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Abstract

A novel, broadband, nonlinear behavioral model, based on support vector regression (SVR) is
presented in this paper. The proposed model, distinct from existing SVR-based models, incor-
porates frequency information into its formalism, allowing the model to perform accurate pre-
diction across a wide frequency band. The basic theory of the proposed model, along with
model implementation and the model extraction procedure for radio frequency transistor
devices is provided. The model is verified through comparisons with the simulation of an
equivalent circuit model, as well as experimental measurements of a 10W Gallium Nitride
(GaN) transistor. It is seen that the efficiency prediction throughout the Smith chart, for vary-
ing fundamental and second harmonic loads, across a wideband frequency range, show excel-
lent fidelity to the measured results. Device dc self-biasing is also modelled to allow prediction
of power amplifier (PA) efficiency, which is shown to be highly accurate when compared with
corresponding measured data. Finally, a class-J PA is constructed and measured across the fre-
quency with a large-signal input tone. The resulting measured and modelled values of key PA
performance figures are shown to be in excellent agreement, indicating the model is suitable
for broadband PA design.

Introduction

The large band gap inherent to GaN devices facilitates their application to high voltage/high
power applications, without succumbing to the problem of avalanche breakdown typical of
other technologies (e.g. GaAs) when subject to high electric field intensities across the gate-
drain region [1]. When this feature is combined with the dense electron concentration in
the channel due to spontaneous and piezoelectric polarization effects, in addition to benefits
of the high-electron mobility transistor (HEMT) structure, it leads to one of the most prom-
ising semiconductor technologies for the stringent high-frequency and high-power demands
of 5G applications [2–5].

In the past decades, the requirement to improve the efficiency of radio frequency (RF)
amplifiers has led to the development of new, high-efficiency power amplifier (PA) modes,
such as class-F and class-J PAs, among others [6]. The design of these modes of PA demands
a model that can not only accurately predict the behavior of the transistor at the fundamental
frequency but also at related harmonic frequencies.

Many different modeling approaches have been pursued over the years; from behavioral-
based methods to physics-based/semi-empirical models [7–16]. Physics-based models of RF
components have been employed extensively in the RF world e.g. the exponential pn-junction
equation and the Ebers-Moll bipolar junction transistor (BJT) models, however, their continued
development for application to more exotic transistor technologies is difficult and slow [17].

As an alternative approach, behavioral models dispense with specific physical knowledge,
are typically very accurate within their validity domain, and allow fast, automated, extraction
from measured data. The reduced need for specific physical insight into their device operation
means vastly reduced development time. Accurate behavioral predictions from models based
on conventional approximations, such as polynomials [7–12] or rational functions [13] are
reported. However, those traditional approximation methods are not ideal due to poor
extrapolation ability and numerical issues inherent with both extraction and extrapolation
of higher degree polynomial functions.

Artificial neural network (ANN) techniques [18–22] provide another choice for large-signal
modeling. The disadvantage of ANNs lies in the difficulty in determining the optimal model
configuration for a given desired model accuracy, particularly when distinct ANNs are
required for separate parts of the model [23, 24].
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The field of machine learning (ML), traditionally associated
with artificial intelligence [25], has recently demonstrated some
useful applications to RF circuit design [26]. In [27], a model
based on support vector regression (SVR) using a kernel imple-
mented with radial basis functions (RBF), is applied to a 10W
GaN transistor. The results show excellent agreement when mod-
eled and measured outputs are compared. However, the model
presented in [27] can only predict the behavior of the device
under a fixed operating frequency; it cannot be used to predict
the behavior across a broad frequency band.

The work in this paper extends the model introduced in [27] by
enabling broadband behavioral prediction, which is then validated
through load-pull and multi-harmonic scattered-wave measure-
ments across a broad frequency range. As a demonstrative example,
the proposed model is applied to a class-J PA design with measured
and modelled results compared for model validation purposes.

The paper is organized as follows. The basic theory of the SVR
modeling technique, the application of the SVR-based method to
RF transistor modeling, along with the model extraction, are pre-
sented in the section “Basic theory of the new model”. Model val-
idation results, from simulations and experimental measurements
are provided in the section “Model validation”. The basic class-J
PA theory is given in the section “Class J PA theory”. In the sec-
tion “Practical class J PA design”, the proposed model is applied
to practical broadband class-J PA design. Finally, conclusions are
provided in the section “Conclusion”.

Basic theory of the new model

Support vector regression

SVR is a regression technique based on the popular support vec-
tor machine (SVM) machine learning classification technique,
developed by Vapnik et al. in 1996 [28]. It is a nonparametric
technique (i.e. it makes very few assumptions about the form of
the modeling functions used) based on supervised learning (i.e.
training data are required to determine the model parameters).

Suppose that n sets of multi-input single-output training data
are given as {xi, yi}

n
i=1, where xi [ Rd denotes the d-dimensional

input variables, with yi R denoting the scalar output value. The
unknown function relating inputs and output can be expressed as

f (x) = wTx + b, (1)

where w is a weighting vector and b is a scalar bias term. The SVR
technique leads to a convex optimization problem that attempts to
find the simplest model for the observed data while permitting an
acceptable error (± ε), when constructing the model f (x), as seen
in Fig. 1. This is known as an ε-insensitive error function and is
introduced to improve the sparsity of the solution.

The error function for SVR is expressed as

min
1
2
||w||2 + C

1
n

∑n
i=1

(j+i +j−i ), (2)

where C is the control for the model complexity. Slack variables,
j+i , are introduced to penalize points that lie outside the
ε-insensitive region (usually in a linear fashion, as here) and to
ensure the optimization problem is feasible (this is similar to
the soft margin approach in the standard SVM technique for
classification). This constrained optimization problem can be
solved using the method of Lagrange multipliers [5].

For applications to nonlinear transistor modeling, where typic-
ally complex relations exist between input and output harmonic
components, the linear model in (1) should be replaced by the

nonlinear model
∑n
i=1

biK(xi, x)+ b, where the βi are model coef-

ficients and K is the kernel function.

Proposed modeling method

As described in previous work [27], under certain conditions, the
relationship between the incident and scattered waves at all ports
and harmonics can be represented by

Bpm = f pm(Aqn

︷︸︸︷
) =

∑k
i=0

b pm,iK(Aqn,i

︷︸︸︷
, Aqn

︷︸︸︷
)+ bpm (3)

where Aqn

︷︸︸︷
are the incident waves, A11, A12, …A21, A22, …. The

describing function fpm captures how the complex amplitude of
the scattered waves, Bpm, depends on the complex amplitude of
(potentially all) the Aqn, where p and q are in the output and
input port indices, respectively, and m and n are the output
and input harmonic indices, respectively. The quantities βpm,i

and bpm, are the respective model coefficients and bias terms.
The topology of the model is described in Fig. 2.

From the figure, it can be seen that the model presented in [27]
employs two SVR machines, one each to represent the real and
imaginary parts of the output scattered wave. The real and the
imaginary parts of the incident waves, Aqn, are fed as separate
inputs to both machines.

Fig. 1. Support vector regression.

Fig. 2. Block diagram of existing SVR based behavioral model (RF).
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This existing model, however, only can be used to predict
the behavior at a fixed frequency; it cannot accurately predict
across a frequency band, as the model allows for no input fre-
quency terms.

In this work, we extend the model (3) to include, explicitly, the
frequency of operation. The model topology, now including this
frequency input parameter, is shown in Fig. 3. The topology of
the broadband SVR model for dc is given in Fig. 4. Similar to
the RF topology, the frequency information is provided to the
model as an input.

The model topology in Fig. 3 implies that the following adjust-
ment must be made to (3), giving

Bpm = f pm(Aqn

︷︸︸︷
; f ) =

∑k
i=0

b pm,iK(Aqn,i

︷︸︸︷
, Aqn

︷︸︸︷
; f )+ bpm, (4)

where it can be seen that frequency f is now included implicitly as
a parameter. The proposed broadband SVR model is obtained
after it has been trained on a set of training data

ft, Aqnt

︷︸︸︷
,Bpmt

{ }
. After that, the model can be used for behavioral

prediction.

Model extraction

The four different kernel functions considered for the SVR algo-
rithm are a linear function, a RBF, a sigmoidal function, and a
polynomial function.

The details of the nature and implementation of these kernel
functions are given in Table 1. As can be seen from the table,
the kernel functions contain hyperparameters that must be opti-
mized to obtain the optimal model. More information on this
procedure is found in [24].

Model validation

In this section, the proposed model is verified against experimen-
tal data to demonstrate the model ability to predict, accurately, the
response across a range of frequencies and input power levels. The
test bench consists of a Keysight PNA-X combined with a Focus
Microwaves active load-pull system. A block diagram of the test
bench is shown in Fig. 5 with the corresponding setup picture
shown in Fig. 6.

Fig. 3. Block diagram of the broadband SVR based behavioral model (RF).

Fig. 4. Block diagram of the broadband SVR based behavioral model (DC).

Table 1. Four different kernels.

No. Kernel Formulation Parameter

1 Linear K(xi, xj;f ) = γ(xi, xj;f ) γ

2 Polynomial K(xi, xj;f ) = (γ(xi, xj;f ) + l( f ))
d γ, l, and d

3 RBF K(xi , xj ; f ) = e(−g(f )|xi−xj |2 ) γ

4 Sigmoid K(xi, xj;f ) = tanh(γ(xi, xj;f ) + l
( f ))

γ, and l

Explanation, γ: gamma; l: bias coefficient; d: degree.

Fig. 5. Block diagram of test bench.

Fig. 6. Experimental test bench setup.
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In the first experimental validation, the model ability to predict
the response across a range of frequencies is demonstrated. The
Wolfspeed CGH40010 device is used in the validation. The device
is biased at −3 and 28 V, at gate and drain, respectively. The fun-
damental scattered wave at port-2, B21, is taken as the comparison

quantity, and 300 load points are used for training, with higher-
order impedances set to the matched condition. The input power
fixed at +20 dBm. The broadband SVR model is extracted for fun-
damental frequencies at 1.5, 2, and 2.5 GHz. The prediction

Fig. 7. Measured and modelled results for (a) 1.5 GHz, (b) 2.0 GHz, and (c) 2.5 GHz
cases with +20 dBm input power.

Fig. 8. Measured and modelled corresponding IDS results, (a) 1.5 GHz, (b) 2.0 GHz, and
(c) 2.5 GHz cases with +20 dBm input power.
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performance can be seen from Fig. 7. The model can provide
accurate prediction across all three frequencies, with +20 dBm
input power. In addition, the corresponding dc behavioral predic-
tion is also examined. The performance is given in Fig. 8. Similar
to the RF results, the proposed model provides excellent
performance.

Figures 9 and 10 show measured and modelled versions of
both the fundamental scattered wave, B21, and the drain dc cur-
rent, Ids, as the load impedance varies, for excitations of +24
and +29 dBm at 2.5 GHz. It is seen that the measured data are
in strong agreement with the model.

The measured and modelled second harmonic scattered wave,
B22, for excitation of +29 dBm at 2.5 GHz is also provided in
Fig. 11. As can be seen from the results, the proposed model
shows high harmonic fidelity, a key requirement for modern
waveform-based PA design.

Finally, a one-tone power sweep of the DUT is also shown in
Fig. 12. In this test, the specific power levels used for model
extraction/training, are: −20, −15, 0, +8, +15, +22, +25, and
+28 dBm. Once the model is obtained, it is used to predict the
behavioral of the DUT with the input power varying from −20
to +30 dBm. Shown are the gain and the output power measure-
ments and corresponding modelled results across an input

available power sweep ranging from −20 to +30 dBm at 2 GHz.
The proposed model can accurately predict the behavior of the
DUT across different input power levels.

Fig. 9. Measured and modelled results for Pin,av of (a) +24 dBm, and (b) +29 dBm, with
a 2.5 GHz input signal.

Fig. 10. Measured and modelled corresponding IDS results, for Pin,av of (a) +24 dBm,
and (b) +29 dBm, with a 2.5 GHz input signal.

Fig. 11. Measured and modelled second harmonic scattered wave, B22, results for
Pin,av = +29 dBm, with a 2.5 GHz input signal.
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Class J PA theory

This section applies the proposed model to a practical engineering
design problem. Using the method described in this paper, a
model is extracted from a 10W GaN device, and used for the
design of a modern harmonically-tuned class-J PA. In the remain-
der of this section, we provide a brief overview of the theory of
this mode of PA operation.

The class-J mode of PA, as introduced in [6], relies on a drain
voltage waveform that is “engineered” through appropriate
load terminations. The bias point of the class-J mode is set
according to class-B or “deep” class-AB modes. The ideal
voltage and current waveforms of the transistor can be seen
from Fig. 13 [6].

As described in Table 2 [29], the ideal normalized output fun-
damental and second harmonic components are given, along with
the corresponding fundamental and second-harmonic impe-
dances in (5) and (6), where RL is the load impedance. The third-
harmonic component is assumed short in ideal class-J theory.

In order to ensure broadband operation at high efficiency with
sufficient output power, compromises are required for setting the
design values for the load resistance [30]. Using the proposed
broadband SVR model, a matching network is synthesized across
the full fundamental and harmonic bands.

Z f0 = RL(1+ j), (5)

Z2f0 = RL 0− j · 3p
8

( )
. (6)

Practical class J PA design

A class-J PA circuit was designed and fabricated in this section to
validate the proposed model under real-world conditions. To
begin the design stage, the proposed model is firstly extracted
using load-pull-based data. The same 10W GaN packaged tran-
sistor from the previous section is used, with load-pull data

Fig. 12. One-tone power sweeps on an unmatched 10-W device placed in a test fix-
ture. Shown are transducer gain, and output power measurements and model results
over a sweep ranging from −20 dBm to +30 dBm, with 2 GHz.

Fig. 13. Ideal class-J normalized voltage and current waveforms.

Table 2. Ideal normalized half-wave voltage component

Harmonic Amplitude Phase

1st 1.41 45°

2nd 0.50 −90°

Fig. 14. Compromise area (DE>65% & Pout>10 W) used by designers to choose fun-
damental load trajectory, from 2.5 GHz to 3.5 GHz, looking at external drain package
plane.

Fig. 15. Compromise (Drain Efficiency > 65% & Pout >10 W) target S-parameters line
used for designers to choose fundamental and second harmonic load impedances
i.e. looking at current generator plane.
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measured at several frequencies between 2.5 and 3.5 GHz, with an
input available power of +29 dBm.

The general design procedure for the PA is given in previous
work [29]. Through analysis of the device IV-characteristics
(with due regard to the knee region), the optimum fundamental
impedance can be fixed. After tuning the harmonic impedance,
a class-J mode PA design can be obtained. For practical imple-
mentation of the output matching/waveform engineering net-
work, the simplified real frequency technique is employed to
synthesize the broadband design [31].

Based on a load-pull simulation using the proposed broadband
SVR model across the desired frequency band, a target package-
plane load impedance trajectory across frequency is determined,
as shown in Fig. 14. This impedance is chosen such that it pro-
vides a drain efficiency greater than 65% and output power of
over 10 W. As can be seen from the results, once the maximum
power delivery area and maximum drain efficiency area have
been found by the proposed SVM model, a compromise has to
be made since these regions are not coincident, in general. As
shown in Fig. 14, one such suboptimal overlapping area is iden-
tified within which the output power is greater than 40 dBm
and the drain efficiency is over 65 %. A matching circuit is
designed, targeting this “area” of the load Smith chart, providing
a predetermined compromise between PA output power and
drain efficiency. The resulting current-generator-plane load
impedance trajectory across frequency can also be obtained via
de-embedding, as shown in Fig. 15. This allows the designer to
verify that the PA operates in the desired mode – class-J, this is

the case. The corresponding fundamental and second harmonic
load impedance at the external drain package-plane, for which a
matching circuit must be synthesized, is given in Fig. 16, along
with the fundamental optimal source matching impedance
trajectory.

After the matching networks are determined, the PA is fabri-
cated on Rogers 4350B microstrip board. This board has a sub-
strate thickness equal to 0.762 mm and a nominal relative
permittivity equal to 3.48. The layout of the PA is shown in
Fig. 17. A photograph of the fabricated PA is shown in Fig. 18.

The performance of the fabricated PA across the targeted fre-
quency band is shown in Fig. 19, along with the simulation results
from the proposed broadband SVR model. An excellent match of
the output power, efficiency, and gain, between the model simu-
lation results and measurements of the realized class-J PA is seen
in the figure. The realized PA provides an average power added
efficiency of 66.34%, an across-the-band-average output power
of 41.01 dBm, and gain of 12.01 dB.

Conclusion

This paper presents a new broadband behavioral model for a 10
W Wolfspeed GaN HEMT device, based on the SVR method
from the field of machine learning. The basic theory of the mod-
eling technique is provided, along with the model implementation
and model extraction procedure. Unlike previous work, the pro-
posed modeling method includes, explicitly, frequency informa-
tion as an input to the model, which enables broadband
scattered-wave prediction from the model. Validation examples
from experimental tests prove the effectiveness of the new model-
ing technique. The model provides prediction throughout the

Fig. 16. Compromise (drain efficiency>65% and Pout>10 W) target S-parameters tra-
jectory used for designers to choose fundamental and second harmonic load impe-
dances i.e. looking at external drain package plane.

Fig. 17. Actual size diagram of fabricated class-J PA.

Fig. 18. Photograph of fabricated class-J PA.

Fig. 19. Class-J PA measured and modelled from proposed model results.
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Smith chart, at both the fundamental and second harmonics of
RF behavior, across a wide frequency range, with excellent
model fidelity. The proposed model can also give an accurate pre-
diction for the dc behavior across the frequency band.

In order to verify the proposed model under realistic real-
world conditions, a high-efficiency broadband class-J PA is
designed based on this model. The optimal input and output
matching impedance is chosen through broadband load-pull
simulation of the new model. Performance comparison between
the simulation results based on the model and the measure-
ments from the fabricated PA show very good agreement for
output power, gain, and efficiency across the full frequency
band.

Financial support. This work was supported by the National Natural
Science Foundation of China (NSFC) under Grants 61971170,61701147,
61971171, and 61827806.
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