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Slip length formulas for longitudinal shear flow
over a superhydrophobic grating with partially
filled cavities
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Explicit formulas are given for the hydrodynamic slip lengths associated with longitudinal
shear flow over a superhydrophobic grating where the menisci have partially invaded the
cavities and are only weakly curved. For flat menisci that have depinned from the top of the
grating and have displaced downwards into the cavities, the axial velocity is determined
analytically and the slip length extracted from it. This solution is then combined with
an integral identity to determine the first-order correction to the slip length when the
displaced menisci bow weakly into the cavity. It is argued that the new formulas provide
useful upper bounds for quantifying slip in microchannel flows involving partially filled
cavities. The new solutions are natural extensions of prior results due to Philip (Z. Angew.
Math. Phys., vol. 23, 1972, pp. 353–372) for shear flow over mixed no-slip/no-shear
surfaces and due to Bechert & Bartenwerfer (J. Fluid Mech., vol. 206, 1989, pp. 105–129)
for shear flow over blade-shaped riblets.

Key words: drag reduction, capillary flows, wetting and wicking

1. Introduction

Superhydrophobic surfaces can dramatically reduce flow resistance in the manipulation
of small volumes of fluid (Rothstein 2010; Lee, Choi & Kim 2016). Capillarity allows
a surface microstructure to support interfaces or menisci that prevent fluid from fully
penetrating interstitial regions between pillars, posts or gratings, leading to trapped
gas pockets and enhanced slip over the spanning menisci. Maintaining and controlling
this so-called Cassie state remains a key challenge for the successful deployment of
superhydrophobic surfaces in applications (Lee et al. 2016). There has been significant
progress in improving the robustness of the Cassie state, including use of textured groove
sidewalls and re-entrant, and doubly re-entrant, pillar designs (Ahuja et al. 2008; Tuteja
et al. 2008; Lee & Kim 2009; Hensel et al. 2013).
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(a) (b)

Figure 1. Two scenarios involving partially filled cavities: (a) longitudinal shear flow along a periodic grating
with meniscus displacement into the cavity due to depinning from the corners; and (b) a re-entrant T-shaped
grating design.

In quantifying slip for internal channel flows, a touchstone article by Philip (1972)
provides explicit solutions to several mixed boundary value problems relevant to the
mixture of no-slip and no-shear surfaces that provide a good model of flow over
superhydrophobic surfaces. Philip’s solutions provide valuable benchmarks in the field
of surface engineering and are by now well known (Lee et al. 2016). His solutions assume
flat interfaces are flush with interspersed flat no-slip surfaces, a feature shared with later
studies (Lauga & Stone 2003). Sbragaglia & Prosperetti (2007) examined how weak
meniscus curvature affects slip by solving the relevant mixed boundary value problems.
Their study was reappraised and extended by the present author (Crowdy 2017), who
showed that their slip length corrections can be found instead using integral identities, or
‘reciprocal theorems’, together with Philip’s exact solutions for flat menisci. In practice,
this meniscus curvature is caused by pressure differences between the trapped gas and the
working fluid.

Those same pressure differences can also cause depinning of the menisci from the top
of the grating, causing invasion, and partial filling, of the grooves. Figure 1(a) shows
the menisci depinned from the top of the grating; figure 1(b) shows a typical re-entrant
T-shaped surface design where the meniscus also partially fills the grooves (Ahuja et al.
2008; Tuteja et al. 2008; Lee & Kim 2009; Hensel et al. 2013). Concerning quantification
of slip, there is no difference between these two scenarios (the fluid cannot ‘see’ the shape
of the walls below the meniscus), although their structural robustness can certainly be
expected to differ. Lee et al. (2016) point out that meniscus depinning and invasion of the
groove have more serious consequences for slip reduction than mere curving of the menisci
without depinning (Biben & Joly 2008). Several authors have carried out numerical studies
quantifying slip for partially filled cavities (Ng & Wang 2009; Teo & Khoo 2010; Ge et al.
2018), and the author has previously given some analytical formulas quantifying slip in
which a small set of parameters must be found numerically (Crowdy 2011a), but the extant
literature contains no explicit formulas akin to Philip’s that have proven so useful in the
field. The present paper contributes in this direction.

The aim here is to report analytical results associated with the problems shown in
figures 2(c) and 2(d): longitudinal shear over a superhydrophobic surface made up of
a 2L-periodic grating of infinitely thin walls where the menisci between the walls have
invaded the grooves between them by a distance H and are weakly curved, making a small
angle θ with the x axis. An exact solution for the axial flow field wF(x, y) in figure 2(c)
is found here for flat menisci θ = 0, for any H and L, and for infinitely thin walls, so that
c = L, where 2c is the span of the meniscus in each period window. This new solution
can be viewed as a natural mathematical continuation of that found by Philip (1972) for
shear flow over a 2L-periodic array of flat no-shear slots of width 2c between flush no-slip
surfaces. Those no-slip surfaces might be the flat tops of a grating as shown in figure 2(a)
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Shear flow over a grating with partially filled cavities
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Figure 2. (a) Philip’s longitudinal flow problem where flat menisci of width 2c are flush with the tops of the
sidewalls of the 2L-periodic grating. (b) The singular case of Philip’s problem with c → L, where sidewalls get
infinitely thin. (c) The model problem considered here: continuation beyond the singular case by downwards
displacement of the flat meniscus by distance H > 0 into the cavities. (d) Partially filled cavities with weak
curvature of the displaced menisci. The case of downward protrusion θ < 0 is shown: the flat case is θ = 0.
In panels (c) and (d) the sidewalls are infinitely thin.

and whose slip length Philip found to be

2L
π

log sec(πδP), δP ≡ c
2L

. (1.1)

As c → L, as in figure 2(b), this is a singular case (Schnitzer 2016) where infinitely thin
walls are spanned by flush menisci. However, one can continue the solution branch beyond
this singular case by displacing the meniscus into the cavity by distance H as in figure 2(c).
The slip length (relative to the top of the grating) associated with the flow in figure 2(c)
can be extracted from wF(x, y) and is given explicitly by

ΛF = 2L
π

log(1 + coth(πδ)), δ = H
2L

. (1.2)

The non-dimensional parameter δ is the cavity invasion depth-to-pitch ratio.
With the analytical solution wF(x, y) at hand, we then follow Crowdy (2017) and use

integral identities to show the modified slip length Λ(δ, θ) for weakly curved menisci. Let
θ be the angle of the meniscus at the triple contact point relative to the positive x axis, with
θ = 0 corresponding to a flat interface. Figure 6(d) shows downward-protruding menisci
with θ < 0. Here we show that

Λ(δ, θ)

2L
= 1

π
log(1 + coth(πδ)) + θF(δ) + O(θ2), (1.3)
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where

F(δ) =
∫ 1

0
u(1 − u)

cos2(πu)

sinh2(πδ) + sin2(πu)
du. (1.4)

Since θ < 0 when meniscus deflection is downwards further into the groove, and since
F(δ) is clearly non-negative, the second term on the right in (1.3) quantifies the slip
length reduction when a meniscus that has already invaded the cavity by distance H
curves downwards while pinned at that level, as shown in figure 2(d). Equation (1.3) is the
analogue of a similar formula (Sbragaglia & Prosperetti 2007; Crowdy 2017) for weakly
curved menisci that are flush with the flat top of the grating when flat (that is, when the
menisci for Philip’s solution in figure 2(a) become weakly curved). Equations (1.2)–(1.4)
are valid for grating walls of zero width, but it will be shown that they provide useful
upper bounds on the slip lengths for realistic gratings where the groove walls will have
some thickness (usually small in practice, to maximize slip). We also argue in § 5 that,
although derived for unbounded shear flow, the new explicit formulas will be useful for
quantifying slip in bounded channel flows too.

2. Shear flow over blades with flat menisci invading the grooves

It is convenient to set the origin in the (x, y) plane to be at the intersection of the menisci
with the walls, as shown in figure 2(b). For now, the meniscus is taken to be flat, θ = 0.
Since there is no imposed pressure gradient along the grating, we must solve

∇2wF = 0, ∇2 = ∂2

∂x2 + ∂2

∂y2 , (2.1)

for a function wF(x, y) that is 2L-periodic in x satisfying the condition of simple shear with
unit shear rate in the far field,

wF(x, y) → y + λF, y → ∞, (2.2)

and where the constant λF is the slip length we seek. If one imagines an ‘equivalent’ simple
shear having the form (2.2) everywhere (that is, not just as y → ∞), then λF is the distance
below the y = 0 line where an effective no-slip condition would hold, thereby providing
a measure of the slip on y = 0 associated with the flow wF. The boundary conditions are
that

wF = 0 on the walls and
∂wF

∂n
= 0 on the menisci. (2.3)

For flat menisci, the latter condition becomes ∂wF/∂y = 0.
To solve this mixed boundary value problem, we let z = x + iy and introduce the analytic

function

h(z) = φ(x, y) + iwF(x, y), (2.4)

where φ(x, y) is the harmonic conjugate of wF(x, y). Philip (1972) solves similar mixed
boundary value problems using Schwarz–Christoffel theory; here we deploy an extension
of a conformal geometric method used by the author (Crowdy 2011b) to retrieve and extend
Philip’s solutions.

Two geometrical observations lead directly to the solution. The first is that two ‘radial
slit mappings’, also used in Crowdy (2011b) and described in an appendix to that paper,
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Shear flow over a grating with partially filled cavities
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Figure 3. Conformal geometric construction of the solution (2.7). Regions corresponding under the maps are
colour-coded. A radial slit map, followed by a logarithm, takes the upper half unit ζ disc to the period window
in the z plane. A similar sequence also maps it to the correct region in the h plane but is preceded by a Möbius
mapping.

given by

χζ = R(ζ, α) ≡ −(ζ − α)(ζ − 1/ᾱ)

(ζ − ᾱ)(ζ − 1/α)
, χη = R(η, β) = − (η − β)(η − 1/β̄)

(η − β̄)(η − 1/β)
,

(2.5a,b)

have the geometrical effect of transplanting an upper half disc, in this case in two
parametric ζ and η planes, to the interior of a unit disc with a radial slit in the respective
χζ and χη image planes. The point ζ = α in the upper half unit ζ disc maps to the origin
in the χζ plane. Figure 3 shows these mappings composed with a subsequent logarithmic
transformation taking these slit unit discs to vertical semi-strips with vertical slits.

The second observation is that the Möbius mapping,

η = M(ζ ) ≡ −i
[
ζ − i
ζ + i

]
, β = M(α), (2.6a,b)

transplants the upper half disc in the ζ plane to the upper half disc in the η plane, with
ζ = α mapping to η = β. As shown diagrammatically in figure 3, this means that we can
produce an explicit mapping from the same upper half unit ζ disc to a period window of
the fluid domain and to the corresponding region in a complex h = φ + iwF plane:

z = Z(ζ ) = − iL
π

log χζ = − iL
π

log R(ζ, α),

h = H(ζ ) = − iL
π

log χη = − iL
π

log R(η, β) = − iL
π

log R(M(ζ ), β).

⎫⎪⎪⎬
⎪⎪⎭

(2.7)

The colour-coded lines in figure 3 correspond as follows: the red grating walls in the
z plane correspond to the red lines in the h plane where Im[h] = wF = 0, implying that
these are no-slip surfaces; the blue meniscus portions in the z plane on which only x
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(a) (b) (c)

Figure 4. Longitudinal velocity contours of wF(x, y) for δ = 0.25 (a), 0.5 (b) and 1 (c).

varies correspond to the blue line in the h plane where Re[h] = φ = 0, implying, by the
Cauchy–Riemann equations, that

0 = ∂φ

∂x
= ∂wF

∂y
, (2.8)

which is the required no-shear condition. As ζ → α, then y = Im[z] → +∞. The far-field
condition (2.2) will be verified in § 3 where λF is calculated.

Equations (2.7) provide a parametric representation of the solution but, after some
algebra, the parameter ζ can be eliminated to give the explicit result

wF(x, y) = Im[h(z)], h(z) = 2L
π

sin−1

⎡
⎢⎢⎣

sinh
(

iπz
2L

)

sinh(πδ)

⎤
⎥⎥⎦ , (2.9a,b)

where the branch of sin−1 must be chosen that ensures wF increases from zero with
positive x (as mentioned in Crowdy (2011b), use of the parametric form of solution (2.7)
avoids any such complications in choosing branches).

Figure 4 shows some velocity contours in the flow cross-section for three different values
of the height-to-pitch parameter δ. On the meniscus 0 ≤ x ≤ 2L, y = 0, it follows from
(2.9a,b) that

wF(x, 0) = 2L
π

sinh−1

⎡
⎢⎣

sin
(πx

2L

)
sinh(πδ)

⎤
⎥⎦ ,

∂wF(x, 0)

∂x
=

cos
(πx

2L

)
√

sinh2(πδ) + sin2
(πx

2L

) .

(2.10a,b)

These are the analogues of similar formulas listed by Philip (1972) for his problem of
flat no-shear slots between flush no-slip surfaces. Figure 5 shows the slip velocity profiles
across the meniscus for several values of δ.

3. Hydrodynamic slip lengths

To compute the hydrodynamic slip length λF, it is easiest to emulate the analysis of
Crowdy (2011b) and to continue with the parametric expressions (2.7), which, after the
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Shear flow over a grating with partially filled cavities
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Figure 5. Velocity profile along the meniscus for δ = 0.05, 0.2, 0.4 and 1.

introduction of some convenient factors, can be expressed as

h = − iL
π

log
[
−(ζ − α)(ζ − 1/ᾱ)

(ζ − ᾱ)(ζ − 1/α)
× (ζ − ᾱ)(ζ − 1/α)

(ζ − α)(ζ − 1/ᾱ)

(η − β)(η − 1/β̄)

(η − β̄)(η − 1/β)

]

= z + C(ζ ), C(ζ ) ≡ − iL
π

log
[
(ζ − ᾱ)(ζ − 1/α)

(ζ − α)(ζ − 1/ᾱ)

(η − β)(η − 1/β̄)

(η − β̄)(η − 1/β)

]
. (3.1)

Since y → +∞ as ζ → α, the required slip length λF is

λF = Im[C(α)] = − L
π

log
∣∣∣∣ 2(α − ᾱ)(α − 1/α)(β − 1/β̄)

(α − 1/ᾱ)(β − β̄)(β − 1/β)(α + i)2

∣∣∣∣ , (3.2)

where we have used the fact that, as ζ → α,

η − β = M(ζ ) − M(α) = (ζ − α)M′(α) + O(ζ − α)2, M′(α) = 2
(α + i)2 . (3.3)

To simplify this expression, first let α = ir, β = is, with s = (1 − r)/(1 + r), so that

λF = − L
π

log
[

2r
s(1 + r)2

(
1 − s2

1 + s2

) (
1 + r2

1 − r2

)]
= −2L

π
log

[
2r

(1 − r2)

]
. (3.4)

The mathematical parameter r is related to δ as follows. Let H be the height of the pillars
above the meniscus. From the conformal mapping (2.7) and the fact that ζ = i is the
pre-image of the top of the grating wall, it can be shown that

H = −2L
π

log
[

1 − r
1 + r

]
,

1 − r
1 + r

= e−πδ, r = tanh(πδ/2). (3.5)

After some algebra and use of trigonometric identities, (3.4) and (3.5) give

λF = 2L
π

log cosech(πδ), δ = H
2L

, (3.6)

which has clear similarities with Philip’s slip length formula (1.1). Interestingly, having
the no-slip surfaces perpendicular to the flat menisci, rather than flush with them, changes
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Philip’s secant function in (1.1) to a hyperbolic cosecant. The slip length λF is singular
as H → 0, but this is just Philip’s singular state c → L in figure 2(b) approached from a
different direction. The slip vanishes, λF = 0, when sinh(πδ) = 1 or when

δ = H
2L

= 1
2π

log(1 +
√

2). (3.7)

This is because λF is defined with respect to the y origin set at the level of the meniscus,
thus corroborating the expectation that, once the sidewalls point upwards from the
meniscus sufficiently far into the flow, then any slip advantage afforded by the menisci
being shear-free is eventually nullified by the protruding no-slip walls.

An arbitrariness in the definition of the slip length is inevitable. However, it is more
common in superhydrophobic surface theory to define the slip length, ΛF say, relative to
a y origin set at the top of the grating walls. The two slip lengths are related by

ΛF = λF + H = −2L
π

log
[

2r
(1 − r2)

]
− 2L

π
log

[
1 − r
1 + r

]
= 2L

π
log[1 + coth(πδ)],

(3.8)
which is (1.2). A check on this result is afforded by noticing that, as δ → ∞ in (3.8),

ΛF

2L
→ log 2

π
, (3.9)

which coincides with a result for the so-called protrusion height for very tall blade-shaped
riblets obtained in § 5 of Bechert & Bartenwerfer (1989). In the riblet problem the
boundary condition on what is here the meniscus is one of no slip rather than one of
no shear as imposed here. But as H → ∞ the nature of the boundary condition imposed
on this receding boundary should become irrelevant to the slip length/protrusion height, as
confirmed here. The new result (1.2) differs from the protrusion height found by Bechert
& Bartenwerfer (1989) in a coth function appearing where they found a tanh.

4. Slip lengths for weakly curved menisci

Equation (1.2) and figure 6(a) show how the slip length depends on the cavity invasion
depth-to-pitch parameter δ. But the slip length also changes if the meniscus deflects
from the flat state. Following Crowdy (2017), we now use Green’s second identity to
find the first-order correction for small 0 < θ 	 1 corresponding to menisci protruding
upwards into the working fluid. However, as happens for small meniscus curvature in
Philip’s solutions (Sbragaglia & Prosperetti 2007; Crowdy 2017), the computed first-order
correction is expected to pertain also to downward-protruding menisci, i.e. |θ | 	 1.

If D denotes a period window for the flow problem with menisci bending up into the
working fluid so that 0 ≤ θ 	 1, with the solution, w(x, y) say, satisfying conditions of no
slip on the walls and no shear on the menisci, then Green’s second identity (Crowdy 2017)
implies

0 =
∫∫

D
[w∇2wF − wF∇2w] dA =

∮
∂D

[
w

∂wF

∂n
− wF

∂w
∂n

]
ds, (4.1)

where ds is the arclength element and ∂D is the boundary of D. The requirement θ ≥ 0
ensures that wF is defined everywhere in D. As y → ∞, we suppose a unit shear-rate flow

w → y + λ, (4.2)

where λ is the modified slip length we seek.
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Shear flow over a grating with partially filled cavities
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Figure 6. (a) Normalized slip length ΛF/(2L) and (b) first-order coefficient F(δ) as given in (1.3) and (1.4)
for weakly curved menisci as functions of δ. Panel (a) also shows normalized slip lengths (dashed lines) for
walls of non-zero width for c/L = 0.9 (red), 0.95 (black) and 0.98 (magenta) (with c defined as in figure 2a)
computed using the quasi-analytical method of Crowdy (2011a). The crosses show the numerical results of Ng
& Wang (2009) for c/L = 0.9. It is clear that (1.2) provides upper bounds on the slip length.

Use of the harmonicity in D of both w and wF, and evaluation of the boundary integral
in (4.1), give

0 = lim
Y→∞

∫ 0

2L
[(Y + λ) − (Y + λF)](−dx) +

∫
meniscus

[
w

∂wF

∂n
− wF

∂w
∂n

]
ds, (4.3)

where the first integral is the contribution from a straight line parallel to the x axis joining
(0, Y) to (2L, Y) with Y → ∞. There are no contributions from the no-slip boundaries or
the edges of the period window. Since ∂w/∂n = 0 on the meniscus, then (4.3) gives

λ− λF = − 1
2L

∫
meniscus

w
∂wF

∂n
ds. (4.4)

Now we assume that w is a small regular perturbation of wF:

w(x, y) = wF(x, y) + θw1(x, y) + O(θ2), λ = λF + θλ1 + O(θ2), (4.5)

where w1(x, y) is a first-order correction to wF(x, y), which, it turns out, does not need to
be found in order to determine λ1. Relation (4.4) gives

λ− λF = − 1
2L

∫
meniscus

wF
∂wF

∂n
ds + O(θ2), (4.6)

since we expect ∂wF/∂n to be O(θ) on the weakly deflected meniscus. Indeed, elementary
geometry reveals that, on the meniscus,

z = x + iy = x + iθχ(x) + O(θ2), χ(x) ≡ x
(

1 − x
2L

)
, N = −i + θχ ′(x) + O(θ2),

(4.7)

where N is the complex form of the outward unit normal vector to the fluid.
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Using the facts that 2∂wF/∂z = −ih′(z), Re[h′(x)] = 0 and Im[h′(x)] = ∂wF(x, 0)/∂x,
we find

∂wF

∂n
= Re

[
2
∂wF

∂z
N

]
= Re[−h′(z) − iθh′(z)χ ′(x)] + O(θ2),

= Re[−iθχ(x)h′′(x) − iθh′(x)χ ′(x)] + O(θ2) = θ
d

dx

(
χ(x)

∂wF

∂x

)
+ O(θ2).

(4.8)

On substitution of (4.8) into (4.6), and after an integration by parts, we find

λ = λF + θ

2L

∫ 2L

0
χ(x)

(
∂wF(x, 0)

∂x

)2

dx + O(θ2). (4.9)

Finally, on use of (2.10a,b), and on adding H so as to give the slip length relative to the
tops of the sidewalls, we arrive at (1.3) after a change of integration variable.

5. Discussion

The author has shown elsewhere (Crowdy 2011a) how the problem of a flat meniscus
of width 2c that has invaded the cavities of a 2L-periodic grating by distance H can be
solved using conformal mapping methods. That prior work focused on the case 0 ≤ c < L,
whose solutions are also given by analytical formulas but they are not explicit because
two parameters appearing in them must be found numerically by solving two nonlinear
equations. The present paper has shown that the degenerate case of infinitely thin walls, or
c → L, with flat menisci can be solved explicitly as evidenced by equations (2.9a,b), which
we have shown to be natural theoretical generalizations of prior work of Philip (1972) and
also of Bechert & Bartenwerfer (1989). We have also shown how to combine that explicit
flat-meniscus solution with an integral identity to produce similarly explicit slip length
expressions (1.3) and (1.4) for weakly curved menisci.

It is useful to survey how useful the equations (1.3) and (1.4) might be in practice.
First, although they have been derived for simple shear in an unbounded flow over a
superhydrophobic surface, it is by now well established (Kirk 2018) that this scenario is
the relevant ‘inner problem’ in an asymptotic matching procedure for a channel flow where
an upper wall might be a fully no-slip surface, or another superhydrophobic surface. For
menisci pinned at the top of the grating, Kirk (2018) has shown that, provided the channel
height is sufficiently large compared to the pitch of the surface, the flow in it can be well
approximated by a simple outer flow away from the surface that matches, in an appropriate
asymptotic sense, to a more complicated inner linear shear flow near the surface akin to
that solved here. The consequence is that the slip lengths determined by the inner problem
are useful in computing effective slip for the channel flow. The same is expected to be true
when the menisci invade the grooves, making (1.3) and (1.4) useful for a large class of
channel flows as well.

Second, (1.3) and (1.4) give the slip length for gratings with infinitely thin sidewalls.
While it is desirable to keep those walls thin to maximize slip, infinitely thin walls are
unrealistic. But it is reasonable to expect that (1.3) and (1.4) will provide upper bounds
on the slip lengths for shear flows involving thicker sidewalls and where the menisci have
invaded the cavities by distance H and have protrusion angle θ . This is reasoned on the
basis that slightly fattening the sidewalls for a fixed H, L and θ effectively exchanges
no-shear boundary portions for no-slip ones. Figure 6(a) confirms this for flat menisci
θ = 0. It shows graphs of the normalized slip lengths for grating walls of non-zero width
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calculated using the method of Crowdy (2011a). The quantity ΛF indeed provides an upper
bound for all δ (for c/L = 0.9, numerical results from Ng & Wang (2009) are also shown).
As an approximation, ΛF is good for thin-walled gratings for a wide range of δ away from
zero, i.e. when the meniscus has displaced sufficiently far away from the top of the grating.
For the same reasons, it is expected that the explicit formulas (1.3) and (1.4) will similarly
provide useful upper bounds, and approximations, when the menisci are weakly curved.

Finally, it is worth mentioning that, for the special case c/L = 1, the solution
representation given in Crowdy (2011a) reproduces (albeit with a different derivation)
the explicit solutions found here, so that, if desired, explicit formulas estimating the slip
length corrections to ΛF for thin walls of non-zero thickness can in principle be calculated
by a perturbation expansion of the solution representations in Crowdy (2011a) under the
assumption that 0 < 1 − c/L 	 1.
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