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Multi-compartment models described by systems of linear ordinary differential equations are con-
sidered. Catenary models are a particular class where the compartments are arranged in a chain.
A unified methodology based on the Laplace transform is utilised to solve direct and inverse prob-
lems for multi-compartment models. Explicit formulas for the parameters in a catenary model are
obtained in terms of the roots of elementary symmetric polynomials. A method to estimate param-
eters for a general multi-compartment model is also provided. Results of numerical simulations are
presented to illustrate the effectiveness of the approach.
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1 Introduction

Multi-compartment models arise in many fields, for example pharmacokinetics, epidemiol-
ogy, engineering, physics, biomedicine, systems theory, complexity theory and the social
sciences [1, 2, 12].

Consider a compartmental system consisting of compartments numbered from 1 to n.
A general compartment model can be expressed in the form [1]

q̇i(t) = Ii(t) +
n∑

j=1
j �=i

fi, jqj(t) −
n∑

j=0
j �=i

fj,iqi(t), i = 1, 2, . . . , n, (1.1)

where qi(t) is the quantity of material in compartment i at time t. The rate of transfer of material
from compartment j to compartment i (with i �= j) at time t is modelled by fi, jqj(t), where fi, j ≥ 0
is a constant called the fractional transfer coefficient. The function Ii = Ii(t) is the rate of input
of material into the ith compartment from the outside, and f0,i is the fractional excretion coeffi-
cient so that f0,iqi(t) is the rate of excretion of material to the outside environment from the ith
compartment at time t.

For example, when n = 2, a two-compartment model has the form

q̇1(t) = I1(t) + f1,2q2(t) − (f0,1 + f2,1)q1(t),

q̇2(t) = I2(t) + f2,1q1(t) − (f0,2 + f1,2)q2(t).
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FIGURE 1. Block diagram for a two-compartment system.

A block diagram for a two-compartment system is illustrated in Figure 1.
For notational convenience, define

fi,i = −
n∑

j=0
j �=i

fj,i, i = 1, 2, . . . , n;

hence the total outflow from compartment i to the other compartments and the outside
environment at time t is fi,iqi(t). In matrix-vector form, (1.1) can therefore be written as

q̇(t) = Fq(t) + I(t), (1.2)

where

q(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1(t)

q2(t)

...

qn(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n

...
...

...

fn,1 fn,2 · · · fn,n

⎞
⎟⎟⎟⎟⎟⎟⎠

, I(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

I1(t)

I2(t)

...

In(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Equation (1.2) is to be considered with some given initial condition q(0).
A pharmacologically relevant example that will be considered in this article for illustration

purposes is a two-compartment model that describes the ingestion and subsequent metabolism
of a drug taken orally. The first compartment is the gastrointestinal (GI) tract and the second
compartment is the bloodstream. Let q1(t) and q2(t) be the drug masses at time t in the first and
second compartments, respectively, while I1(t) is the drug ingestion rate at time t. In this case,
f1,2 = f0,1 = 0 and I2(t) = 0 for all t > 0. Then, the pharmacokinetic model is

q̇1(t) = I1(t) − f2,1q1(t),

q̇2(t) = f2,1q1(t) − f0,2q2(t). (1.3)

A direct problem is where F, I(t) for all t > 0 and q(0) are given in (1.2), and we wish to
determine the solution q = q(t) for all t > 0. On the other hand, an inverse problem is where q(t)
and I(t) for t > 0, as well as q(0), are given but this time we want to estimate the matrix F of
fractional transfer coefficients.

For the direct problem, it is well known that the solution of (1.2) is expressed as

q(t) = etFq(0) +
∫ t

0
e(t−τ )FI(τ ) dτ , (1.4)
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where etF is the matrix exponential of F. Hence, the solution of the direct problem is tanta-
mount to determining the matrix exponential of F. For an arbitrary matrix F, this may not be
straightforward to compute although an elementary technique is due to Putzer (see [6, 10], for
instance).

With the aim of proposing a new method to tackle the inverse problem in this article, it is
instructive to first study an important class of multi-compartment systems known as catenary
models. These have the form

q̇1(t) = I1(t) − f2,1q1(t),

q̇i(t) = fi,i−1qi−1(t) − fi+1,iqi(t), i = 2, 3, . . . , n − 1,

q̇n(t) = fn,n−1qn−1(t) − f0,nqn(t), (1.5)

where the compartments are arranged in a chain [1]. A prototypical example of a catenary model
is given in (1.3), where n = 2. For notational convenience, we identify fn+1,n = f0,n, so that the
catenary model (1.5) simplifies to

q̇1(t) = I1(t) − f2,1q1(t),

q̇i(t) = fi,i−1qi−1(t) − fi+1,iqi(t), i = 2, 3, . . . , n. (1.6)

In this paper, we utilise a unified approach via Laplace transforms to (i) solve the direct prob-
lem associated with the catenary model (1.6), (ii) use the solution of (1.6) in transform space to
solve the inverse problem for the catenary model (1.6) and (iii) solve the inverse problem for the
general multi-compartment model (1.2).

For (ii), we assume that the quantity of material is given in only one of the compartments and
yet we determine the fractional transfer coefficients associated with all of the compartments. For
example, when n = 2 as in (1.3), I1(t) is known and q2(t) (that is the drug mass in the blood-
stream) can be measured but not necessarily q1(t) (that is the drug mass in the GI tract). The
goal is to estimate f21 and f02. We exhibit a serendipitous connection with symmetric polynomi-
als by showing that the reciprocals of the fractional transfer coefficients are the roots of some
polynomial whose coefficients are elementary symmetric polynomials. However, for (iii) where
we are dealing with the general multi-compartment model (1.2), we assume that the quantities
of material in all of the compartments are given and show that the matrix of fractional transfer
coefficients is obtained by solving linear systems whose common coefficient matrix entries are
the moments of the quantities of material.

This article is organised as follows. In Section 2, we tackle the direct problem for a catenary
model with the aid of the Laplace transform. Using some of the results in Section 2, we solve
the inverse problem for a catenary model in Section 3. In Section 4, we propose a parameter
estimation method for the inverse problem for a general multi-compartment model. Section 5
presents the results of numerical simulations for a two-compartment catenary model. We give a
brief discussion in Section 6 and conclude in Section 7.
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2 Solution of the direct problem for a catenary model

Here, we solve the catenary model (1.6) using the Laplace transform. As is usual, we assume that
q1(0) > 0 is given and qi(0) = 0 for i = 2, 3, . . . , n. Let

q̂i(s) =L{qi(t); s} =
∫ ∞

0
e−stqi(t) dt, i = 1, 2, . . . , n

denote the Laplace transform of qi(t). Taking the Laplace transform of the first equation in (1.6)
gives

q̂1(s) = 1

s + f2,1
[q1(0) + Î1(s)], (2.1)

where Î1(s) is the Laplace transform of I1(t). The Laplace convolution property implies that

q1(t) = q1(0)e−f2,1t +
∫ t

0
e−f2,1(t−τ )I1(τ ) dτ . (2.2)

Moreover, taking the Laplace transform of the second equation in (1.6) yields

sq̂i(s) = fi,i−1q̂i−1(s) − fi+1,iq̂i(s) or q̂i(s) = fi,i−1
q̂i−1(s)

s + fi+1,i
, i = 2, 3, . . . , n. (2.3)

Define the auxiliary functions

Fi(s) =
i∏

k=1

(s + fk+1,k), ϕi(t) =L−1
{ 1

Fi(s)
; t

}
, i = 1, 2, . . . , n. (2.4)

Note that F1(s) = s + f2,1 and ϕ1(t) = e−f2,1t. Furthermore, Fi(s)/Fi−1(s) = s + fi+1,i for i =
2, 3, . . . , n. We claim that

q̂i(s) =
∏i−1

k=1 fk+1,k

Fi(s)
[q1(0) + Î1(s)], i = 1, 2, . . . , n (2.5)

satisfies (2.3). The case when i = 1 is clear from (2.1). Moreover,

q̂i(s)

q̂i−1(s)
=

∏i−1
k=1 fk+1,k

Fi(s)

Fi−1(s)∏i−2
k=1 fk+1,k

= fi,i−1

s + fi+1,i
, i = 2, 3, . . . , n

and thus (2.5) satisfies (2.3). This proves the claim.
Hence, from the Laplace convolution property, we obtain from (2.5) that

qi(t) =
( i−1∏

k=1

fk+1,k

)[
q1(0)ϕi(t) +

∫ t

0
ϕi(t − τ )I1(τ ) dτ

]
, i = 1, 2, . . . , n. (2.6)

Observe that (2.2) is included in (2.6) if we set i = 1. Although (1.6) is a particular case of (1.2),
and the solution of the latter is (1.4), the solution (2.6) of (1.6) obtained via the Laplace transform
is more straightforward since it makes use of the special structure of the matrix F and avoids the
calculation of the matrix exponential.

Remark 2.1. It should be noted that in (2.6), we have exploited the special nearest-neighbour
structure of the chain (1.6), thus avoiding the calculation of the matrix exponential.
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Remark 2.2. If the fractional transfer coefficients are all distinct, then it is possible to evaluate
ϕi(t) in (2.4) explicitly. Indeed, performing a partial fraction decomposition yields

1

Fi(s)
= 1∏i

k=1(s + fk+1,k)
=

i∑
k=1

ck

s + fk+1,k
.

Using L’Hôpital’s Rule, we see that

ck = lim
s→−fk+1,k

s + fk+1,k

Fi(s)
= 1

F′
i (−fk+1,k)

.

Thus,

1

Fi(s)
=

i∑
k=1

1

F′
i (−fk+1,k)

1

s + fk+1,k

and therefore from (2.4), we have

ϕi(t) =
i∑

k=1

1

F′
i (−fk+1,k)

e−fk+1,k t, Fi(s) =
i∏

k=1

(s + fk+1,k), i = 1, 2, . . . , n.

Remark 2.3. A special case of (1.6) is when the rate of input of material into the first
compartment from the outside is a sum of Dirac delta functions, that is

I1(t) =
M∑

m=1

I1,mδ(t − mT),

where T > 0, I1,m ≥ 0 for m = 1, 2, . . . , M and δ is the Dirac delta function. In the context of
pharmacokinetics, T is the dosage period, Ii,m is the dosage rate at time m T , and M is the number
of doses after the initial dose. It follows that∫ t

0
ϕi(t − τ )δ(τ − mT) du =

∫ ∞

−∞
ϕi(t − τ )H(τ )H(t − τ )δ(τ − mT) dτ = ϕi(t − mT)H(t − mT),

where H is the usual Heaviside function and we used the property that∫ ∞

−∞
g(τ )δ(τ − a) dτ = g(a), a ∈R.

Hence, (2.6) expresses the solution of the catenary problem (1.6) as

qi(t) =
( i−1∏

k=1

fk+1,k

)[
q1(0)ϕi(t) +

M∑
m=1

I1,mϕi(t − mT)H(t − mT)

]
, i = 1, 2, . . . , n. (2.7)

Remark 2.4. Using Remark 2.3 in the pharmacokinetic model (1.3), straightforward calculations
give

F1(s) = s + f2,1, F2(s) = (s + f2,1)(s + f3,2) = (s + f2,1)(s + f0,2)

from (2.4), so that F′
1(s) = 1 and F′

2(s) = 2s + f21 + f02. Furthermore,

ϕ1(t) = e−f2,1t, ϕ2(t) = 1

F′
2(−f2,1)

e−f2,1t + 1

F′
2(−f3,2)

e−f3,2t = 1

f0,2 − f2,1
(e−f2,1t − e−f0,2t).
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From (2.7), we obtain

q1(t) = q1(0)e−f2,1t +
M∑

m=1

I1,me−f2,1(t−mT)H(t − mT),

q2(t) = q1(0)f2,1

f0,2 − f2,1

(
e−f2,1t − e−f0,2t

) +
M∑

m=1

I1,mf2,1

f0,2 − f2,1

[
e−f2,1(t−mT) − e−f0,2(t−mT)

]
H(t − mT). (2.8)

3 Solution of the inverse problem for a catenary model

Suppose that qi(t) is known for all t > 0 for some fixed i ∈ {1, 2, . . . , n}. Also, assume that I1(t)
for all t > 0 and q1(0) are given. The task here is to determine fk+1,k for all k = 1, 2, . . . , i. In
other words, only the quantity of material in the ith compartment is given but we recover all of
the fractional transfer coefficients in compartments 1 to i. The idea we follow here for the inverse
problem is reminiscent of the integration-based approaches to parameter estimation developed
in [7, 11, 3, 8, 9, 4, 13].

For a fixed i ∈ {1, 2, . . . , n}, define

Gi(s) = q̂i(s)

q1(0) + Î1(s)
.

Note that Gi(s) and its derivatives with respect to s can be calculated since qi(t) and I1(t) are
assumed to be known for all t > 0. Equations (2.5) and (2.4) give

Gi(s)∏i−1
k=1 fk+1,k

= 1∏i−1
k=1 fk+1,k

q̂i(s)

q1(0) + Î1(s)
= 1

Fi(s)
=

i∏
k=1

(s + fk+1,k)−1, (3.1)

which implies that

log(Gi(s)) −
i−1∑
k=1

log(fk+1,k) = −
i∑

k=1

log(s + fk+1,k). (3.2)

Choose a convenient value for s, say s = 0, so that

Gi(0) = 1

fi+1,i
or fi+1,i = 1

Gi(0)

from (3.1). Taking the mth derivative of (3.2), we see that

dm

dsm
log(Gi(s)) = (−1)m(m − 1)!

i∑
k=1

(s + fk+1,k)−m.

At s = 0, we get

(−1)m

(m − 1)!
dm

dsm
log(Gi(s))

∣∣∣∣
s=0

=
i∑

k=1

( 1

fk+1,k

)m =
i−1∑
k=1

( 1

fk+1,k

)m + [Gi(0)]m, m = 1, 2, . . . .

Letting

ai,m = (−1)m

(m − 1)!
dm

dsm
log(Gi(s))

∣∣∣∣
s=0

− [Gi(0)]m, xk = 1

fk+1,k
,
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we obtain the system

ai,1 = x1 + x2 + · · · + xi−1 = p1(x1, x2, . . . , xi−1),

ai,2 = x2
1 + x2

2 + · · · + x2
i−1 = p2(x1, x2, . . . , xi−1),

...

ai,i−1 = xi−1
1 + xi−1

2 + · · · + xi−1
i−1 = pi−1(x1, x2, . . . , xi−1).

Observe that in the above system, ai,m for m = 1, 2, . . . , i − 1 are known and pm =
pm(x1, x2, . . . , xi−1) for m = 1, 2, . . . , i − 1 are power sum symmetric polynomials [5]. Then,
elementary symmetric polynomials can be expressed in terms of these power sum symmetric
polynomials, that is

em = em(x1, x2, . . . , xi−1) = 1

m

m∑
k=1

(−1)k−1em−k(x1, x2, . . . , xi−1)pk(x1, x2, . . . , xi−1).

Note that e0 = e0(x1, x2, . . . , xi−1) = 1 by definition. Hence,

em = 1

m

m∑
k=1

(−1)k−1em−kai,k , m = 1, 2, . . . , i − 1, e0 = 1

are also known. For example,

e1 = e0ai,1 = ai,1, e2 = 1

2

(
e1ai,1 − e0ai,2

) = 1

2

(
a2

i,1 − ai,2
)

.

From [5], we have that

i−1∏
k=1

(x − xk) = xi−1 − e1xi−2 + e2xi−3 + · · · + (−1)i−1ei−1. (3.3)

Therefore, the fractional transfer coefficients are

fk+1,k = 1

xk
, k = 1, 2, . . . , i − 1, fi+1,i = 1

Gi(0)
, (3.4)

where xk for k = 1, 2, . . . , i − 1 are the (positive) roots of the polynomial (3.3). This completes
the solution of the inverse problem for the catenary model (1.6).

Remark 3.1. In the two-compartment model (1.3) (that is n = 2), suppose that the drug mass q2(t)
in the bloodstream is given for all t > 0 (that is i = 2), as well as q1(0) and the drug ingestion rate
I1(t) for all t > 0. We want to determine the fractional transfer coefficients f2,1 and f0,2. It follows
that

G2(s) = q̂2(s)

q1(0) + Î1(s)
, G′

2(s) = [q1(0) + Î1(s)](q̂2)′(s) − q̂2(s)(Î1)′(s)

[q1(0) + Î1(s)]2
.

As

q̂2(s) =
∫ ∞

0
e−stq2(t) dt, Î1(s) =

∫ ∞

0
e−stI1(t) dt,
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we deduce that

(q̂2)′(s) = −
∫ ∞

0
te−stq2(t) dt, (Î1)′(s) = −

∫ ∞

0
te−stI1(t) dt.

Therefore,

q̂2(0) =
∫ ∞

0
q2(t) dt, (q̂2)′(0) = −

∫ ∞

0
tq2(t) dt,

Î1(0) =
∫ ∞

0
I1(t) dt, (Î1)′(0) = −

∫ ∞

0
tI1(t) dt (3.5)

are known quantities (essentially the zeroth and first moments of q2 and I1) and hence so are

G2(0) = q̂2(0)

q1(0) + Î1(0)
, G′

2(0) = [q1(0) + Î1(0)](q̂2)′(0) − q̂2(0)(Î1)′(0)

[q1(0) + Î1(0)]2
. (3.6)

Then, (3.4) gives

f2,1 = 1

x1
, f0,2 = f3,2 = 1

G2(0)
,

where, from (3.3), x1 is the zero of the polynomial equation x − e1 = x − a2,1 = 0 or

x1 = a2,1 = (−1)1

(1 − 1)!
d1

ds1
log(G2(s))

∣∣∣∣∣
s=0

− [G2(0)]1 = −G′
2(0)

G2(0)
− G2(0) = −G′

2(0) + [G2(0)]2

G2(0)
.

Thus, for the pharmacokinetic model (1.3), the fractional transfer coefficients are given by

f2,1 = − G2(0)

G′
2(0) + [G2(0)]2

, f0,2 = 1

G2(0)
, (3.7)

where G2(0) and G′
2(0) are as in (3.6).

4 Solution of the inverse problem for the general multi-compartment model

Let us now turn to the inverse problem for the general multi-compartment system (1.2). Here,
we assume that q(t) and I(t) are known for all t > 0. Furthermore, q(0) is given. Our aim is to
recover the full matrix F.

If q̂(s) and Î(s) denote the (vector) Laplace transforms of q(t) and I(t), respectively, then taking
the Laplace transform of (1.2) gives

sq̂(s) − q(0) = Fq̂(s) + Î(s).

It is not difficult to show by induction on k that

k(q̂)(k−1)(s) + s(q̂)(k)(s) = F(q̂)(k)(s) + (Î)(k)(s), k = 1, 2, . . . ,

which implies that

F(q̂)(k)(0) = k(q̂)(k−1)(0) − (Î)(k)(0), k = 1, 2, . . . . (4.1)

Define the n × 1 matrices

gj = j(q̂)(j−1)(0) − (Î)(j)(0), j = 1, 2, . . . , n,
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so that gi,j denotes the entry in the ith row of gj.
For each j = 1, 2, . . . , n, we construct an n × n linear system from (4.1) of the form

fi,1(q̂1)(j)(0) + fi,2(q̂2)(j)(0) + · · · + fi,n(q̂n)(j)(0) = gi,j, i = 1, 2, . . . , n.

Hence, there are n such n × n linear systems. Now, for each i = 1, 2, . . . , n, take the ith equation
of each n × n linear system and form a new n × n system

fi,1(q̂1)(j)(0) + fi,2(q̂2)(j)(0) + · · · + fi,n(q̂n)(j)(0) = gi,j, j = 1, 2, . . . , n.

Again, there are n such n × n linear systems. Therefore, for each i = 1, 2, . . . , n, we have the
rearranged linear system

⎛
⎜⎜⎜⎜⎜⎜⎝

(q̂1)′(0) (q̂2)′(0) · · · (q̂n)′(0)

(q̂1)′′(0) (q̂2)′′(0) · · · (q̂n)′′(0)

...
...

...

(q̂1)(n)(0) (q̂2)(n)(0) · · · (q̂n)(n)(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

fi,1

fi,2

...

fi,n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

gi,1

gi,2

...

gi,n

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Solving this linear system yields the ith row of F for each i = 1, 2, . . . , n. Thus, the matrix F of
fractional transfer coefficients is recovered. Note that the coefficient matrix above is the same for
all i = 1, 2, . . . , n.

Remark 4.1. To exemplify the above argument, suppose that n = 2. When j = 1, (4.1)
generates

f1,1(q̂1)′(0) + f1,2(q̂2)′(0) = q̂1(0) − (Î1)′(0) = g1,1,

f2,1(q̂1)′(0) + f2,2(q̂2)′(0) = q̂2(0) − (Î2)′(0) = g2,1, (4.2)

while when j = 2, (4.1) generates

f1,1(q̂1)′′(0) + f1,2(q̂2)′′(0) = 2(q̂1)′(0) − (Î1)′′(0) = g1,2,

f2,1(q̂1)′′(0) + f2,2(q̂2)′′(0) = 2(q̂2)′(0) − (Î2)′′(0) = g2,2. (4.3)

The first equations in (4.2) and (4.3) (that is fix i = 1) together give

(q̂1)′(0)f1,1 + (q̂2)′(0)f1,2 = g1,1,

(q̂1)′′(0)f1,1 + (q̂2)′′(0)f1,2 = g1,2,

whose solution is the first row of F. Similarly, the second equations in (4.2) and (4.3) (that is fix
i = 2) together provide

(q̂1)′(0)f2,1 + (q̂2)′(0)f2,2 = g2,1,

(q̂1)′′(0)f2,1 + (q̂2)′′(0)f2,2 = g2,2,

whose solution is the second row of F.
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5 Numerical simulations of the inverse problem for the catenary model

For definiteness, let us consider the pharmacokinetic model (1.3). Equation (3.7) expresses the
fractional transfer coefficients in terms of G2(0) and G′

2(0), which in turn depend on q̂2(0),
(q̂2)′(0), Î1(0) and (Î1)′(0).

Recall that q1(0) and I1(t) for t > 0 are assumed given. In particular, this means that Î1(0)
and (Î1)′(0) in (3.5) are computable. However, in practice, rather than q2(t) for all t > 0, only a
finite number of measurements q2,0, q2,1, . . . , q2,n corresponding to t0, t1, . . . , tn, where t0 = 0
and q2,0 = 0, are available. So we approximate

q̂2(s) =
∫ ∞

0
e−stq2(t) dt 	

∫ tN

0
e−stq2(t) dt,

(q̂2)′(s) = −
∫ ∞

0
te−stq2(t) dt 	 −

∫ tN

0
te−stq2(t) dt,

where we choose tN 
 tn. To approximate the above integrals, we need to extrapolate the values
q2,n+1, q2,n+2, . . . , q2,N in some way (we shall refer to this set of values as the ‘tail’ of q2(t)). We
are free to choose equally spaced points tn+1, tn+2, . . . , tN , for example.

With the help of (2.1) and (2.3), the Final Value Theorem for the Laplace transform implies
that

lim
t→∞ q1(t) = lim

s→0
sq̂1(s) = 0, lim

t→∞ q2(t) = lim
s→0

sq̂2(s) = 0

and the decay is of exponential order. Thus, it is reasonable to introduce the ansatz

q2(t) = ae−bt, t ≥ tn−1,

where a, b > 0 are to be determined. We therefore require that q2(tn−1) = q2,n−1 and q2(tn) = q2,n

to ensure continuity (note that tn−1, tn, q2,n−1 and q2,n are known), that is

q2,n−1 = ae−btn−1 , q2,n = ae−btn .

From this pair of equations, we can deduce a and b, namely

b = − 1

tn − tn−1
log

( q2,n

q2,n−1

)
, a = q2,nebtn .

To extrapolate the ‘tail’ of q2(t), we set

q2,n+1 = ae−btn+1 , q2,n+2 = ae−btn+2 , . . . , q2,N = ae−btN .

Therefore, we have the extended data set {(tj, q2,j) : j = 0, 1, . . . , n, n + 1, . . . , N}, as well as

{(tj, e−stj q2,j) : j = 0, 1, . . . , n, n + 1, . . . , N}, {(tj, −tje
−stj q2,j) : j = 0, 1, . . . , n, n + 1, . . . , N}

for any s ≥ 0. We use these data sets to implement a numerical quadrature method (for example
composite trapezoidal rule) to estimate

q̂2(0) 	
∫ tN

0
q2(t) dt, (q̂2)′(0) 	 −

∫ tN

0
tq2(t) dt. (5.1)

https://doi.org/10.1017/S0956792522000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000055


1180 M. Rodrigo

0 3 6 9 12 15 18
0

10

20

Time (t)

D
ru

g 
m

as
s

FIGURE 2. Solution of (1.3) using (2.8).

Together with q1(0), Î1(0) and (Î1)′(0), we can therefore estimate G2(0) and G′
2(0) in (3.7), yield-

ing the desired fractional transfer coefficients f2,1 and f0,2 for the two-compartment catenary
model (1.3).

Suppose that the dosage rate function is

I1(t) =
M∑

m=1

I1,mδ(t − mT). (5.2)

Since L{δ(t − a); s} = e−as for a ∈R, we deduce that

Î1(s) =
M∑

m=1

I1,me−mTs, (Î1)′(s) = −T
M∑

m=1

mI1,me−mTs.

Hence,

Î1(0) =
M∑

m=1

I1,m, (Î1)′(0) = −T
M∑

m=1

mI1,m. (5.3)

We first generate theoretical data from (1.3) as follows. Take q1(0) = 20, q2(0) = 0, f2,1 =
2, f0,2 = 0.8, T = 3 and M = 5. Absorption is typically much faster than elimination; hence,
f2,1 > f0,2. For simplicity, take I1,m = q1(0) for m = 1, 2, . . . , M . This essentially assumes that the
M doses given every T days, say, are all equal to the initial dose q1(0). With n = 100 and
�t = 18/n, let tj = j�t for j = 0, 1, . . . , n. Therefore, we are considering (1.3) over the time
interval [0,18]. Then, we use (2.8) to find q1,j = q1(tj) and q2,j = q2(tj) for j = 0, 1, . . . , n.
Alternatively, (1.3) can be solved numerically. The result using the analytical solution (2.8) is
shown in Figure 2.

Next, we ‘keep’ q1(0), I1(t) for t > 0 and {q2,j : j = 0, 1, . . . , n}, and ‘hide’ everything else.
We perform the ‘tail’ extrapolation procedure as explained above, choosing tN = tn + 2tn/3 =
5tn/3 = 30 for example. The result is shown in Figure 3.

To mimic measurement errors, we add a small random perturbation (for example with a normal
distribution) to the extended set {q2,j : j = 0, 1, . . . , n, n + 1, . . . , N}. Using the data sets

{(tj, q2,j) : j = 0, 1, . . . , n, n + 1, . . . , N}, {(tj, −tjq2,j) : j = 0, 1, . . . , n, n + 1, . . . , N},
we use Scilab’s inttrap command to implement the composite trapezoidal rule and estimate
the integrals q̂2(0) and (q̂2)′(0) in (5.1). Equation (5.3) is used to find Î1(0) and (Î1)′(0). All of
these are substituted into (3.6) to estimate G2(0) and G′

2(0). Finally, we use (3.7) to calculate the
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FIGURE 3. Solution of (1.3) using (2.8), together with the extrapolated ‘tail’ for q2(t).

fractional transfer coefficients. The result is f2,1 = 1.936521 and f0,2 = 0.800265 (compare with
the actual values f2,1 = 2 and f0,2 = 0.8 used to generate the original data set).

In the above test simulation, we used n = 100 for the number of measurements for q2(t). Of
course, it is more realistic to choose a relatively small value of n. Performing the numerical
simulations for different values of n produced the following results:

n f2,1 f0,2

100 1.936521 0.800265
80 1.922407 0.799519
60 1.904222 0.799612
40 1.777916 0.804968
20 1.320199 0.801844

We can observe that estimates for f0,2 remain stable while those for f2,1 start to deviate from
the correct value as n decreases. This is not unexpected as any numerical quadrature method to
approximate the integrals in (5.1) becomes less accurate the coarser is the partition. In practice,
we can control the coarseness of the data set over n + 1, n + 2, . . . , N (as the ‘tail’ is extrapo-
lated from a known decaying exponential) but not over the measured region corresponding to
0, 1, . . . , n.

6 Discussion

In this section, we discuss two important issues related to the inverse problem for (1.2).
The first issue is the sensitivity of the matrix F of fractional transfer coefficients with respect to

small changes in the input q. Assume that I and q(0) are fixed. Since the technique proposed here
is based on integration, it is natural to quantify changes in the input q by considering changes in
its moments
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Mk = (−1)k
∫ ∞

0
tkq(t) dt = (q̂)(k)(0), k = 0, 1, . . . .

Then, the sensitivity of the fractional transfer coefficients with respect to small changes in the
input can be studied by taking the Jacobian matrix of F with respect to a finite number of
moments. To elucidate the above idea, consider the pharmakonetic model (1.3). In this case, q2(t)
for all t > 0 is assumed to be given. The transfer coefficients f0,2 and f2,1 are as in (3.7). Defining
c = 1/[q1(0) + Î1(0)] in (3.6), we can write G2(0) = cM0 and G′

2(0) = cM1 − c2(Î1)′(0)M0. Thus,
(3.7) can be expressed as

f0,2 = 1

cM0
, f2,1 = M0

−M1 + c(Î1)′(0)M0 − cM2
0

.

Note that the transfer coefficients only depend on the first two moments. Straightforward
differentiation yields

∂f0,2

∂M0
= − 1

cM2
0

,
∂f0,2

∂M1
= 0

and

∂f2,1

∂M0
= cM2

0 − M1[
−M1 + c(Î1)′(0)M0 − cM2

0

]2
,

∂f2,1

∂M1
= M0[

−M1 + c(Î1)′(0)M0 − cM2
0

]2
.

Therefore, an ‘integration-based’ sensitivity analysis can be performed by looking at the
magnitudes of these partial derivatives.

The second issue is how to handle the case when the transfer coefficients depend on t, that
is F = F(t) in (1.2). Clearly, (1.2) is not anymore solvable via the matrix exponential or the
Laplace transform, and a fundamental matrix of solutions needs to be found, which is not possible
in general. For the inverse problem, the idea in this paper can still be adapted if we assume
that the entries of F(t) have a specific functional form. For definiteness, assume that f2,1(t) =
a0 + a1t and f0,2(t) = b0 + b1t in the pharmacokinetic model (1.3), where a0, a1, b0 and b1 are to
be determined. (More generally, we can assume that they are higher degree polynomials in t and
generalise the following argument.) However, this time we have to assume that q1(t) (and not
just I1(t) and q2(t)) for all t > 0 is known. Thus, we consider the system

q̇1(t) = I1(t) − (a0 + a1t)q1(t),

q̇2(t) = (a0 + a1t)q1(t) − (b0 + b1t)q2(t),

whose Laplace transform is

sq̂1(s) − q1(0) = Î1(s) − a0q̂1(s) − a1

∫ ∞

0
te−stq1(t) dt,

sq̂2(s) = a0q̂1(s) + a1

∫ ∞

0
te−stq1(t) dt − b0q̂2(s) − b1

∫ ∞

0
te−stq2(t) dt. (6.1)

Setting s = 0 in (6.1) yields

−q1(0) = Î1(0) − a0q̂1(0) + a1(q̂1)′(0),

0 = a0q̂1(0) − a1(q̂1)′(0) − b0q̂2(0) + b1(q̂2)′(0). (6.2)
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Differentiating (6.1) with respect to s, we have

q̂1(s) + s(q̂1)′(s) = (Î1)′(s) − a0(q̂1)′(s) + a1

∫ ∞

0
t2e−stq1(t) dt,

q̂2(s) + s(q̂2)′(s) = a0(q̂1)′(s) − a1

∫ ∞

0
t2e−stq1(t) dt − b0(q̂2)′(s) + b1

∫ ∞

0
t2e−stq2(t) dt. (6.3)

Setting s = 0 in (6.3), we obtain

q̂1(0) = (Î1)′(0) − a0(q̂1)′(0) + a1(q̂1)′′(0),

q̂2(0) = a0(q̂1)′(0) − a1(q̂1)′′(0) − b0(q̂2)′(0) + b1(q̂2)′′(0). (6.4)

We then combine (6.2) and (6.4) to form a linear algebraic system for a0, a1, b0 and b1, which
is easily solved. In fact, the first equations in (6.2) and (6.4) give a0 and a1, which are then
substituted into the respective second equations to get b0 and b1. Note that the coefficient matrix
of the linear system involves the first three moments of q1 and q2, which can be calculated in
principle.

7 Concluding remarks

In this article, we followed a Laplace transform approach to tackle both direct and inverse
problems for multi-compartment models described by systems of linear first-order ordinary
differential equations.

For the direct problem, the approach is especially convenient for catenary models since it
avoids the calculation of the matrix exponential. The results in Section 2 are of independent
pedagogical interest since they can be used as a basis for a project for undergraduate students
taking a first course in ordinary differential equations and/or mathematical modelling. The solu-
tion (1.4) of the direct problem for the general multi-compartment model (1.2) also motivates the
introduction of the matrix exponential in such courses.

For the inverse problem, we investigated catenary models and obtained explicit analytical
expressions for the fractional transfer coefficients in terms of elementary symmetric polynomi-
als and the moments of the given data. We assumed that the quantity of material is given in
only one compartment but were able to determine the fractional transfer coefficients in the other
compartments as well. We also showed how to handle the inverse problem for a general multi-
compartment model following the Laplace transform idea. However, unlike in a catenary model,
in a general multi-compartment model we have to assume that the quantitities of material are
available in all of the compartments so as to be able to set up the correct number of consistent
linear algebraic systems. This assumption may not be realisable in practice, as we indicated even
for the pharmacokinetic model (1.3).

Results of numerical simulations for catenary models by benchmarking with theoretical data
(with the introduction of small random perturbations in the data to simulate real data) showed
excellent results when there are many data points. As the number of data points decreases, it is
expected that the accuracy will suffer as the method essentially relies on numerically integrating
the data set. Since the interval of integration in the Laplace transform is a half-line, a procedure
for extrapolating the ‘tail’ was derived to take into account the data outside the measured region.
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A similar numerical implementation can be done for the general multi-compartment model
(1.2). However, the extrapolation procedure may need to be modified depending on the matrix
of fractional transfer coefficients since the exponential order at infinity may not always be true.
In this general case, it is not straightforward to determine the appropriate assumptions regarding
the order.

Most parameter estimation methods for multi-compartment models rely on least squares tech-
niques (see [1, 2, 12], for instance). The Laplace transform methodology proposed in this article
provides an alternative method and an additional technique for the applied mathematician’s tool-
box. In a heuristic sense, instead of minimising a squared error, an integration-based approach
‘averages out the potential errors’ by taking the integrals of associated functions [13]. Integral
transforms such as the Laplace and Mellin transforms were used in the integration-based methods
proposed in [7, 9, 11] because these were the appropriate integral transforms for the underlying
linear differential equations. For nonlinear equations such as multi-compartment models obeying
Michaelis-Menten kinetics, the ideas developed in [3, 8, 13] can be adapted.
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