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Abstract

We show that compatible systems of `-adic sheaves on a scheme of finite type over the
ring of integers of a local field are compatible along the boundary up to stratification.
This extends a theorem of Deligne on curves over a finite field. As an application,
we deduce the equicharacteristic case of classical conjectures on `-independence for
proper smooth varieties over complete discrete valuation fields. Moreover, we show
that compatible systems have compatible ramification. We also prove an analogue for
integrality along the boundary.

1. Introduction

Let S = Spec(OK) be the spectrum of an excellent Henselian discrete valuation ring OK of finite
residue field k = Fq of characteristic p. Let K be the fraction field of OK . Given a scheme X
of finite type over S and a prime ` 6= p, we let K(X,Q`) denote the Grothendieck group of
constructible Q`-sheaves on X, where Q` denotes an algebraic closure of Q`. We fix a field Q,
an index set I, and, for each i ∈ I, a prime number `i and an embedding ιi : Q → Q`i . Let
|X| be the set of locally closed points of X. In other words, |X| = |Xk| ∪ |XK | is the union
of the sets of closed points of the two fibers. Note that the residue field of x ∈ |X| is a finite
extension of k or K, and the local Weil group W (x̄/x) ⊆ Gal(x̄/x) is defined for any geometric
point x̄ above x. We say that a system (Li) ∈

∏
i∈I K(X,Q`i) is compatible if for every x̄ above

x ∈ |X|, and for every F ∈W (x̄/x), the local traces are compatible: there exists a ∈ Q such that
tr(F, (Li)x̄) = ιi(a) for all i ∈ I [Zhe09, Définition 4.13].

In this paper, we study the compatibility of compatible systems along the boundary. We let
Klisse(X,Q`) denote the Grothendieck group of lisse Q`-sheaves on X.

Definition 1.1. Let X̄ be a normal scheme of finite type over S and let X be a dense open
subscheme. We say that (Li) ∈

∏
i∈I Klisse(X,Q`i) is compatible on X̄ if, for every x ∈ |X̄|, every

geometric point ā of X(x) := X̄(x)×X̄X, and every F ∈W (X(x), ā), (tr(F, (Li)ā))i∈I is compatible.
Here X̄(x) denotes the Henselization of X̄ at x, andW (X(x), ā) denotes the Weil group, namely the
inverse image of W (x̄/x) ⊆ Gal(x̄/x) by the surjective homomorphism π1(X(x), ā) → π1(X̄(x), ā)
' Gal(x̄/x).

In the case where X̄ is an integral smooth curve over k or K and x ∈ X̄ − X, X(x) is
the spectrum of a field extension of the function field E of X and its fundamental group is the
decomposition group of E at x, a subgroup of the Galois group of E.
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Compatible systems and ramification

We call X ⊆ X̄ a normal compactification over S if X̄ is normal, proper over S, and contains
X as a dense open subscheme. Our first result is that compatible systems are compatible along
the boundary up to stratification.

Theorem 1.2. Let X be a scheme of finite type over S and let (Li) ∈
∏
i∈I Klisse(X,Q`i) be a

compatible system with I finite. Then there exists a finite stratification X =
⋃
αXα by normal

subschemes such that each Xα admits a normal compactification X̄α over S such that (Li|Xα)i∈I
is compatible on X̄α.

We refer to Corollary 2.17 for the equivalent statement that compatible systems are
compatible along the boundary up to modification. In the case of a curve over a finite field,
we recover a theorem of Deligne [Del73, Théorème 9.8] (see Corollary 2.15). Takeshi Saito gave
an example of a compatible system on a smooth surface X that is not compatible on a given
smooth compactification X̄ (private communication with Hiroki Kato).

Theorem 1.2 implies the following valuative criterion for compatible systems, analogous to
Gabber’s valuative criterion for Vidal’s ramified part of the fundamental group [Vid05, § 6.1].

Corollary 1.3. LetX be a scheme of finite type over S and let (Li) ∈
∏
i∈I K(X,Q`i). Consider

commutative squares of schemes
η� _

��

// X

��
V // S

(1.1)

where V = Spec(OL) with OL a Henselian valuation ring, and η = Spec(L) is the generic point
of V . Let η̄ → η be a geometric point and let t ∈ V be the closed point.

(1) (Li)i∈I is a compatible system if and only if for every commutative square (1.1) with t
quasi-finite over S, (tr(F, (Li)η̄))i∈I is compatible for all F ∈W (η̄/η).

(2) If (Li)i∈I is a compatible system and (1.1) is a commutative square with V strictly Henselian,
then (tr(F, (Li)η̄))i∈I is compatible for all F ∈ Gal(η̄/η).

Note that here we do not assume OL to be a discrete valuation ring or that V → S is local.
As an application, we deduce the equicharacteristic case of some classical conjectures by Serre

on `-independence (Conjectures C4, C5, and C8 of [Ser70, § 2.3]; cf. [ST68, Appendix, Problems 1
and 2]).

Theorem 1.4. Let OL be a Henselian discrete valuation ring of characteristic p > 0, of fraction
field L and residue field κ. Let X be a proper smooth scheme over L. Let L̄ be a separable closure
of L and let κ̄ be the residue field of L̄. Let XL̄ = X ⊗L L̄.

(1) For each m and each F ∈ I(L̄/L) := Ker(Gal(L̄/L) → Gal(κ̄/κ)), tr(F,Hm(XL̄,Q`)) is a
rational integer independent of ` 6= p.

(2) (Cf. [Ter98, Theorem 3.3]) Assume that κ is a finite field. Then, for each m, each i, and
each F ∈W (L̄/L) whose image in W (κ̄/κ) is the nth power of the geometric Frobenius for
n > 0, we have:

(2a) tr(F, grMi H
m(XL̄,Q`)) is a rational integer independent of ` 6= p, where M denotes the

monodromy filtration; in particular,

(2b) tr(F,Hm(XL̄,Q`)) is a rational integer independent of ` 6= p.
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Part (2) was claimed in [CL18, Theorem 6.1], but the proof given there is incomplete.1 A

weaker form of (2) was proved by Terasoma [Ter98, Theorem 3.3].

Remark 1.5. Theorem 1.4(1) is the equicharacteristic p > 0 case of Serre’s Conjecture C4.

Theorem 1.4(2a) implies the equicharacteristic case of Conjecture C5 (Remark 2.18(2)), while

(2b) implies the equicharacteristic case of Conjecture C8. Parts (1) and (2b) of Theorem 1.4 hold

more generally over a Henselian valuation field of characteristic p > 0 without assuming that the

valuation is discrete (Remark 2.18(3)).

The alternating sum
∑

m(−1)mtr(F,Hm(XL̄,Q`)) of the traces in (1) and (2b) was known

to be a rational integer independent of ` 6= p more generally for X separated of finite type over

L without the equicharacteristic assumption. See Vidal [Vid04, Proposition 4.2] (combined with

Laumon [Lau81, Théorème 1.1]), Ochiai [Och99], and Zheng [Zhe08, Zhe09] (Theorems 2.3 and

3.5 below). Our valuative criterion allows us to further extend the results on the alternating sum

to Henselian valuation fields [LZ19].

In the case where X is defined over a curve over a finite field, Theorem 1.4(2b) follows from

Deligne’s theorem for curves mentioned above and results of Weil II [Del80]. In the general case,

after spreading out, the base becomes a variety over a finite field and we apply Corollary 1.3.

In § 2, we give the proofs of Theorems 1.2 and 1.4. The proof of Theorem 1.2 relies on the

preservation of compatible systems under direct images [Zhe09, Proposition 4.15]. Over a finite

field the latter is a theorem of Gabber [Fuj02a, Theorem 2].

In § 3, we study integrality along the boundary and prove an analogue of Theorem 1.2. This

generalizes a theorem of Deligne on non-Archimedean absolute values of liftings of local Frobenius

for curves over finite fields [Del80, Théorème 1.10.3].

Our original motivation for studying compatibility along the boundary is to understand

the relationship between compatible systems of Q`-sheaves and systems of F`-sheaves with

compatible wild ramification. The latter and variants were studied in recent work of Saito

and Yatagawa [SY17, Yat18] and Guo [Guo18], generalizing earlier work of Deligne [Ill81] and

Vidal [Vid04, Vid05]. In § 4, we deduce from our valuative criterion for compatible systems

that compatible systems have compatible ramification and, consequently, their reductions

have compatible wild ramification. These notions are defined using Vidal’s ramified part of

the fundamental group, which involves images of local inertia groups at geometric points of

compactifications X̄ of X. We define the decomposed part of the fundamental group by taking

instead images of the local decomposition groups at x ∈ |X̄|. We show, as another application

of Theorem 1.2, that the union of the images of the local decomposition (or Weil) groups for

x ∈ |X| is dense in the decomposed part.

2. Compatible systems along the boundary

The strategy of the proof of Theorem 1.2 is to reduce to the case of lisse sheaves tamely ramified

along a normal crossing divisor with unipotent local monodromy. For this we need to work with

finite group actions. We now review the notion of compatible systems on Deligne–Mumford stacks

[Zhe09, § 5] and finite quotient stacks in particular. In this paper, Deligne–Mumford stacks are

assumed to be quasi-separated with separated diagonal.

1 The authors of [CL18] have been made aware of this and have submitted a corrigendum.
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Let k̄ be a separable closure of k. Each F ∈ W (k̄/k) is the nth power of the geometric
Frobenius Fr: a 7→ a1/q for some n ∈ Z. We call n the degree of F . For an integer N , we let
W>N (k̄/k) denote the subset {Frn | n > N}.

Notation 2.1. For any connected Deligne–Mumford stack Y over S and any geometric point
ā → Y , we define the Weil group W (Y, ā) to be the inverse image of the Weil group W (k̄/k) by
the homomorphism

r : π1(Y, ā) → π1(S, ā) ' Gal(k̄/k).

We define the degree of F ∈ W (Y, ā) to be the degree of r(F ). We let W>N (Y, ā) denote the
subset r−1(W>N (k̄/k)) of elements of degree > N .

Let X be a Deligne–Mumford stack. For a point ξ of X, we let Xξ denote the residual gerbe,
which is necessarily a quotient stack [x/G] by a finite group G of the spectrum of a field x
(cf. [IZ13, p. 13]). For a geometric point x̄ above x, we have

π1([x/G], x̄) ' Gal(x̄/y)×Gal(x/y) G,

where y = x/G.
Assume that X is of finite type over S. We let |X| denote the set of locally closed points of X.

For ξ ∈ |X|, x is quasi-finite over S, the spectrum of a finite field extension of k or K. The Weil
group W ([x/G], x̄) ⊆ π1([x/G], x̄) is the inverse image of the Weil group W (x̄/y) ⊆ Gal(x̄/y) by
the homomorphism π1([x/G], x̄) → Gal(x̄/y), which is surjective of kernel the inertia group.

Definition 2.2. We say that (Li) ∈
∏
i∈I K(X,Q`i) is compatible if it satisfies the following

equivalent conditions.

(1) For every ξ ∈ |X|, every geometric point x̄ above ξ, and every F ∈ W (Xξ, x̄), (tr(F,
(Li)x̄))i∈I is compatible.

(2) For every quasi-finite morphism f : x → X, where x is the spectrum of a field, (f∗Li)i∈I is
a compatible system on x (§ 1).

(3) For every smooth morphism f : Y → X of finite type with Y a scheme, (f∗Li)i∈I is a
compatible system on Y (§ 1).

The implications (1)⇒ (2)⇒ (3) are trivial. (3)⇒ (2) follows from the existence of smooth
neighborhoods [LM00, Théoème 6.3]. (2) ⇒ (1) follows from [Zhe09, Proposition 5.6] applied
to the quotient stack Xξ, which is based on a method of Deligne and Lusztig [DL76, proof of
Proposition 3.3].

In the case where X = [Y/G] is a quotient stack of a scheme Y by a finite group, the residual
gerbe at the image of y ∈ Y is [y/D(y)], where D(y) < G is the decomposition group.

The main result of [Zhe09] can be stated as follows.

Theorem 2.3. Compatible systems on Deligne–Mumford stacks of finite type over S are stable
under Grothendieck’s six operations and duality.

This is stated for Deligne–Mumford stacks of finite type over k or K in [Zhe09, Proposition
5.8], but the same proof applies over S with [Zhe09, Théorème 1.16] replaced by the more
general [Zhe09, Proposition 4.15]. The case of schemes of finite type over k is a theorem of
Gabber [Fuj02a, Theorem 2].

We will only need the stability under Rj∗ for an open immersion j.
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Remark 2.4. Let x be quasi-finite over S and let (Li) ∈
∏
i∈I K(x,Q`i). If there exists an integer

N such that (tr(F, (Li)x̄))i∈I is compatible for all F ∈ W>N (x, x̄), then the same holds for all
F ∈ W (x, x̄) by [Zhe09, Proposition 1.15] (a consequence of Grothendieck’s arithmetic local
monodromy theorem [ST68, Appendix] and a rationality lemma [Ill06, Lemma 8.1]).

In the regular case, compatibility of systems of unramified lisse sheaves extends to the
boundary by the following variant of [Zhe09, Proposition 3.10].

Proposition 2.5. Let X be a regular Deligne–Mumford stack of finite type over S and let
(Li) ∈

∏
i∈I Klisse(X,Q`i). Assume that (Li|U )i∈I is compatible for some dense open substack

U ⊆ X. Then (Li)i∈I is compatible.

Proof. The proof is very similar to that of [Zhe09, Proposition 3.10]. A related argument will be
used in the proof of Proposition 2.10 below. By induction, we may assume that D = X − U is
regular and purely of codimension d > 1. Let j : U →X be the open immersion. By Theorem 2.3,
(Rj∗(Li|U ))i∈I is compatible. By the projection formula,

Li ⊗Q`i Rj∗Q`i ' Rj∗(Li|U ).

Gabber’s absolute purity theorem (see [Fuj02b, Theorem 2.1.1] and [Rio14, Théoème 3.1.1])
extends to Deligne–Mumford stacks: the refined cycle class clf ∈ H2d

D (X,Q`(d)) induces an

isomorphism Q`
∼−→ Rf !Q`(d)[2d], where f : D → X denotes the closed immersion. Indeed, the

definition of clf [Fuj02b, Definition 1.1.2] holds without change (with Chern classes defined by
Grothendieck [Gro68, § 1]) and the fact that it induces an isomorphism reduces to the case of
schemes. It follows that we have

Rmj∗Q` '


Q`, m = 0,

(Q`)D(−d), m = 2d− 1,

0 otherwise.

Alternatively, we can reduce Proposition 2.5 to the case of schemes using Definition 2.2(3).
For x → D quasi-finite and F ∈ W (x̄/x) of degree n, tr(F, (Rj∗Q`)x̄) = 1 − qnd. Thus, for

n 6= 0, tr(F, (Li)x̄) can be recovered from tr(F, (Rj∗(Li|U ))x̄). Therefore, (Li)i∈I is compatible
by Remark 2.4. 2

Next we define compatibility on the boundary in the equivariant setting. Let X̄ be a scheme
equipped with the action of a finite group G. For x ∈ X̄, the decomposition group D(x) acts
on X̄(x). For any geometric point x̄ above x, we have π1([x/D(x)], x̄) ' π1([X̄(x)/D(x)], x̄). For
X̄ normal, X ⊆ X̄ a G-stable dense open subscheme, and ā → X(x) a geometric point, the
homomorphism

π1([X(x)/D(x)], ā) → π1([X̄(x)/D(x)], ā) ' π1([x/D(x)], x̄) (2.1)

is surjective.

Definition 2.6. Let X̄ be a normal scheme of finite type over S equipped with an action
of G by S-automorphisms and let X be a G-stable dense open subscheme. We say that
(Li) ∈

∏
i∈I Klisse([X/G],Q`i) is compatible on [X̄/G] if, for every x ∈ |X̄|, every geometric point

ā → X(x), and every F ∈W ([X(x)/D(x)], ā), (tr(F, (Li)ā))i∈I is compatible.
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Remark 2.7. (1) (Li) ∈
∏
i∈I Klisse([X/G],Q`i) is compatible on [X/G] in the sense of

Definition 2.6 if and only if it is compatible in the sense of Definition 2.2. This follows from

the isomorphism in (2.1).

(2) Let U ⊆X ⊆ X̄ be a G-stable dense open subscheme. Then (Li) ∈
∏
i∈I Klisse([X/G],Q`i)

is compatible on [X̄/G] if and only if (Li|[U/G])i∈I is compatible on [X̄/G]. This follows from the

fact for x ∈ X̄, the homomorphism π1([U(x)/D(x)], ā) → π1([X(x)/D(x)], ā) is surjective.

(3) Assume that G acts freely on X. Let Y = X/G and Ȳ = X̄/G be the quotient spaces.

Then, for all x ∈ X̄, if y ∈ Ȳ denotes its image, then [X(x)/D(x)] ' Y(y). Thus, in this case,

(Li)i∈I on X/G is compatible on [X̄/G] if and only if it is compatible on X̄/G.

Remark 2.8. Let x ∈ |X̄| be a point that is not closed. The closure Y = {x} ⊆ X̄ admits a Zariski

open cover by schemes finite over S. Thus, Y =
⋃
y Y(y), with y running through closed points of

Y . We have x → Y(y) → X̄(y), which induces a morphism X(x) → X(y). If X̄ is separated, then

Y = Y(y) and D(x) < D(y). Thus, in Definition 2.6, if X̄ is separated or G = {1}, then we may

restrict to closed points of X̄.

Remark 2.9. Given a point ξ of a Deligne–Mumford stack Y , one can define the Henselization

of Y at ξ to be the limit of Deligne–Mumford stacks V for decompositions of the residual gerbe

Yξ → Y into Yξ → V
φ−→ Y with φ representable and étale. Using [IZ13, Lemma 3.5], one can

show that the Henselization of [X̄/G] at the image of x ∈ X̄ is [X̄(x)/D(x)]. Thus, Definition 2.6

depends only on the quotient stacks and can be extended to Deligne–Mumford stacks.

Let X̄ be a regular Deligne–Mumford stack and let D ⊆ X̄ be a normal crossing divisor.

We say that a lisse Q`-sheaf F on X = X̄ − D is tamely ramified on X̄ if for every geometric

point x̄ above a generic point of D and every geometric point ā of X(x̄) := X̄(x̄) ×X̄ X, the wild

inertia group of X(x̄) acts trivially on Fā. Here X̄(x̄) denotes the strict Henselization. We say

that L ∈ Klisse(X,Q`) is tamely ramified on X̄ if L = [F ] − [G] with F and G lisse and tamely

ramified on X̄.

Proposition 2.10. Let X̄ be a regular scheme of finite type over S equipped with an action

of a finite group G by S-automorphisms. Let D ⊆ X̄ be a normal crossing divisor such that

X = X̄−D is G-stable. Let (Li) ∈
∏
i∈I Klisse([X/G],Q`i) be a compatible system. Assume that

one of the following conditions holds.

(1) For each i, there exist lisse Z`i-sheaves Fi and Gi such that Li|X = ([Fi]− [Gi])⊗Z`i
Q`i , and

Fi⊗Z`i
Z`i/`ciZ`i and Gi⊗Z`i

Z`i/`ciZ`i are constant for some rational number c > 1/(`i − 1).

Here Z`i denotes the ring of integers of Q`i .

(2) G = {1} and each Li is tamely ramified on X̄.

Then (Li)i∈I is compatible on [X̄/G].

For the proof of Theorem 1.2, we will only need part (1). For the proof of Proposition 2.10,

we need a variant of Grothendieck’s arithmetic local monodromy theorem [ST68, Appendix].

We say that a family of matrices ρ : E → GLn(Q`) is quasi-unipotent if each ρ(g), g ∈ E,

is quasi-unipotent. By Remark 2.11 below, a continuous representation ρ : I → GLn(Q`) of a

profinite group I is quasi-unipotent if and only if ρ is unipotent on an open subgroup I0 < I.
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Remark 2.11. Let Pn` ' Q`
n

be the space of monic polynomials of degree n. The subset
Pn,qu
` ⊆ Pn` of polynomials whose roots are roots of unity is discrete and closed. This follows from

continuity of roots and the fact that the only root of unity in 1 + `cZ` is 1, where c > 1/(`− 1)
is any rational number.

The function Mn(Q`) → Pn` carrying an n × n matrix to its characteristic polynomial is
continuous. It follows that the subset QUnipn(Q`) ⊆ Mn(Q`) of quasi-unipotent matrices
is closed, and the subgroup of unipotent matrices Unipn(Q`) < QUnipn(Q`) is open.

Lemma 2.12. Consider short exact sequences of profinite groups

1 → P → I → I` → 1, 1 → I → G → Gs → 1,

with P of supernatural order prime to ` and I` pro-` Abelian. Assume that the conjugation
action of Gs on I` is given by a character χ : Gs → Z×` of infinite order. Then any continuous
representation ρ : G → GLn(Q`) is quasi-unipotent on I. Moreover, for any rational number
c > 1/(`− 1), we have

QUnipn(Q`) ∩ (1 + `cMn(Z`)) ⊆ Unipn(Q`).

Proof. Let U ∈ QUnipn(Q`) ∩ (1 + `cMn(Z`)). Then Ua is unipotent for some integer a > 0,
and log(U) = (1/a) log(Ua) is nilpotent, so that U = exp(log(U)) is unipotent. This proves the
second assertion.

The proof of the first assertion is identical to that of Grothendieck. Up to replacing G by
an open subgroup, we may assume that ρ factors through the open subgroup 1 + `cMn(Z`).
Then ρ(P ) = 1. Take g ∈ Gs such that χ(g) is not a root of unity. For t ∈ I, ρ(t) is conjugate
to ρ(t)χ(g), so that M = log(ρ(t)) is conjugate to log(ρ(t)χ(g)) = χ(g) log(ρ(t)) = χ(g)M . Thus,
χ(g)mtr(Mm) = tr(Mm), so that tr(Mm) = 0 for all m > 1. Therefore, M is nilpotent and
ρ(t) = exp(M) is unipotent. 2

Proof of Proposition 2.10. The proof is similar to a part of Deligne’s proof of [Del73,
Théorème 9.8].

We may assume that the index set I is finite. Let Li = [Fi]− [Gi] for Fi and Gi lisse on [X/G].
Let x ∈ |D|. Lemma 2.12 applies to the tame fundamental group πt1([X(x)/D(x)], ā) (cf. [Del80,
1.7.12.1] in the case x above k). Indeed, by Abhyankar’s lemma [SGA1, XIII, Corollaire 5.3], we
have a short exact sequence

1 → It → πt1([X(x)/D(x)], ā)
r−→ π1([x/D(x)], x̄) → 1,

where It =
∏
` Z`(1)d, d is the number of irreducible components of D ×X̄ X̄(x), and ` runs

through primes different from the characteristic of x. Note that for any semisimple continuous
representation ρ : πt1([X(x)/D(x)], ā) → GLn(Q`) and any g ∈ It with ρ(g) unipotent, we have
ρ(g) = 1. Indeed, on each graded piece of the monodromy filtration given by the nilpotent
operator log(ρ(g)), g acts by 1.

In case (1) It acts unipotently on (Fi)ā and (Gi)ā. In case (2) there exists an open subgroup
I ′t of It that acts unipotently on (Fi)ā and (Gi)ā. Each g ∈ W (X(x), ā) of degree 0 acts quasi-
unipotently on (Fi)ā and (Gi)ā. As in the proof of [Zhe09, Proposition 1.15], there exists a
subgroup G < W (X(x), ā) of finite index such that the action of g commutes with that of G up
to semisimplification. By [Ill06, Lemma 8.1], it suffices to consider F ∈W (X(x), ā) of degree 6= 0.
There exists an open subgroup H < πt1(X(x), ā) containing the image of F such that H ∩ It ⊆ I ′t.
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We may further assume that H∩It has the form NIt for an integer N > 0 invertible on x. Let Ȳ(y)

be the normalization of X̄(x) in the pointed finite étale cover (Y(y), b̄) of (X(x), ā) corresponding
to H. Then F ∈ W (Y(y), b̄). Moreover, Ȳ(y) is regular and the inverse image of D is a normal
crossing divisor. Indeed, if X̄(x̄) and Ȳ(ȳ) denote the strict Henselizations and the irreducible

components of D ×X̄ X̄(x̄) are defined by t1, . . . , td, then Ȳ(ȳ) ' X̄(x̄)[t
1/N
1 , . . . , t

1/N
d ]. Therefore,

up to replacing X̄ by Ȳ quasi-finite over X̄ giving rise to Ȳ(y), we may assume that It acts
unipotently on (Fi)ā and (Gi)ā.

Then the semisimplifications of Fi|[X(x)/D(x)] and Gi|[X(x)/D(x)] factor through r, so that

Li|[X(x)/D(x)] is the pullback of Mi ∈ K(ξ,Q`) via r, where ξ = [x/D(x)]. Let j : [X/G] → [X̄/G]

be the open immersion. By Theorem 2.3, (Rj∗Li)i∈I is compatible. By the projection formula,

Mi ⊗Q`i (Rj∗Q`i)ξ ' (Rj∗Li)ξ.

Gabber’s absolute purity theorem, extended to Deligne–Mumford stacks in the proof of
Proposition 2.5, implies that (see [Ill02, Theorem 7.2] and [Rio14, Corollaire 3.1.4])

(Rmj∗Q`)ξ '

{
Q`(−m)(

d
m), 0 6 m 6 d,

0 otherwise.

Thus, for F ∈W (ξ, x̄) of degree n,

tr(F, (Rj∗Q`)x̄) = (1− qn)d.

It follows that for n 6= 0, tr(F, (Mi)x̄) can be recovered from tr(F, (Rj∗Li)x̄). Therefore, (Mi)i∈I
is compatible by Remark 2.4. 2

Proposition 2.13. Let X be an integral normal scheme separated of finite type over S
and let (Li) ∈

∏
i∈I Klisse(X,Q`i) be a compatible system with I finite. Then there exist a

proper morphism f : X ′ → X with X ′ integral normal inducing a universal homeomorphism
f−1(U) → U for some nonempty open U ⊆ X, and a normal compactification X ′ ⊆ X̄ ′ over S,
such that (f∗Li)i∈I is compatible on X̄ ′.

Proof. We write Li = ([Fi]− [Gi])⊗Z`i
Q`i . There exists a connected finite étale cover Y → X,

Galois of group G, such that Fi ⊗Z`i
Z`i/2`Z`i and Gi ⊗Z`i

Z`i/2`Z`i are constant.

Let S0 be the closed point of S if XK is empty and S otherwise. We apply Gabber’s refinement
of de Jong’s equivariant alterations [deJ97] in the form of [Zhe09, Lemme 3.8] to theG-equivariant
morphism Y → T , where T is the normalization of S0 in Y . There exist a Galois alteration
(Z,H) → (Y,G) and an H-equivariant open immersion Z ⊆ Z̄ with Z̄ regular and projective
over S. Moreover, there exists an H-stable open subscheme V ⊆ Z whose complement in Z̄ is a
normal crossing divisor. Let f : X ′ := Z/H → Y/G ' X. By the definition of Galois alteration,
there exist a nonempty H-stable affine open subscheme V0 ⊆ V on which H acts freely and a
nonempty open subscheme U ⊆X such that f induces a universal homeomorphism f−1(U) → U .

By Proposition 2.10, (Li|[V/H])i∈I is compatible on [Z̄/H]. By Remark 2.7(3), (Li|V0/H)i∈I
is compatible on X̄ ′ := Z̄/H and the proposition follows. 2

Lemma 2.14. Let f : Y → X be a universal homeomorphism between normal schemes separated
of finite type over a Noetherian Nagata scheme T . Then, for any normal compactification Ȳ of
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Y over T , there exists a commutative diagram over T

Y �
� //

f
��

Ȳ

f̄
��

X �
� // X̄

where X̄ is a normal compactification of X over T and f̄ is a universal homeomorphism
identifying Ȳ with the normalization of X̄ in Y .

Proof. We may assume that X is connected and that f is not an isomorphism. Let K(X) ⊆K(Y )
be the fraction fields. There exists n such that K(Y )p

n ⊆K(X), where p > 0 is the characteristic
of K(X). Up to replacing T by a closed subscheme, we may assume that X → T is dominant.

The nth relative Frobenius factors as Y
f−→ X → Y (pn). We take X̄ to be the normalization of

Ȳ (pn) in X. The morphism f̄ : Ȳ → X̄ is finite, surjective, and radicial and hence a universal
homeomorphism. 2

Proof of Theorem 1.2. We may assume that X is reduced. By Proposition 2.13 and Lemma 2.14,
there exist an integral normal open subscheme X0 ⊆ X and a normal compactification X0 ⊆ X̄0

such that (Li|X0)i∈I is compatible on X̄0. We conclude by Noetherian induction. 2

The theorem takes the following form in the case of curves, which is a theorem of Deligne
[Del73, Théorème 9.8] in the case of curves over finite fields.

Corollary 2.15. Let X̄ be a smooth curve over k or K and let X ⊆ X̄ be a dense open
subscheme. Then any compatible system (Li) ∈

∏
i∈I Klisse(X,Q`i) is compatible on X̄.

In this case, one may also directly adapt the proof of Proposition 2.10 with πt1 replaced by π1.

Remark 2.16. Every pair of compactifications Y ⊆ Ȳ1 and Y ⊆ Ȳ2 over S (inclusions of dense
open subschemes with Ȳ1 and Ȳ2 proper over S) are dominated by a third one: there exist
a compactification Y ⊆ Ȳ over S and morphisms Ȳ → Ȳ1 and Ȳ → Ȳ2 over S inducing the
identity on Y . It suffices to take Ȳ to be the closure of the diagonal embedding Y ⊆ Ȳ1 ×S Ȳ2.
In the case where Y is normal, we may even take Ȳ to be normal by normalization.

It follows that in the situation of Theorem 1.2, every compactification Xα ⊆ X̄ ′α is dominated
by a normal compactification Xα ⊆ X̄ ′′α such that (Li|Xα)i∈I is compatible on X̄ ′′α. This implies
the following refinement of Proposition 2.13, which says that compatible systems are compatible
along the boundary up to modification.

Corollary 2.17. Let X̄ be a reduced scheme separated of finite type over S and let X ⊆ X̄
be a dense open subscheme. Let (Li) ∈

∏
i∈I Klisse(X,Q`i) be a compatible system with I finite.

Then there exists a proper birational morphism f : X̄ ′ → X̄ with X̄ ′ normal such that (f∗XLi)i∈I
is compatible on X̄ ′. Here fX : f−1(X) → X is the restriction of f .

Proof. Up to replacing X̄ by a compactification, we may assume that X̄ is proper over S. By
Theorem 1.2, there exist a dense open subscheme U and a normal compactification U ⊆ Ū such
that (Li|U )i∈I is compatible on Ū . Let U ⊆ X̄ ′ be a normal compactification dominating U ⊆ X̄
and U ⊆ Ū and let f : X̄ ′ → X̄ be the morphism. Then ((f∗XLi)|U )i∈I is compatible on X̄ ′. We
conclude by Remark 2.7(2). 2
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Proof of Corollary 1.3. The ‘if’ part of (1) follows from the definition. We prove (2) and the ‘only
if’ part of (1). We may assume that I is finite. Up to replacing X by the closure of the image
τ ∈ X of η, we may assume that X is irreducible of generic point τ . Up to shrinking X, we may
assume that X is separated and Li ∈ Klisse(X,Q`i) for all i. Let X ⊆ X̄ be a compactification
over S. We apply Corollary 2.17. Let X ′ = f−1(X). Note that (1.1) gives rise to a commutative
square

η� _

��

// X̄ ′

��
V

g
>>

// S

By the valuative criterion of properness, there exists a slashed arrow g as indicated, making
the diagram commutative. In case (1), g induces η → X ′(x) and W (η̄/η) → W (X ′(x), η̄), where

x = g(t). In case (2), g induces η → X ′(g(t̄)) := X̄ ′(g(t̄)) ×X̄′ X
′, where X̄ ′(g(t̄)) denotes the strict

Henselization of X̄ ′ at the geometric point g(t̄), the image of the geometric point t̄ = t of V
under g. The geometric point g(t̄) of X̄ ′ specializes to a geometric point x̄ above x ∈ |X̄ ′|. We
have η → X ′(g(t̄)) → X ′(x̄) → X ′(x), which induces Gal(η̄/η) → π1(X ′(x̄), η̄) ⊆W (X ′(x), η̄). 2

Proof of Theorem 1.4. Let us first show (1) and (2b). We write V` = Hm(XL̄,Q`). By standard
limit arguments, there exists a finitely generated subalgebra R ⊆ L over Fp such that X is
defined over B = Spec(R): there exists f : X → B proper smooth such that X ' X ×B η, where
η = Spec(L). By the Grothendieck trace formula, the system (Rf∗Q`)` on B is compatible. Each
Rmf∗Q` is lisse and pure of weight m. It follows that (Rmf∗Q`)` is compatible. By base change,
(Rmf∗Q`)η̄ ' V` ⊗Q` Q`. Applying Corollary 1.3 to the composition of the commutative square

η� _

��

// B

��
Spec(OL) // Spec(Fp)

and the closed immersion Spec(Fp) → Spec(OK), where OK is any Henselian discrete valuation
ring of residue field Fp, we see that tr(F, V`) is a rational number independent of `. In case (1), the
eigenvalues are roots of unity by Grothendieck’s geometric local monodromy theorem [SGA7-1,
Variante 1.3]. In case (2b), the eigenvalues are algebraic integers by a theorem of Ochiai [Och99,
Proposition A]. It follows that in both cases tr(F, V`) is a rational integer independent of `.

Part (2a) follows from (2b) and the monodromy weight conjecture, which is a theorem
of Terasoma [Ter98, Lemma 1.2] and more generally Ito [Ito05, Proposition 7.1] in equal
characteristic. Indeed, grMi V is pure of weight m + i, so that the characteristic polynomial
of F on grMi V can be extracted from the characteristic polynomial of F on V . 2

The proof of Theorem 1.4 relies only on the special case of Theorem 1.2 with S replaced by
Spec(Fp).

Remark 2.18. (1) Ito’s proof of the monodromy weight conjecture [Ito05] in equal
characteristic and Grothendieck’s proof of the geometric local monodromy theorem both use
Néron’s desingularization. For Theorem 1.4, the reduction to the tame case is more involved and
Néron’s desingularization does not suffice.
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(2) Theorem 1.4(2) implies that for each F ∈ W>0(κ̄/κ), tr(F,Hm(XL̄,Q`)
I) is a rational

integer independent of `. Here I = I(L̄/L) denotes the inertia group. The eigenvalues being
algebraic integers, it suffices to show that the trace is in Q and independent of `. Consider the
primitive parts of V` = Hm(XL̄,Q`) defined by Pi = grM−iKer(N) for i > 0. Here N : V` → V`(−1)
is the logarithm of the unipotent part of the local monodromy. By the identity grM−iV` = Pi ⊕
grM−i−2V`(−1), i > 0, the primitive parts Pi and consequently Ker(N) are compatible. Moreover,
V I
` = Ker(N)I and there exists an open subgroup U of I acting trivially on Ker(N), so that

tr(F, V I
` ) = (1/[I : U ])

∑
F ′ tr(F

′,Ker(N)) ∈ Q is independent of `. Here F ′ runs through liftings
of F in Gal(L̄/L)/U .

(3) Theorem 1.4(1) and (2b) hold in fact without the assumption that the valuation on OL
is discrete. The proof that tr(F,Hm(XL̄,Q`)) is rational and independent of ` is the same as
above. For integrality, we apply Corollary 3.10 below.

3. Integrality along the boundary

Fix an integrally closed subring A of Q`. A typical example is the integral closure of Z in Q`.
Recall from [Zhe08, Variantes 5.11 and 5.13] that a Q`-sheaf F on a scheme X of finite type over
S is said to be integral if for every x ∈ |X|, the eigenvalues of F ∈ W>0(x̄/x) on Fx̄ belong to
A. In this section, we study the integrality of integral sheaves on the boundary.

Definition 3.1. Let X̄ be a normal scheme of finite type over S and let X be a dense open
subscheme. Let F be a lisse Q`-sheaf on X. We say that F is integral on X̄ if for every x ∈ |X̄|
and every geometric point ā → X(x), the eigenvalues of every F ∈ W>0(X(x), ā) on Fā belong
to A.

We have the following analogues of Remarks 2.7(1) and 2.8. A lisse Q`-sheaf F on X is
integral on X if and only if it is integral. Moreover, in Definition 3.1 we may restrict to x closed
in X̄.

Remark 3.2. Let f : X̄ → Ȳ be a finite surjective morphism of integral normal schemes of finite
type over S and let X ⊆ X̄, Y ⊆ Ȳ be nonempty open subschemes satisfying f(X) ⊆ Y . Let
g : X → Y be the restriction of f . Then a lisse Q`-sheaf F on Y is integral on Ȳ if and only if
g∗F is integral on X̄.

The ‘only if’ part is obvious. For the ‘if’ part, up to shrinking X and Y as in Remark 2.7(2),
we may assume that g is the composition of a universal homeomorphism with a finite étale
morphism. In this case, for every x ∈ X̄, π1(X(x), ā) is an open subgroup of π1(Y(f(x)), f(ā)), say
of index m. Then, for each eigenvalue λ of F ∈W>0(Y(f(x)), f(ā)) acting on Fā, we have λm ∈ A,
so that λ ∈ A.

We have the following analogue of Theorem 1.2.

Theorem 3.3. Let X be a scheme of finite type over S and let F be an integral lisse Q`-sheaf
on X. Then there exists a finite stratification X =

⋃
αXα by normal subschemes such that each

Xα admits a normal compactification X̄α over S such that F|Xα is integral on X̄α.

The theorem implies, by Remark 2.16, that every compactification Xα ⊆ X̄ ′α is dominated
by a normal compactification Xα ⊆ X̄ ′′α such that F|Xα is integral on X̄ ′′α.
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Corollary 3.4. Let X̄ be a projective smooth curve over k or K and let X ⊆ X̄ be a dense
open subscheme. Then any integral lisse Q`-sheaf F on X is integral on X̄.

The case of a curve over a finite field is a theorem of Deligne [Del80, Théorème 1.10.3].
The proof of Theorem 3.3 relies on the case m = 0 of the following theorem [Zhe08, Théorème

2.5 and Variantes 5.11 and 5.13].

Theorem 3.5. Let f : X → Y be a morphism of schemes of finite type over S. Let F be an
integral Q`-sheaf on X. Then Rmf∗F is integral for all m.

The analogue for Rmf! was proved by Deligne and Esnault (see [DK73, XXI, Théorème 5.2.2]
and [Esn06, Appendix, Theorem 0.2]). We refer to [Zhe08] for a description of the behavior of
integral sheaves under other operations.

Corollary 3.6. Let X be a scheme of finite type over S and let F be a lisse Q`-sheaf on X.
Assume that F|U is integral for some dense open subscheme U ⊆ X. Then F is integral.

In the case X of finite type over k, this was noted in [Zhe19, Proposition 2.4].

Proof. Up to replacing X by its normalization, we may assume that X is normal. Let j : U → X
be the open immersion. Then F ' j∗(F|U ) in integral by Theorem 3.5. 2

Proposition 3.7. Let X̄ be a regular scheme of finite type over S and let D be a normal
crossing divisor. Let F be an integral lisse Q`-sheaf on X = X̄ −D, tamely ramified on X̄. Then
F is integral on X̄. Moreover, Rmj∗F(m) is integral for all m, where j : X → X̄ is the open
immersion.

We will only need the first assertion. Some cases of the second assertion were proved in
[Zhe09, Proposition 3.8 and Variantes 5.11 and 5.13].

Proof. We may assume that D =
∑

i∈I Di is a strict normal crossing divisor with Di regular and
defined globally by ti = 0, and F is L-ramified, where L is the set of prime numbers invertible on
X̄. We apply the construction of [Del80, 1.7.9]. For J ⊆ I, let D∗J =

⋂
j∈J Dj ∩

⋂
i∈J−I(X̄ −Di).

For each locally constant constructible sheaf of sets G on X, L-ramified on X̄, there exists an

integer n invertible on X̄ such that G extends to G′ on the cover X̄[t
1/n
i ]i∈I of X̄, and we let

G[D∗J ] denote the restriction of G′ to D∗J , which is locally constant constructible. The action of

µIn on X̄[t
1/n
i ]i∈I induces an action of µJn on G[D∗J ] (as µJn acts trivially on D∗J). Extending this

construction to Q`-sheaves by taking limits, we obtain a lisse Q`-sheaf F [D∗J ] on D∗J equipped

with an action of IJL , where IL = ẐL(1).
Let us show that F [D∗J ] is integral. For J ⊆ J ′ ⊆ I, F [D∗J ′ ] = F [D∗J ][D∗J ′ ]. Thus, by induction

we may assume that #J = 1. Changing notation, it suffices to show that F [D] is integral for
D a regular divisor defined by t = 0. By Grothendieck’s arithmetic local monodromy theorem
applied to the Henselization of X̄ at the generic point of D, the action of IL = ẐL(1) on F [D]
is quasi-unipotent. Up to replacing X̄ by X̄[t1/n], we may assume that the action of IL on
F [D] is unipotent. Let N : F [D] → F [D](−1) be the logarithm of the action of IL and let
M be the local monodromy filtration on F [D]. Then Ker(N) = F [D]IL ' (j∗F)|D, which is
integral by Theorem 3.5. Thus, the primitive parts Pi = grM−iKer(N) are integral. It follows that
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grMi F [D] '
⊕

j Pj(−(j + i)/2) is integral. Here j runs through integers j > |i| satisfying j ≡ i
(mod 2). Therefore, F [D] is integral.

Let x ∈ D∗J . We have an exact sequence

1 → It → πt1(X(x), ā)
r−→ Gal(x̄/x) → 1. (3.1)

By Lemma 2.12, there exists an open subgroup V of It acting unipotently on Fā. Assume that
x ∈ |D∗J | and let F ′ denote the semisimplification of F|X(x)

. Then V acts trivially on F ′ā. The

choice of a geometric point of limnX(x)[t
1/n
i ]i∈I above ā gives a section s of r and F [D∗J ]x

corresponds to the action of Gal(x̄/x) on Fā via s. Then U = V · Im(s) is an open subgroup
of πt1(X(x), ā). For F ∈ U , the eigenvalues of F acting on Fā are the same as the eigenvalues of
r(F ) acting on F [D∗J ]x̄, which belong to A if F ∈W>0. It follows that F is integral on X̄.

For the second assertion of the proposition, note that the restriction of Rmj∗F to D∗J is
Hm(IJL ,F [D∗J ]). Since taking invariants H0(IL,−) = (−)IL and co-invariants H1(IL,−)(1) '
(−)IL preserve integral sheaves, the same holds for Hm(IJL ,−)(m) '

⊕
K(−)

IJ−KL

IKL
, where K ⊆ J

runs through subsets of cardinality m. 2

The rest of the proof of Theorem 3.3 is similar to that of Theorem 1.2. We proceed by
Noetherian induction and reduce by Lemma 2.14 to proving the following.

Proposition 3.8. Let X be an integral normal scheme separated of finite type over S and let
F be an integral lisse Q`-sheaf on X. Then there exist a proper morphism f : X ′ → X with X ′

connected normal inducing a universal homeomorphism f−1(U) → U for some nonempty open
U ⊆ X, and a normal compactification X ′ ⊆ X̄ ′ over S, such that f∗F is integral on X̄ ′.

Proof. The proof is similar to that of Proposition 2.13, except that here we do not need to
work with stacks. We write F = (F0) ⊗Z` Q`. There exists a finite étale cover Y → X, Galois

of group G, such that F0⊗Z` Z`/`Z` is constant. We apply the second paragraph of the proof of

Proposition 2.13. Since F|V is tamely ramified on Z̄, F|V is integral on Z̄ by Proposition 3.7.
Thus, by Remark 3.2, f∗F is integral on X̄ ′ and the proposition follows. 2

The same proof, with Proposition 3.7 replaced by Lemma 2.12 applied to (3.1), yields the
following result on quasi-unipotence.

Theorem 3.9. Let X be a scheme of finite type over S and let F be a lisse Q`-sheaf on X.
Then there exists a finite stratification X =

⋃
αXα by normal subschemes such that each Xα

admits a normal compactification X̄α over S such that for every geometric point x̄ → X̄ and
every geometric point ā → (Xα)(x̄) := (X̄α)(x̄) ×X̄α Xα, the action of π1((Xα)(x̄), ā) on Fā is
quasi-unipotent. Here (X̄α)(x̄) denotes the strict Henselization.

The analogues of Corollaries 2.17 and 1.3 hold with the same proofs. Let us state the analogue
of Corollary 1.3.

Corollary 3.10. Let X be a scheme of finite type over S and let F be a Q`-sheaf on X. Then
F is integral if and only if for every commutative square (1.1) with t quasi-finite over S, the
eigenvalues of every F ∈W>0(η̄/η) acting on Fη̄ belong to A. Moreover, if (1.1) is a commutative
square with V strictly Henselian, then the action of Gal(η̄/η) on Fη̄ is quasi-unipotent.
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4. Ramified and decomposed parts of the fundamental group

In this section, we give applications related to Vidal’s ramified part of the fundamental group
[Vid05, § 1.2]. We show that compatible systems have compatible ramification (Corollary 4.6)
and, consequently, their reductions have compatible wild ramification (Corollary 4.14).

Let us first review the definition of the ramified part of the fundamental group. Let T be
the spectrum of an excellent Henselian discrete valuation ring of residue characteristic exponent
p > 1.

Definition 4.1 (Vidal). Let X be an integral normal scheme separated of finite type over T
and let ā be a geometric generic point of X. Let X ⊆ X̄ be a normal compactification over T .
Let x̄ → X̄ be a geometric point above x ∈ X̄ and let X̄(x̄) denote the strict Henselization. Let
b̄ → X(x̄) := X ×X̄ X̄(x̄) be a geometric point above ā. We define the following closed subsets of
π1(X, ā), each of which is a union of subgroups.

– The subgroup EX,X̄,x,b̄ = Im(π1(X(x̄), b̄) → π1(X, ā)). See Remark 4.2(1) below for the
justification of the subscript x instead of x̄.

– EX,X̄ , the closure of
⋃
x,b̄EX,X̄,x,b̄, where x runs through points of X̄ and b̄ runs through

geometric points above ā.

– The ramified part EX/T =
⋂
X̄ EX,X̄ , where X̄ runs through normal compactifications of X

over T .

The subsets EX,X̄ and EX/T are stable under conjugation.

Remark 4.2. (1) We have a short exact sequence

1 → π1(X(x̄), b̄)
i−→ π1(X(x), b̄)

ρ−→ π1(X̄(x), b̄) → 1,

where π1(X̄(x), b̄) ' Gal(x̄/x). The image of i depends on x̄ only via x and depends on b̄ as a
geometric point of X(x).

(2) For any specialization x̄ → X(ȳ), we have EX,X̄,x,b̄ ⊆ EX,X̄,y,b̄. Thus, in the definition of
EX,X̄ , we may restrict to closed points x ∈ X̄.

(3) It follows from Gabber’s valuative criterion [Vid05, § 6.1] that for any finite stratification
X =

⋃
αXα into integral normal subschemes, EX/T is the closure of

⋃
α,γα

γα(EXα/T ), where γα
runs through paths from a geometric generic point āα → Xα to ā → X.

Recall that S is the spectrum of an excellent Henselian discrete valuation ring with a finite
residue field.

Definition 4.3. Let X be a scheme of finite type over S. We say that a system (Li) ∈
∏
i∈I K

(X,Q`i) has compatible ramification if for every separated integral normal subscheme Y ⊆ X,
(tr(g, (Li)ā))i∈IY is compatible for all g ∈ EY/T . Here ā is a geometric generic point of Y and

IY ⊆ I is the subset of i such that Li|Y is in Klisse(Y,Q`i).

Remark 4.4. Let X be an integral normal scheme separated of finite type over S and let F be
a lisse Q`-sheaf on X. Then the action of EX/S on Fā is quasi-unipotent. This follows from
Theorem 3.9, Remark 4.2(3), and the fact that quasi-unipotent matrices form a closed subset of
GLn(Q`) (Remark 2.11).
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Combining this with Gabber’s valuative criterion [Vid05, § 6.1], we obtain the following
valuative criterion for compatible ramification.

Lemma 4.5. Let X be a scheme of finite type over S. Then (Li) ∈
∏
i∈I K(X,Q`i) has compatible

ramification if and only if for every commutative square (1.1) with V strictly Henselian,
tr(F, (Li)η̄)i∈I is compatible for all F ∈ Gal(η̄/η).

Proof. We may assume that I is finite, X integral normal separated, and Li = [Fi] − [Gi] with
Fi and Gi lisse, respectively, of ranks mi and ni. Consider the continuous map

σ : EX/S → C =
∏
i∈I

(Pmi,qu
`i

× Pni,qu
`i

)

carrying g to (det(T ·1−g, (Fi)ā),det(T ·1−g, (Gi)ā)), where P r,qu
`i

is as in Remark 2.11. Gabber’s
criterion says that EX/S is the closure of the union of the images of Gal(η̄/η). Since C is discrete,
σ(EX/S) is the union of the images of Gal(η̄/η). 2

Corollary 1.3(2) now takes the following form.

Corollary 4.6. Let X be a scheme of finite type over S. Then any compatible system (Li) ∈∏
i∈I K(X,Q`i) has compatible ramification.

Let P be a set of prime numbers. Given a profinite group G, we let GP ⊆ G denote the
subset of elements g such that all prime factors of the supernatural order of g are contained in
P . Note that GP is a closed subset stable under conjugation, a union of subgroups of G. For a
continuous homomorphism of profinite groups α : G → H, we have α(GP ) = α(G) ∩HP .

We write (p) = {p} for p > 1 and (p) = ∅ for p = 1. Then G(p) is the union of the p-Sylow
subgroups of G.

Notation 4.7. In the situation of Definition 4.1, for G = π1(X, ā), we write

EPX,X̄,x,b̄ = EX,X̄,x,b̄ ∩GP , EPX,X̄ = EX,X̄ ∩GP , EPX/T = EX/T ∩GP .

Remark 4.8. Alternatively, we can define these subsets as follows:

– EP
X,X̄,x,b̄

= Im(π1(X(x̄), b̄)
P

→ π1(X, ā));

– EP
X,X̄

is the closure of
⋃
x,b̄E

P
X,X̄,x,b̄

, where x runs through points of X̄ and b̄ runs through

geometric points above ā;

– EPX/T =
⋂
X̄ E

P
X,X̄

, where X̄ runs through normal compactifications of X over T .

For P = (p), E
(p)
X/T is called the wildly ramified part of the fundamental group and was defined

by Vidal [Vid04, 2.1]. Our notation differs from that of Vidal, who writes E′X/T and EX/T for

our EX/T and E
(p)
X/T , respectively.

Next we define compatible P -ramification for systems of F`-sheaves, where F` denotes an
algebraic closure of F`. For a profinite group G, an element g ∈ G that is `-regular (namely, of
supernatural order prime to `) and a virtual F`-representation M of G, the Brauer trace is defined
by trBr(g,M) =

∑
λ[λ], where λ runs through eigenvalues of g acting on M (with multiplicities)

and [λ] denotes the Teichmüller lift. Note that trBr(g,M) is a sum of roots of unity (of order
prime to `) in Q`.

Let X be a scheme of finite type over T . Let K(X,F`) denote the Grothendieck group of
constructible F`-sheaves. Recall that we fixed field embeddings ιi : Q → Q`i for i ∈ I.
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Definition 4.9. Assume that P does not contain any `i. We say that a system (Li) ∈
∏
i∈I K

(X,F`i) has compatible P -ramification if for every separated integral normal subscheme Y ⊆ X,
(trBr(g, (Li)ā))i∈IY is compatible for all g ∈ EPY/T . Here ā is a geometric generic point of Y and

IY ⊆ I is the subset of i such that Li|Y is in Klisse(Y,F`i). We say that (Li)i∈I has compatible
wild ramification if it has compatible (p)-ramification.

In the special case `i = ` and Q = Q`, one recovers the notion of the same wild ramification of
Deligne [Ill81] and Vidal [Vid04]. A weaker condition was recently studied by Saito and Yatagawa
[SY17, Yat18]. In [Guo18], Guo showed that systems of compatible wild ramification in the sense
of Definition 4.9 are preserved by Grothendieck’s six operations and duality.

Gabber’s valuative criterion [Vid05, § 6.1] implies the following valuative criterion for
compatible P -ramification.

Lemma 4.10. Let X be a scheme of finite type over T . Then (Li) ∈
∏
i∈I K(X,F`i) has

compatible P -ramification if and only if for every commutative square

η� _

��

// X

��
Spec(OL) // T

whereOL is a strictly Henselian valuation ring of fraction field L and η = Spec(L), (trBr(g, (Li)η̄))
is compatible for all g ∈ Gal(η̄/η)P . Here η̄ → η is a geometric point.

Remark 4.11. Let X be an integral normal scheme separated of finite type over T and let (Li) ∈∏
i∈I Klisse(X,F`i) with I finite. Then (Li)i∈I has compatible P -ramification if and only if there

exists a normal compactification X ⊆ X̄ over T such that (trBr(g, (Li)ā))i∈I is compatible for all
g ∈ EP

X,X̄
.

Indeed, for any finite quotient G of π1(X, ā), if we let EP
X,X̄

(G) and EPX/T (G) denote

respectively the images of EP
X,X̄

and EPX/T in G, then we have EPX/T (G) =
⋂
X̄ E

P
X,X̄

(G) by

Lemma 4.12 below, and it follows that EPX/T (G) = EP
X,X̄

(G) for some X̄. Here we used the fact

that any pair of normal compactifications is dominated by a third one (cf. Remark 2.16).

Lemma 4.12. Let Π be a topological space and let B be a downward-directed set of closed
subsets of Π: for E1, E2 ∈ B, there exists E ∈ B such that E ⊆ E1 ∩ E2. Let σ : Π → C be a
map such that all fibers are compact. Then σ(

⋂
E∈B E) =

⋂
E∈B σ(E).

Proof. We have σ(
⋂
E∈B E) ⊆

⋂
E∈B σ(E). Conversely, let g ∈ C − σ(

⋂
E∈B E). Then σ−1(g) ∩⋂

E∈B E = ∅. Since σ−1(g) is compact, there exist E1, . . . , En ∈ B such that σ−1(g)∩
⋂n
i=1Ei = ∅.

Since B is downward directed, there exists E ∈ B such that σ−1(g) ∩ E = ∅. In other words,
g ∈ C −

⋂
E∈B σ(E). 2

Definition 4.13. Let Eλ be a finite extension of Q`, of ring of integers Oλ and residue field Fλ.
Consider the composition

K(X,Eλ)
(j∗)−1

−−−−→
∼

K(X,Oλ)
i∗−→ K(X,Fλ),
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where j∗ is given by − ⊗Oλ Eλ and i∗ is given by − ⊗LOλ Fλ. By [Zhe15, Proposition 9.4], j∗ is
an isomorphism and i∗ is a surjection. Taking the colimit, we get the decomposition map

dX : K(X,Q`) → K(X,F`),

which is a surjection.

It follows from the definition that if (Li) ∈
∏
i∈I K(X,Q`i) has compatible ramification,

then (dX(Li)) ∈
∏
i∈I K(X,F`i) has compatible P -ramification. Thus, Corollary 4.6 implies the

following.

Corollary 4.14. Let X be a scheme of finite type over S. Let (Li) ∈
∏
i∈I K(X,Q`i) be a

compatible system. Then (dX(Li)) ∈
∏
i∈I K(X,F`i) has compatible P -ramification, where P is

the set of primes not equal to any `i. In particular, (dX(Li))i∈I has compatible wild ramification.

Next we define the decomposed part of the fundamental group. The first three steps of the
definition are analogous to Definition 4.1, with inertia groups (associated to strict Henselizations)
replaced by decomposition groups (associated to Henselizations).

Definition 4.15. Let X be an integral normal scheme separated of finite type over T and let ā
be a geometric generic point of X. Let X ⊆ X̄ be a normal compactification over T . Let x ∈ X̄ be
a point and let b̄ → X(x) be a geometric point above ā. Let X =

⋃
αXα be a finite stratification

of X into integral normal subschemes. We define the following closed subsets of π1(X, ā), each of
which is a union of subgroups.

– The subgroup DX,X̄,x,b̄ = Im(π1(X(x), b̄) → π1(X, ā)).

– DX,X̄ , the closure of
⋃
x,b̄DX,X̄,x,b̄, where x runs through locally closed points of X̄ and b̄

runs through geometric points above ā.

– Dnaive
X/T =

⋂
X̄ DX,X̄ , where X̄ runs through normal compactifications of X over T .

– DX/T,(Xα), the closure of
⋃
α,γα

γα(Dnaive
Xα/T

), where γα runs through paths from a geometric
generic point āα → Xα to ā → X.

– The decomposed part DX/T =
⋂
DX/T,(Xα), where (Xα) runs through finite stratifications

of X into integral normal subschemes.

Except for DX,X̄,x,b̄, the above subsets are stable under conjugation.

The definition is functorial in an obvious sense, which we specify for Dnaive
X/T and DX/T . Given

a morphism f : X → Y of integral normal schemes of finite type over T and a path γ from ā→X
to a geometric generic point ā′→ Y , the induced homomorphism γ : π1(X, ā) → π1(Y, ā′) satisfies
γ(Dnaive

X/T ) ⊆Dnaive
Y/T and γ(DX/T ) ⊆DY/T . We have DX/T ⊆DX/T,(Xα) ⊆Dnaive

X/T , where the second

inclusion follows from the functoriality of Dnaive
X/T .

Remark 4.16. (1) In the absence of a valuative criterion, we performed the last two steps
in the definition to ensure that for any finite stratification (Xα) of X into integral normal
subschemes, DX/T is the closure of

⋃
α,γα

γα(DXα/T ), where γα runs through paths from a
geometric generic point āα → Xα to ā → X.

(2) If a denotes the generic point of X, then DX,X̄,a,ā = π1(X, ā). On the other hand, for

x ∈ X̄ locally closed, the closure {x} is finite over T and if we let y denote the closed point of {x},
then we have a canonical morphism X(x) → X(y) as in Remark 2.8, so that DX,X̄,x,b̄ ⊆ DX,X̄,y,b̄.
Thus, in the definition of DX,X̄ , we may restrict to closed points x ∈ X̄.
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(3) For x ∈ X̄ closed, the exact sequence in Remark 4.2(1) induces an exact sequence

1 → EX,X̄,x,b̄ → DX,X̄,x,b̄ → π1(X̄(x), b̄) → 1.

Indeed, in the commutative square

π1(X(x), b̄)
ρ //

τ

��

π1(X̄(x), b̄)

ι

��
π1(X, ā)

σ // π1(T, ā)

ι is an injection, so that Ker(τ) ⊆ Ker(ρ). Let K = Ker(σ). Then

EX,X̄,x,b̄ = K ∩DX,X̄,x,b̄, EX,X̄ ⊆ K ∩DX,X̄ , EX/T ⊆ K ∩DX/T .

(4) Assume that T = S. If Xk is geometrically unibranch, then DX/S contains the image
of π1(Xk). Indeed, DXk/S ⊆ π1(Xk) contains the Frobenius element at every x ∈ |Xk|, so that
DXk/S = π1(Xk) in this case by Chebotarev’s density theorem. If moreover X is proper over S,
so that π1(Xk) ' π1(X) [SGA4-3, XII, Théorème 5.9], then DX/S = π1(X, ā). The equality does
not hold in general, even for X proper over S.

Theorem 1.2 implies the following density result.

Corollary 4.17. Let X be an integral normal scheme separated of finite type over S. Then
DX/S is the closure of

⋃
x̄,γ γ(W (x̄/x)), where x̄ runs through geometric points of X above

x ∈ |X| and γ runs through paths from x̄ → x to ā → X.

In the corollary, we may replace W (x̄/x) by W>N (x̄/x), which is a dense subset of W (x̄/x)
for the profinite topology. Moreover, we may restrict to closed points x ∈ X as in Remark 2.8.

Proof. Let C be the closure of
⋃
x̄,γ γ(W (x̄/x)). We have C ⊆ DX/S . Let G be a finite quotient

of π1(X, ā) and let C(G) and D(G) denote respectively the images of C and DX/S in G. It

suffices to show that for any pair of Q`-characters χ and χ′ of G satisfying χ|C(G) = χ′|C(G),

we have χ|D(G) = χ′|D(G). Let F and F ′ be the corresponding lisse Q`-sheaves on X. Then F
and F ′ are compatible (for Q = Q`). We apply Theorem 1.2. Since DX/S ⊆

⋃
α,γα

γα(Dnaive
Xα/S

) ⊆⋃
α,γα

γα(DXα,X̄α), every g ∈ D(G) is in the image of some π1((Xα)(x), b̄) for x closed in X̄α,

which equals the image of W ((Xα)(x), b̄). Thus, χ|D(G) = χ′|D(G). 2
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étale cohomology, Astérisque 279 (2002), 271–322. In Cohomologies p-adiques et applications
arithmétiques, II; MR 1922832.

Ill06 L. Illusie, Miscellany on traces in `-adic cohomology: a survey, Jpn. J. Math. 1 (2006), 107–136;
MR 2261063.

IZ13 L. Illusie and W. Zheng, Odds and ends on finite group actions and traces, Int. Math. Res.
Not. IMRN 2013 (2013), 1–62; MR 3041694.

Ito05 T. Ito, Weight–monodromy conjecture over equal characteristic local fields, Amer. J. Math.
127 (2005), 647–658; MR 2141647.

deJ97 A. J. de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997),
599–621; MR 1450427 (98f:14019).
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cohomologie étale des schémas quasi-excellents; MR 3329786.

SGA1 A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Documents
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