOREM 5: If m1 ¼ 0 and c1 � c2 , n2h2 , n1(h1 2 h2), the optimal policy gives
priority to the upstream station.

THEOREM 6: If m2 ¼ 0 and c2 , n2h2, c2 � c1, n1(h1 2 h2) , n2h2, the optimal policy
gives priority to the downstream station.

The proofs of Theorems 5 and 6 are based on Lemmas 7 and 8, respectively, and
are derived by identical arguments to that of Theorem 4.
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4. DISCUSSION

We considered scheduling a number of flexible servers in a two-stage tandem queuing
system with dedicated servers at each stage, where operating costs are incurred by the
servers during the time they work. Assuming a collaborative work discipline and
exponential service times, we showed that when operating cost rates due to flexible
servers are proportional to their speeds, we get an equivalent problem with one
flexible server. Furthermore, we identified conditions on holding costs, operating
costs, and service times (see Propositions 2 and 5) under which there exist optimal
nonidling policies for the flexible server when there are jobs in station 2. The analysis
in the article focused on deriving properties of the optimal policy when the conditions
that ensure the optimality of nonidling policies are satisfied.

For clearing systems, we showed that under condition (A2), allocating the flexible
server to the downstream station becomes optimal as the number of jobs there
increases. Moreover, the slope of the switching curve defined by the optimal policy
is greater than or equal to 21. When condition (A2) is not satisfied, in which case
idling is optimal for certain states of the problem, we have not been able to derive
any structural properties of the optimal policy. Recall that when there are no jobs
present in station 1 or 2, idling the flexible server is optimal when x2 , X2 and
x1 , X1, respectively, where X1 and X2 have been defined in Section 2. We conjecture
that when x2 � X2, idling is not optimal for any number of jobs in station 1. We
believe this is true for the following reason. If idling is not optimal when station 1
is empty, there must be no issue with high operating costs in station 2, which is a
fact independent of jobs present in station 1. The reverse is not true, that is, when
x1 � X1, idling might be optimal when there are jobs in station 2. This is the case
when holding and operating costs in station 2 are so large that it would not be
beneficial to send jobs to station 2 (a process that would be facilitated by the use of
the flexible server in station 1) or have the flexible server work in station 2.

For systems with arrivals, we showed the optimality of nonidling policies when
the reduction in holding cost rate is larger than the operating cost in station 2.
Moreover, we showed that the transition-monotonicity property of the optimal
policy for clearing systems remains valid when there is no dedicated capacity in
the upstream station. It is not clear whether or under what conditions this property
holds for the general model as well. However, some numerical experimentation
with the finite horizon problem seems to indicate that this might be the case.
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APPENDIX A
Proofs of Lemmas 1 and 3–5

PROOF OF LEMMA 1: Let Vpi(x1, x2), i ¼ 0, 1, 2, be the expected cost of a policy that at state
(x1, x2) idles the extra server, assigns it to station 1, or assigns it to station 2, respectively, and
proceeds optimally after the first service completion. Therefore,

V(x1, x2)� V(x1, x2 � 1) ¼ min
i¼0, 1, 2

{Vpi (x1, x2)� V(x1, x2 � 1)}, (A.1)

V(x1, x2 � 1) � Vpi (x1, x2 � 1),

implying that

V(x1, x2)� V(x1, x2 � 1) � min
i¼0, 1, 2

{Vpi (x1, x2)� Vpi (x1, x2 � 1)}: (A.2)

For x1, x2 � 1, by conditioning on the time of the first service completion, we derive the
following expressions:

Vp0 (x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2

m1 þ m2
þ V(x1 � 1, x2 þ 1)

m1

m1 þ m2

þ V(x1, x2 � 1)
m2

m1 þ m2
, (A.3a)

Vp1 (x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2 þ c1

m1 þ m2 þ n1
þ V(x1 � 1, x2 þ 1)

m1 þ n1

m1 þ m2 þ n1

þ V(x1, x2 � 1)
m2

m1 þ m2 þ n1
, (A.3b)

Vp2 (x1, x2) ¼ h1x1 þ h2x2 þ b1 þ b2 þ c2

m1 þ m2 þ n2
þ V(x1 � 1, x2 þ 1)

m1

m1 þ m2 þ n2

þ V(x1, x2 � 1)
m2 þ n2

m1 þ m2 þ n2
: (A.3c)

We will show that

Vpi (x1, 1)� V(x1, 0) � h2 þ b2 þ c2

m2 þ n2
, i ¼ 0, 1, 2, (A.4)

Vpi (x1, x2)� Vpi (x1, x2 � 1) � h2x2 þ b2 þ c2

m2 þ n2
, i ¼ 0, 1, 2, x2 . 1, (A.5)

which by (A.1) and (A.2) suffice to prove the statement of the lemma. From (A.3a)–(A.3c),
we have

Vp0 (x1, 1)� V(x1, 0) ¼ h1x1 þ h2 þ b1 þ b2

m1 þ m2
þ [V(x1 � 1, 2)� V(x1, 0)]

m1

m1 þ m2
, (A.6a)

Vp1 (x1, 1)� V(x1, 0) ¼ h1x1 þ h2 þ b1 þ b2 þ c1

m1 þ m2 þ n1

þ [V(x1 � 1, 2)� V(x1, 0)]
m1 þ n1

m1 þ m2 þ n1
, (A.6b)
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Vp2 (x1, 1)� V(x1, 0) ¼ h1x1 þ h2 þ b1 þ b2 þ c2

m1 þ m2 þ n2

þ [V(x1 � 1, 2)� V(x1, 0)]
m1

m1 þ m2 þ n2
, (A.6c)

and for x2 . 1,

Vp0 (x1, x2)� Vp0 (x1, x2 � 1) ¼ h2

m1 þ m2
þ [V(x1 � 1, x2 þ 1)� V(x1 � 1, x2)]

m1

m1 þ m2

þ [V(x1, x2 � 1)� V(x1, x2 � 2)]
m2

m1 þ m2
, (A.7a)

Vp1 (x1, x2)� Vp1 (x1, x2 � 1) ¼ h2

m1 þ m2 þ n1
þ [V(x1 � 1, x2 þ 1)

� V(x1 � 1, x2)]
m1 þ n1

m1 þ m2 þ n1
þ [V(x1, x2 � 1)

� V(x1, x2 � 2)]
m2

m1 þ m2 þ n1
, (A.7b)

Vp2 (x1, x2)� Vp2 (x1, x2 � 1) ¼ h2

m1 þ m2 þ n2
þ [V(x1 � 1, x2 þ 1)

� V(x1 � 1, x2)]
m1

m1 þ m2 þ n2
þ [V(x1, x2 � 1)

� V(x1, x2 � 2)]
m2 þ n2

m1 þ m2 þ n2
: (A.7c)

The proof of (A.4) and (A.5) is by means of induction on x1 and x2. First, we prove (A.4) for
x1 ¼ 1. From (13) and (14) and condition (A2), we get

V(0, 2)� V(1, 0) ¼ 2h2 þ b2 þ c2

m2 þ n2
�min

h1 þ b1

m1
,

h1 þ b1 þ c1

m1 þ n1

� �
)

V(0, 2)� V(1, 0) � 2h2 þ b2 þ c2

m2 þ n2
� h1 þ b1

m1
, (A.8a)

V(0, 2)� V(1, 0) � 2h2 þ b2 þ c2

m2 þ n2
� h1 þ b1 þ c1

m1 þ n1
: (A.8b)

Substituting (A.8a) into (A.6a) and (A.6c), (A.8b) into (A.6b), and taking into account
condition (A2) yields the result. To prove (A.5) for x1 ¼ 1, we use induction on x2.
From (14) and condition (A2), we get

V(0, x2 þ 1)� V(0, x2) ¼ h2(x2 þ 1)þ b2 þ c2

m2 þ n2
: (A.9)

Applying the induction hypothesis (with the induction base, x2 ¼ 2, having been established by
the fact that the statement of the lemma has been proven to hold for x1 ¼ x2 ¼ 1) we also get

V(1, x2 � 1)� V(1, x2 � 2) � h2(x2 � 1)þ b2 þ c2

m2 þ n2
: (A.10)
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Then the result follows from (A.7a)–(A.7c), (A.9), and (A.10). Next we prove (A.4) and (A.5)
for x1 . 1 by induction on x1. Starting with (A.4), we have from (13),

V(x1 � 1, 2)� V(x1, 0) ¼ V(x1 � 1, 2)

�min
h1x1 þ b1

m1
,

h1x1 þ b1 þ c1

m1 þ n1

� �
� V(x1 � 1, 1)

� 2h2 þ b2 þ c2

m2 þ n2
�min

h1x1 þ b1

m1
,

h1x1 þ b1 þ c1

m1 þ n1

� �

) V(x1 � 1, 2)� V(x1, 0) � 2h2 þ b2 þ c2

m2 þ n2
� h1x1 þ b1

m1
,

V(x1 � 1, 2)� V(x1, 0) � 2h2 þ b2 þ c2

m2 þ n2
� h1x1 þ b1 þ c1

m1 þ n1
,

where the first inequality is a result of the induction hypothesis. The rest of the proof is identical
to the one for x1 ¼ 1 with h1 replaced by h1x1. Finally, we prove (A.5) by induction on x2.
Applying the induction hypothesis, we get

V(x1 � 1, x2 þ 1)� V(x1 � 1, x2) � h2(x2 þ 1)þ b2 þ c2

m2 þ n2
,

V(x1, x2 � 1)� V(x1, x2 � 2) � h2(x2 � 1)þ b2 þ c2

m2 þ n2
,

so the proof is essentially identical to the proof for x1 ¼ 1. B

PROOF OF LEMMA 3: The proof is by induction on x1. First, we prove the result for x1 ¼ 1 by
induction on x2. We establish the induction base by showing that d(1, 1) , d(1, 0).

CASE 1: X1 . 1)d(1, 0) , 0.
From (21) and (18), we get

f (1, 1) ¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ (m1 þ m2 þ n2)d(1, 0)

þ m1d(0, 2) , 0,
(A.11)

because of condition (A2) and d(0, 2) , 0. Because f(1, 1) , 0, we get from (20) and Lemma 2
that d(1, 1) , 0, so by (20) and (A.11),

d(1, 1) ¼ f (1, 1)
1� n1

¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ m1d(0, 2)
1� n1

þ d(1, 0) , d(1, 0),

where the inequality follows from condition (A2) and d(0, 2) , 0.

CASE 2: X1 � 1)d(1, 0) � 0.
From (21) and (18), we get

f (1, 1) ¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ (m1 þ n1 þ m2)d(1, 0)þ m1d(0, 2) (A.12)

The result is trivially true when f (1, 1) , 0 because in this case (20) and Lemma 2 imply that
d(1, 1) , 0. In the case f (1, 1) � 0, we get from (20) and Lemma 2 that d(1, 1) � 0, which by
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(20) and (A.12) yields

d(1, 1) ¼ f (1, 1)
1� n2

¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ m1d(0, 2)
1� n2

þ d(1, 0) , d(1, 0)

because of condition (A2) and d(0, 2) , 0.
The induction on x2 is completed by proving that the result holds for x2 ¼ l þ 1 provided

that it holds for x2 ¼ l. We have

d(1, lþ 1)� d(1, lþ 2) ¼ f (1, lþ 1)� f (1, lþ 2)þ n1[d(1, lþ 1)�

� d(1, lþ 2)�]þ n2[d(1, lþ 1)þ � d(1, lþ 2)þ]: (A.13)

Using the induction hypothesis, the fact that d(0, x2) is decreasing in x2 [(19)] and condition
(A3), we get f (1, l þ 1) 2 f(1, l þ 2) . 0. Therefore, the result for x2 ¼ l þ 1 follows from
(A.13) and Lemma 2. Next, we show that the result is true for x1 ¼ k þ 1 under the assumption
that it is true for x1 ¼ k and any x2. Again, we use induction on x2. To prove that d(k þ 1, 1) ,

d(k þ 1, 0), we consider two cases.

CASE 1: k þ 1 , X1)d(k þ 1, 0) , 0, d(k, 0) , 0.
From (18) and the induction hypothesis, we have

n1h1 ¼ [d(k þ 1, 0)� d(k, 0)]m1, (A.14)

d(k, 2) , d(k, 0) , 0, (A.15)

respectively. Plugging (A.14) and (A.15) into (21), we get

f (k þ 1, 1) ¼ �n1h2 � (n2h2 þ n2b2 � m2c2)

þ (m1 þ m2 þ n2)d(k þ 1, 0)þ m1[d(k, 2)� d(k, 0)] , 0,
(A.16)

because of condition (A2) and (A.15). Because f (k þ 1, 1) , 0, we get from (20) and Lemma 2
that d(k þ 1, 1) , 0, so from (20) and (A.16),

d(k þ 1, 1) ¼ f (k þ 1, 1)
1� n1

¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ m1[d(k, 2)� d(k, 0)]
1� n1

þ d(k þ 1, 0) , d(k þ 1, 0),

where the inequality follows from condition (A2) and (A.15).

CASE 2: k þ 1 � X1)d(k þ 1, 0) � 0.
To prove that d(k þ 1, 1) , d(k þ 1, 0), we restrict attention to the case f (k þ 1, 1) � 0 as the
case f (k þ 1, 1) , 0 is trivial ( f (k þ 1, 1) , 0)d(k þ 1, 1) , 0 � d(k þ 1, 0)). For f (k þ 1,
1) � 0, we have d(k þ 1, 1) � 0, and by (20),

d(k þ 1, 1) ¼ f (k þ 1, 1)
1� n2

: (A.17)

In the case d(k, 0) � 0, (18) yields

n1h1 ¼ [d(k þ 1, 0)� d(k, 0)](m1 þ n1): (A.18a)
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When d(k, 0) , 0, we have

n1h1 ¼ d(k þ 1, 0)(m1 þ n1)� d(k, 0)m1: (A.18b)

Then, we get from (A.17), (21), and (A.18a) and (A.18b)

d(k þ 1, 1) ¼
~f (k þ 1, 1)

1� n2
þ d(k þ 1, 0),

where

~f (k þ 1, 1) ¼ �n1h2 � (n2h2 þ n2b2 � m2c2)þ m1[d(k, 2)� d(k, 0)]

þ n1[d(k, 2)þ � d(k, 0)]1(d(k, 0) � 0):

The result follows from f̃(k þ 1, 1) , 0, which is true because of condition (A2) and the induc-
tion hypothesis for x1(d(k, 2) , d(k, 0)). Finally, to prove the result for x2 ¼ l þ 1 assuming it is
true for x2 ¼ l, we obtain an equation analogous to (A.13) and use the induction hypotheses for
x1 ¼ k, x2 ¼ l, and condition (A3). B

PROOF OF LEMMA 4: The proof is by induction on x1. We begin by noting that limx2! 1d
(0, x2) ¼ 21 (see (19)). To complete the induction, we need to show that the result is true
for x1 ¼ x1

* under the assumption that it is true for x1 , x1
*.

CASE 1. x1
* , X1)d(x1

*, 0) , 0, d(x1
* 2 1, 0) , 0.

Because d(x1, x2) is a decreasing sequence in x2 (Lemma 3), we have d(x1
*, x2) , 0 and d(x1

* 2

1, x2) , 0 for any x2, so (20) and (21) yield

d(x�1, x2) ¼ n1h1 � (n1 þ n2)h2 þ m1d(x�1 � 1, x2 þ 1)þ m2d(x�1, x2 � 1)

þ n2d(x�1, x2 � 1)þ n1d(x�1, x2)þ (n1b1 � m1c1)1(x1 ¼ 1)

þ (m2c2 � n2b2)1(x2 ¼ 1):

Taking limits on both sides and rearranging terms, we get

m1 lim
x2!1

d(x�1, x2) ¼ C þ m1 lim
x2!1

d(x�1 � 1, x2),

where C is a constant. The result is a consequence of the induction hypothesis.

CASE 2: x1
* � X1)d(x1

*, 0) � 0.
We claim that d(x1

*, x2) , 0 for x2 sufficiently large; if this were not the case [i.e., if d(x1
*, x2) were

bounded below by a nonnegative number], we would get from (20) and (21) that for x2 . 1,

d(x�1, x2) ¼ n1h1 � (n1 þ n2)h2 þ m1d(x�1 � 1, x2 þ 1)þ m2d(x�1, x2 � 1)

þ n1d(x�1 � 1, x2 þ 1)þ þ n2d(x�1, x2)þ (n1b1 � m1c1)1(x�1 ¼ 1):

Taking limits and using the induction hypothesis, we obtain

(m1 þ n1) lim
x2!1

d(x�1, x2) ¼ C þ m1 lim
x2!1

d(x�1 � 1, x2),

which, by the induction hypothesis, yields

lim
x2!1

d(x�1, x2) ¼ �1,
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clearly a contradiction. Therefore, for x2 sufficiently large,

d(x�1, x2) ¼ n1h1 � (n1 þ n2)h2 þ m1d(x�1 � 1, x2 þ 1)þ m2d(x�1, x2 � 1)

þ n2d(x�1, x2 � 1)þ n1d(x�1, x2)þ (n1b1 � m1c1)1(x�1 ¼ 1)

) m1 lim
x2!1

d(x�1, x2) ¼ C þ m1 lim
x2!1

d(x�1 � 1, x2),

and limx2!1d(x1
*, x2) ¼ 21 follows from the induction hypothesis. B

PROOF OF LEMMA 5: For each integer K � 2, we introduce the function

dK(x1) ¼ d(x1, K � x1), x1 ¼ 0, 1, . . . , K:

Therefore, we need to show that for all K � 2,

dK(x1) . 0) dK (x1) � dK(x1 þ 1):

Let

K ¼ min {K:dK (x1) . 0 for some 1 � x1 � K � 1}

and

K ¼ min {K � K:dKþ1(x1) � 0 for all x1 � K}:

It suffices to prove the result for K � K � K, as the same arguments can be repeated for K . K.
The proof is by induction on K (the inductive scheme is the one used by Wu et al. [26]). First,
note that when d(x1 2 1, 1) . 0, it follows from Lemma 3 that d(x1 2 1, 0) . d(x1 2 1, 1) . 0,
implying x1 2 1 . X1, which by (18) yields d(x1 2 1, 0) , d(x1, 0). Therefore,

dx1 (x1 � 1) . 0) dx1 (x1 � 1) , dx1 (x1): (A.19)

To start the induction, we prove the result for K ¼ K. If K ¼ 2, in which case dK(K 2 1) . 0, the
result is a special case of (A.19). Consider now K . 2. Because dK21(x1) � 0 for x1 � K 2 2,
we have by Lemma 3 that dK(x1) � 0 for x1 � K 2 2. Therefore, dK(K 2 1) . 0 and it suffices
to prove dK(K 2 1) � dK(K), which follows from (A.19).

To complete the induction, we assume that the result holds for K ¼ k 2 1, where K , k � K,
and prove it for K ¼ k. Let x1

* ¼ minfx1:dk(x1) . 0g, so we need to show that dk(x1
*) � dk(x1

* þ
1) � . . . � dk(k 2 1) � dk(k). The last inequality has already been proven [(A.19)], so we only
need to consider 1 � x1

* � k 2 2. We start by proving the first inequality dk(x1
*) � dk(x1

* þ 1).
From (20) and (21), we have

dk(x�1)� dk(x�1 þ 1) ¼ m1[dk(x�1 � 1)� dk(x�1)]þ n1[dk(x�1 � 1)þ � dk(x�1)þ]

þ m2[dk�1(x�1)� dk�1(x�1 þ 1)]þ n2[dk�1(x�1)� � dk�1(x�1 þ 1)�]

þ (n1b1 � m1c1)1(x�1 ¼ 1)� (m2c2 � n2b2)1(x�1 ¼ k � 2)

þ n1[dk(x�1)� � dk(x�1 þ 1)�]þ n2[dk(x�1)þ � dk(x�1 þ 1)þ]:

(A.20)

By the definition of x1
* and Lemma 3, we get

dk(x�1 � 1) � 0 , dk(x�1) , dk�1(x�1): (A.21)

Because dk21(x1
*) . 0, we can apply the induction hypothesis to get dk21(x1

*) � dk21(x1
* þ 1),

so from (A.20) and (A.21), condition (A3), and Lemma 2, we get dk(x1
*) � dk(x1

* þ 1). Having
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proven that dk(x1
* þ 1) . 0, we can show that dk(x1

* þ 1) � dk(x1
* þ 2) � . . . � dk(k 2 1) by

successive application of the same arguments. B

APPENDIX B
Proofs of Lemmas 6–8

Before we proceed to the proofs, we derive expressions for dn,b(x1, x2). Because V1,b(x1, x2) ¼
h1x1 þ h2x2, we get, for n ¼ 1,

d1,b(x1, x2) ¼ (c2 � c1)þ b[n1(h1 � h2)� n2h2], (B.1)

d1,b(x1, 0) ¼ �c1 þ bn1(h1 � h2), (B.2)

d1,b(0, x2) ¼ c2 � bn2h2: (B.3)

For n � 2, we obtain the following recursive expressions from (22) and (25)–(28). For x1, x2 � 1,

dn,b(x1, x2) ¼ (1� b)(c1 � c2)þ b[n1(h1 � h2)� n2h2 � m1c11(x1 ¼ 1)þ m2c21(x2 ¼ 1)]

þ b[ldn�1,b(x1 þ 1, x2)þ m1dn�1,b(x1 � 1, x2 þ 1)þ m2dn�1,b(x1, x2 � 1)

þ n1dn�1,b(x1 � 1, x2 þ 1)þ þ n2dn�1,b(x1, x2 � 1)�

þ n1dn�1,b(x1, x2)� þ n2dn�1,b(x1, x2)þ], (B.4)

dn,b(x1, 0) ¼ �(1� b)c1 þ b[n1(h1 � h2)� n1c2 � m1c11(x1 ¼ 1)� m1c21(x1 . 1)]

þ b[[(m2 þ n2)bn1 þ m1bn21(x1 . 1)][Vn�1,b(x1 � 1, 1)� Vn�1,b(x1 � 1, 0)]

þ ldn�1,b(x1 þ 1, 0)þ m1dn�1,b(x1 � 1, 1)1(x1 . 1)þ (m2 þ n2)dn�1,b(x1, 0)

þ n1dn�1,b(x1 � 1, 1)þ þ n1dn�1,b(x1, 0)�], (B.5)

dn,b(0, x2) ¼ (1� b)c2 þ b[� n2h2 þ lc2 þ m2c21(x2 ¼ 1)]

þ b[bln2[Vn�1,b(1, x2 � 1)� Vn�1,b(1, x2)]þ (m1 þ n1)dn�1,b(0, x2)

þ [m2dn�1,b(0, x2 � 1)þ n2dn�1,b(0, x2 � 1)�]1(x2 . 1)þ n2dn�1,b(0, x2)þ]:

The last equation is not needed for the proofs that follow, as we have already shown in Proposition
5 that dn,b(0, x2) � 0 for b � c2/n2h2. However, we decided to include it in the article in order to
have a complete set of expressions for dn,b(x1, x2).

PROOF OF LEMMA 6: The proof is by induction on n. For any x2 � 1, we get from (B.1) and
(B.2) that d1,b(x1, x2) is constant for x2 � 1 and

d1,b(x1, 0)� d1,b(x1, x2) ¼ bn2h2 � c2,

which is nonnegative because b � b1 � c2/n2h2. Having established the induction base, we
assume that the result holds for n ¼ k and prove it for n ¼ k þ 1. Equations (B.4) and (B.5)

D. G. Pandelis130

https://doi.org/10.1017/S0269964808000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000077


and the fact that dk,b(0, x2) � 0 yield

dkþ1,b(x1, 0)� dkþ1,b(x1, 1) ¼ �(1� b)(2c1 � c2)þ b[n2h2 � (n1 þ m2)c2]

þ b{l[dk,b(x1 þ 1, 0)� dk,b(x1 þ 1, 1)]

þ (m2 þ n2)bn1[Vk,b(x1 � 1, 1)� Vk,b(x1 � 1, 0)]

þ n1[dk,b(x1 � 1, 1)þ � dk,b(x1 � 1, 2)þ]1(x1 . 1)

þ n1[dk,b(x1, 0)� � dk,b(x1, 1)�]

þ n2[dk,b(x1, 0)� dk,b(x1, 0)� � dk,b(x1, 1)þ]}:

The combination of the first two terms of the right-hand side is nonnegative; it is positive when
2c1 � c2 and nonnegative when 2c1 . c2 because

b � b1 �
2c1 � c2

n2h2 � (n1 þ m2)c2 þ 2c1 � c2
:

Noting that dk,b(x1, 0) 2 dk,b(x1, 0)2 ¼ dk,b(x1, 0)þ, we get from the induction hypothesis and
(30) that the remaining term is also nonnegative when b � b1. For x2 � 1, dkþ1,b(x1, x2) 2

dkþ1,b(x1, x2 þ 1) � 0 follows in a straightforward manner from (B.4), dk,b(0, x2) � 0, and
the induction hypothesis. B

PROOF OF LEMMA 7: By induction on n. From (B.2), we get d1,b(x1, 0) � 0 because

b � b2 �
c2

n2h2
.

c1

n1(h1 � h2)

and from (B.1), we get d1,b(x1, x2) � 0 for x2 � 1. Assuming that dk,b(x1, x2) � 0, we use (B.5)
and (B.4) to show that dkþ1,b(x1, x2) � 0 for x2 ¼ 0 and x2 � 1, respectively. The sum of the
first two terms of the right-hand side of (B.5) is nonnegative because

b � b2 �
c2

n2h2
.

c1

n1(h1 � h2)� n1c2 þ c1
:

The last term is nonnegative by (30) and the induction hypothesis. Turning to (B.4), the sum of
its first two terms is nonnegative because

b � b2 �
c2 � c1

n1(h1 � h2)� n2h2 þ c2 � c1
,

and the remaining term is nonnegative by the induction hypothesis. B

PROOF OF LEMMA 8: The result has already been proven for x1 ¼ 0 (proof of Proposition 5).
For x1 . 0, we use induction on n. Equation (B.1) yields d1,b(x1, x2) , 0. By applying the
induction hypothesis to (B.4), we get dn,b(x1, x2) � 0 because B

b � b3 �
c1 � c2

n2h2 � n1(h1 � h2)þ c1 � c2
:
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