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Abstract Let (R, m) be a Noetherian local ring and let M be a finitely generated R-module of dimension
d. Let x = x1, . . . , xd be a system of parameters of M and let n = (n1, . . . , nd) be a d-tuple of positive
integers. In this paper we study the length of generalized fractions M(1/(x1, . . . , xd, 1)), which was
introduced by Sharp and Hamieh. First, we study the growth of the function

Jx,M (n) = n1 · · · nde(x; M) − �(M(1/(xn1
1 , . . . , x

nd
d , 1))).

Then we give an explicit calculation for the function Jx,M (n) in the case in which M admits a certain
Macaulay extension. Most previous results on this topic are improved in a clearly understandable way.

Keywords: system of parameters; generalized fractions; limit closure; local cohomology;
Hilbert–Kunz function
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1. Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and let M be a finitely
generated R-module of dimension d. Let x = x1, . . . , xd be a system of parameters of M .
In this paper we study the length of generalized fractions M(1/(x1, . . . , xd, 1)), which was
introduced by Sharp and Hamieh [24] and Sharp and Zakeri [25]. It has been proved [7,
Lemma 2.3] that M/((x)limM ) is isomorphic to M(1/(x1, . . . , xd, 1)), where

(x)limM =
⋃
n>0

((xn+1
1 , . . . , xn+1

d )M : (x1 · · ·xd)n).

We call (x)limM the limit closure of the sequence x in M . It should be noted that the
Hochster monomial conjecture is equivalent to the claim that (x)limR �= R for every system
of parameters x.
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Let n = (n1, . . . , nd) be a d-tuple of positive integers and let xn = xn1
1 , . . . , xnd

d . We
consider the functions in n,

Ix,M (n) = �(M/(xn)M) − e(xn; M),

Jx,M (n) = e(xn, M) − �(M/(xn)limM ),

where e(x; M) is the Serre multiplicity of M with respect to the sequence x. In several
papers N. T. Cuong et al . showed that the least degree of all polynomials in n bounding
above Ix,M (n) is independent of the choice of x. It is called the polynomial type of M , and
is denoted by p(M). The invariant p(M) keeps a lot of information about the structure
of the module M . For example, M is Cohen–Macaulay if and only if �(M/(x)M) =
e(x; M) for all systems of parameters x of M . This condition is equivalent to saying
that p(M) = −∞. Recall that a finitely generated R-module M is generalized Cohen–
Macaulay if Hi

m(M) has finite length for every i < d. We have that M is generalized
Cohen–Macaulay if and only if p(M) � 0.

The behaviour of the function Jx,M (n) was studied in several papers (see [8,9,14,21,
24]). In [24], Sharp and Hamieh asked whether the length �(M/(xn)limM ) (equivalent to
the function Jx,M (n)) becomes a polynomial when ni � 0. The first counter-example for
this question was given by N. T. Cuong et al . [14]. Therefore, in general, the function
Jx,M (n) is not a polynomial in n. Fortunately, it has been shown that the least degree of
polynomials bounding above Jx,M (n) is independent of the choice of x (see [13, Theo-
rem 4.4]). This invariant is called the polynomial type of generalized fractions of M , and
is denoted by pf(M). The invariant pf(M) also carries the information of the structure
of M . Under some mild conditions on the ring R, N. T. Cuong and Nhan showed that
pf(M) = −∞ (respectively, pf(M) � 0) if and only if M/UM (0) is Cohen–Macaulay
(respectively, generalized Cohen–Macaulay), where UM (0) is the unmixed component of
M (see [9, Theorem 3.1]).

The two functions Ix,M (n) and Jx,M (n) are closely related. While the polynomial
type can be easily understood in terms of the annihilator of local cohomology and the
dimension of the non-Cohen–Macaulay locus of M (see Proposition 2.3), not so much is
known about the polynomial type of generalized fractions of M . In general it was proved
in [18, Theorem 4.5] that pf(M) � p(M). Our first result proves that if M is unmixed
and x is a certain system of parameters, then Ix,M (n) � 2d−2Jx,M (n), which implies that
pf(M) = p(M) (see Theorem 3.7). As a consequence we easily get a generalization of
the result of N. T. Cuong and Nhan mentioned above (see Corollary 3.9).

Our second result consists of studying the function Jx,M (n) in the case in which M

admits a certain Macaulay extension and we can express Jx,M (n) in terms of the non-
Cohen–Macaulay locus of M (see Theorem 4.3). Based on this calculation, the counter-
example of N. T. Cuong et al . for Sharp and Hamieh’s question appears clearly as a
particular case of a general statement (see Corollary 4.4).

Our third result concerns the question as to whether the function Jx,M (n) can be
defined by finitely many polynomials. Our counter-example for this question comes from
the positive characteristic problems. We establish a connection between Jx,M (n) and the
Hilbert–Kunz function, and prove by using a recent result of Brenner [1] the existence of
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a local ring and a system of parameters such that the function Jx,M (n), with n = n1 =
· · · = nd, cannot be defined by a finite set of polynomials (see Theorem 5.2).

2. Preliminaries

In this section we recall the definitions of the polynomial type and the polynomial type
of generalized fractions, and their relations with some special systems of parameters.
We also collect many results of [10, 12] that play a key role in the proof of our first
main result. It should be noted that the results of [12] can be found in the thesis of
Quy [22, Chapter 3].

First we recall the notion of the polynomial type of a module. Let (R, m) be a Noetherian
local ring, let M be a finitely generated R-module of dimension d, let x = x1, . . . , xd be
a system of parameters of M , and let n = (n1, . . . , nd) be a d-tuple of positive integers.
We set xn = xn1

1 , . . . , xnd

d and we consider the function in n,

Ix,M (n) = �(M/(xn)M) − e(xn; M),

where e(x; M) is the Serre multiplicity of M with respect to the sequence x. N. T.
Cuong [3, Theorem 2.3] showed that the least degree of all polynomials in n bounding
above Ix,M (n) is independent of the choice of x.

Definition 2.1. The least degree of all polynomials in n bounding above Ix,M (n) is
called the polynomial type of M and is denoted by p(M).

The following basic properties of p(M) can be found in [3].

Remark 2.2.

(i) We have p(M) = p(M̂) � d − 1, where M̂ is the m-adic completion of M .

(ii) An R-module M is Cohen–Macaulay if and only if p(M) = −∞. Moreover, M is
generalized Cohen–Macaulay if and only if p(M) � 0.

Let ai(M) = AnnHi
m(M) for 0 � i � d − 1 and let a(M) = a0(M) · · · ad−1(M).

We denote by NC(M) the non-Cohen–Macaulay locus of M , i.e. NC(M) = {p ∈
supp(M) | Mp is not Cohen–Macaulay}. Recall that M is called equidimensional if
dim M = dimR/p for all minimal associated primes of M . The polynomial type of a
module can be well understood by the annihilator of local cohomology as follows.

Proposition 2.3 (N. T. Cuong [2, Theorem 1.2]). Suppose that R admits a
dualizing complex. Then

(i) p(M) = dimR/a(M); and

(ii) if M is equidimensional, then p(M) = dim(NC(M)).

Although the function Ix,M (n) is not a polynomial in general, it has good behaviour
for some special systems of parameters.
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Definition 2.4 (N. T. Cuong [4]). A system of parameters x1, . . . , xd of M is called
p-standard if xd ∈ a(M) and xi ∈ a(M/(xi+1, . . . , xd)M) for all i = d − 1, . . . , 1.

Definition 2.5 (Huneke [16], Goto and Yamagishi (personal communication,
1986)).

(i) A sequence in R, x = x1, . . . , xs, is called a d-sequence of M if (x1, . . . , xi−1)M :
xj = (x1, . . . , xi−1)M : xixj for all i � j � s.

(ii) A sequence x = x1, . . . , xs is called a strong d-sequence if xn = xn1
1 , . . . , xns

s is a
d-sequence for all n = (n1, . . . , ns) ∈ N

s.

For important properties of d-sequences, see [16,26].

Definition 2.6 (N. T. Cuong and D. T. Cuong [5]). A sequence of elements
x = x1, . . . , xs is called a dd-sequence of M if x is a strong d-sequence of M and the
following conditions are satisfied:

(i) s = 1 or

(ii) s > 1 and x′ = x1, . . . , xs−1 is a dd-sequence of M/xn
s for all n � 1.

The function Ix,M (n) is a polynomial for a p-standard system of parameters or a
dd-sequence of parameters (see [4, Theorem 2.6 (ii)] and [5, Theorem 1.2]).

Proposition 2.7. A system of parameters x = x1, . . . , xd of M is a dd-sequence if
and only if for all n1, . . . , nd > 0 we have

Ix,M (n) =
p(M)∑
i=0

n1 · · ·niei,

where ei = e(x1, . . . , xi; 0 :M/(xi+2,...,xd)M xi+1) and e0 = �(0 :M/(x2,...,xd)M x1). More-
over, a p-standard system of parameters is a system of parameters that is a dd-sequence.

In order to introduce the notion of the polynomial type of generalized fractions, we
recall the notion of the limit closure of a parameter ideal.

Definition 2.8. Let x = x1, . . . , xd be a system of parameters of M . Then the limit
closure of x in M is a submodule of M defined by

(x)limM =
⋃
n>0

((xn+1
1 , . . . , xn+1

d )M : (x1 · · ·xd)n).

When M = R we write (x)lim for short.

For a detailed study of the limit closure, we refer the reader to [10].
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Remark 2.9.

(i) It is well known that (x)M = (x)limM if and only if x is an M -sequence, i.e. M is
Cohen–Macaulay.

(ii) The quotient (x)limM /(x)M is the kernel of the canonical map

Hd(x; M) → Hd
m(M).

(iii) If x1, . . . , xd is a dd-sequence, we have

(x)limM =
d∑

i=1

[(x1, . . . , x̂i, . . . , xd)M :M xi] + (x)M

(see [6, Lemma 2.4]).

Similarly to the notion of polynomial type, we consider the function in n,

Jx,M (n) = e(xn, M) − �(M/(xn)limM ).

In general, Jx,M (n) is not a polynomial in n (see [14]) but it is bounded by polynomials.
Furthermore, the least degree of polynomials bounding above Jx,M (n) is independent of
the choice of x (see [13, Theorem 4.4]).

Definition 2.10. The least degree of all polynomials in n bounding above Jx,M (n) is
called the polynomial type of generalized fractions of M , and is denoted by pf(M).

Now we recall the notion of an unmixed component of M , which is closely related to
the limit closure and the polynomial type of generalized fractions.

Definition 2.11. The largest submodule of M of dimension less than d is called the
unmixed component of M and it is denoted by UM (0).

It should be noted that if
⋂

p∈Ass M N(p) = 0M is a reduced primary decomposition of
the zero submodule of M , then UM (0) =

⋂
p∈Assh M N(p), where Assh M = {p ∈ Ass M |

dim R/p = dimM}.

Remark 2.12.

(i) In [10, Theorem 4.1] it was proved that UM (0) =
⋂

n(x[n])limM for any system of
parameters x of M , where we define x[n] = xn

1 , . . . , xn
d .

(ii) Suppose that R admits a dualizing complex. Then pf(M) = −∞ (respectively,
pf(M) � 0) if and only if M/UM (0) is Cohen–Macaulay (respectively, generalized
Cohen–Macaulay); see [9, Theorem 3.1].

Recently, N. T. Cuong and Quy studied the splitting of local cohomology (see [11,12]);
this will provide the main tool for the proof of our first result in this paper. We collect
here some results that we need in what follows. Set

b(M) =
d⋂

x;i=1

Ann(0 : xi)M/(x1,...,xi−1)M ,
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where x = x1, . . . , xd runs over all systems of parameters of M . By [23, Satz 2.4.5] we
have

a(M) ⊆ b(M) ⊆ a0(M) ∩ · · · ∩ ad−1(M).

Therefore, we get the important point that for every parameter element x ∈ b(M) we
have xHi

m(M) = 0 for all i < d. By using this fact and the guidelines of [11] the following
splitting property of local cohomology was proved [12, Corollary 3.5]. It should be noted
that a special case of it can be found in [6, Theorem 2.7].

Theorem 2.13. Let x ∈ b(M)3 be a parameter element of M . Let UM (0) be the
unmixed component of M and set M̄ = M/UM (0). Then

Hi
m(M/xM) ∼= Hi

m(M) ⊕ Hi+1
m (M̄)

for all i < d − 1.

We need the following lemma in what follows.

Lemma 2.14. Let N ⊆ H0
m(M) be a submodule of finite length. Then b(M) ⊆

b(M/N).

Proof. Let x1, . . . , xd be an arbitrary system of parameters of M/N . It is also a
system of parameters of M . By the definition of b(M/N), we need only prove that

b(M) ⊆ Ann
[(x1, . . . , xi−1)M + N ] : xi

(x1, . . . , xi−1)M + N

for all i � d. Choose a positive integer n0 such that xn0
i N = 0 and for all n � n0 we have

(x1, . . . , xi−1)M : xn
i = (x1, . . . , xi−1)M : xn0

i ,

[(x1, . . . , xi−1)M + N ] : xn
i = [(x1, . . . , xi−1)M + N ] : xn0

i .

So

[(x1, . . . , xi−1)M + N ] : xn0
i ⊆ (x1, . . . , xi−1)M : x2n0

i ⊆ [(x1, . . . , xi−1)M + N ] : x2n0
i .

Hence, (x1, . . . , xi−1)M : x2n0
i = [(x1, . . . , xi−1)M + N ] : x2n0

i and we have

Ann
[(x1, . . . , xi−1)M + N ] : xi

(x1, . . . , xi−1)M + N
⊇ Ann

[(x1, . . . , xi−1)M + N ] : x2n0
i

(x1, . . . , xi−1)M + N

= Ann
(x1, . . . , xi−1)M : x2n0

i

(x1, . . . , xi−1)M + N

⊇ Ann
(x1, . . . , xi−1)M : x2n0

i

(x1, . . . , xi−1)M

⊇ b(M). �

One key point of this paper is the introduction of a C-system of parameters. We call
it a C-system of parameters in honour of Professor N. T. Cuong.
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Definition 2.15. A system of parameters x1, . . . , xd is called a C-system of parameters
of M if xd ∈ b(M)3 and xi ∈ b(M/(xi+1, . . . , xd)M)3 for all i = d − 1, . . . , 1.

If (R, m) is the quotient of a Cohen–Macaulay ring, then we always have that
dim R/a(M) < dim M for every finitely generated R-module M (see [6, Corollary 5.8]).
So every finitely generated R-module M admits a C-system of parameters. In the next
lemma we collect some useful properties of a C-system of parameters.

Lemma 2.16. Let x1, . . . , xd be a C-system of parameters of M . Then the following
hold.

(i) x1, . . . , xd is a dd-sequence.

(ii) xn1
1 , . . . , xnd

d is a C-system of parameters of M for all n1, . . . , nd � 1.

(iii) For all i � d we have that x1, . . . , xi−1, xi+1, . . . , xd is a C-system of parameters of
M/xiM .

(iv) Let N ⊆ H0
m(M) be a submodule of finite length. Then x1, . . . , xd is a C-system of

parameters of M/N .

Proof. Detailed proofs of (i)–(iii) are given in [22, Proposition 3.2.13, Corol-
lary 3.2.12, Lemma 3.1.10] and will appear in [12]. The proofs of (i)–(iii) are based
on the fact that the notions of a C-system of parameters, a p-standard system of param-
eters and a dd-sequence system of parameters are very closely related. Property (i) is
similar to the last claim of Proposition 2.7. Property (ii) is similar to [5, Remark 3.3 (ii)]
for a dd-sequence. The third property is similar to [5, Proposition 3.4] and can be proved
by using the fact that b(M) ⊆ b(M/xM) for every parameter element x.

(iv) For each i � d we have that M/((xi+1, . . . , xd)M + N) is a quotient module
of M/(xi+1, . . . , xd)M by a submodule of finite length. So b(M/(xi+1, . . . , xd)M) ⊆
b(M/((xi+1, . . . , xd)M + N)) by Lemma 2.14. Thus,

xi ∈ b(M/(xi+1, . . . , xd)M)3 ⊆ b(M/((xi+1, . . . , xd)M + N))3. �

3. On the polynomial type of generalized fractions

Since p(M) and pf(M) do not change after passing to the completion, in this section
we assume that (R, m) is the image of a Cohen–Macaulay local ring. For each system of
parameters x = x1, . . . , xd set

Ix,M = �(M/(x)M) − e(x; M)

and

Jx,M = e(x; M) − �(M/(x)limM ).

It should be noted that Ix,M is much easier to understand than Jx,M .
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Lemma 3.1. Let M be a generalized Cohen–Macaulay module and let x = x1, . . . , xd

be a standard system of parameters of M . Then

(i) Ix,M =
d−1∑
i=0

(
d − 1

i

)
�(Hi

m(M));

(ii) Jx,M =
d−1∑
i=1

(
d − 1
i − 1

)
�(Hi

m(M)).

Proof. For the definition of a standard system of parameters and the proof of (i),
see [27]; (ii) follows from [13, Theorem 5.1]. �

Lemma 3.2. Let x = x1, . . . , xd be a system of parameters of M and let UM (0) be
the unmixed component of M . Setting M̄ = M/UM (0), we have

(i) Jx,M = Jx,M̄ ,

(ii) Jx,M (n) = Jx,M̄ (n) for all n,

(iii) pf(M) = pf(M̄).

Proof. (i) Since dimUM (0) < d, we have e(x; M) = e(x; M̄). For each n � 1 we set
x[n] = xn

1 , . . . , xn
d . By Remark 2.12 we have UM (0) =

⋂
n�1(x

[n])limM . By [10, Proposi-
tion 2.6] we have

�(M/(x)limM ) = �(M̄/(x)limM̄ ).

Therefore, Jx,M = Jx,M̄ .

Part (ii) follows from (i), and (iii) follows from (ii). �

By the above lemma we can assume that M is unmixed (i.e. UM (0) = 0) for the
computation of either the function Jx,M (n) or pf(M). The following is important for our
inductive technique.

Remark 3.3. Let M be an unmixed finitely generated R-module of dimension d.
Then we have the following.

(i) H1
m(M) is finitely generated provided that d � 2 (see, for example, [15,

Lemma 3.1]).

(ii) The set
F(M) = {p ∈ Spec(R) | dim Mp > 1 = depthMp, p �= m}

is finite (see [15, Lemma 3.2]).

(iii) Let x = x1, . . . , xd be a C-system of parameters of M . Then

F(M) = Ass UM/xdM (0) \ {m}

and x1 /∈ p for all p ∈ F(M). Hence, Ass M/x1M ⊆ Assh M/x1M ∪ {m}, so
UM/x1M (0) ∼= H0

m(M/x1M) (see [12, Proposition 4.11, Remark 4.12]).
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Lemma 3.4. Let M be an unmixed finitely generated R-module of dimension d � 2
and let x = x1, . . . , xd be a C-system of parameters of M . Then x1H

1
m(M) = 0 and

�(H1
m(M)) � Ix,M .

Proof. Set Md = M/xdM . Since M is unmixed, by Theorem 2.13 we have H1
m(M) ∼=

H0
m(Md). By Lemma 2.16 we have that x′ = x1, . . . , xd−1 is a dd-sequence of Md, so

H0
m(Md) = 0 :Md

x1. Hence, x1.H
1
m(M) = 0. Moreover, the properties of dd-sequences

imply that H0
m(Md) ∩ (x′)Md = 0. Thus,

�(Md/(x′)Md) = �(H0
m(Md)) + �(Md/(x′)Md) � �(H1

m(M)) + e(x′; Md)

= �(H1
m(M)) + e(x′; Md),

where Md = Md/H0
m(Md). Therefore,

�(H1
m(M)) � Ix′,Md

= Ix,M .

For the last equality notice that since xd is M -regular we have e(x; M) = e(x′; Md). The
proof is complete. �

Lemma 3.5. Let M be an unmixed finitely generated R-module of dimension d � 3
and let x = x1, . . . , xd be a C-system of parameters of M . Setting M1 = M/x1M and
x′ = x2, . . . , xd, we have Ix,M � 2Ix′,M̄1

, where M1 = M1/H0
m(M1).

Proof. Since x1 is M -regular, we have e(x; M) = e(x′; M1). So Ix,M = Ix′,M1 . By
Lemma 2.16 we have that x′ = x2, . . . , xd is a C-system of parameters of M1. Similar to
the proof of the previous result, we have

Ix′,M1 = Ix′,M̄1
+ �(H0

m(M1)).

Thus, we need only prove that �(H0
m(M1)) � Ix′,M̄1

. Consider the short exact sequence

0 → M
x1·−−→ M → M1 → 0.

By Lemma 3.4 we have x1.H
1
m(M) = 0. So by applying the local cohomology functor to

the above short exact sequence we have H0
m(M1) ∼= H1

m(M) and

0 → H1
m(M) → H1

m(M1).

Thus,
�(H0

m(M1)) = �(H1
m(M)) � �(H1

m(M1)).

On the other hand, by Remark 3.3 we have that M1 is unmixed, and x′ is a C-system of
parameters of M1 by Lemma 2.16. So

�(H1
m(M1)) = �(H1

m(M̄1)) � Ix′,M̄1

by Lemma 3.4. Thus, �(H0
m(M1)) � Ix′,M̄1

. The proof is complete. �
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Proposition 3.6. Let M be an unmixed finitely generated R-module of dimension d

and let x = x1, . . . , xd be a C-system of parameters of M . Then Ix,M � 2d−2Jx,M .

Proof. We proceed by induction on d. The d = 1 case is trivial since M is Cohen–
Macaulay. For d = 2, by Lemma 3.1 we have

Ix,M = �(H1
m(M)) = Jx,M .

Assume that d � 3 and that the assertion was proved for d − 1. Setting M1 = M/x1M

and x′ = x2, . . . , xd, we have

Ix,M � 2Ix′,M̄1
(by Lemma 3.5)

� 2d−2Jx′,M̄1
(by induction)

= 2d−2Jx′,M1 (by Lemma 3.2).

Since x1 is M -regular we have e(x; M) = e(x′; M1). On the other hand, we have

(x′)limM1
=

⋃
n

[(x1, x
n+1
2 , . . . , xn+1

d )M :M (x2, . . . , xd)n]/x1M ⊆ (x)limM /x1M.

So �(M/(x)limM ) � �(M1/(x′)limM1
). Thus, Jx′,M1 � Jx,M . Therefore, we get the assertion

Ix,M � 2d−2Jx,M . �

Theorem 3.7. Let (R, m) be the image of a Cohen–Macaulay local ring and let M be
an unmixed finitely generated R-module of dimension d. Then pf(M) = p(M). Moreover,
pf(M) = dimR/a(M).

Proof. By [18, Theorem 4.5], we have pf(M) � p(M). Thus, we need only prove that
pf(M) � p(M). Let x = x1, . . . , xd be a C-system of parameters of M . By Lemma 2.16,
for all d-tuples of positive integers n = (n1, . . . , nd) we have that xn = xn1

1 , . . . , xnd

d is
also a C-system of parameters. By Proposition 3.6 we have

Ix,M (n) = Ixn,M � 2d−2Jxn,M = 2d−2Jx,M (n)

for all n = (n1, . . . , nd) ∈ N
d. Thus, p(M) � pf(M). The last assertion follows from

Proposition 2.3. The proof is complete. �

The next result is a consequence of the above theorem and Lemma 3.2.

Corollary 3.8. Let (R, m) be the image of a Cohen–Macaulay local ring and let M

be a finitely generated R-module with the unmixed component UM (0). Then

pf(M) = p(M/UM (0)).

Recall that an R-module M is called pseudo-Cohen–Macaulay (respectively, pseudo-
generalized Cohen–Macaulay) if pf(M) = −∞ (respectively, pf(M) � 0). As a conse-
quence of Corollary 3.8 we get a generalization of the main result of [9].
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Corollary 3.9. Let (R, m) be the image of a Cohen–Macaulay local ring and let
M be a finitely generated R-module with the unmixed component UM (0). Then M is
pseudo-Cohen–Macaulay (respectively, pseudo-generalized Cohen–Macaulay) if and only
if M/UM (0) is Cohen–Macaulay (respectively, generalized Cohen–Macaulay).

It is natural to raise the following question.

Question 3.10. Let M be an unmixed finitely generated R-module of dimension d

and let x = x1, . . . , xd be a C-system of parameters of M . Is the function Jx,M (n) a
polynomial in n when n1, . . . , nd � 0?

It should be noted that [8, Theorem 4.5] gives an affirmative answer for this question
in the pf(M) � 1 case.

4. The case in which M admits a Macaulay extension

Definition 4.1. Let M be a finitely generated R-module of dimension d. We say that
M admits a Macaulay extension M ′ if we have an exact sequence

0 → M → M ′ → N → 0,

where M ′ is a finitely generated Cohen–Macaulay R-module and dimN � d − 2.

Remark 4.2 (see, for example, [20, 23]). Let (R, m) be a Noetherian complete
local ring and let M be a finitely generated R-module of dimension d. We recall that if
M is unmixed, the module Dd(Dd(M)) (where Dd(M) is the Matlis dual of Hd

m(M))
satisfies condition S2 and we have an exact sequence

0 → M → Dd(Dd(M)) → N → 0

with dimN � d− 2. Moreover, if there exist a finitely generated R-module M ′ of dimen-
sion d satisfying condition S2, and an exact sequence

0 → M → M ′ → M ′/M → 0

with dimM ′/M � d − 2, then M ′ ∼= Dd(Dd(M)). That is, if an unmixed module M

admits Macaulay extensions M ′ and M ′′, then M ′ ∼= M ′′. In this case, Supp(M ′/M) is
the non-Cohen–Macaulay locus of M .

We can now state the main result of this section.

Theorem 4.3. Let M be a finitely generated R-module of dimension d. Suppose that
M has a Macaulay extension M ′. Let x = x1, . . . , xd be an arbitrary system of parameters
of M . Set N = M ′/M . Then

Jx,M (n) = �(N/(xn)N)

for all d-tuples n = (n1, . . . , nd).
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Proof. For any system of parameters y = y1, . . . , yd, the short exact sequence

0 → M → M ′ → N → 0

induces the following commutative diagram with the last two columns exact:

Hd−1(y; N)

��

�� Hd−1
m (N) = 0

��
0 �� (y)limM /(y)M

β ��

��

Hd(y; M)

α

��

�� Hd
m(M)

��
0 �� Hd(y; M ′)

��

�� Hd
m(M ′)

��
Hd(y; N)

��

�� Hd
m(N) = 0

0

Both the second row and the third row are exact by Remark 2.9. Therefore, we have
α ◦ β = 0. Thus, we have the commutative diagram

0 �� M/(y)limM
π ��

ᾱ

��

Hd
m(M)

σ

��
0 �� M ′/(y)M ′

��

τ �� Hd
m(M ′)

N/(y)N

��
0

with the middle column exact. Moreover, we have that both π and τ are injective and
σ is bijective. Therefore, τ ◦ ᾱ = σ ◦ π is injective and so is ᾱ. Hence, we have the short
exact sequence

0 → M/(y)limM → M ′/(y)M ′ → N/(y)N → 0.

Thus,
�(M/(y)limM ) = �(M ′/(y)M ′) − �(N/(y)N).

Now, for each n = (n1, . . . , nd), applying the above assertion for the system of parameters
xn = xn1

1 , . . . , xnd

d , we have

�(M/(xn)limM ) = �(M ′/(xn)M ′) − �(N/(xn)N).
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Since M ′ is Cohen–Macaulay, we have

�(M ′/(xn)M ′) = e(xn; M ′) = e(xn; M).

Therefore, Jx,M (n) = �(N/(xn)N) for all d-tuples n = (n1, . . . , nd). The proof is com-
plete. �

The length �(N/(xn)N) is much easier to understand than the function Jx,M (n). In
many cases we can see that it coincides with a polynomial or a finite number of poly-
nomials for n � 0. The following corollary, the proof of which is short and conceptual,
extends [14, Lemma 2.4].

Corollary 4.4. Let (R, m) be a Cohen–Macaulay local ring of dimension d � 3 and
let x1, . . . , xd be a system of parameters of R. Let M = (x1, . . . , xd−v), v � d − 2. Then
for the system of parameters x = x1 + xd, x2, . . . , xd of M we have

Jx,M (n) = �(R/(x1, . . . , xd))nd−v+1 · · ·nd−1 min{n1, nd}

for all n1, . . . , nd � 1. Therefore, Jx,M (n) is not a polynomial.

Proof. Since dimR/M � d− 2, R is a Macaulay extension of M . By Theorem 4.3 we
have

Jx,M (n) = �(R/(x1, . . . , xd−v, (x1 + xd)n1 , xn2
2 , . . . , xnd

d ))

for all n1, . . . , nd � 1. Hence,

Jx,M (n) = �(R/(x1, . . . , xd−v, x
nd−v+1
d−v+1 , . . . , x

nd−1
d−1 , x

min{n1,nd}
d ))

= �(R/(x1, . . . , xd))nd−v+1 · · ·nd−1 min{n1, nd}

for all n1, . . . , nd � 1. �

The next result follows from Theorem 4.3 and Proposition 2.7.

Corollary 4.5. Let M be a finitely generated R-module of dimension d. Suppose that
M has a Macaulay extension M ′ with dim M ′/M = t � d − 2. Let x = x1, . . . , xd be
a system of parameters of M such that x1, . . . , xt forms a dd-sequence of N = M ′/M

and xt+1, . . . , xd ∈ AnnN . Then Jx,M (n) is a polynomial in n for all n1, . . . , nd � 1.
Moreover,

Jx,M (n) = n1 · · ·nte(x1, . . . , xt; N) +
t−1∑
i=0

n1 · · ·niei,

where ei = e(x1, . . . , xi; 0 :N/(xi+2,...,xt)N xi+1) and e0 = �(0 :N/(x2,...,xt)N x1).
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5. Relation with the Hilbert–Kunz function

By considering all explicit examples, it can be expected that Jx,M (n) coincides with
finitely many polynomials in n (see [14,21]). As we will see, this is not always the case.
More precisely, we will give an example in characteristic p such that the function Jx,M (n)
cannot be controlled by finitely many polynomials. This question is closely related to the
Hilbert–Kunz function.

Let (A, n) be a Noetherian local ring containing a field of positive characteristic p. Let
I be an ideal of A and let q = pe be a power of p. We define I [q] = (fq | q ∈ I) as the eth
Frobenius power of I. If I is an n-primary ideal, we always have that A/I [q] has finite
length. So we have a function

fHK(I) : q �→ �(A/I [q]),

called the Hilbert–Kunz function, which was first studied by Kunz in [17]. In [19] Monsky
proved that the limit

eHK(I) = lim
q→∞

�(A/I [q])
qdim A

exists as a real number; it is called the Hilbert–Kunz multiplicity of I, and the Hilbert–
Kunz multiplicity of n is called the Hilbert–Kunz multiplicity of A. It is natural to
ask whether the Hilbert–Kunz multiplicity of an n-primary ideal is always a rational
number. There are many positive partial answers to this question. However, recently
Brenner disproved this question by way of the following celebrated result.

Theorem 5.1 (Brenner [1, Theorem 8.3]). There exists a Noetherian local domain
whose Hilbert–Kunz multiplicity is an irrational number.

We are ready to prove the main result of this section.

Theorem 5.2. There exist a regular local ring (R, m) of dimension d with m generated
by a regular system of parameters x = x1, . . . , xd and a finitely generated R-module M ,
dim M = d, such that the function Jx,M (n) = nde(x; M) − �(M/(x[n])limM ) cannot be
represented by finitely many polynomials in n, where x[n] = xn

1 , . . . , xn
d .

Proof. Let (A, n) be the ring of characteristic p whose Hilbert–Kunz multiplicity is
irrational, as in Brenner’s result. Replacing A by its completion (notice that the Hilbert–
Kunz multiplicity does not change), we can assume that (A, n) is complete. By the Cohen
structure theorem we have that A is the image of a regular local ring (R, m) of dimension
d. Since eHK(A) is irrational, we have that A is not regular and so dimR − dim A � 1.
If dimR − dim A = 1, we replace R by R[X](m,X)R[X]. Henceforth we can assume that
dim R−dim A � 2. Letting the R-module M be the kernel of the canonical map R → A,
we have that dimM = d. Choose a regular system of parameters x = x1, . . . , xd that
generates m. By Theorem 4.3 we have

Jx,M (n) = �(A/(x[n])A)
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for all n � 1. For all i = 1, . . . , d we denote by ai the image of xi in A. We have that the
sequence a = a1, . . . , ad generates the maximal ideal n of A. Now we assume that there
are only finitely many polynomials P1(n), . . . , Pr(n) such that for each n � 1 we have
Jx,M (n) = Pi(n) for some i and find a contradiction. We consider the case in which n is
a prime power q = pe and we have

Jx,M (q) = �(A/(a)[q]) = �(A/n
[q]).

Since there are infinitely many q, we must have a polynomial, say P1(n), such that

�(A/n
[q]) = P1(q)

for infinitely many q = pe. It should be noted that if a polynomial takes integer values at
infinitely many integer numbers, then all of its coefficients are rational. Thus, the leading
coefficient of P1(n) is a rational number and deg P1(n) = dimA. So

eHK(A) = lim
q→∞

�(A/n[q])
qdim A

= lim
q→∞

P1(q)
qdim A

is a rational number, which contradicts our assumption about A. The proof is complete.
�

For the next result we need the concept of the principle of idealization. Let (R, m) be a
Noetherian local ring and let M be a finitely generated R-module. We make the Cartesian
product R × M into a commutative ring with respect to component-wise addition and
multiplication defined by (r, m) · (r′, m′) = (rr′, rm′ + r′m). We call this the idealization
of M (over R) and denote it by R � M . The idealization R � M is a Noetherian local
ring with identity (1, 0), its maximal ideal is m × M and its Krull dimension is dimR.
If x = x1, . . . , xd is a system of parameters of R, then (x, 0) = (x1, 0), . . . , (xd, 0) is a
system of parameters of the idealization R � M .

Lemma 5.3 (N. T. Cuong et al . [14, Lemma 2.6]). Let dim M = dimR = d and
S = R � M . Let x = x1, . . . , xd be a system of parameters of R. Then we have

�(S/(x, 0)limS ) = �(R/(x)limR ) + �(M/(x)limM ).

Now we prove the last result of this paper.

Corollary 5.4. There exists a Noetherian local ring (S, n) of dimension d and a system
of parameters y = y1, . . . , yd such that the function Jy,S(n) cannot be represented by
finitely many polynomials in n.

Proof. We choose (R, m) and M as in Theorem 5.2. Let x = x1, . . . , xd be a regular
system of parameters of R. Let S = R � M and y = (x1, 0), . . . , (xd, 0). We can check
that e(y; S) = e(x; R) + e(x; M). Since R is regular we have (x[n])limR = (x[n]) for all
n � 1. So

�(R/(x[n])limR ) = �(R/(x[n])) = nde(x; R).
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Combining with Lemma 5.3 we have

Jy,S(n) = �(S/(y[n])limS ) − nde(y; S)

= (�(R/(x[n])limR ) + �(M/(x[n])limM )) − nd(e(x; R) + e(x; M))

= �(M/(x[n])limM ) − nde(x; M)

= Jx,M (n).

The assertion now follows from Theorem 5.2. The proof is complete. �
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