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The purpose of this paper is to describe the performance of generalized empirical
likelihood ~GEL! methods for time series instrumental variable models specified
by nonlinear moment restrictions as in Stock and Wright ~2000, Econometrica
68, 1055–1096! when identification may be weak+ The paper makes two main
contributions+ First, we show that all GEL estimators are first-order equivalent
under weak identification+ The GEL estimator under weak identification is incon-
sistent and has a nonstandard asymptotic distribution+ Second, the paper proposes
new GEL test statistics, which have chi-square asymptotic null distributions inde-
pendent of the strength or weakness of identification+ Consequently, unlike those
for Wald and likelihood ratio statistics, the size of tests formed from these statis-
tics is not distorted by the strength or weakness of identification+ Modified ver-
sions of the statistics are presented for tests of hypotheses on parameter subvectors
when the parameters not under test are strongly identified+ Monte Carlo results
for the linear instrumental variable regression model suggest that tests based on
these statistics have very good size properties even in the presence of conditional
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heteroskedasticity+ The tests have competitive power properties, especially for thick-
tailed or asymmetric error distributions+

1. INTRODUCTION

It is often the case that the instrumental variables available to empirical research-
ers are only weakly correlated with the endogenous variables+ That is, identifi-
cation is weak+ Phillips ~1989!, Nelson and Startz ~1990!, and a large literature
following these early contributions show that in such situations classical nor-
mal and chi-square asymptotic approximations to the finite-sample distribu-
tions of instrumental variable ~IV! estimators and statistics can be very poor+
For example, even though likelihood ratio and Wald test statistics are asymp-
totically chi-square, use of chi-square critical values can lead to extreme size
distortions in finite samples ~see Dufour, 1997!+ The purpose of this paper is to
ascertain the performance of generalized empirical likelihood ~GEL! methods
~Newey and Smith, 2004; Smith, 1997, 2001! for time series IV models spec-
ified by nonlinear moment restrictions when identification may be weak ~as in
Stock and Wright, 2000!+ In particular, the paper makes two principal contribu-
tions+ First, the asymptotic distribution of the GEL estimator is derived for a
weakly identified setup+ Second, the paper proposes new, theoretically and com-
putationally attractive GEL test statistics+ The asymptotic null distribution of
these statistics is chi-square under partial ~Phillips, 1989!, weak ~Stock and
Wright, 2000!, and strong identification+ Thus, the size of tests formed from
these statistics is invariant to the strength or weakness of identification+ Impor-
tantly, we also provide asymptotic power results for the various statistics sug-
gested in this paper+

GEL estimators and test statistics are alternatives to those based on general-
ized method of moments ~GMM!; see Hansen ~1982!, Newey ~1985!, and Newey
and West ~1987!+ GEL has received considerable attention recently because of
its competitive bias properties+ For example, Newey and Smith ~2004! show
that for many models the asymptotic bias of empirical likelihood ~EL! does not
grow with the number of moment restrictions, whereas that of GMM estima-
tors grows without bound, a finding that may imply favorable properties for
GEL-based test statistics+

Similar to the findings in Phillips ~1984, 1989! and Stock and Wright ~2000!
for limited information maximum likelihood ~LIML!, two stage least squares
~2SLS!, and GMM, GEL estimators of weakly identified parameters have non-
standard asymptotic distributions and are in general inconsistent+ Therefore, infer-
ence based on the classical normal approximation is inappropriate under weak
identification+As in Newey and Smith ~2004! for strong identification, the first-
order asymptotics of the GEL estimator under weak identification do not depend
on the choice of the GEL criterion function+ This finding is rather surprising
and contrasts with 2SLS and LIML estimators, whose first-order asymptotic
theory differs under weak identification+
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The statistics proposed here are asymptotically pivotal in contrast to classi-
cal Wald and likelihood ratio statistics no matter what the strength of identifi-
cation+ The first statistic, GELRr, is based on the GEL criterion function and
may be thought of as a nonparametric likelihood ratio statistic+ Two further
statistics generalize the GMM-based K-statistic of Kleibergen ~2001! to the GEL
context+ Like the K-statistic, which is a quadratic form in the first-order deriv-
ative vector of the continuous updating GMM objective function, the second
GEL statistic, Sr, is a score-type statistic, being a quadratic form in the GEL
criterion score vector+ The third statistic, LMr, is similar in structure to a GMM
Lagrange multiplier statistic ~Newey and West, 1987! and is asymptotically
equivalent to the score-type statistic, being a quadratic form in the sample
moment vector+ Confidence regions constructed from the K- and GEL score-
type statistics are never empty and contain the continuous updating estimator
~CUE! and GEL estimator, respectively+ All forms of GEL statistics admit lim-
iting chi-square null distributions with degrees of freedom equal to the number
of instrumental variables or moment conditions for the first statistic and the
dimension of the parameter vector for the second and third statistics+ In over-
identified situations, therefore, tests based on the latter statistics should be
expected to have better power properties than those based on the former+ In
many cases, an applied researcher is interested in inference on a parameter sub-
vector rather than the whole parameter vector+ Modified versions of these
statistics are therefore suggested for the subvector case when the remaining
parameters are strongly identified+

Monte Carlo simulations for the independent and identically distributed ~i+i+d+!
linear IV model with a wide range of error distributions compare our test sta-
tistics to several others, including homoskedastic and heteroskedastic versions
of the K-statistic of Kleibergen ~2001, 2002a! and the similar conditional like-
lihood ratio statistic LRM of Moreira ~2003!+ We find that our tests have very
good size properties even in the presence of conditional heteroskedasticity+ In
contrast, the homoskedastic version of the K-statistic of Kleibergen ~2002a! and
the LRM -statistic of Moreira ~2003! are size-distorted under conditional hetero-
skedasticity+ Our tests have competitive power properties, especially for thick-
tailed or asymmetric error distributions+ Given the nonparametric construction
of the GEL estimator, robustness of GEL-based test statistics to different error
distributions should be expected+

Like the work of Stock and Wright ~2000!, our paper allows for both i+i+d+
and martingale difference sequences ~m+d+s+! but does not apply to more gen-
eral time series models; see Assumption Mu~ ii!, which follows+ Allowing
for m+d+s+ observations covers various cases of intertemporal Euler equations
applications and regression models with m+d+s+ errors+ Therefore, the extension
from the i+i+d+ linear ~Guggenberger, 2003, Ch+ 1! to the particular time series
setting with nonlinear moment restrictions considered here seems worthwhile,
especially because there is essentially no cost ~in terms of complications of the
proofs! to making this extension+ The proofs for consistency and for the asymp-
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totic distribution of the GEL estimator build on Guggenberger ~2003!, which
adapts those given in Newey and Smith ~2004! for the i+i+d+ strongly identified
context+

Subsequent to the i+i+d+ linear version of this paper, two related papers have
appeared+ First, Caner ~2003! derives the asymptotic distribution of the expo-
nential tilting ~ET! estimator ~see Imbens, Spady, and Johnson, 1998; Kita-
mura and Stutzer, 1997! under weak identification with nonlinear moment
restrictions for independent observations+ Caner ~2003! also obtains an ET ver-
sion of the K-statistic for nonlinear moment restrictions+ Second, Otsu ~2003!
considers GEL-based tests under weak identification in a more general time
series setting than considered here and examines the GEL criterion function
statistic GELRr and a modified version of the K-statistic based on the Kita-
mura and Stutzer ~1997! and Smith ~2001! kernel smoothed GEL estimator that
is efficient under strong identification; see also Guggenberger and Smith ~2003!+

The remainder of the paper is organized as follows+ In Section 2, the model
and the assumptions are discussed, the GEL estimator is briefly reviewed, and
the asymptotic distribution of the GEL estimator under weak identification is
derived+ Section 3 introduces the GEL-based test statistics+ We derive their
asymptotic limiting distribution and show that it is unaffected by the degree of
identification+ Section 4 generalizes these results to hypotheses involving sub-
vectors of the unknown parameter vector+ Section 5 describes the simulation
results+ All proofs are relegated to the Appendix+

The following notation is used in the paper+ The symbols rd , rp, and n
denote convergence in distribution, convergence in probability, and weak con-
vergence of empirical processes, respectively+ For the latter, see Andrews ~1994!
for a definition+ For convergence “almost surely” we write “a+s+” and “with
probability approaching 1” is replaced by “w+p+a+1+”

The space C i~M ! contains all functions that are i times continuously differ-
entiable on M+ For a symmetric matrix A, A � 0 means that A is positive defi-
nite and lmin~A! and lmax~A! denote the smallest and largest eigenvalue of A in
absolute value, respectively+ By A' we denote the transpose of a matrix A+ For a
full column rank matrix A � Rk�p and positive definite matrix K � Rk�k , we
denote by PA~K ! the oblique projection matrix A~A'K�1A!�1A'K�1 on the col-
umn space of A in the metric K and define MA~K ! :� Ik � PA~K !, where Ik is
the k-dimensional identity matrix; we abbreviate this notation to PA and MA if
K � Ik+ The symbol � denotes the Kronecker product+ Furthermore, vec~M !
stands for the column vectorization of the k � p matrix M; i+e+, if M �
~m1, + + + ,mp! then vec~M ! � ~m1

' , + + + ,mp
' !' + Finally, 7M7 equals the square root

of the largest eigenvalue of M 'M+

2. ESTIMATION

This section is concerned with the asymptotic distribution of the GEL estima-
tor when some elements of the parameter vector of interest may be only weakly
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identified+ Intuitively, then, the moment conditions that define the model may
not be particularly informative about these parameters+

2.1. Model

We consider models specified by a finite number of moment restrictions+ Let
$zi : i � 1, + + + , n% be Rl-valued data and, for each n � N, gn :G � Q r Rk a
given function, where G � Rl and Q � R p denotes the parameter space+ The
model has a true parameter u0 for which the moment condition

Egn~zi ,u0 ! � 0 (2.1)

is satisfied+ For gn~zi ,u! we will usually write gi~u!+

Example 1 (i.i.d. linear IV regression)

Guggenberger ~2003, Ch+ 1! discusses in detail GEL estimation and testing for
this model under weak identification+ The structural form ~SF! equation is given
by

y � Yu0 � u, (2.2)

and the reduced form ~RF! for Y by

Y � ZP� V, (2.3)

where y,u � Rn , Y,V � Rn�p , Z � Rn�k , and P � Rk�p + The matrix Y may
contain both exogenous and endogenous variables, Y � ~X,W ! say, where
X � Rn�pX and W � Rn�pW denote the respective observation matrices of
exogenous and endogenous variables+ The variables Z � ~X, ZW ! constitute a
set of instruments for the endogenous variables W+ The first pX columns of P
equal the first pX columns of Ik, and the first pX columns of V are 0+ Denote by
Yi , Vi , Zi , + + + ~i � 1, + + + , n! the ith row of the matrix Y, V, Z, + + + written as a
column vector+ Assuming the instruments and the structural error are uncorre-
lated, Eui Zi � 0, it follows that Egi ~u0! � 0, where for each i � 1, + + + , n,
gi~u! :� ~ yi � Yi

'u!Zi + Note that in this example gi~u! depends on n if the RF
coefficient matrix P is modeled to depend on n ~see Staiger and Stock, 1997!,
where Pn � n�102C for a fixed matrix C+

Example 2 (conditional moment restrictions)

As in Stock and Wright ~2000! the moment conditions may result from condi-
tional moment restrictions+ Assume E @h~Yi ,u0!6Fi # � 0, where h :H � Q r
Rk1, H � Rk2 , and Fi is the information set at time i + Let Zi be a k3-dimensional
vector of instruments contained in Fi + If gi~u! :� h~Yi ,u!� Zi , then Egi~u0!� 0
follows by taking iterated expectations+ In ~2+1!, k � k1 k3 and l � k2 � k3+
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2.2. Assumptions

This section is concerned with the asymptotic distribution of the GEL estima-
tor for u when some components of u0 � ~a0

' ,b0
' !' , a0 say, a0 � A, A � R pA ,

are only weakly identified+ Intuitively, this means that the moment condition
~2+1! is not very informative about a0+ For parameter vectors u � ~a ',b0

' !',
Egn~zi ,u! may be very close to zero, not only for a close to a0 but also when a
is far from a0+ In that case, the restriction Egn~zi ,u0! � 0 is not very helpful
for making inference on a0+ Assumption ID, which follows, provides a theoret-
ical asymptotic framework for this phenomenon, which is taken from Assump-
tion C in Stock and Wright ~2000, p+ 1061!+ We refer the reader to Stock and
Wright ~2000, pp+ 1060–1061!, which provides substantial detailed motivation
for this assumption and an explanation of why it models a0 as weakly and b0

as strongly identified+
To describe the moment and distributional assumptions, we require some addi-

tional notation:

[g~u! :� n�1(
i�1

n

gi ~u!, ZG~u! :� n�1(
i�1

n

Gi ~u!,

Cn~u! :� n102~ [g~u!� E [g~u!!,

ZV~u! :� n�1(
i�1

n

gi ~u!gi ~u!
',

where, if defined, Gi~u! :� ~]gi 0]u!~u! � Rk�p + For notational convenience, a
subscript n has been omitted in certain expressions+ Define the k � k matrices1

V~u! :� lim
nr`

En�1(
i�1

n

gi ~u!gi ~u!
',

D~u1,u2 ! :� lim
nr`

ECn~u1!Cn~u2 !
' and D~u! :� D~u,u!+

Let u� ~a ',b '!' , where a � A, A � R pA, b � B, B � R pB , and pA � pB � p+
Also let N � B denote an open neighborhood of b0+

Assumption Q+ The true parameter u0 � ~a0
' ,b0

' !' is in the interior of the
compact space Q � A � B+

Assumption ID+

~i! E [g~u! � n�102m1n~u! � m2~b!, where m1n,m1 :Q r Rk and m2 : B r
Rk are continuous functions such that m1n~u! r m1~u! uniformly on Q,
m1~u0! � 0, and m2~b! � 0 if and only if b � b0+

~ii! m2 � C 1~N !+
~iii! Let M2~b! :� ~]m20]b!~b! � Rk�pB + The expression M2~b0! has full

column rank pB+
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Next we detail the necessary moment assumptions+2

Assumption M+

~i! max1�i�n supu�Q7gi~u!7 � op~n102!+
~ii! V~{! is in C 0~A � $ b0%! and bounded on Q, V~u! is nonsingular

for all u � A � $b0% , supu�Q7 ZV~u! � V~u!7 � op~1!, supu�A�N n�1

(i�1
n 7gi ~u!gi ~u!

' 7 � Op~1!+
~iii! Cn n C, where C~u! is a Gaussian stochastic process on Q with mean

zero and covariance function EC~u1!C~u2!
' � D~u1,u2!+ For each « � 0

there exists a M« � ` such that Pr~supu�A�N7C~u!7 � M«! � 1 � «+

Assumption M~i! adapts Assumption 1~d! of Newey and Smith ~2004!,
E supb�B7gi~b!7j � ` for some j � 2, from the i+i+d+ setting with strong iden-
tification ~ pA � 0 and thus u � b and Q � B! to the weakly identified setup
considered here+ A sufficient condition for M~i! in the time series context and
under ID is given by

sup
i�1

E sup
u�Q
7gi ~u!7j � ` for some j � 2+ (2.4)

Indeed, a simple application of the Markov inequality shows that ~2+4! implies
max1�i�n supu�Q7gi~u!7 � Op~n10j! � op~n102!+ See the Appendix for a proof+
Assumption M~ii!, which adapts Assumption 1~e! of Newey and Smith to the
weakly identified setup, ensures that ZV~u! is nonsingular for u � A � N+
Assumption M~iii! is essentially the “high-level” Assumption B of Stock and
Wright ~2000, p+ 1059! that states that Cn obeys a functional central limit theo-
rem+ In Assumption B9, Stock and Wright provide primitive sufficient condi-
tions for their Assumption B that can also be found in Andrews ~1994!+ Note
that the definition of weak convergence @Andrews ~1994, p+ 2250!# and M~iii!
imply that supu�Q7Cn~u!7rd supu�Q7C~u!7 and, thus, also that supu�Q7 [g~u!�
E [g~u!7 rp 0+ In the proof of Theorem 2 we require supu�A�N7C~u!7 bounded
in probability+

It is interesting to note that for i+i+d+ data an application of the Borel–Cantelli
lemma shows that M~i! is implied by Assumption 1~d! of Newey and Smith
~2004! even if j � 2; see Owen ~1990, Lemma 3! for a proof+ Hence, using
Lemmas 7–9 given subsequently, their Assumption 1~d! can be weakened to
j� 2 for the consistency and asymptotic normality of the GEL estimator under
strong identification with i+i+d+ data ~see their Theorems 3+1 and 3+2!+ There-
fore, for i+i+d+ data, identical assumptions guarantee consistency and asymp-
totic normality for both GEL and two-step efficient GMM estimators ~Hansen,
1982!+

Example 1 (continued)

See Guggenberger ~2003!+ For the linear IV model ~2+2! Assumption ID can be
expressed as the following assumption+

GEL ESTIMATORS AND TESTS 673

https://doi.org/10.1017/S0266466605050371 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050371


Assumption ID'+ P� Pn � ~PAn,PB! � Rk�~ pA�pB ! , where pA � pB � p+ For
a fixed matrix CA � Rk�pA , PAn � n�102CA and PB has full column rank+

Under Assumption ID', i+i+d+ data, and instrument exogeneity it follows that

E [g~u! � Egi ~u!� E~Zi Zi
'!~n�102CA ,PB !~u0 � u!,

which implies that in the notation of ID~i!, m1n~u! � m1~u! � E~Zi Zi
'!

CA~a0 � a! and m2~b!� E~Zi Zi
'!PB~b0 � b!+ Also, note that Assumption ID'

includes the partially identified model of Phillips ~1989!+ In particular, choos-
ing pA and setting CA � 0, one obtains a model in which P may have any desired
~less than full! rank+

We now give simple sufficient conditions that imply Assumption M+
Let U :� ~u,V !+

Assumption M'+

~i! $~Ui , Zi ! : i � 1% are i+i+d+;
~ii! EZi Ui

' � 0;
~iii! E7Zi74 � `, QZZ :� E~Zi Zi

'! � 0, Eui
2 Zi Zi

' , Eui Vij Zi Zi
' , and

EVij Vik Zi Zi
' exist and are finite for j, k � 1, + + + , p, where Vij denotes the

j th component of the vector Vi ;
~iv! V~u! is nonsingular for all u � A � $b0% +

Assumptions M'~i! and ~ii! state that errors and exogenous variables are jointly
i+i+d+ and the standard instrument exogeneity assumption is satisfied, whereas
M'~iii! and ~iv! are technical conditions+

The following lemma shows that Assumption M' in the linear model implies
Assumption M+

LEMMA 1+ Suppose that Assumptions ID
'
, M

'
, and Q hold in the linear IV

model (2.2). Then Assumptions ID and M hold.

Therefore the various technical conditions of Assumption M reduce to
very simple moment conditions in the linear model+ Note that M ' implies
E @supu�Q7gi~u!7j# � ` for j � 2+ However, we do not need the assumption
E @supu�Q7gi~u!7j# � ` for a j � 2 to prove n102-consistency of the GEL
estimator of the strongly identified parameters+

Assumption HOM ~conditional homoskedasticity!+ E~Ui Ui
' 6Zi ! � SU � 0+

HOM, which is used in Staiger and Stock ~1997!, is sufficient for Assump-
tion M'~iv!+ That is,Assumptions M'~i!–~iii! and HOM imply M'~iv! under ID'+
This follows from V~u! � QZZ va' SuVA

va for u � A � $b0% , where va' :�
~1, ~a0 � a!'! and SuVA

is the ~1 � pA! � ~1 � pA! upper left submatrix of SU +
However, M' is more general than HOM because it allows for conditional het-
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eroskedasticity+ For example, ui � 7Zi7zi , where zi ; N~0,1! is independent of
Zi ; N~0, Ik!, is compatible with M'+

2.3. The GEL Estimator

This section provides a formal definition of the GEL estimator of u0+
Let r be a real-valued function Q r R, where Q is an open interval of the

real line that contains 0 and

ZLn~u! :� $l � Rk : l'gi ~u! � Q for i � 1, + + + , n%+ (2.5)

If defined, let rj~v! :� ~] jr0]v j!~v! and rj :� rj~0! for nonnegative integers j+
The GEL estimator is the solution to a saddle point problem3

Zur :� arg min
u�Q

sup
l� ZLn~u!

ZPr~u,l!, (2.6)

where

ZPr~u,l! :� �2(
i�1

n

r~l'gi ~u!!0n�� 2r0 + (2.7)

Assumption r+

~i! r is concave on Q;
~ii! r is C 2 in a neighborhood of 0 and r1 � r2 � �1+

The definition of the GEL estimator Zur is adopted from Newey and Smith
~2004!+We slightly modify their definition of ZPr~u,l! by recentering and rescal-
ing, which simplifies the presentation+ We usually write ZP~u,l! for ZPr~u,l!
and Zu for Zur+

The most popular GEL estimators are the CUE, the EL, and the ET estima-
tor, which correspond to r~v! � �~1 � v!202, r~v! � ln~1 � v!, and r~v! �
�exp v, respectively+ The EL estimator was introduced by Imbens ~1997!, Owen
~1988, 1990!, and Qin and Lawless ~1994! and the ET estimator by Imbens
et al+ ~1998! and Kitamura and Stutzer ~1997!+ For a recent survey of GEL
methods see Imbens ~2002!+4

2.4. First-Order Equivalence

This section obtains the asymptotic distribution of the GEL estimator Zur under
Assumption ID+ Theorem 2 shows that the weakly identified parameters of u0
are estimated inconsistently and their GEL estimator has a nonstandard limit-
ing distribution whereas the GEL estimator of the strongly identified param-
eters is n102-consistent but no longer asymptotically normal+ Analogous results
are available for LIML or more generally for GMM; see Phillips ~1984! and
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Stock and Wright ~2000, Theorem 1!+ The rather surprising finding is that the
first-order asymptotic theory under ID is identical for all GEL estimators Zur, as
long as r satisfies Assumption r+5 This is in contrast to the asymptotic theory
for k-class estimators under weak identification+ As shown in Staiger and Stock
~1997, Theorem 1!, the nonstandard asymptotic distribution of the k-class esti-
mator depends on k defined by n~k � 1!rd k+ Therefore, LIML and 2SLS are
not first-order equivalent under weak identification+

If defined, let

l~u! be such that ZP~u,l~u!! � max
l� ZLn~u!

ZP~u,l!+

For u � ~a ',b '!' � Q and b � R pB let

P~u,b! :� @C~u!� m1~u!� M2~b!b#
'V~u!�1 @C~u!� m1~u!� M2~b!b# +

The next theorem establishes the asymptotic behavior of Zu � ~ [a ', Zb '!' under
Assumption ID+

THEOREM 2+ Suppose Assumptions Q, ID, M, and r are satisfied. Then

(i) [a is in general inconsistent and

n102~ Zb� b0 ! � Op~1!+

(ii) The following more precise result holds. For any fixed M � 0 let BM :�
$b � R pB : 7b7 � M % and define uab :� ~a ',b0

' � n�102b '!'. Then, for
~a,b! � A � BM , n ZP~uab,l~uab!!n Pab :� P~~a ',b0

' !',b! . Assume there
exists a random element ~a *,b*! � A � R pB such that a+s+ Pa *b* �
inf~a,b!�~A�R pB !\G Pab for every open set G that contains ~a *,b*! . Then

~ [a, n102~ Zb� b0 !!rd ~a
*,b* !+

Remark 1+ Theorem 2~ii! is analogous to Theorem 1 in Stock and Wright
~2000, p+ 1062! for GMM+ Note that from ~A+5! in the Appendix l~ Zu! �
�~V~~ [a ',b0

' !' ! � op~1!!�1 [g~ Zu! � Op~n�102! as [g~ Zu! � Op~n�102!+ Moreover,
using the proof of Theorem 2 it can be shown that

n102l~ Zu!rd �V~~a *',b0
' !' !�1MM2~b0 !~V~~a

*',b0
' !' !!

� @C~~a *',b0
' !' !� m1~~a

*',b0
' !' !# +

Therefore, like Zb, although n102-consistent, n102l~ Zu! admits a nonstandard
asymptotic distribution ~see also Caner, 2003!+ If pA � 0, where all parameters
are strongly identified, n102l~ Zu! rd N~0,V�1MM2

~V!DMM2
~V!'V�1 !, where

M2 :� M2~b0!, V :� V~b0!, and D :� D~b0!+ The covariance matrix reduces
to V�1MM2

~V! in the i+i+d+ case+
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The proof of Theorem 2 also provides a formula ~equation ~A+7! in the Appen-
dix! for b*~a! :� arg minb�RpB Pab for a � A+ In particular, if pA � 0, ~A+7!
shows that

n102~ Zb� b0 !rd N~0,V~b0 !!,

where

V~b0 ! :� ~M2
'V�1M2 !

�1M2
'V�1DV�1M2~M2

'V�1M2 !
�1+

The matrix V~b0! simplifies to ~M2
'V�1M2 !

�1 in the i+i+d+ case, and thus the
preceding formula coincides with Theorem 3+2 of Newey and Smith ~2004!+
However, the asymptotic variance matrix of n102~ Zb � b0! in the time series
context is in general different from that in Newey and Smith, and the estimator
Zb as defined previously would thus be inefficient+ Block methods as in Kita-

mura ~1997! or kernel-smoothing methods as in Smith ~2001! can be used for
efficient GEL estimation in a time series context with strong identification+ In
the case pA � 0, the fact that the asymptotic distribution of the strongly iden-
tified parameter estimates is in general nonnormal is a consequence of the incon-
sistent estimation of a0+

Remark 2+ Given the nonnormal asymptotic distribution of the GMM and
GEL parameter estimates under weak identification ~established in Theorem 1
in Stock and Wright, 2000, and our Theorem 2, respectively! the asymptotic
distribution of test statistics based on these estimators, such as t- or Wald sta-
tistics, will also be nonstandard and non-pivotal+ Furthermore, these limiting
distributions depend on quantities that cannot be consistently estimated ~see
Staiger and Stock, 1997, p+ 564!, which militates against their use for the con-
struction of test statistics or confidence regions for u0+ The next section intro-
duces alternative approaches that overcome these difficulties+

Example 1 (continued)

The specialization of Theorem 2 to the i+i+d+ linear IV model of Example 1 was
derived in Guggenberger ~2003!+

3. TEST STATISTICS

This section proposes several statistics to test the simple hypothesis H0 : u� u0
versus H1 : u � u0+ We establish that they are asymptotically pivotal quantities
and have limiting chi-square null distributions under Assumption ID+ Therefore
these statistics lead to tests whose size properties are unaffected by the strength
or weakness of identification+ For the time series setup considered here there
are at least two other statistics that share this property, namely, the Anderson
and Rubin ~1949! AR-statistic and the Kleibergen ~2001, 2002a! K-statistic+ The
first statistic, GELRr~u!, that we describe may be interpreted as a likelihood
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ratio statistic+ It has an asymptotic x2~k! null distribution and is first-order equiv-
alent to the AR-statistic+ The second set of statistics in this section, Sr~u! and
LMr~u!, are based on the first-order conditions ~FOC! of ZPr~u,l! with respect
to u+ Each has a limiting x2~ p! null distribution and is first-order equivalent to
the K-statistic+ For a recent survey on robust inference methods with weak iden-
tification, see Stock, Wright, and Yogo ~2002!+

To motivate the first statistic, consider an i+i+d+ setting+ In this case,
GELREL~u! may be thought of in terms of the empirical likelihood ratio statis-
tic R~u!, where6

R~u! :� sup
w1, + + + ,wn

�)
i�1

n wi

~10n! �(i�1

n

wi gi ~u!� 0,wi � 0,(
i�1

n

wi � 1� + (3.1)

The criterion function R~u! can be interpreted as a nonparametric likelihood
ratio+ Indeed, for fixed u � Q and given gi~u!, ~i � 1, + + + , n!, the numerator of
R~u! is the maximal probability of observing the given sample gi ~u!, ~i �
1, + + + , n!, over all discrete probability distributions ~w1, + + + ,wn! on the sample
such that the sample analogue (i�1

n wi gi ~u!� 0 of the moment condition ~2+1!
is satisfied+ The denominator ~10n!n equals the unrestricted maximal probabil-
ity+ It can then be shown that �2 ln R~u0!� n ZPEL~u0,l~u0!!, where l~u0! is the
vector of Lagrange multipliers associated with the k moment restrictions
(i�1

n wi gi ~u0 ! � 0 in the constrained maximization problem ~3+1!+ Therefore,
the renormalized criterion function of the EL estimator has an interpretation as
�2 times the logarithm of the likelihood ratio statistic R~u0!+

Generalizing from the i+i+d+ to the time series setup and from EL to arbitrary
r, the first statistic we consider is the renormalized GEL criterion function ~2+7!:

GELRr~u! :� n ZPr~u,l~u!!+ (3.2)

Second, following Kleibergen’s ~2001! suggestion of constructing a statistic
from the FOC with respect to u but in the GMM framework, we construct a
test statistic based on the GEL FOC for Zu+ If the minimum of the objective
function ZP~u,l~u!! is obtained in the interior of Q, the score vector with respect
to u must equal 0 at Zu, i+e+,

l~ Zu!'(
i�1

n

r1~l~ Zu!'gi ~ Zu!!Gi ~ Zu!0n � 0'+ (3.3)

For u � Q, define the k � p matrix

Dr~u! :� (
i�1

n

r1~l~u!
'gi ~u!!Gi ~u!0n+ (3.4)

Thus, ~3+3! may be written as l~ Zu!'Dr~ Zu! � 0' + The test statistic is therefore
given as a quadratic form in the score vector l~u!'Dr~u! evaluated at the hypoth-
esized parameter vector u
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Sr~u! :� nl~u!'Dr~u!~Dr~u!
' EV~u!�1Dr~u!!

�1Dr~u!
'l~u!, (3.5)

where r is any function satisfying Assumption r and EV~u! is a consistent esti-
mator of D~u!+ We also consider the following variant of Sr~u!:

LMr~u! :� n [g~u!' EV~u!�1Dr~u!~Dr~u!
' EV~u!�1Dr~u!!

�1

� Dr~u!
' EV~u!�1 [g~u! (3.6)

that substitutes �D~u!�1 [g~u! for l~u! in Sr~u!; see ~A+8! in the Appendix,
where it is shown that n102l~u! � �D~u!�1n102 [g~u! � op~1!+ The statistic
LMr~u! is similar to a GMM Lagrange multiplier statistic given in Newey and
West ~1987!+ To make the origin of the preceding test statistics clearer, we
adopted the notation LMr~u! and Sr~u!, respectively, in place of Kr~u! and
Kr

L~u! previously given to the statistics in Guggenberger ~2003!+ To use these
statistics for hypothesis tests or for the construction of confidence regions one
needs a consistent estimator EV~u! of D~u!+ Under assumptions given later,
the sample average ZV~u! may be used for EV~u!+7 Note that when r~v! �
�~1 � v!202, i+e+, in the case of a GEL CUE criterion, the GEL statistics Sr~u!
~3+5! and LMr~u! ~3+6! are then identical and given in closed form by ~3+6!
with l~u! � � ZV~u!� [g~u! in the definition of DCUE ~u!, where ZV~u!� denotes
any generalized inverse of ZV~u!+

As noted previously the GEL and GMM CUE are numerically identical+ How-
ever, although the structures of the two statistics coincide, in general, the sta-
tistic LMCUE ~u! and the Kleibergen ~2001! K-statistic based on the GMM CUE
are not identical+ The reason is that, in general, the first-order derivatives of the
GMM and GEL CUE objective functions are not equal+ The K-statistic in
Kleibergen ~2001! is based on the FOC of the GMM CUE criterion
[g~u!' EV~u!�1 [g~u!+ It replaces DCUE ~u! in LMCUE ~u! by ZG~u! � FV~u!~Ip �

~ EV~u!�1 [g~u!!!, where FV~u! is an estimator for limnr` E $n�1 (i�1
n (j�1

n

@Gi ~u! � EGi~u!# @~Ip � gj~u!
'! � E~Ip � gj~u!

'!#%+ The particular assump-
tions made on D~u! determine the choice of estimators EV~u! and FV~u!+ If the
sample average ZV~u! is used for EV~u! and (i�1

n Gi ~u!~Ip � gi~u!
'!0n for

FV~u!, then the statistic LMCUE ~u! and the K-statistic coincide+
Some intuition for these test statistics is provided under strong identifica-

tion+ Under strong identification, Newey and Smith ~2004! show consistency
of Zu+ Therefore, if the FOC ~3+3! hold at Zu, then, at least asymptotically, they
also hold at the true value u0+ The statistic Sr~u! can then be interpreted as a
quadratic form whose criterion is expected to be small at the true value u0+ If,
however, all parameters are weakly identified this argument is no longer valid+
From Theorem 2, Zu is no longer consistent for u0+ Therefore, although the FOC
hold at Zu, this does not imply automatically that they also approximately hold
at the true value u0+ However, it can be shown that under weak identification
the FOC l~u!'Dr~u! � 0' not only hold at Zu w+p+a+1 but are satisfied to order
Op~T �1! uniformly over u � Q+ Thus, under weak identification the FOC do

GEL ESTIMATORS AND TESTS 679

https://doi.org/10.1017/S0266466605050371 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050371


not pin down the true value u0+ Consequently, the power properties of hypoth-
esis tests for u0 based on the statistics Sr~u! or LMr~u! should be expected to
be better under strong rather than weak identification+ Size properties however
are not affected by the strength or weakness of identification+ This is corrobo-
rated by the Monte Carlo simulations reported subsequently and theoretically
by Theorem 4+

We now consider the asymptotic distribution of GELRr~u! evaluated at a
vector u � ~a ',b0

' !' , thus allowing for a fixed alternative in the weakly identi-
fied components+ We need the following local version of Assumption M+

Assumption Mu+ Let u � ~a ',b0
' !' � A � $b0% + Suppose

~i! max1�i�n7gi~u!7 � op~n102!;
~ii! D~u! � 0, ZV~u! rp D~u!, n�1 (i�1

n 7gi ~u!gi ~u!
' 7 � Op~1!;

~iii! Cn~u! rd C~u!, where C~u! [ N~0,D~u!!+

Note that for u� ~a ',b0
' !' Mu~ iii! and ID imply that [g~u!rp 0+ Thus, under

Mu~ iii! and ID the assumption ZV~u! rp D~u! in Mu~ ii! is equivalent to the
assumption n�1 (i�1

n ~gi ~u!� [g~u!!~gi~u!� [g~u!!' rp D~u! for u� ~a ',b0
' !' ,

which is Assumption D' in Stock and Wright ~2000!+ The assumption rules out
many interesting time series cases+ However, it is more general than an i+i+d+
assumption+ The assumption allows for m+d+s+ and thus covers various intertem-
poral Euler equations applications and regression models with m+d+s+ errors+ As
in Stock and Wright, a possible application is the intertemporally separable con-
sumption capital asset pricing model ~CCAPM!+ Without assuming ZV~u! rp

D~u!, a limiting chi-square distribution would no longer obtain in the follow-
ing theorems+ The problem arises because the GEL estimator as defined in ~2+6!
is not efficient in the time series setup considered here+

THEOREM 3+ Suppose ID, Mu(i)–(iii), and r hold for u � ~a ',b0
' !'. Then

GELRr~u!rd x
2~k,d!,

where the noncentrality parameter d � m1~u!
'D~u!�1m1~u! . In particular,

GELRr~u0 !rd x
2~k!+

To describe the asymptotic distribution of the statistics LMr~u0! and Sr~u0!,
we need the following additional assumptions+ Write Gi ~u! � ~GiA~u!,
GiB~u!!, where the matrices GiA~u! and GiB~u! are of column dimension pA and
pB, respectively+

Let u � ~a ',b0
' !' � A � $b0% and M � Q be an open neighborhood of u+

Assumption Mu ~continued!+

~iv! [g~{! is differentiable at Nu a+s+ for each Nu � M, [g~ Nu! is integrable ~with
respect to the probability measure! for all Nu � M, sup Nu�M7 ZG~ Nu!7 is
integrable, m1n � C 1~Q!, and M1n~{! :� ~]m1n0]u!~{! converges uni-
formly on Q to some function;
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~v! n�1 (i�1
n ~vecGiA~u!!gi

'~u! rp DA~u! ~DA~u! is defined below in ~vii!!,
EV~u! rp D~u!, ZGB~u! :� n�1 (i�1

n GiB~u! rp E ZGB~u!;
~vi! n�1 (i�1

n 7GiA~u!77gi ~u!7� Op~1!, n�302 (i�1
n 7GiB~u!77gi ~u!7� op~1!;

~vii! n�102 (i�1
n ~~vec~GiA~u! � EGiA~u!!!

', ~gi~u! � Egi~u!!
'!' rd

N~0,V~u!!, where V~u! :� limnr`var~n�102 (i�1
n ~~vec~GiA~u!!

',
gi ~u!

' !' ! � Rk~ pA�1!�k~ pA�1! is positive definite+

In Mu~vii! write

V~u! � �DAA DA

DA
' D �~u!, where DAA~u! � R pA k�pA k+

Assumption Mu~ iv! allows the interchange of the order of integration and
differentiation in Assumption ID, i+e+, ~]E [g0]u!~u!� E ZG~u!+ It also guarantees
that M1n~u!r M1~u! :� ~]m10]u!~u!+ Assumptions ID and Mu thus imply that

E ZG~u! � n�102M1n~u!� ~0,M2~b0 !!r ~0,M2~b0 !!, (3.7)

where by ID the limit matrix ~0,M2~b0!! is of deficient rank pB+ Assumption
Mu~v! is comparable to Mu~ ii!, where ZV~u!rp D~u! was assumed and extends
Mu~ ii! to cross-product terms in vec GiA~u! and gi~u!+ Assumption Mu~vi! con-
tains additional weak technical conditions that guarantee that certain expres-
sions in the proof of Theorem 4 are asymptotically negligible+

The key assumption is Mu~vii!, which is a stronger version of Mu~ iii! and
states that a central limit theorem ~CLT! holds simultaneously for the centered
gi~u! and part of the derivative matrix, namely, vec GiA~u!+ Write LMr~u! �
n [g ' EV�1D~D ' EV�1D!�1D ' EV�1 [g, where D � Dr~u! and EV � EV~u!+ As shown in
the proof of Theorem 4, for u � ~a ',b0

' !' , Assumptions ID, r, Mu~ i!–~vi!, and
ZGA~u! :� n�1 (i�1

n GiA~u! rp E ZGA~u! imply that D rp � ~0,M2~b0!!+ There-
fore, the probability limit of D ' EV�1D is not invertible without renormalization+
Define D * :� DL where the p � p diagonal matrix L :� diag~n102, + + + , n102,
1, + + + ,1! with first pA diagonal elements equal to n102 and the remainder equal
to unity+ Hence,

LMr~u! � n [g ' EV�1D *~D *' EV�1D * !�1D *' EV�1 [g+ (3.8)

In the proof of Theorem 4 we show that under Assumptions ID, r, and
Mu~ i!–~vi!

vec D * � vec~0,�M2~b0 !!

���IkpA
DA~u!D~u!

�1

0 0 �n�102(
i�1

n �vecGiA~u!

gi ~u!
�� op~1!+

Assumption Mu~vii!, in particular the full rank assumption on V~u!, ensures
that D *' EV�1D * has full rank w+p+a+1+ Assumption Mu~vii! is closely related to
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Assumption 1 of Kleibergen ~2001!+ Unlike Kleibergen ~2001!, however, we
assume ID, which, as just shown, requires that we are specific about which
part of the derivative matrix Gi~u! together with gi~u! satisfies a CLT with full
rank covariance matrix, namely, GiA~u!, which corresponds to the weakly iden-
tified parameters+ Assumption ID possesses the advantage that we can obtain
the asymptotic distribution of the test statistics under fixed alternatives of the
form u � ~a ',b0

' !' and therefore derive asymptotic power results+

THEOREM 4+ Suppose ID, Mu(i)–(vii), and r hold for u � ~a ',b0
' !'. Then,

Sr~u!, LMr~u!rd ~W~a!� z!
'~W~a!� z!,

where the random p-vector W~a! is defined in (A.11) in the Appendix, z ;
N~0, Ip! , and W and z are independent. We have W~a0! [ 0, and therefore

Sr~u0 !, LMr~u0 !rd x
2~ p!+

Remark 1+ The proof of Theorem 4 crucially hinges on the fact that n102l~u0!
and vec Dr~u0! ~suitably normalized! from the FOC ~3+3! are asymptotically
jointly normally distributed and, moreover, are asymptotically independent+ A
similar result is critical also for the Kleibergen ~2001! K-statistic, which gen-
eralizes the Brown and Newey ~1998! analysis of efficient GMM moment esti-
mation to the weakly identified setup+ Therefore, by using an appropriate
weighting matrix in the quadratic forms ~3+5! and ~3+6! that define Sr~u0! and
LMr~u0!, respectively, we immediately obtain the limiting x2~ p! null distribu-
tion of Theorem 4+

Remark 2+ Theorems 3 and 4 provide a straightforward method to construct
confidence regions or hypothesis tests on u0+ For example, a critical region for
a test of the hypothesis H0 : u � u0 versus H1 : u � u0 at significance level r is
given by $GELRr~u0!� xr

2~k!% , where xr
2~k! denotes the ~1 � r!-critical value

from the x2~k! distribution+ A ~1 � r!-confidence region for u0 is obtained by
inverting the just-described test, i+e+, $u � Q :GELRr~u! � xr

2~k!% + Confi-
dence regions and hypothesis tests based on Sr~u! and LMr~u! may be con-
structed in a similar fashion+

Remark 3+ Theorems 3 and 4 demonstrate that GELRr~u0!, Sr~u0!, and
LMr~u0! are asymptotically pivotal statistics under weak and strong identifica-
tion+ Therefore, the size of tests based on these statistics should not vary much
with the strength or weakness of identification in finite samples+ However, these
results also show that under weak identification hypothesis tests based on these
statistics are inconsistent+ For example, the noncentrality parameter d does not
diverge to infinity for increasing sample size, and therefore the rejection rate
under the alternative does not converge to 1+ This is intuitively reasonable
because if identification is weak one cannot learn much about a0 from the data+
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Remark 4+ A drawback of GELRr~u0! is that its limiting null distribution
has degrees of freedom equal to k, the number of moment conditions, rather
than the dimension of the parameter vector+ In general, this has a negative impact
on the power properties of hypothesis tests based on GELRr~u0! in overidenti-
fied situations+ On the other hand, the limiting null distribution of Sr~u0! and
LMr~u0! has degrees of freedom equal to p+ Therefore the power of tests based
on these statistics should not be negatively affected by a high degree of over-
identification+ The AR-statistic of Anderson and Rubin ~1949! has a x2~k! lim-
iting null distribution also+ Kleibergen ~2002b! shows that it equals the sum of
two independent statistics, namely, the K-statistic ~Kleibergen, 2002a! and a
J-statistic ~Hansen, 1982! that test location and misspecification, respectively+
Mutatis mutandis, a similar decomposition may be given for the GELRr~u0!
statistic in terms of Sr~u0! or LMr~u0!+

Remark 5+ Stock and Wright ~2000, Theorem 2! derive the asymptotic dis-
tribution under weak identification of the analogue of GELRr~u0! for the ~GMM!
CUE, which is also a x2~k! null distribution+ In the i+i+d+ context, Qin and Law-
less ~1994, Theorem 2! propose the statistic 2 ln R~ ZuEL!� 2 ln R~u0! to test the
hypothesis H0 : u� u0, which is shown to be asymptotically distributed as x2~ p!
under strong identification+ However, because of the dependence on ZuEL, this
statistic is no longer asymptotically pivotal and thus leads to size-distorted tests
under weak identification+

Example 1 (continued)

Guggenberger ~2003! derives the results given in Theorems 3 and 4 under
Assumptions Q, ID', M', and r allowing for alternatives a � A and Pitman
drift in the data generating process ~DGP! for the strongly identified param-
eters to assess the asymptotic power properties of the tests; i+e+, ID' holds and
for some fixed b � R pB , y � Y~u0 � n�102~0',b '!'! � u+ To simplify our pre-
sentation here we ignore the possibility of Pitman drift+ Results for the i+i+d+
linear IV model follow directly from the preceding theorems because, as is eas-
ily shown, Assumptions ID', M', r, and V~u! � 0 imply Mu for any consistent
estimator EV~u! of V~u!+ In particular, V~u! has a simple representation+ For
u � ~a ',b0

' !' , V~u! � D~u! and DAA~u! � E~ViAViA
' � Zi Zi

'!, where ViA con-
sists of the first pA components of Vi in ~2+3!+

4. SUBVECTOR TEST STATISTICS

We now assume that interest is focused on the subvector a0 � R pA of u0 �
~a0
' ,b0

' !' + However, we no longer maintain Assumption ID+ In particular, a0

may not necessarily be weakly identified+
To adapt the test statistics of Section 3 to the subvector case, the basic idea

is to replace b by a GEL estimator Zb~a!+ To make this idea more rigorous,
define the GEL estimator Zb~a! for b0:
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Zb~a! :� arg min
b�B

sup
l� ZLn~a

',b ' !'
ZP~~a ',b ' !',l!+ (4.1)

We usually write Zb for Zb~a! where there is no ambiguity+ A requirement of the
analysis that follows is that Zb rp b0 if a � a0+ Therefore, we assume that the
nuisance parameters b0 that are not involved in the hypothesis under test are
strongly identified; see Theorem 2+ On the other hand, the components of a0

can be weakly or strongly identified, and in Assumption IDa, which follows,
we assume the former holds for a01 and the latter for a02, where a0 �
~a01
' ,a02

' !' + The main advantage of the subvector test statistics introduced in
this section is that asymptotically they have accurate sizes independent of
whether a0 is weakly or strongly identified+ This property is not shared by clas-
sical tests based on Wald, likelihood ratio, or Lagrange multiplier statistics+ In
general, they have correct size only if u0 is strongly identified+ In contrast, the
subvector tests in Guggenberger and Wolf ~2004! based on a subsampling
approach have exact asymptotic sizes without any additional identification
assumption+

Let u � ~a1
' ,a2

' ,b ' !' , where aj � Aj , Aj � R pAj , ~ j � 1,2!, pA1
� pA2

� pA

and b � B, B � R pB + Also let N � A2 � B be an open neighborhood of
~a02,b0!+

Assumption A+ The true parameter u0 � ~a01
' ,a02

' ,b0
' !' is in the interior of

the compact space Q, where Q � A1 � A2 � B+

Assumption IDa+

~i! E [g~u!� n�102m1n~u!� m2~a2,b!, where m1n,m1 :Qr Rk and m2 :A2 �
B r Rk are continuous functions such that m1n~u! r m1~u! uniformly
on Q, m1~u0!� 0, and m2~a2,b!� 0 if and only if ~a2,b!� ~a02,b0!+

~ii! m2 � C 1~N !+
~iii! Let M2~{! :� ~]m2 0]~a2

' ,b ' !' !~{! � Rk�~ pA2
�pB ! ; M2~a02,b0! has full

column rank pA2
� pB+

Assumption IDa implies that a01 and ~a02,b0! are weakly and strongly iden-
tified, respectively+ Assumptions A and IDa adapt Assumptions Q and ID in
Section 2 for the subvector case+

Let

Zua :� ~a ', Zb~a!' !' and uab :� ~a ',b ' !'+

We now introduce the subvector statistics+ Recall the definition of GELRr~u!
in ~3+2!+ The GELRr subvector test statistic is given by

GELRr
sub~a! :� GELRr~ Zua!+
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We need the following technical assumptions for our derivation of its asymp-
totic distribution+ To obtain theoretical power properties, we again allow a fixed
alternative for the weakly identified components, a01 here+

For a1 � A1 let a :� ~a1
' ,a02

' !' be a fixed vector whose strongly identified
component a02 is the same as the corresponding component of the true param-
eter vector u0+ Let M � B be an open neighborhood of b0+

Assumption Ma+

~i! max1�i�n supb�B7gi~uab!7 � op~n102!;
~ii! supb�B7 ZV~uab! � G~uab!7 rp 0 for some matrix G~{! that is uniformly

bounded on $uab : b � B% , continuous at uab0
and G~uab0

!� D~uab0
! � 0

and n�1 (i�1
n 7gi ~uab0

!gi ~uab0
!' 7 � Op~1!;

~iii! Cn~uab0
! rd C~uab0

!, where C~uab0
! [ N~0,D~uab0

!!;
~iv! ZGB~{! :� n�1 (i�1

n ~]gi 0]b!~{! exists at uab a+s+ for each b � M, [g~uab!
is integrable for all b � M, supb�M7 ZGB~uab!7 is integrable, ]m1n0
]b~{! is continuous at uab a+s+ for each b � M, and ]m1n0]b~uab! con-
verges uniformly over b � M to some function;

~v! [g~uab! rp E [g~uab! uniformly over b � B, ZGB~uab! rp E ZGB~uab! uni-
formly over b � M;

~vi! supb�M n�1 (i�1
n 7GiB~uab!7 � Op~1!+

Mutatis mutandis,Ma has the same interpretation as Mu+ For example Ma~ ii!
guarantees that lmax~ ZV~ Zua!! is bounded and lmin~ ZV~ Zua!! is bounded away
from zero w+p+a+1, whereas Ma~ iv! and IDa imply that for b � M we have
E ZGB~uab!� n�102~]m1n0]b!~uab!� ~]m20]b!~a02,b!r ~]m20]b!~a02,b!+ By
IDa this last matrix has full column rank for b � b0+ If we assume that the
GiB~uab!, ~i � 1, + + + , n!, viewed as functions of b, are continuous at b0 a+s+, then
we can simplify Ma~vi! to n�1 (i�1

n 7GiB~uab0
!7 � Op~1!+ A similar comment

holds for the assumptions in the continuation of Ma that follows+

THEOREM 5+ Assume 1 � pA � p. Suppose Assumptions A, IDa, Ma(i)–
(vi), and r hold for some a1 � A1 and a � ~a1

' ,a02
' !'. Then,

GELRr
sub~a!rd x

2~k � pB ,d!,

where the noncentrality parameter d is given by

d :� m1~uab0
!'D~uab0

!�1MM2b~a02 ,b0 !~D~uab0
!!m1~uab0

!,

where M2b~{! :� ~]m20]b!~{! � Rk�pB. In particular,

GELRr
sub~a0 !rd x

2~k � pA !+
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Theorem 5 confirms that the subvector statistic GELRr
sub~a0 !, like the full

vector statistic GELRr~u0!, is asymptotically pivotal+ As before, this result can
be used to construct hypothesis tests and confidence regions for a0+

We now generalize the statistics Sr and LMr to the subvector case+ The
asymptotic variance matrices of n102 [g~ Zua! and n102l~ Zua! differ from those of
n102 [g~uab0

! and n102l~uab0
!+ Therefore different weighting matrices are

required in the quadratic forms defining these subvector statistics+ In the Appen-
dix ~see proofs of Theorems 5 and 6! it is shown that for a � ~a1

' ,a02
' !' ,

l~ Zua!� arg maxl� ZLn~ Zua ! ZP~ Zua ,l! exists w+p+a+1 and that n102l~ Zua! is asymptot-
ically normal with covariance matrix M~a!, where for a � ~a1

' ,a2
' !' � R pA

M~a! :� D~uab0
!�1MM2b~a2 ,b0 !~D~uab0

!!+ (4.2)

The first pA elements of the FOC ~3+3!, evaluated at Zua, are

l~ Zua !'(
i�1

n

r1~l~ Zua !'gi ~ Zua !!GiA~ Zua !0n � 0'+ (4.3)

For a � R pA , let

Dr~a! :� (
i�1

n

r1~l~ Zua!'gi ~ Zua!!GiA~ Zua!0n � Rk�pA, (4.4)

which coincides with the definition of Dr~u! in ~3+4! when a is the full vector
u+ Similarly to Sr~u! in ~3+5! the subvector test statistic Sr

sub~a! is constructed
as a quadratic form in the vector l~ Zua!'Dr~ Zua! from ~4+3! with weighting matrix
given by M~a! in ~4+2!+ Let GM~a! be an estimator of M~a! that is given by
replacing the expressions D~uab0

! and M2b~a2,b0! in M~a! by consistent esti-
mators, EV and GM2 say+ By Assumptions Ma~ ii! and Ma~ iv!–~v! we may choose
ZV~ Zua! for EV and ZGB~ Zua! for GM2 when a � a � ~a1

' ,a02
' !' + Hence,

Sr
sub~a! :� nl~ Zua!'Dr~a!~Dr~a!' GM~a!Dr~a!!�1Dr~a!

'l~ Zua!+

The statistic LMr
sub~a! is constructed like Sr

sub~a! but replaces l~ Zua! by
� EV�1 [g~ Zua!+ Thus,

LMr
sub~a! :� n [g~ Zua!' EV�1Dr~a!~Dr~a!

' GM~a!Dr~a!!�1Dr~a!
' EV�1 [g~ Zua!+

Let a � ~a1
' ,a02

' !', M � B be an open neighborhood of b0, and ZGAj
~u! :�

n�1(i�1
n ~]gi 0]aj !~u!, ~ j � 1,2!+

Assumption Ma ~continued!+

~vii! ZGA1
~uab! viewed as a function in b is continuously differentiable at

b a+s+ for each b � M, ~] vec ZGA1
0]b!~uab! rp E~] vec ZGA1

0
]b!~uab! � ~]E vec ZGA1

0]b!~uab!, ZGA~uab! rp E ZGA~uab! � ~]E [g0
]a!~uab!, ~] vec~]m1n0]a1!0]b!~uab! r ~] vec~]m10]a1!0]b!~uab!,
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where convergence is uniform over b � M in all cases, ]m1n0]a~{! is
continuous at uab a+s+ for each b � M, and ]m1n0]a~uab! converges
uniformly over b � M to some function;

~viii! n�1 (i�1
n ~vec GiA1

~uab!!gi
'~uab! rp F~uab! uniformly over b � M

for some matrix F~{! that is continuous at uab0
and satisfies F~uab0

!�
DA1
~uab0

! ~DA1
~{! is defined in ~x! of this assumption!, EV~ Zua! rp

D~uab0
!;

~ix! n�1(i�1
n 7GiA1

~uab!77gi~uab!7�Op~1!,n�302(i�1
n 7GiA2

~uab!77gi~uab!7�
op~1! uniformly over b � M;

~x! n�102(i�1
n ~~vec~GiA1

~uab0
!�EGiA1

~uab0
!!!', ~gi ~uab0

!�Egi ~uab0
!!'!'rd

N~0,V a~uab0
!!, where V a~uab0

! is the appropriate submatrix of V~uab0
!

defined in Mu~vii!; V a~uab0
! is positive definite+

In Ma~x! write

V a~u! � �DA1 A1
DA1

DA1

' D �~u!, where DA1 A1
~u! � R pA1

k�pA1
k+

Assumption Ma~x! is the key assumption and plays a role similar to Mu~vii!+
Assumption Ma~vii! extends Ma~ iv! by explicitly assuming that integration
and differentiation can be exchanged in the expectation of ZGA1

~uab!, whereas
Ma~ iv! gave primitive conditions that imply that exchange holds for [g~uab!+
Assumptions Ma~v!, Ma~vii!, and IDa imply that ~] vec ZGA1

0]b!~ Zua ! rp 0,
which is an important result used in the proof of the next theorem; in a linear
model this result is trivially true because ] vec ZGA1

0]b [ 0+ Assumptions
Ma~vii!–~x! are analogous to Mu~ iv!–~vii! with A1 and A2 now playing the
roles of A and B, respectively+

THEOREM 6+ Assume 1 � pA � p. Suppose Assumptions A, IDa, Ma(i)–(x),
and r hold for a � ~a1

' ,a02
' !' for a1 � A1. Then,

Sr
sub~a!, LMr

sub~a!rd ~Wa~a!� za!
'~Wa~a!� za!,

where the random pA-vector Wa~a! is defined in (A.22) of the Appendix, za ;
N~0, IpA

! , and za and Wa are independent. We have Wa~a0! [ 0, and therefore

Sr
sub~a0 !, LMr

sub~a0 !rd x
2~ pA !+

Remark 1+ The subvector statistics are asymptotically pivotal when ele-
ments of a0 are arbitrarily weakly or strongly identified+ This result can be
used for the construction of test statistics or confidence regions that have cor-
rect size or coverage probabilities asymptotically, independent of the strength
or weakness of identification of a0+ Compared to the GMM-subvector statistic
of Kleibergen ~2001!the statistics Sr

sub~a! and LMr
sub~a! are appealing because

of their compact formulation+
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Remark 2+ Even though it is unclear how the asymptotic distribution of
these test statistics might be derived without assuming strong identification
of b0, it is obvious that neither Sr

sub~a0 ! nor LMr
sub~a0 ! would converge to a

x2~ pA! random variable+ In general the quantities n102l~ Zua0
! in Sr

sub~a0 ! and
n102 [g~ Zua0

! in LMr
sub~a0 ! are no longer asymptotically normal because of their

dependence on the GEL estimator Zb~a0!, which as a direct consequence of Theo-
rem 2 has a nonstandard limiting distribution if b0 is not strongly identified+
Moreover, the subvector version of the K-statistic of Kleibergen ~2001! also
experiences the same problem in these circumstances as the ~GMM! CUE of
b0 has a nonnormal limiting distribution under weak identification ~see Stock
and Wright, 2000!+ Somewhat surprisingly, however, Monte Carlo simulations
by the authors ~not reported here! for the subvector statistic LMr

sub~a0 ! indi-
cate that its size properties are not much affected by the strength or weakness
of identification of b0+ Startz, Zivot, and Nelson ~2004! report similar findings
from Monte Carlo simulations for the subvector test statistic of Kleibergen
~2001!+

Example 1 (continued)

Guggenberger ~2003! derives the corresponding results+ Note that Assumptions
Q, ID', M', and r and also assuming that V a~uab0

! is full column rank imply
Assumption Ma+ In the linear model the components of V a~uab0

! can be easily
calculated+ For example, DA1 A1

� E~ViA1
ViA1

' � Zi Zi
'!, where ViA1

is the sub-
vector of Vi that contains its first pA1

components+ Let Y � ~X,W ! denote the
partition of the included variables of the structural equation into exogenous
and endogenous variables+ Partition u0 � ~uX0

' ,uW0
' !' and u � ~uX

' ,uW' !' con-
formably+ Valid inference is possible on any subvector of uW0 if the appropriate
assumptions given previously are fulfilled+ Unfortunately, if the dimension of
the parameter vector not subject to test is large, then the argmin-sup problem in
~4+1! is computationally very involved+ Premultiplication of equation ~2+2! by
MX should ameliorate this problem through the elimination of the exogenous
variables; i+e+, MX y � MX WuW0 � MX u+ If Assumption Ma holds for uW0 �
~aW0,bW0! and gi~uW ! :� MX, i

' ~ y � WuW !Zi , where MX, i denotes the ith row
of MX written as a column vector, valid inference may be undertaken on aW0+

5. SIMULATION EVIDENCE

To assess the efficacy of the hypothesis tests introduced in Theorems 3 and 4,
we conduct a set of Monte Carlo experiments+ The DGP is given by model
~2+2! considered in Example 1 and is similar to that in Kleibergen ~2002a,
p+ 1791!, namely,

y � Yu0 � u, (5.1)

Y � ZP� V+
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There are a single right-hand-side endogenous variable and no included exog-
enous variables, p � 1, Z; N~0, Ik � In!, where k is the number of instruments
and n the sample size+ In the just-identified case, i+e+, k � 1, P� P1, whereas,
in the overidentified case, k � 1, P � ~P1,0'!' , i+e+, irrelevant instruments are
added+

Interest focuses on testing the scalar null hypothesis H0 : u0 � 0 versus the
alternative hypothesis H1 : u0 � 0+

5.1. Error Distributions

We examine several distributions for ~u,V ! to investigate the robustness of the
test statistics to potentially different features of the error distribution+All designs
are constructed from Design ~I! obtained by modifying the distribution of the
structural error u+

• Design ~I!: ~u,V !' ; N~0,S � In!, where S � R2�2 with diagonal ele-
ments unity and off-diagonal elements ruV +

• Design ~II!: ui in Design ~I! is modified as ui 0~wi 0r!102 , where wi is a
x2~r! random variable independent of ui and Vi , i+e+, ui is tr -distributed+
We fix r � 2+

• Design ~III!: modifies Design ~I! by exchanging ui
2 � 1 for ui , i+e+, ui is a

recentered x2~1! random variable+
• Design ~IV!: ui from Design ~I! is replaced by Bi 6ui � 26� ~1� Bi !6ui � 26

where Bi is Bernoulli ~0+5,0+5! distributed and independent of all other ran-
dom variables+

Design ~II! examines the robustness of the performance of the test statistics
to thick-tailed distributions for the structural equation error+ Design ~III! exam-
ines robustness with respect to asymmetric structural error distributions+ In
Design ~IV! the structural error ui is bimodal with peaks at �2 and �2+

In addition, the impact of conditional heteroskedasticity on the performance
of the test statistics is examined+ Designs ~IHET !–~IVHET ! modify Designs ~I!–
~IV!, respectively, replacing ui by ui � 7Zi7ui +

5.2. Test Statistics

We calculate three versions of the statistic GELRr~u! in ~3+2!, for r~v! �
�~1 � v!202 ~CUE!, r~v!� ln~1 � v! ~EL!, and r~v!� �exp v ~ET!+We also
consider the corresponding versions for each of Sr~u! in ~3+5! and LMr~u! in
~3+6! with EV~u! replaced by ZV~u!+ As noted previously, for CUE, Sr~u! and
LMr~u! are then numerically identical+ Theorems 3 and 4 present the asymp-
totic null distributions of these statistics+8

Additional statistics considered are the Anderson–Rubin test statistic ~AR!
~see Anderson and Rubin, 1949!, two versions of the K-statistic proposed by

GEL ESTIMATORS AND TESTS 689

https://doi.org/10.1017/S0266466605050371 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050371


Kleibergen ~2001, 2002a!, one assuming homoskedastic errors K, the other robust
to conditional heteroskedasticity KHET , the conditional likelihood ratio test LRM

of Moreira ~2003!, and two versions of the two-stage least squares ~2SLS!Wald
statistic 2SLS ~see, e+g+, Wooldridge, 2002, pp+ 98, 100!, one assuming homo-
skedastic errors ~2SLSHOM ! and the other robust to conditional heteroskedasticity
~2SLSHET !+9 Under H0 : u0 � 0, AR~u0! rd x

2~k! and K~u0! rd x
2~ p!+ In the

just-identified case k � p � 1, the AR- and K-statistics coincide+ Both Wald
statistics are asymptotically distributed as x2~1! under H0 : u � u0 and strong
identification+

5.3. Size Comparison

Empirical sizes are calculated using 5% asymptotic critical values for all of the
preceding statistics for DGPs ~5+1! corresponding to all 54 possible combina-
tions of sample size n � 50, 100, 250, number of instruments k � 1, 5, 10, SF
and RF error correlation ruV � 0+0, 0+5, 0+99, and RF coefficient P1 � 0+1, 1+0
for Designs ~I!–~IV! and ~IHET !–~IVHET !+10

We use R � 3,000 replications of each DGP+ We also use 3,000 realizations
each of x2~1! and x2~k � 1! random variables to simulate the critical values of
Moreira’s LRM statistic+ For the results reported in Tables 1 and 2, which fol-
low, we use R � 10,000 replications+We refer to P1 � 0+1 and 1+0 as the “weak”
and “strong” instrument cases, respectively+ The value of ruV allows the degree
of endogeneity of Y to be varied+ Whereas for ruV � 0, Y is exogenous, Y is
strongly endogenous for ruV � 0+99+We include the just-identified case, k � 1,
and two overidentified-cases, k � 5 and 10+

We now describe the results for Designs ~I! and ~IHET ! given in Tables 1 and
2, respectively, which exclude those for GELREL, SET , LMET , AR, and the case
n � 100+ The qualitative features of the size results for GELREL, SET , and LMET

are identical to their ET0EL counterparts+ For k � 1, AR coincides with K, and,
for k � 1, we find that in most cases K has better size properties than AR+ We
report K and 2SLSHOM for the homoskedastic and KHET and 2SLSHET for the
heteroskedastic design+ We now discuss the results for the homoskedastic case
of Design ~I!+

First, we consider the separate effects of P1, n, ruV , and k on the size results+
The most important finding is that the empirical sizes of all statistics except

2SLS show little or no dependence on P1 ~some additional Monte Carlo results
show that this even holds true for the completely unidentified case where
P1 � 0!+ However, those for 2SLS depend crucially on the strength or weak-
ness of identification+ Although for P1 � 1+0, 2SLS has reliable size properties
for many cases, with weak instruments sizes range over the entire interval, 0%
to 100%+

In general, increasing n leads to more accurate size across all statistics+ This
holds especially true for those that are poor for smaller n+ For example, the
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Table 1. Size results for Design ~I! at 5% significance level

P1 n k ruV LMEL SEL LMCUE GELRCUE GELRET K LRM 2SLSHOM

1 50 1 0+0 4+6 9+0 4+6 4+6 6+3 5+1* 5+9 4+3
0+5 4+8* 9+0 4+8* 4+8* 6+7 5+7 5+4 5+2*
0+99 4+9* 9+1 4+9* 4+9* 6+9 6+1 5+7 6+2

5 0+0 4+3 15+5 2+6 2+8 13+5 5+6* 6+3 3+8
0+5 4+1 15+0 2+6 2+5 13+3 5+4 5+2* 5+8
0+99 4+2 15+0 2+6 2+7 12+9 5+6 5+4* 12+3

10 0+0 4+4 26+8 1+6 1+3 28+9 5+9 5+4* 2+8
0+5 4+2* 26+1 1+7 1+5 28+8 6+3 6+6 9+2
0+99 4+0 25+8 1+6 1+3 29+5 5+7* 6+3 27+1

250 1 0+0 5+3 5+6 5+3 5+3 5+8 5+3 5+3 5+1*
0+5 5+1* 5+4 5+1* 5+1* 5+4 5+3 5+9 5+2
0+99 5+0* 5+4 5+0* 5+0* 5+3 5+1 4+3 5+2

5 0+0 5+0* 6+5 4+4 4+4 6+4 5+2 5+6 4+8
0+5 5+0* 6+3 4+4 4+6 6+6 5+3 5+2 5+6
0+99 4+5 5+9 4+0 4+5 6+8 4+8* 4+4 6+7

10 0+0 4+8* 7+6 3+7 4+1 8+9 5+3 5+4 4+7
0+5 4+7 7+6 3+5 4+0 8+8 5+1 5+0* 6+1
0+99 4+8 7+5 3+5 3+8 8+9 5+1* 5+2 10+9

0+1 50 1 0+0 4+4 8+9 4+4 4+4 6+4 5+3* 5+3* 0+0
0+5 4+4* 8+8 4+4* 4+4* 6+6 5+7 5+7 2+2
0+99 4+8* 8+9 4+8* 4+8* 6+5 5+7 6+5 24+9

5 0+0 5+6* 17+4 3+8 2+7 13+6 6+6 7+1 0+6
0+5 5+3* 16+9 3+5 2+7 12+9 6+6 7+1 16+3
0+99 4+1* 15+9 2+7 2+7 13+2 6+0 6+7 96+5

10 0+0 6+2* 30+3 3+1 1+3 29+3 8+6 9+2 1+0
0+5 6+1* 30+5 3+2 1+3 28+9 8+2 10+3 34+3
0+99 5+0* 27+4 2+0 1+3 28+9 6+7 6+5 99+9

250 1 0+0 4+8 5+3 4+8 4+8 5+2 5+1* 4+5 0+1
0+5 5+1* 5+5 5+1* 5+1* 5+4 5+3 4+5 3+3
0+99 5+2* 5+6 5+2* 5+2* 5+6 5+3 5+4 13+2

5 0+0 4+7 6+2 4+1 4+0 6+0 4+8* 5+2* 0+5
0+5 4+9* 6+2 4+2 4+5 6+9 4+8 5+5 15+8
0+99 5+1* 6+4 4+6 4+8 6+9 5+5 6+2 80+1

10 0+0 5+3* 7+9 4+0 3+9 8+5 5+3* 5+7 1+5
0+5 5+3 8+4 4+0 4+3 8+8 5+3 5+1* 35+2
0+99 4+9* 7+8 3+7 4+0 9+0 5+4 6+1 98+8

Note: Asterisks in each row denote the number closest to the 5% significance level+ The size results are com-
puted using R � 10,000 simulation repetitions+
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Table 2. Size results for Design ~IHET ! at 5% significance level

P1 n k ruV LMEL SEL LMCUE GELRCUE GELRET KHET LRM 2SLSHET

1 50 1 0+0 3+9 15+9 3+9 3+9 8+1 4+9* 27+7 7+8
0+5 4+2 16+8 4+2 4+2 8+4 5+0* 26+1 8+2
0+99 3+9 16+3 3+9 3+9 7+8 4+8* 25+7 8+1

5 0+0 4+3 20+2 2+8 2+2 16+1 5+1* 13+1 6+0
0+5 4+0 19+9 2+6 2+0 15+9 4+6* 11+3 7+9
0+99 4+0 19+7 2+3 2+0 15+3 4+7* 10+8 14+4

10 0+0 4+5* 29+9 1+8 1+2 31+7 6+2 8+8 4+4
0+5 4+2* 29+0 1+7 1+2 31+8 5+9 10+2 10+7
0+99 4+1 28+9 1+6 1+2 32+4 5+7* 9+4 28+9

250 1 0+0 4+8 7+4 4+8 4+8 5+9 5+0* 25+9 5+7
0+5 4+8 7+7 4+8 4+8 6+0 5+0* 27+6 5+9
0+99 5+0* 7+5 5+0* 5+0* 5+9 5+2 24+2 5+8

5 0+0 5+1 8+4 4+3 4+0 7+8 5+0* 10+8 5+6
0+5 5+1* 8+0 4+4 4+1 7+7 4+9* 10+0 6+0
0+99 4+4* 7+3 3+7 4+3 8+0 4+3 8+8 7+2

10 0+0 5+0* 9+1 3+9 3+5 10+4 4+6 8+1 5+2
0+5 4+8* 9+1 3+5 3+6 10+0 4+4 8+0 6+5
0+99 4+9* 9+1 3+8 3+6 10+0 4+5 7+8 11+1

0+1 50 1 0+0 3+6 16+3 3+6 3+6 7+7 4+5* 26+3 0+4
0+5 3+7 16+4 3+7 3+7 8+1 4+7* 26+4 3+1
0+99 3+9 16+5 3+9 3+9 8+1 4+9* 28+8 25+2

5 0+0 5+7* 23+1 3+6 2+1 16+0 6+4 18+1 1+4
0+5 5+7* 22+6 3+7 2+1 15+8 6+6 18+2 18+4
0+99 5+0* 23+0 2+8 2+1 15+7 5+2 22+3 93+6

10 0+0 6+4* 33+3 3+2 1+1 31+8 8+7 16+7 2+2
0+5 6+2* 33+5 3+4 1+0 32+0 9+2 18+7 36+1
0+99 5+7* 33+7 2+2 1+1 31+5 7+0 19+8 99+8

250 1 0+0 4+9* 7+5 4+9* 4+9* 6+1 5+2 25+0 0+3
0+5 5+1* 8+0 5+1* 5+1* 6+4 5+2 25+2 3+2
0+99 4+9* 7+5 4+9* 4+9* 6+1 5+1* 26+6 12+8

5 0+0 4+7* 7+8 4+0 3+8 6+9 4+5 15+3 0+8
0+5 4+9* 8+1 4+1 4+2 8+1 4+6 15+5 15+9
0+99 5+1* 8+1 4+5 4+3 7+8 4+9* 15+1 75+6

10 0+0 5+2 9+3 4+0 3+8 9+8 4+9* 12+4 1+8
0+5 5+7 10+4 4+2 4+0 10+2 5+2* 11+9 34+3
0+99 5+2* 9+9 3+6 3+8 10+6 4+5 12+6 98+4

Note: Asterisks in each row denote the number closest to the 5% significance level+ The size results are com-
puted using R � 10,000 simulation repetitions+
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2SLS statistics, GELRET and SEL, severely overreject in overidentified and
strongly endogenous cases when n � 50+ Even though they still overreject for
n � 250, the rejection rates are much closer to the 5% significance level+

It is easily shown that the rejection rates under the null hypothesis for AR
and GELRr are independent of the value of ruV + The slight dependence of the
size results in Table 1 on ruV results from the use of different samples+ For all
the remaining statistics except for 2SLS, there does not appear to be a clear
pattern for how ruV affects their size properties+ Moreover, there is little depen-
dence of the results on ruV + However, for 2SLS, increasing ruV leads to severe
overrejection when combined with overidentification, especially so in the weak
instrument case+

Increasing the number of instruments k usually leads to overrejection for 2SLS,
GELRET , and SEL+ For 2SLS this is especially true under weak identification
and0or strong endogeneity+ All the other statistics show little dependence on k+

We now turn to a comparison of performance across statistics+ The 2SLS
statistics should not be used with weak instruments or in strongly endogenous
overidentified situations+ In all other cases, 2SLS has competitive size proper-
ties+ The statistics GELRET and SEL severely overreject in overidentified prob-
lems when the sample size is small+ Overall, then, the statistics LMEL, K, and
LRM lead to the best size results+ The statistics LMCUE and GELRCUE come in
only as second winners because they tend to underreject, especially in over-
identified situations+ Across the 36 experiments in Table 1, the sizes of LMEL,
LMCUE , GELRCUE , K, and LRM are in the intervals @4+0,6+2# , @1+6,5+3# , @1+3,5+3# ,
@4+8,8+6# and @4+3,10+3# , respectively+ The statistics K and LRM usually slightly
overreject+ In 22 of the 36 cases, the size of LMEL comes closest to the 5%
significance level across all the statistics+ The corresponding numbers for LMCUE ,
GELRCUE , K and LRM are 8, 8, 9, and 7+ Based on Design ~I!, LMEL seems to
have a slight advantage over the remaining statistics+

We now discuss the size results for Design ~IHET ! summarized in Table 2+ As
most findings are similar to those discussed for Design ~I!, we only describe
the new features+

The statistics 2SLSHOM , K, and LRM perform uniformly worse than in
Design ~I!+ Tests based on these statistics severely overreject, especially in the
just-identified case+ Their performance does not improve when n increases+We
therefore report results for the heteroskedasticity robust versions 2SLSHET and
KHET + Their size properties and those of the statistics based on GEL methods
do not appear to be negatively influenced by the presence of conditional het-
eroskedasticity+ This is to be expected from our earlier theoretical discussion of
the GEL statistics, which does not assume conditional homoskedasticity+ Of
course, 2SLSHET still suffers in weakly identified models, and GELRET and SEL

perform poorly in overidentified situations for small n+ Rejection rates of the
test statistics LMEL, LMCUE , GELRCUE , KHET , and LRM across the 36 experi-
ments of Table 2 are in the intervals @3+6,6+4# , @1+6,5+1# , @1+0,5+1# , @4+3,9+2#,
and @7+8,28+8# , respectively+ In 21 of the 36 cases, the size of LMEL comes
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closest to the 5% significance level across all the statistics+ The test statistic
KHET wins in 18 cases+

In summary, the only statistics with accurate size properties across all exper-
iments of Designs ~I! and ~IHET ! are LMEL, LMCUE , GELRCUE , and KHET + Based
on the preceding results it seems that LMEL enjoys a slight advantage over the
other statistics+ From the 72 cases in Tables 1 and 2 the empirical size of LMEL

is closest to the nominal 5% in 43 cases across all statistics+
The qualitative features of the size results for Designs ~II!–~IV! and ~IIHET !–

~IVHET ! are generally very similar to their normal counterparts of Designs ~I!
and ~IHET !+ For this reason, we do not include additional tables for these designs+
One striking difference however occurs for 2SLS under weak identification with
x2~1! ~Design ~III!! and bimodal errors ~Design ~IV!!+ Rejection rates across
these 54 combinations for 2SLSHOM are in the intervals @0+1,7+1# and @0+0,5+4# ,
respectively+Whereas with normal errors and weak identification 2SLS severely
overrejects, with these error distributions it severely underrejects+

To summarize this size study, LMEL, LMCUE , GELRCUE , and KHET have reli-
able size properties across all designs that appear independent of both the
strength or weakness of identification and possible conditional heteroskedastic-
ity+ The test statistic 2SLS performs very poorly in the presence of weak instru-
ments+ The LRM statistic performs well in homoskedastic cases but poorly
otherwise+

5.4. Power Comparison

Empirical power curves are calculated for the preceding statistics and DGPs
~5+1! corresponding to all 16 possible combinations of sample size n � 100,
250, number of instruments k � 5, 10, SF and RF error correlation ruV � 0+5,
0+99, and RF coefficient P1 � 0+1, 1+0 for each of the error distributions of
Designs ~I!–~III!+ Except for LRM , we report size-corrected power curves at
the 5% significance level, using critical values calculated in the preceding size
comparison+We do so because size correction of LRM is not straightforward as
a result of the conditional construction of LRM and, as shown before, for
Designs ~I!–~III!, LRM has empirical size very close to nominal at the 5% sig-
nificance level+

We use R � 1,000 replications from the DGP ~5+1! with various values of the
true value u0+ The null hypothesis under test is again H0 : u0 � 0+ For weak
identification ~P1 � 0+1!, u0 takes values in the interval @�4+0,4+0# whereas,
with strong identification ~P1 � 1+0!, u0 � @�0+4,0+4# + We use 1,000 realiza-
tions each of x2~1! and x2~k � 1! random variables to simulate the critical
values of LRM + For those results reported in the figures that follow, we use
10,000 replications from ~5+1!+

Detailed results are presented only for the statistics LMEL, K, LRM , and
2SLSHET + The statistics LMCUE , LMEL, and LMET display a very similar perfor-
mance across almost all scenarios+ We therefore only report results for LMEL+
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We do not report power results for the statistics SEL and SET because, as seen
earlier, their size properties appear to be quite poor for the sample sizes con-
sidered here+ When k � 1, AR and K are numerically identical+ In overidenti-
fied cases, K generally performs better than AR+ We therefore do not report
results for AR ~see Kleibergen, 2002a, for a comparison of K and AR!+ Simi-
larly, GELRCUE is numerically identical to LMr for k � 1 but leads to a less
powerful test for k � 1+ Also EL and ET versions of GELRr have rather unreli-
able size properties for the sample sizes considered here+ Therefore we do not
report detailed results for GELRr+

We first focus on the separate effects of P1, n,ruV , and k on power+
With strong identification all statistics have a U-shaped power curve+ With

the exception of 2SLSHET , the lowest point of the power curve is usually achieved
at u0 � 0+ In Designs ~I! and ~II!, 2SLSHET is usually biased, taking on its low-
est value at a negative u0 value in the interval @�0+2,0+0# + When u0 is weakly
identified, the power curves of LMEL, K, and LRM are generally very flat across
all u0 values, often only slightly exceeding the significance level of the test+
This is especially true for LMEL and K but less so for LRM , which is generally
more powerful than the other two statistics in this situation+ There is one excep-
tion when the power of the three tests is high+ In Design ~I! with ruV � 0+99,
although being flat at about 5% for positive u0 values, the power curves reach a
sharp peak of almost 100% around u0 � �1+ The reason for this anomaly is
most easily explained in the case k � 1, where LMEL~0! � GELRCUE ~0! �
n [g~0! ZV~0!�1 [g~0!+ We have ZV~0! rp E~ui � Yiu0!

2 , which in Design ~I! with
P1 � 0+1 equals 1 � 2u0ruV � ~1+01!u0

2+ If ruV � 0+99 this expression is mini-
mized at around u0 � �0+98 where it equals approximately 0+03+ Therefore,
this peak is caused by ZV~0!�1 taking on large values for u0 in the neighborhood
of �1+

For negative u0 values with 6u06 � 1 power quickly falls, reaching between
20% and 50% across the different designs at u0 � �4+

In contrast to the power curves of LMEL, K, and LRM , the power curve of
2SLSHET retains its U-shaped form for P1 � 0+1+ In many cases, the power
curve reaches values close to 100% when 6u06 is close to 4+

As to be expected the tests are more powerful when n is increased from 100
to 250+ This holds uniformly across all statistics and designs with a more pro-
nounced power increase in the strongly identified cases+

There does not seem to be a systematic effect due to ruV as it varies with the
specific design+ For reasons explained previously, the shape of the power curves
can change dramatically in Design ~I! when ruV is increased from 0+5 to 0+99 if
P1 � 0+1+

In most cases, there is only little change in the power functions when k is
increased from 5 to 10+ In general, if the power function changes, then power
is slightly lower for larger k+

We now compare the power functions across statistics+ Figures 1a–c dis-
play the power curves of the four statistics for Designs ~I!–~III! in the case
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~a!

~b!
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P1 � 1+0, n � 250, ruV � 0+5, and k � 5 ~the figures for P1 � 0+1 and for the
other parameter combinations are available upon request!+ The qualitative com-
parison for the other parameter combinations is very similar, and we therefore
focus on these representative cases+

When identification is weak, the test based on LRM is usually more powerful
than those based on LMEL and K+ The power gain of using LRM is quite sub-
stantial for negative u0 values but less so for positive u0+ However, the Wald
test 2SLSHET is by far the most powerful test in all three designs+ Except for
some small negative u0 values its power curve uniformly dominates the power
curves of the other tests+ Recall though that 2SLSHET has unreliable size prop-
erties under weak identification+

When identification is strong, LMEL uniformly dominates LRM and K in
Designs ~II! and ~III! ~see Figures 1b and 1c!+ However, LRM and K uniformly
dominate LMEL in Design ~I! ~see Figure 1a!+ This result is to be expected+ On
the one hand, the LMEL test is based on nonparametric GEL methods+ On the
other hand, LRM and K are motivated within the normal model framework+
Although the power gain of LMEL is small in Design ~III!, it is substantial in
Design ~II!+ Therefore, LMEL should be used when errors have thick tails+

~c!

Figure 1. Power curves, strong instrument+ ~a! Normal errors, ~b! t ~2! errors,
~c! x2 errors+
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With strong identification, the Wald test is the most powerful test for posi-
tive u0 values+ For negative u0 values, its performance varies from being most
powerful in Design ~III! to least powerful in Design ~I!+ These results confirm
that the Wald test is a reasonable choice when identification is strong+

Overall, therefore, the power study does not lead to an unambiguous ranking
of the different tests considered here+ Which test is most appropriate depends
on the particular error distribution and degree of identification+ We find that
with strong identification and errors with thick tails or asymmetric errors, LMEL

seems to be the best choice whereas with normal errors LRM and K appear
preferable+When identification is weak, LRM generally dominates K and LMEL

in terms of power although as noted previously the size properties of LRM deteri-
orate substantially in the presence of heteroskedasticity+

NOTES

1+ Note that D~u! is V~u! in Stock and Wright ~2000!+ We choose our notation for V~u! for
consistency with Newey and Smith ~2004!+

2+ Weak convergence here is defined with respect to the sup-norm on function spaces and
euclidean norm on Rk+

3+ For compact Q, continuous r, and gi ~i � 1, + + + , n!, the existence of an argmin Zu may be
shown+ In fact, supl� ZLn~u! ZP~u,l!, viewed as a function in u, can be shown to be lower semicon-
tinuous ~ls!+A function f ~x! is ls at x0 if, for each real number c such that c � f ~x0!, there exists an
open neighborhood U of x0 such that c � f ~x! holds for all x � U+ The function f is said to be ls if
it is ls at each x0 of its domain+ It is easily shown that ls functions on compact sets take on their
minimum+ Uniqueness of Zu, however, is not implied+ As a simple example, consider the i+i+d+ linear
IV model in ~2+2! when p � 2 and let the two components Yij , ~ j � 1,2!, of Yi be independent
Bernoulli random variables+ Then, for each n, the probability that Yi1 � Yi2 for every i � 1, + + + , n is
positive+ If Yi1 � Yi2 for every i � 1, + + + , n and Zu � Q is an argmin of supl� ZLn~u! ZP~u,l!, then each
Nu � Q with Nu1 � Nu2 � Zu1 � Zu2 is also+ To uniquely define Zu, we could, for example, do the follow-

ing+ From the set of all vectors u � Q that minimize supl� ZLn~u! ZP~u,l!, let Zu be the vector that has
the smallest first component+ ~If that does not pin down Zu uniquely, choose from the remaining
vectors according to the second component, and so on+!

4+ A choice of ZV~u!�1 as the weighting matrix WT ~ NuT ~u!! in Stock and Wright ~2000, equa-
tion ~2+2!, p+ 1058!, i+e+, ~( i�1

n
gi ~u!gi ~u!

'0n!�1 , results in the CUE which is the GEL estimator
based on r~v! � �~1 � v!202; see Newey and Smith ~2004, Theorem 2+1!+ Hansen, Heaton, and
Yaron ~1996! and Pakes and Pollard ~1989! define the ~GMM! CUE using the centered weighting
matrix ~(i�1

n
~gi ~u!� [g~u!!~gi~u!� [g~u!!'0n!�1+ However, as shown in Newey and Smith ~2004,

footnote 2!, both versions of the CUE are numerically identical+
5+ The proof of Theorem 2 uses a second-order Taylor expansion of ZPr~u,l! in l about 0 in

which the only impact of r asymptotically is through r1 and r2, which are both �1+
6+ Newey and Smith ~2004! show that under certain conditions including $zi : i � 1% i+i+d+,

ZuEL � arg maxu�Q ln R~u!+ Thus ln R~u! can be interpreted as the criterion function of the EL
estimator+

7+ Alternatively, instead of using uniform weights in the definition of ZV~u! one could use
empirical probabilities that are associated with each GEL estimator; see Section 2 of Newey and
Smith ~2004!+ However, preliminary Monte Carlo simulations ~not reported here! showed no clear
improvement in the performance of the test statistics+

8+ To calculate GELRr~u!, Sr~u!, and LMr~u! for EL and ET, the globally concave maximi-
zation problem maxl� ZLn~u! ZP~u,l! must be solved numerically+ To do so we implement a variant
of the Newton–Raphson algorithm+ We initialize the algorithm by setting l equal to the zero vec-
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tor+ At each iteration the algorithm tries several shrinking step sizes in the search direction and
accepts the first one that increases the function value compared to the previous value for l+ This
procedure enforces an “uphill climbing” feature of the algorithm+

9+ The statistics are defined as follows:

AR~u! :� ~ y � Yu!'PZ~ y � Yu!0suu~u!,

where suu~u! :� ~ y � Yu!'MZ~ y � Yu!0~n � k!,

K~u! :� ~ y � Yu!'P EY~u!~ y � Yu!0suu~u!,

where EY~u! :� Z FP~u!, FP~u!� ~Z 'Z!�1Z ' @Y � ~ y � Yu!suV~u!0suu~u!# , and suV~u! :� ~ y � Yu!'MZY0
~n � k!+ The statistic K~u! ~Kleibergen, 2002a!, is not robust to conditional heteroskedasticity+
However, a version of the K-statistic in Kleibergen ~2001, equation ~22!! that uses a heteroskedas-
ticity consistent estimator for the covariance matrix of gi~u! overcomes this drawback+ For model
~5+1!, the statistic is given by

KHET ~u! :� n [g~u!' OV~u!�1D~u!~D~u!' OV~u!�1D~u!!�1D~u!' OV~u!�1 [g~u!,

where OV~u! :� ZV~u! � [g~u! [g~u!' , D~u! :� (i�1

n
Gi � n ZV~u! OV~u!�1 [g~u!, ZG :� (i�1

n
Gi 0n, and

ZV~u! :� (i�1

n
~Gi � ZG!~gi~u! � [g~u!!'0n+ The statistic KHET ~u! is identical in structure to

LMCUE ~u! except the centered components gi~u!� [g~u! and Gi � ZG are used in place of gi~u! and
Gi , respectively+ Note that Gi :� Gi~u! does not depend on u in a linear model+ For the LRM sta-
tistic, see Moreira ~2003, Sect+ 3!+ Finally, the Wald statistics are given by

2SLSHOM :� Zu 'W �1 Zu, 2SLSHET :� Zu 'WHET
�1 Zu,

where Zu :� ~Y 'PZY !�1Y 'PZ y, W :� [s 2~Y 'PZY !�1, [s 2 :� ~n � k!�1(i�1

n
[ui
2 , [ui :� yi � Yi

' Zu, ~i �
1, + + + , n!, and WHET :� n~Y 'PZ Y !�2~(i�1

n
[ui
2~PZ Y !i

2!0~n � k! is a conditional heteroskedasticity
robust estimator for the variance of Zu+

10+ Kleibergen ~2002a! generates one sample for the instrument matrix Z from a N~0, Ik � In!
distribution and then keeps Z fixed across R � 10,000 samples of the DGP ~5+1! using Design ~I!
with n � 100 and ruV � 0+99+ We simulate a new matrix Z with each sample of the DGP ~5+1!+ As
a consequence, our results do not coincide with those reported by Kleibergen ~2002a!+

To investigate the sensitivity of the results in Kleibergen ~2002a! to the choice of Z, we iterated
Kleibergen’s ~2002a! procedure 100 times; i+e+, each time we simulated a matrix Z of instruments
that we then kept fixed across R � 1,000 samples of the DGP ~5+1!+ We found strong dependence
of the numerical results of the Monte Carlo experiment on Z+ For example, in the case P1 � 1,
k � 1, the power of the K-statistic to reject the hypothesis u0 � 0 when u0 � 0+4 varied from about
60% to 95% in the 100 experiments+ For the specific Z that Kleibergen ~2002a! generates, he reports
power of about 93% ~see his Figure 1, p+ 1793!+
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APPENDIX: Proofs

Proof of Equation (2.4). Let fi :� supu�Q7gi~u!7+ Define K :� supi�1 Efi
j � `+ Let

« � 0 and choose a positive C � R such that K0C � «+ Then

Pr �� max
1�i�n

fi�n�10j � C 10j� �(
i�1

n

Pr $ fi
j � nC%�(

i�1

n 1

nC
E~ fi

j!� K0C � «,

where the first inequality follows from Pr~A � B!� Pr~A!� Pr~B! and the second uses
the Markov inequality+ It follows that ~max1�i�n fi !n�10j� Op~1! and thus ~max1�i�n fi !�
op~n102! by j � 2+ Thus ~2+4! implies M~i!+ �

Proof of Lemma 1. ID holds trivially+ By ~2+2! and ~2+3!, gi~u! � ~ yi � Yi
'u!Zi �

Zi ~Zi
'P� Vi

'!~u0 � u!� Zi ui + Next max1�i�n supu�Q7gi~u!7� op~n102! is established+
An application of the Borel–Cantelli lemma shows that for real-valued i+i+d+ random
variables Wi such that EWi

2 � `, max1�i�n6Wi 6 � op~n102!; see Owen ~1990,
Lemma 3! for a proof+ By the definition of gi~u! and the triangle inequality,

max
1�i�n

sup
u�Q

7gi ~u!7 � max
1�i�n

sup
u�Q

~7Zi Zi
'P~u0 � u!7� 7Zi Vi

'~u0 � u!7� 7Zi ui7!+

By Assumption M'~iii!, we can apply the just-mentioned result to each of the three sum-
mands in the preceding equation, which proves the result+

Next M~ii! is shown+ By the i+i+d+ assumption, V~u!� limnr`Egi~u!gi~u!
' , and con-

tinuity and boundedness in M~ii! follow immediately from M'~iii! and compactness of
Q+ The same is true for the Op~1! statement in M~ii!+ Finally, uniform convergence fol-
lows from the weak law of large numbers and compactness of Q+

Next M~iii! is proved+ Because supu�Q7n�1 (i�1
n ~Zi Zi

' � QZZ!CA~a0 � a!7 rp 0,
we only have to deal with the empirical process

Cn~{,u! :� n�102 (
i�1

n

@Zi ~Zi
'PB~b0 � b!� Vi

'~u0 � u!� ui !� QZZPB~b0 � b!# +
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Finite-dimensional joint convergence follows from the CLT and M'~iii!, and stochastic
equicontinuity follows from the fact that ~u0 � u! enters Cn~{,u! linearly:

sup
7u1�u27�d

7Cn~{,u1!�Cn~{,u2 !7

� sup
7u1�u27�d

7~b2 � b1!
'n�102 (

i�1

n

PB
' ~Zi Zi

'� QZZ !� ~u2 � u1!
'n�102 (

i�1

n

Vi Zi
' 7,

where the last expression is bounded by dOp~1! by the CLT+ Furthermore, Q is compact
by assumption+ The proposition in Andrews ~1994, p+ 2251! can thus be applied, which
yields the desired result+ �

The following proofs are straightforward generalizations of the Guggenberger ~2003!
proofs for the i+i+d+ linear model to the more general context considered here+We require
three lemmas that are modified versions of Lemmas A1–A3 in Newey and Smith ~2004!
for the proofs of our theorems+ These modifications are necessary because unlike Newey
and Smith we need to work with weakly and strongly identified parameters and do not
make an i+i+d+ assumption+

For n � N let Qn � Q+ Let cn :� n�102 max1�i�n supu�Qn
7gi ~u!7+ Let Ln :� $l �

Rk : 7l7 � n�102cn
�102% if cn � 0 and Ln � Rk otherwise+ Write “u+w+p+a+1” for “uni-

formly over u � Qn w+p+a+1+”

LEMMA 7+ Assume max1�i�n supu�Qn
7gi ~u!7 � op~n102! .

Then supu�Qn ,l�Ln ,1�i�n 6l'gi ~u!6 rp 0 and Ln � ZLn~u! u.w.p.a.1, where ZLn~u! is
defined in (2.5).

Proof. The case cn � 0 is trivial, and thus wlog cn � 0 can be assumed+ By assump-
tion cn � op~1!, and the first part of the statement follows from

sup
u�Qn ,l�Ln ,1�i�n

6l'gi ~u!6 � n�102cn
�102 max

1�i�n
sup
u�Qn

7gi ~u!7

� n�102cn
�102 n102cn � cn

102 � op~1!,

which also immediately implies the second part+ �

LEMMA 8+ Suppose max1�i�n supu�Qn
7gi ~u!7� op~n102! , lmin~ ZV~u!!� « u.w.p.a.1

for some « � 0, [g~u! � Op~n�102! uniformly over u � Qn and Assumption r holds.
Then l~u! � ZLn~u! satisfying ZP~u,l~u!! � supl� ZLn~u! ZP~u,l! exists u.w.p.a.1,

l~u! � Op~n�102! , and supl� ZLn~u! ZP~u,l! � Op~n�1! uniformly over u � Qn.

Proof. Without loss of generality cn � 0, and thus Ln can be assumed compact+ For
u � Qn, let lu � Ln be such that ZP~u,lu! � maxl�Ln

ZP~u,l!+ Such a lu � Ln exists
u+w+p+a+1 because a continuous function takes on its maximum on a compact set and by
Lemma 7 and Assumption r, ZP~u,l! ~as a function in l for fixed u! is C 2 on some open
neighborhood of Ln u+w+p+a+1+We now show that actually ZP~u,lu!� supl� ZLn~u! ZP~u,l!
u+w+p+a+1, which then proves the first part of the lemma+ By a second-order Taylor expan-
sion around l� 0, there is a lu

* on the line segment joining 0 and lu such that for some
positive constants C1 and C2
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0 � ZP~u,0!� ZP~u,lu!� �2lu
' [g~u!� lu' �(

i�1

n

r2~lu
*'gi ~u!!gi ~u!gi ~u!

'0n�lu
� �2lu

' [g~u!� C1lu
' ZV~u!lu� 27lu7 7 [g~u!7� C27lu72 (A.1)

u+w+p+a+1, where the second inequality follows as max1�i�n r2~lu
*'gi ~u!! � � 1

2
_

u+w+p+a+1 from Lemma 7, continuity of r2~{! at zero, and r2 � �1+ The last inequality
follows from lmin~ ZV~u!! � « � 0 u+w+p+a+1+ Now, ~A+1! implies that ~C202!7lu7 �
7 [g~u!7 u+w+p+a+1, the latter being Op~n�102! uniformly over u � Qn by assumption+ It
follows that lu � int~Ln! u+w+p+a+1+ To prove this, let e � 0+ Because lu � Op~n�102!
uniformly over u � Qn and cn � op~1!, there exist Me � ` and ne � N such that
Pr~7n102lu7 � Me! � 1 � e02 uniformly over u � Qn and Pr~cn

�102 � Me! � 1 � e02
for all n � ne+ Then Pr~lu � int~Ln!!� Pr~7n102lu7 � cn

�102! � Pr~~7n102lu7 � Me! ∧
~cn

�102 � Me!! � 1 � e for n � ne uniformly over u � Qn+
Hence, the FOC for an interior maximum ~] ZP0]l!~u,l!� 0 hold at l� lu u+w+p+a+1+

By Lemma 7, lu � ZLn~u! u+w+p+a+1, and thus by concavity of ZP~u,l! ~as a function in l
for fixed u! and convexity of ZLn~u! it follows that ZP~u,lu! � supl� ZLn~u! ZP~u,l!
u+w+p+a+1, which implies the first part of the lemma+ From before lu � Op~n�102! uni-
formly over u � Qn + Thus the second and by ~A+1! the third parts of the lemma
follow+ �

Suppose Q1 � Q2 � Q, Qi � R pi , p1 � p2 � p+ Partition u0 � ~u01
' ,u02

' !' accordingly
and assume u02 � Q2+ For d1 � Q1 define

Zu2~d1! :� arg min
d2�Q2

sup
l� ZLn~~d1

' ,d2
' !' !

ZP~~d1
' ,d2
' !',l! � R p2,

Zud1
:� ~d1

' , Zu2~d1!
' !' � R p, ud1

:� ~d1
' ,u02
' !' � R p+

By u+w+p+a+1 we denote “uniformly over d1 � Q1 w+p+a+1+”

LEMMA 9+ Suppose max1�i�n supu�Q1�Q2
7gi ~u!7 � op~n102! , lmax~ ZV~ Zud1

!! � k
u.w.p.a.1 for some k � `, supl� ZLn~ud1 !

ZP~ud1
,l! � Op~n�1! uniformly over d1 � Q1,

and Assumption r holds.
Then [g~ Zud1

! � Op~n�102! uniformly over d1 � Q1.

Proof. Without loss of generality [g~ Zud1
! � 0 can be assumed+ Define tl :�

�n�102 [g~ Zud1
!07 [g~ Zud1

!7+ Note that tl � Ln and thus tl � ZLn~u! uniformly over u � Qn

w+p+a+1 ~see Lemma 7 with Qn :� Q1 �Q2!+ By a second-order Taylor expansion around
l � 0, there is a Dl on the line segment joining 0 and tl such that for some positive
constants C1 and C2

ZP~ Zud1
, tl! � �2 tl' [g~ Zud1

!� tl'�(
i�1

n

r2~ Dl'gi ~ Zud1
!!gi ~ Zud1

!gi ~ Zud1
!'0n� tl

� 2n�102 7 [g~ Zud1
!7� C1 tl'�(

i�1

n

gi ~ Zud1
!gi ~ Zud1

!'0n� tl
� 2n�102 7 [g~ Zud1

!7� C2 n�1 (A.2)
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u+w+p+a+1, where the first inequality follows from Lemma 7, which implies that min1�i�n

r2~ Dl'gi ~ Zud1
!! � �1+5 u+w+p+a+1+ The second inequality follows by lmax~ ZV~ Zud1

!! �
k � ` u+w+p+a+1+ The definition of Zud1

implies

ZP~ Zud1
, tl! � sup

l� ZLn~ Zud1 !

ZP~ Zud1
,l!� sup

l� ZLn~ud1 !

ZP~ud1
,l!� Op~n

�1 ! (A.3)

uniformly over d1 � Q1+ Combining equations ~A+2! and ~A+3! implies n�102 7 [g~ Zud1
!7�

Op~n�1! uniformly over d1 � Q1+ �

Proof of Theorem 2. ~i! We first show consistency of Zb+ By Assumption ID and
M~iii! supu�Q7 [g~u! � ~n�102m1n~u! � m2~b!!7 rp 0, where m2~b! � 0 if and only if
b� b0+ Therefore, [g~ Zu!� op~1! is a sufficient condition for consistency of Zb+ Applying
Lemma 8 to the case Qn � $u0% gives supl� ZLn~u0 ! ZP~u0 ,l!� Op~n�1!+Assumption M~ii!
implies lmax~ ZV~ Zu!! � k w+p+a+1 for some k � `, and thus Lemma 9 ~applied to the
case p1 � 0, Q2 � Q! implies [g~ Zu! � Op~n�102!+

Next we establish n102-consistency of Zb+ By consistency of Zb and Assumption M~ii!
lmin~ ZV~ Zu!! � « w+p+a+1 for some « � 0, and thus Lemma 8 for the case Qn � $ Zu%
implies that the FOC

n�1 (
i�1

n

r1~l
'gi ~u!!gi ~u! � 0 (A.4)

have to hold at ~ Zu, Zl! w+p+a+1, where Zl :� l~ Zu!� Op~n�102! and l~u!, for given u � Q,
is defined in Lemma 8+ Expanding the FOC in l around 0, there exists a mean value Dl
between 0 and Zl ~that may be different for each row! such that

0 � � [g~ Zu!� �(
i�1

n

r2~ Dl'gi ~ Zu!!gi ~ Zu!gi ~ Zu!'0n� Zl� � [g~ Zu!� ZV Dl Zu Zl,

where the matrix ZV Dl Zu has been implicitly defined+ Because Zl � Op~n�102!, Lemma 7
and Assumption r imply that sup1�i�n,u�Q6r2~ Dl'gi~u!!� 16rp 0+ By Assumption M~ii!,
it follows that ZV Dl Zu rp V~~ [a ',b0

' !' ! and thus ZV Dl Zu is invertible w+p+a+1 and ~ ZV Dl Zu!�1 rp

V~~ [a ',b0
' !' !�1 + Therefore

Zl � �~ ZV Dl Zu !�1 [g~ Zu! (A.5)

w+p+a+1+ Inserting this into a second-order Taylor expansion for ZP~u,l! ~with mean value
l* as in ~A+1!! it follows that

ZP~ Zu, Zl! � 2 [g~ Zu!' ZV Dl Zu
�1 [g~ Zu!� [g~ Zu!' ZV Dl Zu

�1 ZVl* Zu ZV Dl Zu
�1 [g~ Zu!+ (A.6)

The same argument as for ZV Dl Zu proves ZVl* Zu rp V~~ [a ',b0
' !' !+ We therefore have

ZP~ Zu, Zl! � [g~ Zu!'~V~~ [a ',b0
' !' !�1 � op~1!! [g~ Zu!+ By the definition of Zu,

n ZP~ Zu, Zl!� n ZP~u0 ,l~u0 !!

� n102 [g~ Zu!'~V~~ [a ',b0
' !' !�1 � op~1!!n

102 [g~ Zu!� n102 [g~u0 !'~V~u0 !�1

� op~1!!n
102 [g~u0 ! � 0+
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By Assumption ID, we have up to op~1! terms that n102 [g~ Zu! � Cn~ Zu! � m1n~ Zu! �
n102m2~ Zb! and n102 [g~u0! � Cn~u0!+ The same analysis as in the proof of Lemma A1 in
Stock and Wright ~2000, p+ 1091, line six from the top! can now be applied to prove
n102-consistency of Zb, where the symmetric matrix V~~ [a ',b0

' !' !�1 � op~1! plays the
role of WT ~ NuT ~ Zu!! in Stock and Wright+ Note that in equation ~A+4! in Stock and
Wright, Assumption M~iii! of bounded sample paths w+p+a+1 is used+ Finally, note that
lmin~V~~ [a ',b0

' !' !�1 � op~1!! is bounded away from zero w+p+a+1+
~ii ! By Assumption M~iii !

n102 sup
~a,b!�A�BM

7 [g~uab !� E [g~uab !7 � Op~1!,

and by ID we have for some mean-vector Nb between b0 and b0 � n�102b ~that may
differ across rows!

n102E [g~uab ! � m1n~uab !� n102m2~b0 � n�102b!� m1n~uab !� M2~ Nb!b+

Because the latter expression is bounded, it follows that [g~uab! � Op~n�102! u+w+p+a+1,
where u+w+p+a+1 stands for “uniformly over ~a,b! � A � BM w+p+a+1+” Therefore, by
Lemma 8, l~uab! such that ZP~uab,l~uab!! � supl� ZLn~uab ! ZP~uab ,l! exists u+w+p+a+1 and
l~uab! � Op~n�102 ! uniformly over ~a, b! � A � BM + This implies that the FOC
n�1 (i�1

n r1~l
'gi ~u!!gi ~u! � 0 have to hold at l � l~uab! and u � uab u+w+p+a+1+

Expanding the FOC and using the same steps and notation as in part ~i!, it follows that
l~uab! � �~ ZV Dluab

!�1 [g~uab !, and upon inserting this into a second-order Taylor expan-
sion of ZP~u,l! we have

ZP~uab ,l~uab !! � 2 [g~uab !
' ZV Dluab

�1 [g~uab !� [g~uab !
' ZV Dluab

�1 ZVl*uab
ZV Dluab

�1 [g~uab !

u+w+p+a+1+ The matrices ZV Dluab
and ZVl*uab

converge to V~~a ',b0
' !' ! uniformly over A �

BM + By M~iii!, n102 [g~uab! n C~~a
',b0
' !' ! � m1~~a

',b0
' !' ! � M2~b0!b, and therefore

n ZP~uab,l~uab!! n Pab � P~~a ',b0
' !',b! on A � BM +

By part ~i! of the proof and Lemma 3+2+1 in van der Vaart and Wellner ~1996, p+ 286!
it follows that

~ [a ', n102~ Zb� b0 !
' !' rd ~a

*',b*' !'+

For given a � A, one can calculate arg minb�R pB Pab by solving the FOC for b+Writing
V for V~~a ',b0

' !' ! and M2 for M2~b0! the result is

b*~a! � �~M2
'V�1M2 !

�1M2
'V�1 @C~~a ',b0

' !' !� m1~~a
',b0
' !' !# + (A.7)

This holds in particular for a � a *+ It follows that a * � arg mina�A Pab*~a! + �

Proof of Theorem 3. Applying Lemma 8 to the case Qn � $u% , it follows that l~u! �
ZLn~u! exists such that ZP~u,l~u!! � supl� ZLn~u! ZP~u,l!+ Using the same steps and nota-

tion as in the proof of Theorem 2 leads to

ZP~u,l~u!! � 2 [g~u!' ZV Dlu�1 [g~u!� [g~u!' ZV Dlu�1 ZVl*u ZV Dlu�1 [g~u!
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w+p+a+1, where by Mu~ ii! both ZV Dlu and ZVl*u converge in probability to D~u!+ By Mu~ iii!,

n102 [g~u!rd N~m1~u!,D~u!!,

from which the result follows+ �

Proof of Theorem 4. Using Mu~ i!–~iii! and an argument similar to the argument
that led to ~A+5! we have

n102l~u! � �D~u!�1n102 [g~u!� op~1!, (A.8)

and therefore the statement of the theorem involving Sr~u! follows immediately from
the one for LMr~u!+ Therefore, we only deal with the statistic LMr~u! given in equation
~3+8!+

First, we show that the matrix D * is asymptotically independent of n102 [g~u!+ For
notational convenience from now on we omit the argument u; e+g+, we write gi for gi~u!+
By a mean-value expansion about 0 we have r1~l

'gi ! � �1 � r2~ji !gi
'l for a mean

value ji between 0 and l'gi , and thus by ~A+8! and the definition of L we have

D * � �n�1 (
i�1

n

~n102GiA ,GiB !� n�302 (
i�1

n

@ r2~ji !~n
102GiA ,GiB !gi

'D�1n102 [g#� op~1!

� ��n�102 (
i�1

n

GiA � n�1 (
i�1

n

GiA gi
'D�1n102 [g,M2~b0 !�� op~1!,

where for the last equality we use ~3+7! and Assumptions Mu~v!–~vi!+ By Assumption
Mu~v! it thus follows that

vec~D *, n102 [g! � w1 � Mv� op~1!,

where w1 :� vec~0,�M2~b0!,0! � RkpA�kpB�k and

M :� �
�IkpA

DAD
�1

0 0

0 Ik
	 , v :� n�102 (

i�1

n �vecGiA

gi
�;

M and v have dimensions ~kpA � kpB � k!� ~kpA � k! and ~kpA � k!� 1, respectively+
By Assumption ID, Mu~vii!, and ~3+7! vrd N~w2,V~u!!, where w2 :� ~~vec M1A !

',m1
' !'

and M1A are the first pA columns of M1+ Therefore

vec~D *, n102 [g!rd N �w1 � Mw2 , �
C 0 0

0 0 0

0 0 D
		 , (A.9)

where C :� DAA � DAD
�1DA

' is positive definite+ Equation ~A+9! proves that D * and
n102 [g are asymptotically independent+

We now derive the asymptotic distribution of LMr~u!+ Denote by PD and Sg the limit-
ing normal distributions of D* and n102 [g, respectively ~see equation ~A+9!!+ Subsequently
we show that the function h : Rk�p r R p�k defined by h~D! :� ~D 'D�1D!�102D ' for

706 PATRIK GUGGENBERGER AND RICHARD J. SMITH

https://doi.org/10.1017/S0266466605050371 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050371


D � Rk�p is continuous on a set C � Rk�p with Pr~ PD � C! � 1+ By the continuous
mapping theorem and Mu~v! we have

~D *' EV�1D * !�102D *' EV�1n102 [grd ~ PD 'D�1 PD!�102 PD 'D�1 Sg+ (A.10)

By the independence of PD and Sg, the latter random variable is distributed as W � z,
where the random p-vector W is defined as

W � W~a! :� ~ PD 'D�1 PD!�102 PD 'D�1m1~u!, (A.11)

z ; N~0, Ip!, and W and z are independent+ Note that for u � u0, W [ 0+ From ~A+10!
the statement of the theorem follows+

We now prove the continuity claim for h+ Note that h is continuous at each D that has
full column rank+ It is therefore sufficient to show that PD has full column rank a+s+ From
~A+9! it follows that the last pB columns of PD equal �M2~b0!, which has full column
rank by assumption+ Define O :� $o � RkpA : ∃ Io � Rk�pA, s+t+ o � vec~ Io! and the k �
p-matrix ~ Io,�M2~b0!! has linearly dependent columns%+ Clearly, O is closed and there-
fore Lebesgue-measurable+ Furthermore, O has empty interior and thus has Lebesgue
measure 0+ For the first pA columns of PD, PDpA

say, it has been shown that vec PDpA
is

normally distributed with full rank covariance matrix C+ This implies that for any mea-
surable set O* � RkpA with Lebesgue measure 0, it holds that Pr~vec~ PDpA

! � O*! � 0,
in particular, for O* � O+ This proves the continuity claim for h+ �

Proof of Theorem 5. By Assumptions Ma~v! and IDa [g~ Zua!� m2~~a02, Zb!!� op~1!,
and by Lemmas 8 and 9 ~applied to Qn � $uab0

% and Q1 � $a% , Q2 � B, respectively! we
have [g~ Zua! � Op~n�102 !+ Assumption IDa then implies consistency of Zb+ Applying
Lemma 8 to the case Qn � $ Zua% implies that the FOC for l must hold in the definition of
Zua ~see equation ~A+4!!+ Then repeating the analysis that leads to ~A+6! in the proof of

Theorem 2, we have by Ma~ ii!

GELRr
sub~a! � n102 [g~ Zua !'D~uab0

!�1n102 [g~ Zua !� op~1!+ (A.12)

The next goal is to derive the asymptotic distribution of n102 [g~ Zua!+ Our analysis follows
Newey and Smith ~2004!; see their proof of Theorem 3+2+ Differentiating the FOC ~A+4!
with respect to l yields the matrix n�1 (i�1

n r2~ Zl'gi ~ Zua !! gi~ Zua!gi~ Zua!' , which by
Ma~ ii! converges in probability to �D~uab0

!, which is nonsingular+ Therefore, the
implicit function theorem implies that there is a neighborhood of Zua where the solution
to the FOC, say Zl~u!, is continuously differentiable w+p+a+1+ The envelope theorem then
implies

n�1 (
i�1

n

r1~ Zl'gi ~ Zua !!~]gi 0]b!'~ Zua ! Zl � 0 (A.13)

w+p+a+1+ Also, a mean-value expansion of ~A+4! in ~b,l! about ~b0,0! yields ~where
gi~u! inside r1 is kept constant at gi~ Zua!!

� [g~uab0
!� n�1 (

i�1

n

@ r1~ Nl'gi ~ Zua !!GiB~ua Nb!~ Zb� b0 !

� r2~ Nl'gi ~ Zua !!gi ~ua Nb!gi ~ Zua !' Zl# � 0, (A.14)
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where ~ Nb ', Nl'! are mean values on the line segment that joins ~b0
' ,0' ! and ~ Zb ', Zl'! that

may be different for each row+ Combining the pB rows of ~A+13! with the k rows of
~A+14! we get

� 0

� [g~uab0
!�� M� Zb� b0

Zl � � 0, (A.15)

where the ~ pB � k! � ~ pB � k! matrix M has been implicitly defined+ By Ma~ ii! and
Ma~ iv!–~vi! the matrix M converges in probability to RM, where ~writing M2b for
M2b~~a02,b0!!!

RM :� �� 0 M2b
'

M2b D~uab0
!� and RM�1 � ���S H

H ' P�
and ~omitting the argument uab0

!

S :� ~M2b
' D�1M2b!

�1, H :� SM2b
' D�1, and P :� D�1 � D�1M2bSM2b

' D�1+

It follows that M is nonsingular w+p+a+1+ Equation ~A+15! implies that w+p+a+1

n102~~ Zb� b0 !
', Zl' !' � M�1~0', n102 [g~uab0

!' !'+ (A.16)

An expansion of [g~ Zua! in b around b0 and the preceding lead to

[g~ Zua ! � [g~uab0
!� ZGB~ Nu!~ Zb� b0 !� ~Ik � M2bH ! [g~uab0

!� op~n
�102 ! (A.17)

for some appropriate mean value Nu+ Note that

Ik � M2bH � MM2b
~D~uab0

!!, (A.18)

which has rank k � pB+ From ~A+12!, GELRr
sub~a! rd j

'D~uab0
!�1MM2b

~D~uab0
!!j,

where j ; N~m1~uab0
!,D~uab0

!!, which concludes the proof+ �

Proof of Theorem 6. As in the proof of Theorem 5, n102l~ Zua! �
�D~uab0

!�1n102 [g~ Zua ! � op~1!+ Hence, the result for LMr
sub~a! implies the result for

Sr
sub~a!+
As in the proof of Theorem 4 renormalize D * :� Dr~a!L, where the diagonal pA �

pA matrix L :� diag~n102, + + + , n102,1, + + + ,1! has first pA1
diagonal elements equal to n102

and the remaining pA2
elements equal to unity+We now show that D * and n102 [g~ Zua! are

asymptotically independent+ By a mean-value expansion about uab0
and Assumption

Ma~vii! we have for some mean value Du� ~a ', Db '!' ~that may be different for each row!

n102 vec ZGA1
~ Zua ! � n102 vec ZGA1

~uab0
!� ~] vec ZGA1

0]b!~ Du!n102~ Zb� b0 !

� n102 vec ZGA1
~uab0

!� ~] vec ZGA1
0]b!~ Du!Hn102 [g~uab0

!� op~1!,

where we have used ~A+16! for the last equation+ Assumptions Ma~vii! and IDa imply
~] vec ZGA1

0]b!~ Du!� ]~n�102m1~ Du!� m2~~a02, Db!!!0]b]a1 � op~1!rp 0 ~recall that m2

does not depend on a1! and thus

708 PATRIK GUGGENBERGER AND RICHARD J. SMITH

https://doi.org/10.1017/S0266466605050371 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050371


n102 vec ZGA1
~ Zua ! � n102 vec ZGA1

~uab0
!� op~1!+ (A.19)

Proceeding exactly as in the proof of Theorem 4, using ~A+17!, ~A+19!, and Assump-
tions Ma~vii!–~ix!, it follows that

vec~D *, n102 [g~ Zua !! � m � Mv� op~1!, (A.20)

where M � R ~kpA1�kpA2�k!�~kpA1�k! and

M :� �
�IkpA1

DA1
D�1

0 0

0 Ik
	�IkpA1

0

0 Ik � M2bH�,
v :� n�102 (

i�1

n �vecGiA1
~uab0

!

gi ~uab0
! �, m :� vec~0,�~]m2 0]a2 !,0!,

where the arguments ~a02,b0! in M2b and ~]m20]a2! and uab0
in DA1

and D are omitted+
By Ma~x!, v is asymptotically normal with full rank covariance matrix V a~uab0

!, and
thus the asymptotic covariance matrix of vec~D *, n102 [g~ Zua!! is given by MV a~uab0

!M '+
For independence of D * and n102 [g~ Zua! the upper right k~ pA1

� pA2
! � k-submatrix of

MV a~uab0
!M ' must be 0+ This is clear for the kpA2

� k-dimensional submatrix, and we
only have to show that the kpA1

� k upper right submatrix

~�DA1
� DA1

D�1~Ik � M2bH !D!~Ik � M2bH !' (A.21)

is 0+ Using ~A+18!, the matrix in ~A+21! equals �DA1
D�1PM2b

~D!MM2b
~D!D, which is

clearly 0+ This proves the independence claim+
Now denote by PD and Sg the limiting normal distributions of D * and n102 [g~ Zua!, implied

by ~A+20!+ Recall M~a!� D�1MM2b
~D! ~see equation ~4+2!!+ If the function h : Rk�pA r

R pA�k defined by h~D! :� ~D 'M~a!D!�102D ' for D � Rk�pA is continuous on a set C �
Rk�pA with Pr~ PD � C! � 1, then by the continuous mapping theorem

~D *'M~a!D * !�102D *'D�1n102 [g~ Zua !rd ~ PD 'M~a! PD!�102 PD 'D�1 Sg+

By ~A+17! and ~A+18! the latter variable is distributed as Wa~a! � za, where

Wa~a! :� ~ PD 'M~a! PD!�102 PD 'M~a!m1~uab0
!+ (A.22)

Therefore the theorem is proved once we have proved the continuity claim for h+ For this
step of the proof we need the positive definite assumption for V a~uab0

! in Ma~x!+ It is
enough to show that with probability 1, rank~MM2b

~D! PD!� pA+ Because the span of the
columns of M2b equals the kernel of MM2b

~D! and rank~M2b!� pB, the latter condition
holds if rank~M2b, PD! � p+ Denote by PDpA2

the last pA2
columns of PD, which by ~A+20!

equal �~]m20]a2!+ By Assumption IDa, the matrix ~]m2 0]~a2
' ,b ' !' !~~a02 ,b0 !! has

rank pA2
� pB, and it remains to show that with probability one, this matrix is linearly

independent of the first pA1
columns of PD, PDpA1

say+ Using ~A+20! and V a~uab0
! � 0,

the covariance matrix of vec PDpA1
is easily shown to have full column rank pA1

k+ An
argument analogous to the last step in the proof of Theorem 4 can then be applied to con-
clude the proof+ �
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