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A macrotransport equation for the Hele-Shaw
flow of a concentrated suspension

Sourojeet Chakraborty1 and Arun Ramachandran1,†
1Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada

(Received 2 January 2021; revised 20 April 2021; accepted 1 June 2021)

A depth-averaged, convection-dispersion equation is derived for the particle volume
fraction distribution in the pressure-driven flow of a concentrated suspension of
neutrally buoyant, non-colloidal particles between two parallel plates, by implementing
a two-time-scale perturbation expansion of the suspension balance model (Nott &
Brady, J. Fluid Mech., vol. 275, 1994, pp. 157–199) coupled with the constitutive
equations of Zarraga et al. (J. Rheol., vol. 52, issue 2, 2000, pp. 185–220). The
Taylor-dispersion coefficient in the macrotransport equation scales as U′

cB′3/a′2, where U′
c

is the characteristic depth-averaged velocity, B′ is the half-depth of the channel and a′ is the
particle radius. Taylor dispersion relaxes gradients in the depth-averaged volume fraction
along the local velocity vector. Perpendicular to the flow, however, only shear-induced
migration can cause particle redistribution, leading to fluxes down gradients in volume
fraction, shear rate and streamline curvature that scale as U′

ca′2/B′. To determine the
velocity and particle distributions in Hele-Shaw suspension flows, one only needs to solve
two coupled partial differential equations in the pressure and the depth-averaged volume
fraction, achievable on commercially available solvers. Analogous to the macrotransport
equation for suspension flow through a circular tube (Ramachandran, J. Fluid Mech.,
vol. 734, 2013, pp. 219–252), the evolution of the particle volume fraction distribution
is dependent only on the total strain experienced by the suspension, and is independent of
the suspension velocity scale. However, unlike the tube problem, a positive concentration
gradient along the flow direction is susceptible to viscous miscible fingering. A linear
stability analysis performed for a step increase in the volume fraction in the direction of
flow with a velocity U′ reveals that the growth rate and wavenumber corresponding to
fastest growing mode scale as U′a′2/B′3 and a′2/3/B′5/3, respectively.
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1. Introduction

Transport of mass, momentum, energy, charge and other physical quantities are of
tremendous significance to scientists and engineers. In the literature, such transport
processes have been described mathematically using microtransport equations, which
are continuum equations applicable at length scales much larger than molecular length
scales. For example, the ion conservation equations employed in describing electroosmotic
processes are microtransport equations (Probstein 1994). The Navier–Stokes equation
is a micro-continuum equation that describes the transport of momentum during flow
for a relatively simple class of fluid materials – Newtonian fluids (Leal 2007). Most
engineering applications however involve macroscale processes, which occur over length
scales much larger than those for which microtransport equations are derived. Thus, while
microtransport equations may still be used to describe these macrotransport processes,
the disparity in length scales in the two situations is challenging to surmount numerically
even with present day computers. Particle-level microtransport equation-based approaches
(Guazzelli & Morris 2011) such as Stokesian dynamics (Brady & Bossis 1988; Sierou
& Brady 2001), the force coupling method (Sune & Maxey 2003; Yeo & Maxey 2011)
and the boundary element method (Pozrikidis 1992; Ingber et al. 2008) have improved
our understanding of such various suspension properties as viscosity, first and second
normal stress differences, and particle migration behaviour, and their dependencies on
particle size and volume fraction. But these techniques are computationally demanding
due to the need of incorporating far-field as well as near-field hydrodynamic interactions
for multiple particles at the same time (Brady & Bossis 1988; Sierou & Brady 2001),
and have traditionally been limited to simple, periodic domains containing a relatively
small number of particles. While the number of particles in a box in Stokesian
dynamics simulations has steadily increased over the past three decades, with the
most recent version capable of handling hundreds of thousands of particles (Fiore
& Swan 2019), it is still computationally expensive and cannot handle the flow of
concentrated suspensions through complex geometries over length scales of practical
interest.

One way to solve this computational challenge is to derive macrotransport equations
by averaging microtransport equations over length scales larger than those relevant to
the microscale processes, but smaller than those pertinent to the macroscale process.
Several models have been introduced over the past two decades to obtain a macrotransport
description of the migration of particles in flowing suspensions (Jenkins & McTigue
1990; Drew & Lahey 1993; Nott & Brady 1994; Jackson 1997; Morris & Boulay 1999;
Fang et al. 2002; Guazzelli & Morris 2011; Lecampion & Garagash 2014; Municchi,
Nagrani & Christov 2019), and one of the more prominent ones among these has been
the suspension balance model (Nott & Brady 1994; Morris & Boulay 1999; Fang et al.
2002; Guazzelli & Morris 2011). This macrotransport model introduces an additional level
of coarsening by volume averaging the continuity and momentum equations, first for the
suspension as a whole, and then only for the particulate phase. The averaged equations
are then closed by assuming that non-zero gradients in the particulate normal stresses
result in a difference in the average particulate and suspension velocities. Averaging the
microtransport equations also produces new, lumped, physical parameters. For instance,
in a dilute suspension of spheres subjected to simple shear flow, a volume averaging of
the stresses reveals that such a suspension may be modelled as Newtonian fluid to leading
order in the volume fraction of spheres, with a viscosity equal to the Einstein viscosity
(Einstein 1906; Batchelor 1970; Kim & Karrila 2005; Leal 2007; Guazzelli & Morris
2011). The new variable that results from the averaging process in the derivation of the
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Hele-Shaw suspension flows

suspension balance model is a shear-induced migration flux, which exhibits a scaling of
γ̇ ′a′2, γ̇ ′ being the local shear rate and a′ being the particle radius, and is a monotonically
increasing function of the particle volume fraction φ. When the complete non-Newtonian
rheology of the suspension is included in the framework of the suspension balance
model, it successfully describes the fully developed particle distributions in various flow
geometries (Morris & Boulay 1999; Fang et al. 2002; Ramachandran & Leighton 2008;
Boyer, Pouliquen & Guazzelli 2011b), and the agreement is nearly quantitative even in
such complicated flows as resuspension in a settling tube (Ramachandran & Leighton
2007a,b). The suspension balance model thus makes a tremendous simplification in the
modelling of suspension flows and particle migration by coarsening the physics from
the level of particles to the length scale corresponding to the characteristic dimension
of the flow (typically the smaller length scale in the cross-section of the flow conduit).
We note here that advancements to the suspension balance approach have been presented
in the literature in recent years, with the inclusion of the frictional rheology (Boyer,
Guazzelli & Pouliquen 2011a) to model viscoplastic suspension stresses at volume
fractions approaching maximum packing (Lecampion & Garagash 2014). In this work we
have chosen to focus on the suspension balance approach we have adopted previously
(Ramachandran & Leighton 2008; Ramachandran 2013), recognizing that the generated
results will be restricted to volume fractions below 50 % (Zarraga, Hill & Leighton 2000).

Despite the advantages of the suspension balance model, three-dimensional simulations
for the flow of concentrated suspensions through complicated geometries based on
the model are computationally challenging (Lam et al. 2003; Miller & Morris 2006;
Ramachandran & Leighton 2007b), as singularities are observed in regions where the
shear stresses vanish (e.g. at the centreline in the tube flow of suspensions). A practical
example of such a geometry is the Hele-Shaw geometry or the pressure-driven flow
between two parallel plates, which is encountered in applications such as powder injection
moulding (Lam et al. 2003), proppant transport (Hormozi & Frigaard 2017; Dontsov
et al. 2019) or in the testing of the spreading properties of cement grout in rock
fractures (Shamu et al. 2020). In the Hele-Shaw geometry, the shear stresses vanish at
the centreplane between the two Hele-Shaw plates to leading order, and this can lead to
complexities in the numerical solution of the suspension balance model. Additionally,
the largest dimensions in the flow geometry may significantly exceed the characteristic
cross-sectional dimension – the channel depth. Thus, a macrotransport equation that
further reduces the dimensionality of the problem can be extremely helpful to simulate the
particle, velocity and pressure distributions for length scales encountered in engineering
processes.

The objective of this paper is to derive a depth-averaged macrotransport equation
describing the hydrodynamic transport of a concentrated suspension of rigid,
non-colloidal, neutrally buoyant particles flowing through a Hele-Shaw geometry.
Inspiration for this paper may be traced back to the work of Taylor (1953), who obtained
a macrotransport equation describing the axial spreading of a bolus of solute in the flow
of a Newtonian fluid through a tube. The partial differential equation (PDE) describing
the motion of the cross-section-averaged concentration c′, with the axial spreading being
termed as Taylor dispersion, becomes

∂c′

∂t′
+ U′ ∂c′

∂x′ = Deff ′
∂2c′

∂x′2 . (1.1)

Note that throughout the manuscript, dimensional variables will be denoted using the
prime symbol (see Table 2 in Appendix A for a complete list of symbols). In the above

924 A1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.513


S. Chakraborty and A. Ramachandran

equation, x′ is the axial co-ordinate, t′ represents time, U′ is the volume-averaged flow
velocity through the tube and D′

eff is the Taylor dispersion coefficient, which is defined
as

D′
eff = 1

48
U′2R′2

D′ = Pe2D′

48
, where Pe = U′R′

D′ . (1.2)

Here, R′ is the radius of the tube and D′ represents the molecular diffusivity of the solute.
According to the above PDE, when a solute slug is introduced, the centre of mass of
the solute moves at the average fluid velocity U′ while simultaneously spreading out in a
diffusive manner in the flow direction owing to Taylor dispersion. The above expression
for D′

eff is valid when the Péclet number is much larger than unity. More recently, it
was shown that analogous equations describe the flow of a concentrated suspension
through a tube (Griffiths & Stone 2012; Ramachandran 2013), and the flow of a dense
granular suspension along an incline (Christov & Stone 2014). For example, from the work
of Ramachandran (2013), the cross-section averaged, one-dimensional macrotransport
equation for a concentrated suspension of rigid, neutrally buoyant, non-colloidal spheres
for non-dilute suspensions flowing through a tube is

∂φ̄

∂t′
+ U′ dg

dφ̄

∂φ̄

∂x′ = ∂

∂x′

(
R′3U′

a′2 h(φ̄)
∂φ̄

∂x′

)
. (1.3)

Here, φ̄ is the area-averaged particle volume fraction, a′ is the radius of the spherical
particle, g(φ̄) is the dimensionless, flow-averaged particle volume fraction (Ramachandran
& Leighton 2007a) (g = ∫∫

u′φ dA′/
∫∫

u′ dA′, where u′ and φ are the axial velocity and
volume fraction profiles, respectively, in the tube cross-section) and h(φ̄) R′3U′/a′2 is the
Taylor dispersion coefficient. The above equation was derived from the suspension balance
model of Nott & Brady (1994) coupled with the constitutive equations of Zarraga et al.
(2000), by performing a multiple time scale expansion (Pagitsas, Nadim & Brenner 1986;
Hinch 1991) involving the small parameter ε = R′3/(a′2L′), where L′ is the characteristic
length scale of the geometry along the flow direction.

In this paper we extend the treatment of Ramachandran (2013) to the flow of a
suspension in a Hele-Shaw geometry. While depth-averaged models are available in the
literature for suspension flows (e.g. see Dontsov & Peirce 2014; Hormozi & Frigaard
2017; Wong, Lindstrom & Bertozzi 2019; Dontsov et al. 2019), we formally derive, for
the first time, a macrotransport equation that includes a Taylor dispersion term along
with contributions from shear-induced migration and fluxes arising due to gradients
in the local geometry of the flow. We also perform a linear stability analysis on the
resulting macrotransport equation for the classic viscous miscible fingering problem
(Wooding 1962; Tan & Homsy 1986) as applied to suspension flows. We have structured
this paper as follows. Section 2 describes the governing equations for the particle and
velocity distributions, based on the suspension balance model coupled with constitutive
equations. In § 3 a two-time-scale perturbation expansion is implemented to arrive at the
final form of the macrotransport equation. In § 4 we discuss the physical significance
of each term in the equation. We show that a negative step change in volume fraction
along the flow direction relaxes continuously; however, a positive step change in volume
fraction leads to the emergence of viscous miscible fingering effects. Section 5 then
implements a linear stability analysis of the viscous miscible fingering problem for a
concentrated suspension flowing through Hele-Shaw geometry using a quasi-steady state
approximation (QSSA) and ends with results. Section 6 presents conclusions and future
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work recommendations. The manuscript is written in a way so as to afford the reader two
possible ways to read the article. The first (and obvious) option is to read the manuscript
in its entirety. However, readers exclusively interested in understanding the various terms
in the macrotransport equation, the nature of the instability and its implications for the
evolution of the particle distribution, may skip §§ 2 and 3 and proceed directly on to §§ 4
and 6.

2. Theoretical model

Consider a concentrated suspension of rigid, non-colloidal, neutrally buoyant spheres
flowing between two parallel, stationary plates under the influence of a pressure field P′
(see figure 1). The suspending medium is Newtonian with a viscosity μ′

0. The Hele-Shaw
geometry has a thickness of 2B′ in the depth direction (3), and a characteristic length scale
of L′ in the lateral directions, 1 and 2. Here x′

1 and x′
2 are the co-ordinates along the lateral

directions, while x′
3 is the co-ordinate in the depth direction, along which the equations and

variables will be averaged. We denote the depth-averaged volume fraction by φ̄ and the
depth-averaged velocity field by ūi

′. Following the development of the suspension balance
model in our previous work (Ramachandran & Leighton 2008), and using L′ as the length
scale for the x′

1 and x′
2 directions, B′ as the length scale for the x′

3 direction, U′
c as the

velocity scale and μ′
0U′

cL′/B′2 as the stress scale, the following dimensionless governing
equations emerge:

∇2juj + ∂u3

∂x3
= 0, (2.1a)

ε2∇2j

[
μr
(∇2jui + ∇2iuj

)]+ ε2 ∂

∂x3

(
μr

∂u3

∂xi

)
+ ∂

∂x3

(
μr

∂ui

∂x3

)

= ∂P
∂xi

+ ε∇2j

(
ατH ij

)
, (2.1b)

ε4∇2j

[
μr

(
∂u3

∂xj
+ μr

∂uj

∂x3

)]
+ ε2 ∂

∂x3

(
2μr

∂u3

∂x3

)
= ∂P

∂x3
+ ε

∂

∂x3
(ατ) , (2.1c)

χε

[
∂φ

∂t
+ ∇2j

(
ujφ
)+ ∂

∂x3
(u3φ)

]
= 2

9
ε2∇2i

[
f ∇2j

(
ατH ij

)]+ 2
9

∂

∂x3

[
f

∂

∂x3
(ατ)

]
.

(2.1d)

Equation (2.1a) is the continuity equation, (2.1b) represents the momentum equations in
the lateral directions (x1 and x2), (2.1c) is the momentum equation in the shallow direction
(x3) and (2.1d) is the particle conservation equation. Here, the fields P, ui and φ are the
dimensionless pressure, velocity and volume fraction, respectively. The operator ∇2 is the
gradient operator defined in the 1–2 co-ordinates only. The subscripted indices i and j
assume values of 1 and 2 only. The parameter ε is the aspect ratio,

ε = B′

L′ , (2.2)

and is the small parameter that will be exploited in the asymptotic expansion to follow.
The quantity α in (2.1) is the reduced normal stress (Zarraga et al. 2000), given by

α(φ) = 2.17φ3e2.34φ

(
1 − φ

φm

)−0.01

. (2.3)
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Depth-averaged volume fraction: φ̄

Depth-averaged velocity field: u�′

Pressure distribution: P′

Suspension flow

x2
′

x1
′, x2

′ : In-plane co-ordinates

x3
′       : Co-ordinate in the shallow direction

x1
′

x3
′

2B′

Figure 1. Schematic of the flow geometry.

By allowing the reduced normal stress to diverge at maximum packing fraction, we
overcome the issue of singularity in the volume fraction at x3 = 0 (e.g. see Miller &
Morris 2006; Ramachandran & Leighton 2007b, 2008). The results presented in this
paper are relatively insensitive to values of the exponent less than 0.01. In (2.1), τ is
a local measure of the dimensionless shear stress (Ramachandran & Leighton 2008),
given by

τ = μr(φ)γ̇ , (2.4)

where the shear rate γ̇ is defined as

γ̇ =
√

ε2
(∇2jui + ∇2iuj

)∇2jui + ε4
(

∇2ju3 + ∂uj

∂x3

)
∇2ju3 +

(
∂ui

∂x3

)2

+ ε2 ∂ui

∂x3
∇2iu3.

(2.5)

In (2.1), H ij is the geometry tensor, defined as

H ij = δij − b
mimj

mkmk
+ d

pipj

pkpk
, (2.6)

where mi and pi, which are the velocity and vorticity directions, are given by

mi = ui and pi = εij3mj. (2.7a,b)

The boundary conditions for the velocity component in the depth direction, u3,
are

u3|x3=0,1 = 0, (2.8)

due to the antisymmetry about the centerplane and the zero normal flow condition at the
wall. The boundary conditions for ui are the symmetry of the in-plane components of the
velocity field at the midplane,

∂ui

∂x3

∣∣∣∣
x3=0

= 0, (2.9)
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Hele-Shaw suspension flows

and the no-slip boundary condition at the wall,

ui|x3=1 = 0. (2.10)

The boundary conditions for the particle concentration are the no-flux restriction at the
wall, and symmetry at the midplane, i.e.[

χεu3φ − 2
9

f (φ)
∂

∂x3
(ατH33)

]∣∣∣∣
x3=0,1

= 0. (2.11)

Equation (2.8) allows us to simplify the above equation to[
2
9

f (φ)
∂

∂x3
(ατ)

]∣∣∣∣
x3=0,1

. (2.12)

3. Multiple time scale expansion

We follow the procedure in Ramachandran (2013) and implement a multiple time scale
expansion of the governing equations and boundary conditions (Pagitsas et al. 1986;
Hinch 1991). To begin, we need to define a small parameter relevant to this problem. For
this, consider the ratio of time scale for shear-induced migration over the depth and the
convective time scale in the flow direction,

B′2/
[
(U′

c/B′)a′2]
L′/U′

c
= χε. (3.1)

Here, the parameter χ is

χ = B′2

a′2 . (3.2)

In the Taylor dispersion limit (Brenner & Edwards 1993; Probstein 1994; Ramachandran
2013), χε = B′3/a′2L′ is a small parameter, i.e. the length scale L′ in the direction parallel
to the Hele-Shaw plates needs to be significantly greater than the induction length scale
B′3/a′2 (Chapman 1990; Nott & Brady 1994; Hampton et al. 1997; Ramachandran &
Leighton 2007a; Lecampion & Garagash 2014).

In dimensionless terms the two time variables for the multiple time scale expansion are
tf = t (the fast time scale) and ts = χεt (the slow time scale). The partial derivative ∂/∂t
is thus transformed to

∂/∂t = ∂/∂tf + χε∂/∂ts. (3.3)

After implementing this transformation, the only governing equation in (2.1) that is
modified is the particle balance equation (2.1d), and it becomes

χε

[
∂φ

∂tf
+ χε

∂φ

∂ts
+ ∇2j

(
ujφ
)+ ∂

∂x3
(u3φ)

]

= 2
9

ε2∇2i

[
f ∇2j

(
ατH ij

)]+ 2
9

∂

∂x3

[
f

∂

∂x3
(ατ)

]
. (3.4)

All the dependent variables in the problem are now functions of five independent variables:
tf , ts, x1, x2 and x3.
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The dependent variables can now be written as the following regular perturbation
expansions in the small parameter χε:

φ = φ(0) + (χε)φ(1) + (χε)2φ(2) + · · · ,

P = P(0) + (χε)P(1) + (χε)2P(2) + · · · ,

ui = u(0)
i + (χε)u(1)

i + (χε)2u(2)
i + · · · ,

u3 = u(0)
3 + (χε)u(1)

3 + (χε)2u(2)
3 + · · · .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

In the subsections that follow, we will implement the multiple time scale expansion
procedure. As a note, the overline that will appear over several variables henceforth
represents the operator for performing an average over the depth of the Hele-Shaw
geometry, i.e.

F̄ (x1, x2, t) =
∫ 1

0
F (x1, x2, x3, t) dx3. (3.6)

Also, the expansion procedure produces a host of functions: M, F, g, G and Q1 through
Q12. These functions are summarized in Appendix B.

To conclude this subsection, we note that the depth averages of the volume fraction
and the two-dimensional velocity field are given by the averages of their zeroth-order
approximations, i.e.

φ̄ = φ(0) and ui = u(0)
i , (3.7a,b)

implying that

φ(j) = 0 and u(j)
i = 0, (3.8a,b)

for j ≥ 1.

3.1. The O[(χε)0] problem
To leading order in χε, the particle balance equation (3.4) is

2
9

∂

∂x3

[
f (φ(0))

∂

∂x3
(ατ)(0)

]
= 0. (3.9)

The no-flux boundary condition (2.12) at the walls at this order,[
2
9

f (φ(0))
∂

∂x3
(ατ)(0)

]∣∣∣∣
x3=0,1

, (3.10)

combined with (3.9) yields the following expression for the particle pressure:

(ατ)(0) = c′. (3.11)

Here c′ is the constant of integration. To obtain the stress τ (0) required for computing the
volume fraction profile, the continuity and momentum equations in (2.1a) to (2.1c) are
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examined at O[(χε)0] to yield

∇2ju
(0)
j + ∂u(0)

3
∂x3

= 0, (3.12a)

∂

∂x3

[
μr(φ

(0))
∂u(0)

i
∂x3

]
= ∇2jP

(0), (3.12b)

∂P(0)

∂x3
= 0. (3.12c)

As the pressure is invariant in the x3 direction at this order, (3.12b) can be integrated with
respect to x3. Doing this once yields

μr(φ
(0))

∂u(0)
i

∂x3
= ∇2jP

(0)x3, (3.13)

where the symmetry condition (2.9) has been applied. The stress, τ , at this order, defined
using (2.4) and (2.5), can be deduced from the above result as

τ (0) =
∣∣∣∇2P(0)

∣∣∣ x3. (3.14)

Note that
∣∣∇2P(0)

∣∣ is independent of x3 due to (3.12c). Substitution of the above result in
(3.11) yields

α(φ(0))x3 = αw, (3.15)

where αw is the reduced normal stress evaluated at the wall. The above equation provides
the volume fraction distribution for a given depth-averaged volume fraction φ̄,

φ(0)(φ̄, x3) = α−1
[
αw

x3

]
, (3.16)

In figure 2(a) we have shown the volume fraction profile over the depth for different
φ̄. Similar to tube flow of suspensions (Phillips et al. 1992; Hampton et al. 1997; Fang
et al. 2002; Miller & Morris 2006; Ramachandran & Leighton 2008; Ramachandran
2013), there is a region of maximum packing fraction around the centreline due to the
phenomenon of shear-induced migration (Koh, Hookham & Leal 1994; Lyon & Leal 1998;
Fang et al. 2002; Gao & Gilchrist 2008; Lecampion & Garagash 2014; Yadav, Reddy &
Singh 2016; Dontsov et al. 2019), which becomes thicker as the volume fraction increases.

To get the velocity distribution, (3.13) may be divided by μr(φ
(0)) and integrated in x3

to produce the following expression for ui after the application of the no-slip boundary
condition (2.10):

u(0)
i = −F(φ̄, x3)∇2iP

(0). (3.17)

Here, the function F is defined as

F(φ̄, x3) =
∫ 1

x3

ξ dξ

μr[φ(0)(φ̄, ξ)]
. (3.18)

The velocity distribution is shown as a function of x3 for different depth-averaged volume
fractions in figure 2(b). Again, analogous to tube flow, the maximum packing region
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0
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Q̂1

Figure 2. Predictions of the zeroth-order profiles of (a) volume fraction (φ(0), (3.16)), (b) the function
quantifying the in-plane velocity (F, (3.17)) and (c) the velocity along the thin direction (Q̂1 = Q1//M, (3.26)),
as functions of the co-ordinate in the thin direction, x3. The solid, dotted and dash–dotted curves are the results
for depth-averaged volume fractions of 20 %, 30 % and 45 %. The inset in subfigure (a) provides a zoomed-in
view of the volume fraction profiles near the centreline.

near the centreline leads to blunting of the velocity profile due to the high viscosity
associated with this region (Koh et al. 1994; Lyon & Leal 1998; Fang et al. 2002; Gao
& Gilchrist 2008; Lecampion & Garagash 2014; Yadav et al. 2016; Dontsov et al. 2019).
As φ̄ increases, the average velocity for a given pressure gradient decreases, and the size
of the blunted zone increases. Notably, the sizes of the maximum packing regions and the
blunted zones are smaller than the corresponding ones for tube flow. This is because the
area of a region of a given width near the centre represents a smaller fraction of the total
area for tube Poiseuille flow than plane Poiseuille flow.

The depth-averaged velocity at this order is

u(0)
i = ui = −M(φ̄)∇2iP

(0). (3.19)
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Here, the function M quantifies the mobility of the suspension, and is defined as

M(φ̄) =
∫ 1

0
F(φ̄, x3) dx3. (3.20)

Integrating the continuity equation (3.12a), and applying the boundary conditions for u3
(see (2.8)), we get the governing equation for the pressure distribution at this order,

∇2j[M(φ̄)∇2jP
(0)] = 0. (3.21)

Finally, we derive an expression for u(0)
3 , which will be required in the O(χε) analysis.

Using the continuity equation (3.12a), we get

∂u(0)
3

∂x3
= ∇2j[F(φ̄, x3)∇2jP

(0)]. (3.22)

Integrating the above equation with respect to x3, we get

u(0)
3 = ∇2j[Q1(φ̄, x3)∇2jP

(0)], (3.23)

where

Q1(φ̄, x3) =
∫ x3

0
F(φ̄, ξ) dξ. (3.24)

Using the following modified version of the averaged continuity equation (3.21),

∇2
2P(0) = −M′(φ̄)

M(φ̄)
∇2j φ̄∇2jP

(0), (3.25)

and the relationship between uj and ∇2P(0) in (3.19), (3.23) can be simplified to

u(0)
3 = Q̂1(φ̄, x3)∇2j φ̄ uj, (3.26)

where

Q̂1(φ̄, x3) = M′(φ̄)

M2(φ̄)
Q1(φ̄, x3) − 1

M(φ̄)

∂Q1

∂φ̄
(φ̄, x3). (3.27)

Shown in figure 2(c) is the function Q̂1 as a function of x3 for different φ̄. For positive
gradients in the volume fraction along the flow direction

(∇2j φ̄ uj > 0
)
, the suspension

viscosity increases in the flow direction, and this increase is stronger near the centreplane
of the Hele-Shaw geometry than the walls. As a result, there is a decrease in the planar
velocity field u(0)

i in the flow direction, which, by conservation of mass, leads to an
expulsion of suspension from the centreplane to the walls, i.e. a positive u(0)

3 . Similarly,
negative gradients in the volume fraction (∇2j φ̄ uj < 0) along the flow direction lead to

negative u(0)
3 .
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3.2. The O[(χε)1] problem
The particle balance equation (3.4) at O[(χε)1] is

∂φ(0)

∂tf
− ∇2j

[
F
(
φ, x3

)
φ(0)

(
φ, x3

)∇2jP
(0)
]

+ ∂

∂x3

[
u(0)

3 φ(0)
(
φ, x3

)] = 2
9

∂

∂x3

[
f (φ)

∂

∂x3
(ατ)

](1)

. (3.28)

In the above equation, we have substituted the expression for u(0)
i from (3.17). Integrating

the above equation with respect to x3 from 0 to 1, we get

∂φ̄

∂tf
− ∇2j[G(φ̄)∇2jP

(0)] = 0, (3.29)

where

G(φ̄) =
∫ 1

0
F(φ̄, ξ)φ(0)(φ̄, ξ) dξ. (3.30)

In (3.29) we have applied the no-flux boundary condition in (2.12) at this order, and also
used the result for the zeroth-order particle pressure from (3.11). Using the following result
from the chain rule,

∂φ(0)

∂tf
= ∂φ(0)

∂φ̄

∂φ̄

∂tf
, (3.31)

we can manipulate (3.28) and (3.29) to arrive at

∂φ(0)

∂φ
∇2j

[
G
(
φ
)∇2jP

(0)
]

− ∇2j

[
F
(
φ, x3

)∇2jP
(0)φ(0)

]

+ ∂

∂x3

(
u(0)

3 φ(0)
)

= 2
9

∂

∂x3

[
f
(
φ(0)

) ∂

∂x3
(ατ)(1)

]
. (3.32)

To arrive at the right-hand side of the above equation from (3.28), we have used the
constancy of (ατ)(0) over the depth (3.11). After the integration of the above equation
in x3 and the implementation of the algebraic steps discussed in Appendix C, we get the
volume fraction perturbation φ(1) as

φ(1) = Q7(φ̄, x3)
∇2j φ̄(−∇2jP

(0))

|∇2P(0)| = Q7(φ̄, x3)

(∇2j φ̄ uj

|u|

)
. (3.33)

Note that φ(1) is proportional to the directional derivative of φ̄ along the depth-averaged
velocity vector.
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Figure 3. Predictions of the first-order profiles of (a) volume fraction (Q7, (3.33)) and (b) the function
quantifying the in-plane velocity, (Q10/M, (3.35)), as functions of the co-ordinate in the thin direction, x3.
The solid, dotted and dash–dotted curves are the results for depth-averaged volume fractions of 20 %, 30 % and
45 %.

To derive the velocity perturbation, we begin with (2.1b) at O[(χε)1], which gives

∂

∂x3

(
μr

∂ui

∂x3

)(1)

= ∇2iP
(1). (3.34)

Integration of the above equation, followed by the application of the boundary condition
at the wall and some simplifications (see Appendix D for details), yields

u(1)
i = Q10(φ̄, x3)

∇2j φ̄∇2jP
(0)∣∣∇2P(0)
∣∣ ∇2iP

(0) = Q10(φ̄, x3)

M(φ̄)

(∇2j φ̄ uj

|u|

)
ui. (3.35)

In figure 3 we have shown the functions Q7 and Q10/M corresponding to the volume
fraction and velocity distributions at O (χε) for φ̄ = 0.2, 0.3 and 0.45. When ∇2j φ̄ uj > 0,
the volume fraction perturbation is negative near the centre (see figure 3a). As explained
in Ramachandran (2013), this is due to two reasons: the displacement of a low volume
fraction suspension into a region of high volume fraction, and the positive u(0)

3 velocity
which drives particles away from the centre and towards the walls when

(∇2j φ̄ uj > 0
)
.

The greater the volume fraction, the smaller the perturbation due to the smaller contrast
in the volume fraction between the centre and wall, and the weaker the magnitude of u(0)

3 .
The negative value of φ(1) near the centre leads to a decrease in suspension viscosity there
and, hence, a positive perturbation in the first-order velocity field (see figure 3b), the effect
being stronger for higher volume fractions. Similar arguments can be used to deduce trends
when ∇2j φ̄ uj < 0.
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We end this subsection by commenting that it is possible to determine the pressure P(1)

and the velocity component u(1)
3 by employing the continuity equation, but these variables

are not required to derive the macrotransport equation to be presented at the end of this
section. Hence, the calculations of P(1) and u(1)

3 will not be pursued.

3.3. The O[(χε)2] problem and the averaged equations
The particle balance equation (3.4) at O[(χε)2] is

∂φ(1)

∂tf
+ ∇2i

(
u(0)

i φ(1) + u(1)
i φ(0)

)
+ ∂

∂x3
(u3φ)(1) + ∂φ(0)

∂ts

= ε2

(χε)2
2
9

∇2i

[
f ∇2j

(
ατH ij

)](0) + 2
9

∂

∂x3

[
f

∂

∂x3
(ατ)

](2)

. (3.36)

Note that we have preserved the leading order shear-induced migration term,
(2/9)ε2∇2i[ f ∇2j(ατH ij)](0), even though it is of order χ−2 relative to other terms at this
order. As will become clear later, the key particle flux that emerges from the left-hand
side of the equation, the Taylor dispersion flux, does not have a component in the
direction normal to the streamlines defined by the velocity field ui (see (3.33) and (3.35)).
The leading order source of particle flux perpendicular to the flow streamline is the
shear-induced migration flux and, hence, it has to be retained.

We can use (3.14), (3.15) and (3.19) to write

(ατH ij)
(0) = αw(φ̄)

M(φ̄)
|u| H(0)

ij , (3.37)

where

H(0)
ij = δij − b

ui uj

uk uk
+ d

εik3uk εjl3ul

up up
. (3.38)

This modifies (3.36) to

∂φ̄

∂ts
+ ∇2i

(
u(0)

i φ(1) + u(1)
i φ(0)

)
= ∇2i

[
2
9

f (0)∇2j

(
αw(φ̄)

M(φ̄)
|u| H(0)

ij

)]
. (3.39)

Let us now consider the two convective terms on the left-hand side of the above equation.
The first one, which arises due to the volume fraction perturbation φ(1), can be written as

u(0)
j φ(1) = −M(φ̄)Q11(φ̄)

(∇2j φ̄ uj

|u|

)
ui, (3.40)

where

Q11(φ̄) = − 1
M(φ̄)

∫ 1

0
F(φ̄, ξ)Q7(φ̄, ξ) dξ, (3.41)

while the second one, which arises due to the perturbation, u(1)
i , in the velocity field,

simplifies to

u(1)
j φ(0) = M(φ̄)Q12(φ̄)

(∇2j φ̄ uj

|u|

)
, (3.42)
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with

Q12(φ̄) = 1
M(φ̄)

∫ 1

0
Q10(φ̄, ξ)φ(0)(φ̄, ξ) dξ. (3.43)

A negative sign has been added to the definition of Q11 in (3.41) to ensure that Q11 is a
positive function. Equation (3.39) thus becomes

∂φ̄

∂ts
= ∇2i

[
M(φ̄)h(φ̄)

(∇2j φ̄ uj

|u|

)
ui

]
+ ε2

(χε)2 ∇2i

[
2
9

f (0)∇2j

(
αw(φ̄)

M(φ̄)
|u| H(0)

ij

)]
,

(3.44)

where
h(φ̄) = Q11(φ̄) − Q12(φ̄). (3.45)

After expanding out the shear-induced migration term in the above equation, we get

∂φ̄

∂ts
= ∇2i

⎡
⎣h(φ̄)

⎛
⎝∇2j φ̄ u(0)

j

|u|

⎞
⎠ ui

⎤
⎦+ ε2

(χε)2 ∇2i(qA(φ̄) |u| H(0)
ij ∇2j φ̄)

+ ε2

(χε)2 ∇2i

[
qB(φ̄)∇2j

(
|u| H(0)

ij

)]
, (3.46)

where

qA(φ̄) = 2
9

f (0)
d

dφ̄

[
αw(φ̄)

M(φ̄)

]
,

qB(φ̄) = 2
9

f (0)
αw(φ̄)

M(φ̄)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.47)

We now rewrite (3.29) with the pressure gradient ∇2jP
(0) replaced by the depth-averaged

velocity field ui using (3.19),

∂φ̄

∂tf
+ ∇2i

[
g(φ̄)ui

] = 0, (3.48)

where the function g is the local flow-averaged volume fraction (Ramachandran &
Leighton 2007b; Ramachandran 2013), defined as

g(φ̄) = G(φ̄)

M(φ̄)
. (3.49)

Multiplying (3.48) by χε and (3.46) by (χε)2, and then summing the resulting equations,
yields

(χε)

[
∂φ̄

∂t
+ ∇2i

(
g(φ̄)ui

)] = (χε)2 ∇2i

[
h(φ̄)

(∇2j φ̄uj

|u|

)
ui

]

+ ε2∇2i(qA(φ̄) |u| H(0)
ij ∇2j φ̄)

+ ε2∇2i[qB(φ̄)∇2j(|u|H(0)
ij )]. (3.50)
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Reverting to dimensional variables, we obtain

∂φ̄

∂t′
+ ∇′

2i
[g(φ̄)u′

i] = B′3

a′2 ∇′
2i

[
h(φ̄)

(∇2j φ̄ u′
j∣∣u′∣∣
)

u′
i

]

+ a′2

B′ ∇′
2i
(qA(φ̄)|u′|H(0)

ij ∇′
2j
φ̄) + a′2

B′ ∇′
2i

[qB(φ̄)∇′
2j
(|u′|H(0)

ij )].

(3.51)

The above equation is the macrotransport equation for the depth-averaged volume fraction.

4. Discussion

The macrotransport equation governing the depth-averaged particle volume fraction, φ̄, as
derived in § 3, can be written as

∂φ̄

∂t′
+ ∇′

2i
[g(φ̄)u′

i]︸ ︷︷ ︸
Convection term

= ∇′
2i

⎡
⎣D′

eff

⎛
⎝u′

j∇′
2j
φ̄∣∣∣u′
∣∣∣
⎞
⎠ u′

i∣∣∣u′
∣∣∣
⎤
⎦

︸ ︷︷ ︸
Taylor dispersion term (TD)

+∇′
2i

⎡
⎣qA(φ̄)

⎛
⎝
∣∣∣u′
∣∣∣ a′2

B′

⎞
⎠H ij∇′

2j
φ̄

⎤
⎦

︸ ︷︷ ︸
First shear-induced migration term (SIM1)

+∇′
2i

⎧⎨
⎩qB(φ̄)∇′

2j

⎡
⎣
⎛
⎝
∣∣∣u′
∣∣∣ a′2

B′

⎞
⎠H ij

⎤
⎦
⎫⎬
⎭︸ ︷︷ ︸

Second shear-induced migration term (SIM2)

. (4.1)

Here, u′
i is the depth-averaged velocity field, given by

u′
i = −B′2

μ′
0

M(φ̄)∇′
2i

P′, (4.2)

D′
eff is the Taylor dispersivity,

D′
eff = B′3

a′2 |u′|h(φ̄), (4.3)

and depends on the magnitude of the depth-averaged velocity. The geometry tensor, H ij,
that appears in (4.1) has the definition,

H ij = δij − b
ui uj

uk uk
+ d

εik3uk εjl3ul

up up
, (4.4)

where b = −0.15 and d = −0.54 are the reduced first and second normal stress difference
coefficients (Zarraga et al. 2000). To determine the pressure distribution P′ that is required
to calculate the depth-averaged velocity field, we solve the continuity equation.

∇′
2i

[M(φ̄)∇′
2i

P′] = 0. (4.5)

The left-hand side of (4.1) involves the temporal term for φ̄ and a convection term
involving the two-dimensional, depth-averaged velocity field. On the right side, the
first term is due to Taylor dispersion, and scales as U′

cB′3/a′2, where U′
c is the
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Figure 4. The functions appearing in the macrotransport equation: (a) the suspension mobility, M(φ̄) (3.20);
(b) the flow-averaged volume fraction, g(φ̄) (3.49) (the dotted line is the parity line, equal to φ̄); (c) the reduced
Taylor dispersivity, h(φ̄) (3.45); (d) the relative contributions of the volume fraction and velocity perturbations,
h1(φ̄) (3.35) and h2(φ̄) (3.33), respectively, to the reduced Taylor dispersivity (note that h = Q11 − Q12 (3.45));
(e) the prefactor of SIM1, qA(φ̄) (3.47); and ( f ) the prefactor of SIM2, qB(φ̄) (3.47).

characteristic velocity. As expected, the Taylor dispersion flux arises due to gradients
in volume fraction only in the flow direction, indicated by the directional derivative
of φ̄ along the local, depth-averaged velocity vector. We also have two shear-induced
migration terms on the right-hand side of (4.1), SIM1 and SIM2 that each scale as
U′

ca′2/B′. The SIM1 flux arises due to gradients in the volume fraction while the SIM2

flux arises due to gradients in the local shear rate |u′|/B′ and the local flow geometry
H , the latter representing a measure of the curvature of streamlines corresponding to the
depth-averaged velocity field.

The system of equations above relies on five functions that vary with the depth-averaged
volume fraction, namely M(φ̄), g(φ̄), h(φ̄), qA(φ̄) and qB(φ̄). Figure 4 shows these
functions for volume fractions in the range of 0.2 ≤ φ̄ ≤ 0.5, over which the constitutive
equations (Zarraga et al. 2000) used in the suspension balance equations are valid. The
suspension mobility M(φ̄) connects the velocity with the pressure gradient (see (4.2)).
Owing to the nonlinear relationship of viscosity and volume fraction (figure 4a), M
decreases monotonically with the volume fraction. Here g(φ̄) is the flow-averaged particle
concentration at any given axial location. It is evident from figure 4(b) that for the volume
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Figure 5. The volume fraction dependence of the ratio of the shear-induced migration flux to the Taylor
dispersion flux along the flow direction.

fraction range of interest (20–50 %), g(φ̄) exceeds φ̄; this is due to the shear-induced
migration of particles from the high shear stress, low velocity regions near the surfaces
of the two Hele-Shaw plates to the low shear stress, high velocity regions near the
Hele-Shaw centreplane (Phillips et al. 1992; Hampton et al. 1997; Miller & Morris 2006;
Gao & Gilchrist 2008; Ramachandran & Leighton 2008; Ramachandran 2013; Lecampion
& Garagash 2014; Yadav et al. 2016). The reduced Taylor dispersivity, h(φ̄), decreases
monotonically with φ̄ (figure 4c). As shown in § 3 and also described in Ramachandran
(2013), it incorporates two contributions – one due to volume fraction perturbations about
the zeroth-order volume fraction, h1 = Q11(φ), and the other due to velocity perturbations
about the zeroth-order velocity profile h2 = Q12(φ) the latter arising due to changes in
suspension viscosity. Note that h1 is always larger than h2, but h2 contributes increasingly
significantly to h as φ̄ increases (see figure 4d). The functions qA(φ̄) (figure 4e) and
qB(φ̄) (figure 4f ) which are associated with the fluxes corresponding to SIM1 and SIM2,
respectively, increase with φ̄, as expected, as shear-induced migration effects become
stronger with particle volume fraction (Leighton & Acrivos 1987; Nott & Brady 1994;
Morris & Boulay 1999; Ramachandran & Leighton 2008). The function, qB, however, is
typically an order of magnitude weaker than qA; hence, variations in streamline curvature
and shear rate are expected to have a weaker impact on the particle distribution than
gradients in the volume fraction. The ratio of the SIM1 flux to the Taylor dispersion flux
is (a′4/B′4)qA(φ̄)/h(φ̄). As can be seen in figure 5, the largest value of this ratio in the
range of volume fractions explored by us is approximately 1000 at φ̄ = 0.5. For aspect
ratios B′/a′ > 10, which is true for most experiments avoiding finite particle size and wall
slip effects for concentrated suspensions (Jana, Kapoor & Acrivos 1995; Mills & Snabre
1995), the shear-induced migration flux is less than 10 % of the Taylor dispersion flux even
for φ̄ = 0.5. But this is true only along the local velocity vector, as the particle flux due to
the Taylor dispersion normal to the local flow direction is identically zero. Perpendicular
to the local depth-averaged velocity field, only shear-induced migration (SIM1 and SIM2)
can lead to a particle flux due to gradients in particle volume fraction, shear rate and
streamline curvature.

A few additional comments pertaining to the macrotransport equation (4.1) are in order
here. First, due to the direct proportionality of the convection, Taylor dispersion and
shear-induced migration terms to the velocity scale, the velocity dependence of these
terms can be factored out and absorbed into the time derivative term, suggesting that the
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Figure 6. Simulation of the displacement of a 30 % suspension by a 50 % suspension in a Hele-Shaw
expansion geometry using the macrotransport equations, (4.1) to (4.5), solved on COMSOL®. Subfigure (a)
shows the details of the expansion geometry. A pressure difference of �P′ is applied between the left and right
edges of the geometry. The length, time and velocity scales used to render the equations dimensionless are
B′3/a′2, B′4μ′

0/a′4�P′ and a′2�P′/(B′μ′
0). Subfigure (b) shows the initial volume fraction distribution, which

contains a shock in the flow direction at x1 = −5. Subfigures (c–f ) show the evolution of the volume fraction
distribution predicted by the macrotransport equation, (4.1), at times t = 250, 750, 1500 and 3000, respectively,
for two cases: with Taylor dispersion in (4.1) turned off (top), and with Taylor dispersion turned on (bottom).
It can be seen that with the inclusion of Taylor dispersion, the shock relaxes significantly more in the axial
direction. The aspect ratio B′/a′ for the simulations was 20.

evolution of the particle volume fraction distribution is dependent only on an appropriately
defined strain experienced by the suspension. Second, the macrotransport equation set
(4.1)–(4.5) represents a coupled PDE system in φ̄ and P′, which can be conveniently
fed to commercially available solvers such as COMSOL® to determine these variables
as functions of t′ and (x′

1, x′
2). To demonstrate this facility, we have shown the results

of COMSOL® simulations of a 50 % suspension displacing a 30 % suspension in an
expansion geometry and a radial Hele-Shaw geometry in figures 6 and 7, respectively. In
the two figures we have also compared the results against the case where D′

eff is manually
set to zero. It may be seen that the inclusion of Taylor dispersion leads to a stronger
relaxation of the shock in the flow direction. Third, we note that while the averaging
procedure leads to the collapse of one physical dimension, local values of φ and u′

i may be
obtained as a function of x′

3 up to first order in χε by substituting φ̄, ∇′
2i

P′ and ∇′
2j
φ̄∇′

2j
P′

in (3.16), (3.17), (3.33) and (3.35).
We now investigate the profile evolution with time/strain for two canonical volume

fraction distributions in Hele-Shaw geometries: (a) a shock with a negative volume
fraction step in the flow direction (see figure 8a), which represents a high volume fraction
suspension pushing a low volume fraction suspension (φ̄− > φ̄+), and (b) a shock with a
step up in the volume fraction (see figure 8b), which corresponds to a low volume fraction
suspension pushing a high volume fraction suspension (φ̄− < φ̄+). As discussed in
Ramachandran (2013), for the first case, both the convective and the dispersive components
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Figure 7. Simulation of the displacement of a 30 % suspension by a 50 % suspension in a radial Hele-Shaw
geometry with inner and outer radii of 1 and 10 units, respectively. The macrotransport equations, (4.1) to
(4.5), were solved in the simulations on COMSOL®. A radial pressure difference of �P′ is applied to drive the
suspension flow outwards from the centre. The length, time and velocity scales used to render the equations
dimensionless are B′3/a′2, B′4μ′

0/a′4�P′ and a′2�P′/(B′μ′
0). The initial volume fraction distribution, φ|t=0 =

0.4 + 0.1 tanh [10(r − 2)], shows a shock at a radial position, r, of 2 units (see subfigure a). Subfigures
(b,d) show the evolution of volume fraction distribution for t = 400 and t = 1600, respectively, when Taylor
dispersion is turned off, while subfigures (c,e) show the results for the case when Taylor dispersion is included
for the time stamps t = 400 and t = 1600, respectively. As in figure 6, the relaxation of the shock in the
radial direction is stronger when Taylor dispersion is included in the simulations. The aspect ratio B′/a′ for the
simulations was 20.

of the macrotransport equation act to relax volume fraction gradients and blunt the
shock continuously. Let us now consider the more interesting case of a shock with a
positive volume fraction gradient along the flow direction. Again, as discussed in the
previous work (Ramachandran 2013) for flow through a tube, it may be shown that in
the frame of reference of the shock velocity, Us,given by

U′
s =

(
g(φ+) − g(φ−)

φ+ − φ−

)
U′, (4.6)
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Flow

Flow

φ̄–

φ̄–

φ̄+

φ̄+

(a)

(b)

Figure 8. Two canonical volume fraction profiles: (a) a step decrease and (b) a step increase in the
depth-averaged volume fraction in the flow direction. Here φ̄− and φ̄+ are the volume fractions upstream
and downstream of the shock.

the shock does not decay continuously with increasing strain; instead, the particle
distribution reaches a steady state asymptote. The establishment of this solution is the
consequence of a balance between the excess of the flow-averaged volume fraction over the
area-averaged volume fraction, which causes sharpening of the positive volume fraction
gradient, and Taylor dispersion, which acts to relax the gradient. While this mathematical
solution exists for the Hele-Shaw geometry, it is physically infeasible. A positive volume
fraction shock in the flow direction represents an unfavourable mobility contrast, which is
known to render Hele-Shaw flow susceptible to the viscous miscible fingering instability.

Viscous miscible fingering is a classical problem in fluid mechanics (Hill 1952;
Wooding 1962; Homsy 1987) that was comprehensively analysed for the planar Hele-Shaw
geometry in the theoretical works reported by Wooding (1962), Tan & Homsy (1986) and
Ben, Demekhin & Chang (2002). In this paper we closely follow the analysis of Tan &
Homsy (1986), who considered a step change in the concentration distribution of a solute
that impresses an exponential dependence of the solution viscosity on its concentration,
for both isotropic and anisotropic instances of the dispersion coefficient. The key result
that arises out of their work is the relationship of the rate of growth, σ ′, of a sinusoidal
perturbation to its wavenumber, k′. For long waves, σ ′ ∝ k′ and is controlled by the
viscosity contrast and the velocity of the flow. For very short waves, σ ′ is negative and
is proportional to −k′2, as solute diffusion perpendicular to the flow erases concentration
perturbations. Thus, there exists a wavenumber k′

m corresponding to which the growth
rate of perturbations reaches a maximum, σ ′

m. k′
m and σ ′

m depend on the flow velocity
U′, dispersivity along the flow direction (D′

‖) and the diffusivity perpendicular to the flow
direction (D′

⊥). In the limit where the diffusivity normal to the flow becomes weak relative
to the dispersion coefficient in the flow direction, i.e. when D′

⊥/D′
‖ 	 1, the growth rate

is seen to be controlled to leading order by longitudinal or Taylor dispersion. In this limit,
σ ′

m, k′
m and the cut-off wavenumber k′

c (the wavenumber beyond which the growth rates
are negative), as predicted by Tan & Homsy (1986) are reported in table 1.

This paper extends this treatment for suspension flow in a Hele-Shaw geometry in § 5.
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Physical parameter Tan & Homsy scaling laws (1986) Predicted scaling laws for suspension flow

σ ′
m σ ′

m ∝ U′2/D′
‖ σ ′

m ∝ U′a′2/B′3

k′
m k′

m ∝ U′/(D′2
‖ D′

⊥)1/3 k′
m ∝ a′2/3/B′5/3

k′
c k′

c ∝ U′/(D′
‖D′

⊥)1/2 k′
c ∝ B′−1

Table 1. The scaling relationships for the maximum growth rate (σ ′
m) and the wavenumbers corresponding

to the maximum growth rate (k′
m) and cut-off (k′

c) for the miscible viscous fingering problem, in the limit,
D′

⊥/D′
‖ 	 1.

Base velocity in the

x1 direction

Volume

fraction

x1

Volume
fraction

(Shallow

direction)

x3

Sinusoidal 

perturbations 

about the base 

state in the x2

direction 

Miscible interfacex2

φ̄–

φ̄+

Figure 9. Definition sketch for the linear stability analysis of the viscous miscible fingering problem for the
Hele-Shaw flow of suspensions. The initial configuration comprises a suspension at a low volume fraction φ̄−
(x1 < 0) interfacing a suspension at a high volume fraction φ̄+, x1 > 0, in the form of a flat plane at x1 = 0.
The combination is displaced from left to right. Sinusoidal perturbations of the volume fraction, pressure and
velocity fields are imposed at about the base configuration in the x2 direction.

5. Viscous miscible fingering instability in Hele-Shaw suspension flows

As follows from § 4, we anticipate the case of a low viscosity suspension displacing
a high viscosity suspension in a Hele-Shaw geometry to lead to a viscous miscible
fingering instability. Here, we analyse the stability of a base state comprising a
step increase in the volume fraction across x1 = 0 along the flow direction (see
schematic in figure 9). Although more sophisticated spectral approaches are possible
(Ben et al. 2002), we follow Tan & Homsy (1986) by invoking the quasi-steady
state approximation (QSSA) to deduce the relationship between the growth rate
and wavenumber of a perturbation perpendicular to the flow in the x2 direction.
The QSSA assumes that the rate of change of the base state is small compared with
the rate of growth of the perturbations. Thus, the base state is assumed to be ‘frozen’ in
time, and the stability of perturbations about this state is examined. The advantage of this
approach is that it permits a semi-analytical solution to the linear stability problem at t = 0.
Tan & Homsy (1986) provide a comparison of growth rates from QSSA computations
against rates from numerical solutions of the governing equations with a random noise as
the initial condition. They show that except for a short initial period, there are negligible
differences in the results of the growth rates from the two calculations, and that the QSSA
treatment captures the essential features of the instability.
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For the initial volume fraction distribution shown in figure 9, at time t = 0, the base
state solution profiles for the pressure, volume fraction and velocity obtained from (4.1) to
(4.5) and written in the frame of reference of the shock velocity, U′

s (4.6) are

φ̄(b) = φ̄−+ (φ̄+−φ̄−
)H(x′

1), u′(b)
1 = U′ − U′

s, u′(b)
2 = 0,

∂P′(b)

∂x′
1

= − μ′
0U′

B′2M(φ̄(b))
. (5.1a–d)

Here, the superscript (b) denotes the base state, and H is the Heaviside step function. We
then introduce normal mode perturbations to the base state volume fraction and pressure
distributions,

φ̄ = φ̄(b) + φ̂(x̂1) exp
(
(σ t̂ + ikx̂2)

)
, P′ = P′(b) + U′μ0χ

B
P̂(x̂1) exp

(
(σ t̂ + ikx̂2)

)
.

(5.2a,b)

The perturbed equations obtained from (4.1)–(4.5) are rendered dimensionless, using the
following scalings:

σ = σ ′(
U′

χB

) , t̂ = t′(
χB′

U′

) , k = k′χB′, x̂1 = x′
1

χB′ ,

P̂ = P′(
U′μ0χ

B′

) with χ = B′2

a′2 . (5.3a–e)

A linearization of the system of equations in (4.1)–(4.5) about the base state followed by
the application of QSSA results in the following perturbed forms of the continuity and
macro-transport equations:

d2P̂

dx̂1
2 − k2P̂ =

dM
dφ̄

(φ̄(b))

M2(φ̄(b))

dφ̂

dx̂1
, (5.4a)

[
h(φ̄(b)) + (1 − b)

χ2 qA(φ̄(b))

]
d2φ̂

dx̂2
1

= −(b + d)

χ2 qB(φ̄(b))k2û1

+

⎧⎪⎪⎨
⎪⎪⎩

k2

χ2

⎡
⎢⎢⎣(1 + d) qA(φ̄(b)) +

(
1 + d + (b + d)

χ

)
qB(φ̄(b))

dM
dφ̄

(φ̄(b))

M(φ̄(b))

⎤
⎥⎥⎦+ σ

⎫⎪⎪⎬
⎪⎪⎭ φ̂

+
[

dg
dφ̄

(φ̄(b)) − U′
s

U′

]
dφ̂

dx̂1
. (5.4b)

The perturbed velocity û1 appearing in the above equation is given by

û1 = −M(φ̄(b))
dP̂
dx̂1

+ φ̂

dM
dφ̄

(φ̄(b))

M(φ̄(b))
. (5.5)
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Figure 10. The dispersion relationship arising from a linear stability analysis of the macrotransport equation
for a step increase in volume fraction in the flow direction from φ̄− = 0.4 to φ̄+ = 0.5 (see figure 8b). The
solid, dotted and dash–dotted curves are results for B/a = 10, 40 and 100, respectively. The inset shows the
same dispersion curves in the limit of small wavenumbers.

The dimensionless ordinary differential equations (ODEs) in (5.4a), (5.4b) and (5.5)
represent a system of four first-order ODEs in the variables P̂, û1, φ̂ and dφ̂/dx̂1, and are
applicable in each of the two domains, x̂1 < 0 and x̂1 > 0. The ODE system was solved
using the eigenvector expansion technique on MATLAB®. The boundary conditions
employed were that the perturbed variables vanish as x̂1 → −∞ and x̂1 → +∞, and that
P̂, û1, φ̂ and the total particle flux in the x̂1 direction (Ĵ1), derived separately for x̂1 < 0
and x̂1 > 0, match at x̂1 = 0. The expression for Ĵ1 is

Ĵ1 = (1 + d)

χ2 qB(φ̄(b))M(φ̄(b))k2P̂ + g(φ̄(b))û1 +
[

dg
dφ̄

(φ̄(b)) − U′
s

U′

]
φ̂

−
[

h(φ̄(b)) + (1 − b)

χ2 qA(φ̄(b))

]
dφ̂

dx̂1
. (5.6)

Figure 10 shows the relationship between σ and k for B′/a′ = 20, 40 and 100 for the
case of φ̂− = 0.4 and φ̂+ = 0.5. The behaviour is analogous to the observations of Tan &
Homsy (1986). For each aspect ratio B/a, σ is positive in the long wave limit and increases
as k (see inset of figure 10). For short waves, however, the perturbations are stabilized
by shear-induced migration normal to the flow direction. The dimensionless growth rate
corresponding to the fastest growing mode, σm, is relatively unaffected by the aspect ratio
(see figure 11a). However, the dimensionless wavenumbers km and kc corresponding to σm
and the cut-off (see figure 11b,c), respectively, increase as the aspect ratio increases, i.e. a
larger range of high frequency waves falls in the unstable region with an increase in B′/a′.
This is due to a decrease in the shear-induced migration rate and an increase in the Taylor
dispersivity with the increase in the aspect ratio. Figure 11 shows three key variables: σm,
kc and km, over a range of B′/a′ values. We observe that when equivalent parameters are
considered for the Hele-Shaw suspension flow problem and the solute problem (Tan &
Homsy 1986), i.e. when the following substitutions are made,

D′
‖ ∼ U′B′3

a′2 , D′
⊥∼U′a′2

B′ and
D′

⊥
D′

‖
∼ a′4

B′4 , (5.7a–c)
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Figure 11. The maximum growth rate σ ′
m (subfigure a), the wavenumber, k′

m, corresponding to the maximum
growth rate (subfigure b) and the cut-off wavenumber (subfigure c) as functions of the aspect ratio B′/a′ for
φ̄− = 0.4 and φ̄+ = 0.5.

the results in figure 11 are in agreement with the theory of Tan & Homsy (1986) in the limit
D′

⊥/D′
‖ 	 1 (see table 1), which is valid for the suspension problem as a′ 	 B′ in most

suspension experiments. It follows that k′
m ∝ a′2/3/B′5/3, k′

c ∝ B′−1 and σm ∝ U′a′2/B′3.
Figure 12 examines the effect of volume fraction on the stability characteristics. It can

be seen that for the same step change in volume fraction of 10 %, the growth rates and
the range of wavenumbers for which σ ′ is positive is greatly diminished for φ̄− = 0.3 and
φ̄+ = 0.4 as compared with φ̄− = 0.4 and φ̄+ = 0.5. This is primarily due to the highly
nonlinear influence of φ̄ on the Taylor dispersivity (see figure 4c), and to a lesser extent, on
the suspension mobility (see figure 4a) and shear-induced migration rates (see figure 4e, f ).
It is also instructive to examine the role of the excess of the flow-averaged concentration
over the depth-averaged concentration, i.e. g(φ̄) > φ̄ on the stability curves, since this is
a feature that is different from the work of Wooding (1962) and Tan & Homsy (1986) In
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Figure 12. The effect of volume fraction on the stability curve, σ ′ vs k′. For the solid curve, φ̄− = 0.4 and
φ̄+ = 0.5, while for the dash–dotted curve, φ̄− = 0.3 and φ̄+ = 0.4. For both curves, B′/a′ = 40. Larger
volume fractions lead to higher growth rates and a larger range of wavenumbers for which perturbations are
unstable.

figure 13(a) we have shown σ ′ vs k′ for B′/a′ = 40, φ̄− = 0.4 and φ̄+ = 0.5 with g(φ̄) set
manually to φ̄ (dash–dotted curve). As can be seen, in the absence of a difference between
g(φ̄) and φ̄, the growth rates are enhanced at all the shown wavenumbers, with the largest
increase occurring near k′

m. On the other hand, for B′/a′ = 40, φ̄− = 0.3 and φ̄+ = 0.4,
the opposite effect is observed (see figure 13b); the excess of g(φ̄) over φ̄ diminishes the
growth rates of perturbations. This can be explained as follows. At the higher volume
fractions, the shock velocity U′

s is 0.95U′, i.e. less than U′. This situation is similar to
the meniscus accumulation phenomenon (Karnis & Mason 1967; Chapman 1990; Tang
et al. 2000; Ramachandran & Leighton 2007a; Ramachandran 2013; Luo, Chen & Lee
2018), whereby particles accumulate at an advancing interface due to the difference in
the particle average velocities behind the meniscus and at the meniscus. The greater the
displacement, the thicker the accumulated layer at the shock front. As shown in figure 14,
when a perturbed miscible interface is displaced in the flow direction, turning on the
physical effect of U′

s < U′ would lead to an accumulation of particles at the displaced
interface compared with the case when U′

s is equal to U′. The accumulation manifests as a
reduced growth rate of the perturbation. The situation would be exactly the opposite for the
case when U′

s > U′, which occurs for φ̄− = 0.3 and φ̄+ = 0.4. Consequently, there would
be a depletion of particles at the perturbed interface compared with the case of U′

s = U′,
leading to higher growth rates when g(φ̄) > φ̄.

We conclude this section with two comments. First, the results above are obtained by
invoking the QSSA for a step change in the volume fraction at t = 0. At longer times, the
base state volume fraction distribution will eventually relax to produce gradients over a
length scale of B′3/a′2. As a consequence, the maximum growth rate and wavenumber
will diminish, as observed by Tan & Homsy (1986). An investigation of the stability
characteristics of the base state solution for t > 0 will be pursued in the future. Second,
the critical viscosity predicted from our theory is unity, i.e. the suspension being displaced
needs only to be more viscous than the upstream suspension to initiate the instability.
However, it has been reported in several recent studies that a critical viscosity contrast
less than unity has to be crossed to observe the viscous miscible fingering instability,
and this has been attributed to the three-dimensional distribution of the two fluids at
the mixing front (Lajeunesse et al. 1999; Bischofberger, Ramachandran & Nagel 2014;
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Figure 13. The effect of the excess of the flow-averaged concentration g over the area-averaged concentration
φ̄ on the relationship between σ ′ and k′; (a) φ̄− = 0.4 and φ̄+ = 0.5, (b) φ̄− = 0.3 and φ̄+ = 0.4. For both
subfigures, B′/a′ = 40. In each subfigure, the dash–dotted line is the result of a simulation where g was
manually set to be equal to φ̄.

Videbaek & Nagel 2019; Luo, Chen & Lee 2020). Our stability analysis is implemented
on a macrotransport equation obtained from an asymptotic expansion, and the inclusion
of the Taylor dispersion term does account for the penetration of two fluids in the
mixing zone (see the discussion around figure 3). But the observation of a critical
viscosity contrast to trigger the instability would imply that we would need to extend the
expansion to higher orders to capture the physics. This extension is also left to future
work.

6. Conclusions and future work

A depth-averaged macrotransport equation as applicable to concentrated flowing
suspensions was derived for the planar Hele-Shaw geometry. The novel contribution of
this work is a formal derivation of the expression for Taylor dispersion for Hele-Shaw
suspension flows. The Taylor dispersivity scales as U′

cB′3/a′2, and is a scaling factor of
B′4/a′4 larger than the shear-induced migration terms in the macrotransport equation.
However, Taylor dispersion produces a particle flux only along the flow direction and,
hence, shear-induced migration due to gradients in particle volume fraction, shear rates
and streamline curvature is still the dominant mechanism of flux normal to the streamlines.
The Taylor dispersion term is expected to enhance the relaxation of negative particle
volume fraction gradients along the streamlines. Positive volume fraction gradients along
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U ′
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particle
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(b)

Figure 14. A picture explaining why the case of U′
s < U′ would lead to lower growth rates compared with the

case of U′
s = U′. A low volume fraction suspension displaces a high volume fraction suspension from left to

right.

the flow are, however, unstable to viscous miscible fingering. A linear stability analysis
with a QSSA was implemented for a step increase in the depth-averaged volume fraction
of the suspension in the flow direction. The dispersion relationship for this system
qualitatively follows the trends observed by Tan & Homsy (1986). In the limit of large
aspect ratios (B′/a′  1), the maximum growth rate is controlled by Taylor dispersion,
while the ‘most dangerous’ and cut-off wavenumbers are controlled by a combination of
Taylor dispersion and shear-induced migration effects (see table 1 for a summary). Future
work will focus on the extension of the stability calculations to times where the initial
volume fraction profile relaxes and approaches a steady state, and the modelling of the
instability in the radial Hele-Shaw flow of suspensions (Luo et al. 2018) in order to capture
the critical viscosity ratio for the instability observed in previous work (Videbaek & Nagel
2019; Luo et al. 2020)

Direct engineering applications of the macrotransport equation may be considered
in rheological techniques (e.g. loading of a Couette rheometer Leighton & Acrivos
1987), radial source flow (Shamu et al. 2020) or in devices involving the flow of a
suspension through a confined geometry such as powder injection molding (Lam et al.
2003). Three-dimensional simulations of the particle distribution based on the suspension
balance model can be computationally challenging for such geometries as singularities
are observed in the regions of weak shear stresses as experienced in previous work
(Fang et al. 2002; Miller & Morris 2006; Dontsov & Peirce 2014; Dontsov et al. 2019).
The macrotransport equation derived in this paper reduces the dimensionality of the
problem and circumvents the problem of encountering singularities at the centreplane
of a Hele-Shaw flow, allowing a relatively quick simulation of the particle, velocity and
pressure distributions. Thus, if the lateral length scales in the geometry of interest are much
larger than the induction length, we may employ a solution to the macrotransport equation
via the use of commercially available solvers to obtain velocity and volume fraction
profiles. Hele-Shaw flow of suspensions also occurs during proppant transport (Hormozi &
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Hele-Shaw suspension flows

Frigaard 2017; Dontsov & Peirce 2014; Dontsov et al. 2019). Since our model is developed
for moderate volume fractions (20–50 %), it is likely unsuitable for simulating the high
packing fractions that can occur in proppant flows through fractures. However, past
models have included the effects of only convection and shear-induced migration in the
macrotransport equation, ignoring Taylor dispersion. We have already demonstrated the
importance of Taylor dispersion in the viscous miscible fingering problem for suspension
flows and in relaxing shocks along the flow direction. This will motivate improvement of
the models in all the above applications to include a Taylor dispersivity, particularly when
sharp volume fraction gradients are encountered in the flow direction. In ongoing work,
we are investigating the impact of the Taylor dispersion term on the velocity and volume
fraction distributions in Hele-Shaw geometries containing turns, bifurcations, expansions,
contractions and stagnation points. We are also working on the experimental verification
of the predictions of the macrotransport equation for these geometries in microfabricated
channels.
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Appendix A. Glossary of variables used in this paper

Symbol/Variable Description

a′ Particle radius (m)
b Reduced first normal stress difference coefficient
B′ Channel half-depth (m)
c′ Cross-section-averaged solute concentration (mol m−3)

d Reduced second normal stress difference coefficient
D′

eff Taylor dispersivity (m2 s−1)

D′ Solute molecular diffusivity (m2 s−1)

D′
‖ Dispersivity along flow (m2 s−1)

D′
⊥ Diffusivity perpendicular to flow (m2 s−1)

g(φ) Flow-averaged or cup-mixing particle volume fraction

Table 2. For caption see next page.
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Symbol/Variable Description

f Hindered mobility function
h(φ) Reduced Taylor dispersivity for Hele-Shaw suspension flow
H Geometry tensor
Ĵ1 Dimensionless particle flux in the flow direction
k′ Wavenumber (m−1)

k′
m Wavenumber corresponding to maximum growth rate (m−1)

k′
c Cut-off wavenumber (m−1)

L′ Characteristic length scale in the flow direction
m Local flow direction
M(φ) Hele-Shaw Suspension mobility
p Local vorticity direction
P′ Pressure field (Pa)
Pe Péclet number
qA(φ) Volume fraction dependence of the first shear-induced migration flux
qB(φ) Volume fraction dependence of the second shear-induced migration flux
R′ Tube radius (m)
t′ Time co-ordinate (s)
tf Dimensionless fast time scale
ts Dimensionless slow time scale
u′ Velocity field (m s−1)
U′ Average velocity of flow through a tube (m s−1)
U′

c Velocity scale used to render x′
1 and x′

2 velocities dimensionless (m s−1)
U′

s Frame of reference for a volume fraction distribution with a shock (m s−1)
u′ Depth-averaged velocity field (m s−1)
x′ Axial co-ordinate in tube flow (m)
x′

1, x′
2 Lateral co-ordinate in Hele-Shaw geometry (m)

x′
3 Co-ordinate in the shallow direction of a Hele-Shaw geometry (m)

α Volume fraction dependence of particle pressure
χ Square of the aspect ratio, B′/a′
ε Small parameter, equal to B′/L′

φ(1) Volume fraction perturbation
φ Area-averaged particle volume fraction
φ+ High volume fraction in the shock
φ− Low volume fraction in the shock
φ Particle volume fraction
φ Depth averaged volume fraction
φm Random particle packing fraction
γ̇ Dimensionless shear rate used to define particle pressure
μ′

0 Suspending fluid viscosity (Pa s)
μr Suspension relative viscosity
∇ Dimensionless gradient operator
∇2 Dimensionless gradient operator only in the 1 and 2 directions
σ Growth rate of instability
σm Maximum rate of growth of instability
τ Dimensionless stress used to define particle pressure

Table 2 (cntd). Symbols/variables used and their description.
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Hele-Shaw suspension flows

Appendix B. Functions produced in the multiple time scale expansion procedure

φ(0) = α−1
[
αw

x3

]
, (B1)

F(φ̄, x3) =
∫ 1

x3

ξ dξ

μr
[
φ(0)(φ̄, ξ)

] , (B2)

M(φ̄) =
∫ 1

0

ξ2 dξ

μr
[
φ(0)(φ̄, ξ)

] , (B3)

G(φ̄) =
∫ 1

0
F(φ̄, ξ)φ(0)(φ̄, ξ) dξ, (B4)

Q1(φ̄, x3) =
∫ x3

0
F(φ̄, ξ) dξ, (B5)

Q̂1(φ̄, x3) = M′(φ̄)

M2(φ̄)
Q1(φ̄, x3) − 1

M(φ̄)

∂Q1

∂φ̄
(φ̄, x3), (B6)

Q2(φ̄, x3) =
∫ 1

x3

∂φ(0)(φ̄, ξ)

∂φ̄
dξ, (B7)

Q3(φ̄, x3) =
∫ 1

x3

F(φ̄, ξ)φ(0)(φ̄, ξ) dξ, (B8)

Q4(φ̄, x3) =
∫ x3

0

9
2f (φ(0))

[
Q1(φ̄, ξ)φ(0)(φ̄, ξ) − Q2(φ̄, ξ)G(φ̄) + Q3(φ̄, ξ)

]
dξ, (B9)

Q5(φ̄, x3) =
∫ x3

0

9
2f (φ(0))

[
∂Q1

∂φ̄
(φ̄, ξ)φ(0)(φ̄, ξ) − Q2(φ̄, ξ)G′(φ̄) + ∂Q3

∂φ̄
(φ̄, ξ)

]
dξ,

(B10)

Q6(φ̄, x3) = Q5 − M′(φ̄)

M(φ̄)
Q4, (B11)

Q7(φ̄, x3) = α(φ(0))

α′(φ(0))αw

⎡
⎢⎢⎢⎢⎢⎣

[
α(φ(0))

α′(φ(0))
Q6

]
[

α(φ(0))

α′(φ(0))

] − Q6

⎤
⎥⎥⎥⎥⎥⎦ , (B12)

Q8(φ̄, x3) =
∫ 1

x3

ξ
μ′

r(φ
(0))

μ2
r (φ

(0))
Q7(φ̄, ξ) dξ, (B13)

Q9(φ̄) =
∫ 1

0
Q8(φ̄, ξ) dξ, (B14)

Q10(φ̄, x3) = Q9(φ̄)

M(φ̄)
F(φ̄, x3) − Q8(φ̄, x3), (B15)

Q11(φ̄) = − 1
M(φ̄)

∫ 1

0
F(φ̄, ξ)Q7(φ̄, ξ) dξ, (B16)
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Q12(φ̄) = 1
M(φ̄)

∫ 1

0
Q10(φ̄, ξ)φ(0)(φ̄, ξ) dξ, (B17)

g(φ̄) = G(φ̄)

M(φ̄)
, (B18)

h(φ̄) = Q11(φ̄) − Q12(φ̄). (B19)

Appendix C. Determination of the volume fraction perturbation φ(1)

We begin with (3.21) in the main text of the paper,

∂φ(0)

∂φ̄
∇2j[G(φ̄)∇2jP

(0)] − ∇2j(F(φ̄, x3)∇2jP
(0)φ(0))

+ ∂

∂x3
(u(0)

3 φ(0)) = 2
9

∂

∂x3

[
f (φ(0))

∂

∂x3
(ατ)(1)

]
. (C1)

Integrating (C1) from x3 to 1, and applying the no-flux boundary condition at the wall
(2.12), we get

− Q2(φ̄, x3)∇2j[G(φ̄)∇2jP
(0)] + ∇2j(Q3(φ̄, ξ)∇2jP

(0))

+ ∇2j[Q1(φ̄, x3)∇2jP
(0)]φ(0)(φ̄, ξ) = 2

9
f (φ(0))

∂

∂x3
(ατ)(1), (C2)

where

Q2(φ̄, x3) =
∫ 1

x3

∂φ(0)(φ̄, ξ)

∂φ̄
dξ,

Q3(φ̄, x3) =
∫ 1

x3

F(φ̄, ξ)φ(0)(φ̄, ξ) dξ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (C3)

Expanding the divergence operations yields

(Q1φ
(0) − Q2G + Q3)∇2

2P(0) +
[
∂Q1

∂φ̄
φ(0) − Q2G′(φ̄) + ∂Q3

∂φ̄

]
∇2φ̄ · ∇2P(0)

= 2
9

f (φ(0))
∂

∂x3
(ατ)(1) . (C4)

Dividing by 2f /9 and integrating from 0 to x3,

(ατ)(1) = Q4∇2
2P(0) + Q5∇2φ̄ · ∇2P(0) + C1, (C5)

where C1 is the constant of integration and depends on x1 and x2 only, and the functions
Q5 and Q6 are defined as

Q4(φ̄, x3) =
∫ x3

0

9
2f (φ(0))

[Q1(φ̄, ξ)φ(0)(φ̄, ξ) − Q2(φ̄, ξ)G(φ̄) + Q3(φ̄, ξ)]dξ,

Q5(φ̄, x3) =
∫ x3

0

9
2f (φ(0))

[
∂Q1

∂φ̄
(φ̄, ξ)φ(0)(φ̄, ξ) − Q2(φ̄, ξ)G′(φ̄) + ∂Q3

∂φ̄
(φ̄, ξ)

]
dξ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C6)
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Using the continuity equation at the zeroth order, we can write

M(φ̄)∇2
2P(0) + M′(φ̄)∇2φ̄ · ∇2P(0) = 0, (C7)

and simplify (C5) to

(ατ)(1) = Q6∇2φ̄ · ∇2P(0) + C1, (C8)

where

Q6 = Q5 − M′(φ̄)

M(φ̄)
Q4. (C9)

Now, the particle pressure (ατ)(1) can be expanded as

(ατ)(1) = α(0)τ (1) + α(1)τ (0). (C10)

To obtain τ (1), we perform a perturbation expansion of τ to get

τ (1) = ∇2iP
(0)∣∣∇2P(0)
∣∣
(

μr
∂ui

∂x3

)(1)

. (C11)

The momentum equation at O(ε) is

∂

∂x3

[(
μr

∂ui

∂x3

)(1)
]

= ∇2jP
(1). (C12)

Integrating (C12) and applying the symmetry condition at the centre, we get(
μr

∂ui

∂x3

)(1)

= ∇2iP
(1)x3. (C13)

Therefore, τ (1) becomes

τ (1) = ∇2P(0) · ∇2P(1)∣∣∇2P(0)
∣∣ x3. (C14)

We can write α(1) as

α(1) = α′(φ(0))φ(1). (C15)

Therefore,

(ατ)(1) = αw
∇2P(0) · ∇2P(1)

|∇2P(0)| + α′(φ(0))

α(φ(0))
φ(1)|∇2P(0)|αw = Q6∇2φ̄ · ∇2P(0) + C1.

(C16)
Thus,

φ(1) = α(φ(0))

α′(φ(0))
∣∣∇2P(0)

∣∣αw
[−C(φ̄) + Q6∇2φ̄ · ∇2P(0)]. (C17)

Since φ(1) is a concentration perturbation, we must have that

φ(1) = 0, (C18)
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and, hence,

C =

[
α(φ(0))

α′(φ(0))
Q6

]
[

α(φ(0))

α′(φ(0))

] ∇2φ̄ · ∇2P(0). (C19)

Thus, the concentration perturbation takes the form

φ(1) = −Q7(φ̄, x3)
∇2φ̄ · ∇2P(0)

|∇2P(0)| , (C20)

where

Q7 = α(φ(0))

α′(φ(0))αw

⎡
⎢⎢⎢⎢⎢⎣

[
α(φ(0))

α′(φ(0))
Q6

]
[

α(φ(0))

α′(φ(0))

] − Q6

⎤
⎥⎥⎥⎥⎥⎦ . (C21)

This is (3.33) in the main text of the paper.

Appendix D. Determination of the velocity perturbation u(1)
i

We first integrate (3.34) in the main text once with respect to x3, and apply the symmetry
condition at the centreline. This yields(

μr
∂ui

∂x3

)(1)

= ∇2iP
(1)x3. (D1)

Expanding the left-hand side and rearranging we get

μr(φ
(0))

∂u(1)
i

∂x3
= ∇2iP

(1)x3 − μ′
r(φ

(0))φ(1) ∂u(0)
i

∂x3
. (D2)

Using (3.13) that defines the stress at the zeroth order, and (3.33) that defines φ(1), we get

∂u(1)
i

∂x3
= x3

μr(φ(0))
∇2iP

(1) + μ′
r(φ

(0))Q7x3

μ2
r (φ

(0))

∇2φ̄ · ∇2P(0)

|∇2P(0)| ∇2iP
(0). (D3)

Integrating (D3) with respect to x3, we obtain

u(1)
i = −F(φ̄, x3)∇2jP

(1) − Q8(φ̄, x3)
∇2φ̄ · ∇2P(0)

|∇2P(0)| ∇2iP
(0), (D4)

where

Q8(φ̄, x3) =
∫ 1

x3

ξ
μ′

r(φ
(0))

μ2
r (φ

(0))
Q7(φ̄, ξ) dξ. (D5)
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Hele-Shaw suspension flows

Since the depth average of u(1)
i is zero (see (3.8a,b)),

∇2iP
(1) = −Q9(φ̄)

M(φ̄)

∇2φ̄ · ∇2P(0)

|∇2P(0)| ∇2iP
(0), (D6)

where

Q9(φ̄) =
∫ 1

0
Q8(φ̄, ξ) dξ. (D7)

Hence, u(1)
i becomes

u(1)
i = Q10(φ̄, x3)

∇2φ̄ · ∇2P(0)

|∇2P(0)| ∇2iP
(0), (D8)

with

Q10(φ̄, x3) = Q9(φ̄)

M(φ̄)
F(φ̄, x3) − Q8(φ̄, x3). (D9)

This is (3.35) in the main text of the paper.
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