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Both theoretical analysis and eddy-damped quasi-normal Markovian (EDQNM)
simulations are carried out to investigate the different decay regimes of an initially
non-self-similar isotropic turbulence. Breakdown of self-similarity is due to the
consideration of a composite three-range energy spectrum, with two different slopes
at scales larger than the integral length scale. It is shown that, depending on the
initial conditions, the solution can bifurcate towards a true self-similar decay regime,
or sustain a non-self-similar state over an arbitrarily long time. It is observed
that these non-self-similar regimes cannot be detected, restricting the observation
to time exponents of global quantities such as kinetic energy or dissipation. The
actual reason is that the decay is controlled by large scales close to the energy
spectrum peak. This theoretical prediction is assessed by a detailed analysis of triadic
energy transfers, which show that the largest scales have a negligible impact on
the total transfers. Therefore, it is concluded that details of the energy spectrum
near the peak, which may be related to the turbulence production mechanisms, are
important. Since these mechanisms are certainly not universal, this may at least
partially explain the significant discrepancies that exist between experimental data
and theoretical predictions. Another conclusion is that classical self-similarity theories,
which connect the asymptotic behaviour of either the energy spectrum E(k→ 0) or
the velocity correlation function f (r→+∞) and the turbulence decay exponent, are
not particularly relevant when the large-scale spectrum shape exhibits more than one
range.
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1. Introduction
In this paper we investigate the growth and time evolution of self-similar regimes in

free decay of incompressible homogeneous isotropic turbulence (HIT).
Since the seminal studies of Taylor (1935), a huge amount of work has been devoted

to freely decaying HIT: see Batchelor (1953), Hinze (1975), Monin & Yaglom (1975),
Davidson (2004), Lesieur (2008) and Sagaut & Cambon (2008) for an exhaustive
review. Nevertheless, several open issues are debated by the scientific community, and
complete agreement about the different aspects related to the time evolution of freely
decaying turbulence has not yet been reached.

† Email address for correspondence: marcellomeldi@gmail.com
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On non-self-similar regimes in homogeneous isotropic turbulence decay 365

Most theoretical works deal with self-similar decay regimes, which are classically
defined as regimes that can be described using a single length scale l(t) and a single
velocity scale u(t). Using this assumption, the three-dimensional energy spectrum can
be expressed as E(k, t) = u2(t)l(t)F(kl(t)), where k and F denote the wavenumber and
a dimensionless shape function, respectively. Equivalently, the two-point longitudinal
velocity correlation can be expressed as 〈u(x, t) u(x + r, t)〉 = u2(t)f (r/l(t)), where f is
the two-point longitudinal correlation function.

Theoretical analyses rely mainly on one of the three following approaches:
dimensional analysis of either the von Kármán–Howarth equation for f (r) in physical
space or the Lin equation for E(k) in spectral space (George 1992; George & Wang
2009); analysis of a closed set of equations for turbulent kinetic energy u2(t) and
dissipation rate ε(t) (Speziale & Bernard 1992; Mansour & Wray 1994; Huang &
Leonard 1994; Ristorcelli 2003; Ristorcelli & Livescu 2004; Ristorcelli 2006); and
the Comte-Bellot–Corrsin method (Comte-Bellot & Corrsin 1966; Lesieur & Schertzer
1978), based on the consideration of a simplified spectrum shape and dimensional
analysis.

One of the main results of these works is prediction of the evolution laws of
global quantities, including the turbulent kinetic energy u2(t), dissipation rate ε(t)
and velocity turbulent integral scale l(t). Specific attention has been paid to the
possible existence of invariants (Oberlack 2002; Davidson 2009, 2011; Llor 2011;
Vassilicos 2011), which are global quantities that should remain time-independent
during turbulence decay. Their existence can be tied to some general physical
conservation principles, and the identification of these invariants is still a controversial
issue. Almost all theoretical works converge on the conclusion that kinetic energy and
other global quantities should exhibit a power-law behaviour, e.g. u2(t) ∝ t−n

u2 , but
some significant differences exist concerning the value of the decay exponents. The
experimental realization of exponentially decaying isotropic turbulence using fractal
grids is still a controversial issue, but it can be predicted by dimensional analysis
of the von Kármán–Howarth and Lin equations, assuming that the Taylor microscale
is time-independent (George & Wang 2009; Mazellier & Vassilicos 2010; Krogstad
& Davidson 2011, 2012). Works based on a spectral space approach connect the
decay exponent and the energy distribution at very large scales, i.e they express the
decay exponent nu2 as a function of the slope of the energy spectrum at very small
wavenumber σ . Assuming that the spectrum E(k, t) is non-singular at k = 0, the
coefficient σ is often interpreted as being the coefficient such that E(k→ 0) ∝ kσ . A
debated issue is the definition of the possible values of σ , which can be tied to the
asymptotic behaviour of the correlation function f (r→+∞) ∝ r−m. Exponents m and
σ can be expressed as a function of each other, thanks to the kinematic reciprocal
relations that exist between E(k) and f (r). The most studied values are σ = 2 and
σ = 4, since they are related to general conservation principles and historically famous
invariant quantities. The former is related to conservation of linear momentum and the
Birkhoff–Saffman invariant L= ∫ 〈u(x) ·u(x+ r)〉 dr∝ u2(t)l3(t) (Saffman 1967), and is
referred to as the Saffman turbulence. The latter is associated with the conservation of
angular momentum and the Loitsyansky invariant I = ∫ r2〈u(x)·u(x+r)〉 dr∝ u2(t)l5(t),
and is referred to as Batchelor turbulence, in recognition of Batchelor’s seminal
works. Besides the question of the existence of these two turbulent regimes and their
associated self-similar regimes (e.g. Krogstad & Davidson 2010), the question arises of
the physical relevance for other values of σ . This issue arises from the fact that, still
assuming the regularity of E(k) at k = 0, the following Taylor series expansion holds:
E(k→ 0) = (L/4π2)k2 + (I/24π2)k4 + · · · . Both physical and mathematical arguments
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FIGURE 1. Histogram representing the distribution of the power-law exponent nu2 related
to the turbulent kinetic energy. The histogram is constructed from ∼650 experimental and
direct numerical simulation (DNS) values published in international journals during the
last 50 years. Shaded regions are related to possible values found by Meldi et al. (2011)
via a generalized polynomial chaos-based uncertainty analysis for Saffman and Batchelor
turbulence. Dashed vertical lines denote the minimum and maximum values given by
uncertainty analysis considering a uniform distribution of σ within the interval [1, 4].

lead to 1 6 σ 6 4, but there is at present no general conclusion or consensus as to
the occurrence of turbulent solutions with arbitrary real values of σ within the range
[1, 4]. A very difficult point is that there is almost no direct experimental measure of
σ : it is usually indirectly deduced from the measured power-law exponents of some
global quantities by inverting an assumed relation between them. Another point is that
direct numerical simulation with a good resolution of E(k) at very large scales in
the high Reynolds number regime is still beyond available supercomputer capabilities.
Therefore, the main sources of realizations are still numerical simulations based on the
closed Lin equation, in which the nonlinear transfer term is modelled by either local
differential approximation models (e.g. Clark & Zemach 1998), or non-local closures
such as the eddy-damped quasi-normal Markovian (EDQNM) model (e.g. Tchoufag,
Sagaut & Cambon 2012).

An important point is that almost none of the theoretical predictions dealing with nu2

have been clearly validated by experimental results up to now. To illustrate this point,
the histogram of ∼650 values of nu2 retrieved from experiments and direct numerical
simulations published in international journals during the last 50 years is displayed in
figure 1. The possible values associated with both σ = 2 and σ = 4 found in Meldi,
Sagaut & Lucor (2011), considering realistic variations in the detailed shape of the
energy spectrum, are also plotted. A striking observation is that most experimental
data seem not to agree with theoretical results, showing that the fundamental issue of
determining nu2 is still open. Many interpretations of these discrepancies are possible,
including the fact that turbulence decay may exhibit a marked sensitivity to initial
conditions, which could differ from Saffman’s and Batchelor’s ideal cases (Valente &
Vassilicos 2012).
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The poor correlation between available data and theoretical results, on the one
hand, and between different theories related to self-similar solutions, on the other
hand, makes HIT decay one of the most important open fundamental issues in
turbulence theory. To further investigate this issue, we choose here to address the
question of the relation that may exist between the shape of the energy spectrum
at very large scales and the power-law exponents of global physical quantities. To
this end, non-self-similar solutions that depend on two independent length scales will
be considered. It is important to emphasize that selecting self-similar solutions is an
a priori choice, and that a few researchers have already considered non-self-similar
solutions. Existence of self-similar solution is suggested by Lie-group symmetry
analysis (Clark & Zemach 1998; Oberlack 2002) and observed in experimental
results, direct numerical simulations and spectral-closure-based solutions (e.g. the
EDQNM results in Lesieur 2008 and Sagaut & Cambon 2008), but no theoretical
argument precludes the existence of other solutions that include more independent
length scales. A cutoff length scale was introduced in Skrbek & Stalp (2000) at very
small wavenumbers to account for saturation effects due to the finite size of physical
realizations, while more general three-range composite energy spectra were briefly
considered by Frenkel & Levich (1983), Frenkel (1984), Eyink & Thomson (2000)
and Llor (2011). We present here a complete theoretical analysis of such three-range
solutions, including possible breakdown of permanence of large eddies, and, for the
first time, theoretical predictions are compared to numerical results. An EDQNM
model is selected to obtain accurate investigation of very high Reynolds number cases
with excellent spectral accuracy, for very long evolution times.

The paper is structured as follows. The EDQNM model is briefly discussed in § 2,
a detailed discussion being available in the Appendix. The case of initial spectra with
a single large-scale range is addressed § 3, in which theoretical results are compared
with EDQNM simulations. Particular attention is paid to breakdown of permanence
of large eddies in cases where distant triadic interactions become very strong at
very large scales, and associated formulae for the time evolution exponents are
proposed, extending previous results found in Eyink & Thomson (2000) and Lesieur
(2008). The theoretical analysis of the three-range spectrum case is discussed in § 4,
including corrections due to breakdown of permanence of large eddies. The theoretical
predictions are then assessed via EDQNM results in § 5. Finally, conclusions are
drawn in § 6.

2. The eddy-damped quasi-normal Markovian model
A brief description of the eddy-damped quasi-normal Markovian (EDQNM) model

is given in this section. Details about the EDQNM model are given in the Appendix,
and the reader is referred to Orszag (1970), Lesieur (2008) and Sagaut & Cambon
(2008) for a more exhaustive discussion.

The EDQNM model is a quasi-normal closure used to predict triadic energy transfer.
The model is derived under the assumption that the statistical moments of velocity
components can be correctly represented closing the corresponding dynamic equations
in wavenumber space. The closure is made by a model which takes into account the
effects of fourth-order and higher moments by a linear eddy-damping on nonlinear
energy transfer. This approximation prevents fast build-up of third-order moments,
which can lead to non-physical solutions of the energy spectrum.

Numerical implementation of EDQNM relies on a logarithmic discretization
in wavenumber space, and is able to predict accurately the three-point velocity
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correlations between the elements of triads [k, p, q]. The wavenumber discretization
is progressively less efficient when non-local very elongated triads k � p ∼ q are
considered. This can have a significant impact on the accuracy of the predicted results,
in particular if the two-point velocity correlation decays rapidly. Therefore, the original
model proposed by Orszag is extended by adding a non-local transfer term which
exactly estimates the distant non-local triadic interactions (Lesieur 2008).

The extended model, which has been assessed for both Saffman and Batchelor
turbulence by comparison with the original model and theoretical results, exhibits
significant improvement in the prediction of the slope of the energy spectrum in the
case of Batchelor turbulence. In fact, a maximum error of less than 1 % is observed in
the energy spectra obtained, while the original model yields errors of up to 8 %.

EDQNM makes it possible to get very accurate results at both very high and
low Reynolds numbers, with good representation of both large and small scales. In
the current simulations dealing with two-range initial energy spectra, more than 12
decades were simulated using 200 modes, while ∼17 decades have been considered
for three-range spectrum cases with 290 modes. The large-scale part of the spectrum is
very accurately represented in all cases: six decades for scales larger than the integral
scale for two-range spectra at initial time, and nine decades for three-range spectra.

In all simulations, it was checked that at the final time the integral scale is at least
300 times larger than the first resolved mode and that Reλ > 170, precluding possible
corruption of the results by spurious saturation/confinement and low Reynolds number
effects.

It is worth noting that such a resolution is far beyond the reach of direct numerical
simulation or large eddy simulation, or most experimental set-ups for grid turbulence.

3. HIT decay imposing a single-range energy spectrum at large scales
According to classical self-similarity theories, it is possible to monitor the turbulent

flow’s decay regime by prescribing the longitudinal velocity correlation at large
separation u2f (r) ∝ r−m, or equivalently the energy spectrum at very large scales
E(k→ 0) ∝ kσ , where σ = m − 1 with m < 5. The invariant associated with the
physical quantities u2 and l, given by dimensional analysis, is Iu2l

σ ∝ u2lσ+1.
Robustness of the invariant obtained by EDQNM, along with accuracy in the

prediction of the power-law coefficients related to the observed physical quantities,
is now investigated. We will first restrict the analysis to initial energy spectra defined
by a single range at large scales. In § 3.1, we will investigate the cases σ = 1, 2, 3:
it is widely acknowledged that in these cases the ‘permanence of large eddies’ (PLE)
hypothesis holds. We will then address the case of Batchelor turbulence in § 3.2, and
finally extend the analysis to non-integer values 3 6 σ 6 4.

All the results presented below are with reference to the normalized time τ = t/t0,
with t0 = ε(0)−1/3 l(0)2/3 the characteristic turnover initial time.

3.1. EDQNM simulations for σ = 1, 2, 3

An energy spectrum with a single range at large scales for σ = 1, 2, 3 is first
considered. A Comte-Bellot–Corrsin (CBC) energy spectrum (Comte-Bellot & Corrsin
1966) at Reλ = 104 is imposed at initial time

E(k)=
{

A kσ kl� 1,
Ck ε

2/3k−5/3 kl� 1,
(3.1)
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FIGURE 2. (a–c) Time evolution of power-law exponents and (d) the invariant based on
the turbulent kinetic energy u2 and the characteristic length l computed with an EDQNM
code. The initial energy spectrum is imposed with a CBC functional form at Reλ = 104 for
σ = 1, 2, 3. Symbols are related to the CBC theoretical values.

where A and Ck are a σ -dependent coefficient and the Kolmogorov constant,
respectively. The EDQNM simulations were carried out using a high resolution
discretization for significantly long times. The very high Reynolds number imposed
as an initial condition allows for the observation of the decay regime for a very long
time before the effects of viscosity become relevant. In fact, the conditions Reλ > 200
and kl = 1/l > 300 k0 are satisfied at each time step, k0 being the physical resolution
of the numerical simulation. In all three cases, the invariance of the coefficient A is
observed. This is a confirmation that the PLE hypothesis holds in these cases.

The computed power-law coefficients, as well as the invariant Iu2l
σ , are reported

in figure 2. The reader may observe that the results are in very good agreement
with the theoretical analysis by Comte-Bellot & Corrsin (1966). In fact, a maximum
error of ∼0.5 % is observed in the prediction of the power-law coefficient of the
dissipation rate ε for σ = 3. The reader should observe carefully that the results
converge to the theoretical values after a long transient regime of the order of 104t0.
This transient regime is significant if compared to the simulated times in the direct
numerical simulations reported in the literature; even though this result is obtained
using EDQNM and does not necessarily comply with other numerical approaches,
in particular with DNS, the discrepancies observed in numerical simulations when
estimating power-law exponents may be partially due to low initial Reynolds numbers,
for which viscosity effects become dominant before the transitory state has completely
vanished.
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The long time evolution of the invariant Iu2l
σ is presented in figure 2(d). For all the

values of σ , the invariant is found to be very stable over a very long time evolution.
The time evolution of the normalized turbulent energy dissipation rate Cε = εl/ (u2)

3/2

has also been analysed. This parameter, which is null for each value of σ if computed
by the CBC formula, has been observed to be a small positive quantity in grid
turbulence due to spectral imbalance effects induced by turbulence decay: see Bos,
Shao & Bertoglio (2007). Davidson (2011) estimates Cε(t) ∝ t−p0, p0 = 0.075 and
observes mild sensitivity of the parameter on the Reynolds number. In the present
simulations, p0 is observed to be a very small positive parameter, with a maximum
value of p0 = 0.03 for σ = 3.

The reported analysis confirms that the EDQNM code accurately obtains the power-
law exponents and the invariants associated with the physical quantities. In particular,
the invariant based on u2 and l was observed to be exact even after a very long time
evolution.

3.2. Classical Batchelor turbulence case, σ = 4

Batchelor turbulence is now investigated. This case is very popular because of
the controversy concerning time-invariance of the Loitsyansky integral I. Within
this framework, the longitudinal velocity correlation at large separation behaves as
u2f (r→ +∞) ∝ a6r−6. This corresponds to E(k→ 0) = Ak4, with A = I/24π2. In
Davidson (2009), a theoretical framework is proposed to assess the conservation
of the Loitsyansky integral in Batchelor turbulence. Results from several numerical
simulations indicate that the coefficient a6, and so I, exhibits weak time-dependence.
Ishida, Davidson & Kaneda (2006) showed that, in direct numerical simulations
at moderate Reλ, a variation of ≈1 % is observed every 50 characteristic turnover
times. These observations highlight the fact that the fast-decaying long-range velocity
correlations associated with Batchelor turbulence are not consistent with the PLE
hypothesis. Moreover, no experiments or simulations reported in the literature have
ever found a power-law coefficient significantly close to the CBC formula in the case
of Batchelor turbulence. In the comprehensive work by Mohamed & LaRue (1990),
the lower observed value for the turbulent kinetic energy power-law coefficient is
nu2 = −1.384, which is significantly far from the value nu2 = −10/7 obtained via the
CBC formula. Eyink & Thomson (2000) argue that a loss of self-similarity of HIT
decay can be the cause of the lack of agreement between numerical simulations and
theoretical analysis. Considering the Loitsyansky integral as a time-dependent quantity,
the following results are obtained (see Lesieur 2008; Sagaut & Cambon 2008):

A(t) ∝ lp(t), (3.2)

l(t) ∝ (t − t0)
2/(σ−p+3), (3.3)

u2(t) ∝ (t − t0)
2(σ−p+1)/(σ−p+3), (3.4)

ε(t) ∝ (t − t0)
−(3(σ−p)+5)/(σ−p+3), (3.5)

where p is a correction term that can be numerically estimated. Eyink & Thomson
(2000) estimate a value of p= 0.55.

In the analysis given below, we investigate the decay of Batchelor turbulence,
observing the obtained power-law coefficient and invariants as in § 3.1. In this
case, we impose initially a simplified version of the energy spectrum formulated
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FIGURE 3. Time evolution of the energy spectrum obtained by EDQNM simulation in the
case of Batchelor turbulence (σ = 4).

by Pope (2000):

E(k)=
{

A k4 kl� 1,
Ck ε

2/3k−5/3fl(kl) kl� 1,
(3.6)

with

fl(kl)=
(

kl

[(kl)α +β]1/α
)5/3+σ

. (3.7)

The free parameter α in (3.7) is set equal to 1.5, while the parameter β is computed
in order to obtain l(0) = 10. This functional form of the energy spectrum is justified
by the need to obtain an accurate estimate of the non-local energy transfer from the
very first time steps. Indeed, an incorrect estimate of this energy transfer at the initial
time, which is not negligible in the case of Batchelor turbulence, can lead to an error
accumulation that does not disappear with the transitory time. The initial conditions
Reλ(0)= 104 and σ = 4 are imposed.

Figure 3 shows that the Loitsyansky integral in the formula E(k) = I/(24π2)k4

evolves over a very long time, as the energy spectrum is shifted in time. This is a
clear signature of time-dependence of the coefficient A in (3.6). In the following, we
will use the formula proposed by Eyink & Thomson (2000) and we will consider
A(t) ∝ lp(t). This formula has been observed to be very accurate in the case of
Batchelor turbulence, as can be appreciated in figure 4(a). If the decay of the Reλ is
now considered, it is possible to observe in figure 4(b) that the decay process now
almost agrees with the theoretical CBC formula for σ = 4 − p, p = 0.52. Conversely,
the time evolution of Reλ is far from the expected value obtained via the CBC formula
for σ = 4. The results proposed by Eyink & Thomson (2000) are also consistent
with the results obtained in the present work for the power-law coefficients of the
physical quantities of interest, which are reported in figure 5(a–c). These conclusions
are further supported by considering the invariant Iu2l

4 : see figure 5(d). In fact, the
invariant based on σ = 4 increases in time faster during the transitory state, but it
is strongly time-dependent even after the transitory state has faded. Conversely, the
invariant computed for σ = 4− p is almost constant after a transient time.
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FIGURE 4. Time evolution of (a) the coefficient A at large scales, E(k)= Ak4, and (b) the Reλ
number obtained by EDQNM simulation in the case of Batchelor turbulence (σ = 4).
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FIGURE 5. Time evolution of power-law exponents for (a) the turbulent kinetic energy u2,
(b) the characteristic length l, and (c) the dissipation rate ε. (d) The invariant based on u2

and l, for two different values of the parameter σ . The initial energy spectrum is imposed
following (3.6) at Reλ = 104, for σ = 4. Symbols are related to the CBC theoretical values.

This behaviour can be related to non-local energy transfers. The backward energy
cascade is more significant at very large scales for increasing σ . The inverse energy
cascade is strong enough to alter the very large scales significantly, resulting in a shift
of the energy spectrum associated with time-dependence of the Loitsyansky integral I.
From another point of view, the contribution of non-local energy transfer may become
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FIGURE 6. Dependence of the parameter p on the σ parameter imposed on the energy
spectrum at the initial time. The parameter p was obtained from the computed power-law
coefficient of the physical quantities analysed, inverting the CBC formula.

relevant when u2f decays fast enough. The parameter p is actually a measure of the
magnitude of the effects of non-local energy transfer.

Eyink & Thomson (2000) concluded that no self-similar decay can occur in the
range 4 − p < σ < 4, p ≈ 0.55 while self-similar decay is present for −1 < σ < 4 − p
and so, for any σ initially imposed, p = σ − 3.45, σ > 3.45 and p = 0, σ < 3.45. We
will show in the following that the results obtained by EDQNM simulation indicate
that the dependence of p(σ ) is more complex, and that the value σ = 4−0.55 does not
necessarily correspond to a self-similar regime.

To check the sensitivity of the parameter p versus σ , several EDQNM simulations
have been performed in the range 3 6 σ 6 4. For each simulation, the p exponent
was deduced from the recovered power-law exponent by inverting the appropriate CBC
formula. The results are reported in figure 6, where it is seen that the dependence of
the parameter p on σ is approximately linear and can be expressed as p = a(σ − n0)

for values of σ > n0 ≈ 3.2, a being a constant. The results show that a ≈ 0.65 < 1,
whereas Eyink & Thomson (2000) a priori assumed that a = 1. These results are in
agreement with the probability density functions of the power-law exponents recovered
by Meldi et al. (2011), which show significantly higher probability of obtaining n
values in the range 3 6 σ 6 3.4. The coefficient p also shows moderate dependence on
the initial shape of the energy spectrum, supporting the conclusion that the parameter
p represents a physical response of the turbulent flow to non-local energy transfers.
This is the reason why, using a different initial energy spectrum, Eyink & Thomson
(2000) recovered a value of p ≈ 0.55, while in the present set of simulations p = 0.52
has been the value that best fits the data observed from power-law exponents and
invariants.

3.3. Analysis of the long-range velocity correlations u2f

The analysis performed for the classical cases σ = 1, 2, 3, 4 is completed by a direct
computation of the long-range velocity correlations u2f . Given the energy spectrum at
a given time t, the correlation u2f can be exactly recovered by the integral

u2f (r, t)= 2
∫ +∞

0
dkE(k, t)

(
sin(kr)

k3r3
− cos(kr)

k2r2

)
. (3.8)
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FIGURE 7. Dependence of the parameter m on the σ parameter imposed on a CBC energy
spectrum. The parameter m was obtained by using (3.8).

Equation (3.8) is first used to estimate by linear regression the power-law coefficient
m of the long-range velocity correlations starting from a CBC energy spectrum for
1 6 σ 6 4. The results, which are shown in figure 7, are in agreement with the
results discussed by Davidson (2011). The relation is then considered to investigate the
energy spectra obtained by EDQNM. The spectra were sampled at time t satisfying the
relation l(t) = 200. The choice was made to analyse the velocity correlations once the
power-law coefficient of the physical quantities analysed reached convergence.

The results reported in figure 8 again exhibit excellent agreement with those
discussed by Davidson (2011), the maximum value of the parameter r investigated
being limited by the spectral resolution of the numerical simulations. The computed
coefficient m is m = 2, 3.01, 3.96, 6.14 for σ = 1, 2, 3, 4, respectively. In particular, it
is possible to appreciate that the long-range velocity correlation power-law coefficient
m= 6 has been recovered in the case of Batchelor turbulence. This last point confirms
that the differences arising when comparing the EDQNM simulation of Batchelor
turbulence with a CBC formula do not stem from incorrect representation of the long-
range velocity correlation, but are due to a non-negligible energy transfer contribution
correlated to non-local triadic interactions.

4. Theoretical analysis for composite three-range spectra
In § 3, we analysed HIT decay via EDQNM and observed that the numerical

results progressively deviate from the theoretical CBC formula at high σ values.
We now propose a theoretical development starting from a composite three-range
energy spectrum, in order to investigate the evolution of the decay regime when
the characteristics of the energy spectrum at large scales are governed by several
parameters. This composite energy spectrum is defined by the existence of two ranges
at large scales. HIT decay starting from a composite three-range energy spectrum has
already been addressed theoretically in Frenkel & Levich (1983), Frenkel (1984) and
Llor (2011). The energy spectrum is thus described by three different regions, each
defined by a different analytical expression: the very large-scale region, 0 6 k 6 k1, in
which the energy spectrum is given by E(k)= Akσ1 ; the large-scale region, k1 6 k 6 k2,
characterized by a slope parameter σ2; and the inertial region, k > k2, in which the
inertial range by Kolmogorov (1941) is observed. Here k1 and k2 are associated with
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FIGURE 8. Long-range velocity correlations u2f obtained by EDQNM simulations. A
classical two-range energy spectrum for σ = 1, 2, 3, 4 at Reλ = 104 is initially imposed; r is
expressed in the characteristic length scale l units.

two independent length scales, l1 = 1/k1 and l2 = 1/k2. The reader should observe that
the length l2 is usually referred to as the characteristic length (l in the two-range cases
discussed above) of the flow, as it is associated with the peak of the energy spectrum.

The full analytical functional form is

E(k)=


A kσ1 kl1� 1,
B kσ2 kl1� 1, kl2� 1,
Ckε

2/3k−5/3 kl2� 1.
(4.1)

This functional form is completed by the relations

A l−σ1
1 = B l−σ2

1 or A kσ1
1 = B kσ2

1 , (4.2)

B l−σ2
2 = Ckε

2/3l5/3
2 or B kσ2

2 = Ckε
2/3k−5/3

2 , (4.3)

which denote the continuity of the energy spectrum at k1 = 1/l1 and k2 = 1/l2. Let us
now express the coefficients A and B using (3.2):

A(t)∝ lp1
1 (t), B(t)∝ lp2

2 (t). (4.4)

The coefficients p1 and p2 are equal to 0 if the PLE hypothesis holds. We recall that
the formula used to describe the time evolution of the coefficients A and B is not an
arbitrary model, chosen by the authors, but the result of the theoretical framework
proposed by Eyink & Thomson (2000).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.396


376 M. Meldi and P. Sagaut

As mentioned in § 1, it is possible to obtain the decay law of the physical quantities
related to the flow by dimensional analysis. A classical example was proposed by
Kolmogorov (1941), who showed that by using dimensional analysis it is possible to
express the decay of the turbulent kinetic energy u2 as a function of the dissipation
rate ε:

∂u2

∂t
∝−ε. (4.5)

The expressions of the physical quantities ε and u2 can be linked if an analytical
form of the energy spectrum is prescribed. Let us consider the value of u2 at time t:

u2(t)= 1
2

∫ +∞
0

E(k, t) dk. (4.6)

Integrating the energy spectrum illustrated in (4.1), we obtain

u2 = 1
2

([
A

σ1 + 1
kσ1+1

]1/l1

0

+
[

B

σ2 + 1
kσ2+1

]1/l2

1/l1

+
[−3Ck

2
ε2/3 k−2/3

]+∞
1/l2

)
. (4.7)

Equation (4.7) can be conveniently rewritten as a sum of four terms:

u2 = 1
2

(
A

σ1 + 1
l−(σ1+1)
1 + B

σ2 + 1
l−(σ2+1)
2 − B

σ2 + 1
l−(σ2+1)
1 + 3Ck

2
ε2/3 l2/3

2

)
. (4.8)

It can be observed that the second and fourth terms of (4.8) are the terms obtained
from the u2 integration using a CBC functional form of the energy spectrum, while
the first and third terms are due to the change of slope of the energy spectrum at k1.
Using the two continuity equations (4.2)–(4.3), it is possible to simplify (4.8) in order
to define the turbulent kinetic energy u2 as a function of the sole dissipation rate ε,
leading to

u2 = u2(ε, σ1, σ2,A,B). (4.9)

Let us consider the ideal case l1� l2 and group the second and fourth terms and first
and third terms of (4.8):

u2 =
(

3σ2 + 5
4(σ2 + 1)

C(3+3σ2)/(5+3σ2)
k B2/(5+3σ2)

)
ε2(σ2+1)/(5+3σ2)

+ σ2 − σ1

2(σ1 + 1)(σ2 + 1)
B2/3

(
A

B

)(σ2+1)/(σ2−σ1)

. (4.10)

The second term of the equation represents a variation of the total energy of the
system, due to the different slope of the energy spectrum at very large scales. Let us
define the decaying energy u2

e as

u2
e = u2 − σ2 − σ1

2(σ1 + 1)(σ2 + 1)
B2/3

(
A

B

)(σ2+1)/(σ2−σ1)

. (4.11)

This new quantity is the energy that the system would have in the case of a CBC
starting energy spectrum with a σ1 = σ2, and it obviously has a physical meaning
only if two or more ranges are considered at large scales. The CBC theoretical
analysis is exactly recovered if u2

e is considered in place of u2. Furthermore, if
l1 � l2, the effective energy u2

e tends to the limit of the turbulent kinetic energy u2,
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so the equality u2
e = u2 is recovered. In fact, the continuity equations show that

(A/B)(σ2+1)/(σ2−σ1) = kσ2+1
1 ≈ l−(σ2+1)

1 and B2/3 ≈ (Emax(0)l
σ2
2 (0))

2/3
. If l1� l2, the second

term of (4.10) tends to zero and u2
e→ u2.

Substituting (4.11) in (4.10), one obtains

u2
e = D ε2(σ2+1)/(5+3σ2), (4.12)

where D is a constant. The decay law depends only on σ2. Evidently the shape of the
energy spectrum at very large scales does not influence the decay law of the physical
quantities of interest, but it is taken into account in the definition of the effective
energy of the system. Combining (4.12) and (4.5), the following decay law can be
obtained after integration:

u2
e(t)= E (t − t1)

−2(σ2+1)/(σ2+3) . (4.13)

This is exactly the same as the formula derived by Comte-Bellot & Corrsin (1966)
starting from a simpler functional form of the energy spectrum. Equivalently, the
CBC formula can be derived for all the other physical quantities under consideration.
An interesting point is the lack of evidence in the theoretical framework that these
quantities have to be corrected in a similar way to turbulent kinetic energy. Equation
(4.13) is compatible with the Kolmogorov decay law if σ2 = 4; nevertheless, for
σ2 > 3.2, the effective value of σ2 must be corrected by the term p(σ2) in order to take
into account the effects of the non-local energy transfers. It is also worth noting that,
although the spectrum exhibits two independent length scales at low wavenumber, the
evolution of the system is similar to a classical self-similar solution. Therefore, such a
state can be referred to as a pseudo-self-similar state.

In summary, it can be observed that the power-law coefficients associated with
HIT decay are not sensitive to the characteristics of the energy spectrum at the
largest scales. The shape of the energy spectrum close to the peak of energy seems
to be of primary importance. The characteristics of the energy spectrum at the
largest scales simply modify the definition of decaying energy u2

e of the system.
These considerations are in agreement with the numerical results observed by Meldi
et al. (2011), which discovered dependence of the power-law coefficients nQ when
considering uncertainties in the shape of the energy spectrum in the proximity of its
peak.

The theoretical framework proposed in the present paper is valid for the early
stages of HIT decay, which are represented in figure 9(a) and for which the relation
l1 � l2 holds. The two length scales l1 and l2 evolve in time with different power
laws, and they can possibly become identical at a critical time tc. Finally a two-range
energy spectrum will be observed, as in figure 9(b) for t > tc, if the scale l2 grows
faster than l1. From a direct application of the CBC formula, and taking into account
the non-local correction term, we know that l2(t) ∝ t2/(σ2−p2+3). Let us now consider
the time evolution of the length scale l1. By manipulating the continuity equations
(4.2)–(4.3), one obtains

l(σ2−σ1)
1 = B

A
. (4.14)

Substituting the coefficients A and B by power laws based on the associated
characteristic length, the time-dependence of the scale l1 can be expressed as

l1 ∝ t2p2/(σ2−σ1+p1)(σ2−p2+3). (4.15)
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FIGURE 9. Scheme of the time evolution of the composite three-range energy spectrum
(a) before and (b) after the critical time tc.

Equation (4.15) shows that if the condition p2 = 0 holds, the scale l1 will be
constant throughout the self-similar regime, while a time evolution will be observed
for positive values of the parameter p2. The critical time will still be a finite quantity if
the scale l2 grows faster in time than the scale l1:

2p2

(σ2 − σ1 + p1)(σ2 − p2 + 3)
<

2
(σ2 − p2 + 3)

. (4.16)

In the case

σ2 − σ1 + p1 < 0, (4.17)

the scale l1 will decrease in time, and the two length scales will collide after a finite
decay time. Conversely, if σ2 − σ1 + p1 > 0, a finite critical time will be recovered
if σ1 − p1 < σ2 − p2. If p2 > 0, the inequality is always satisfied for σ1 6 3.2. We
can then deduce that, if p1 = 0 or p2 = 0, the critical time will be finite. If both
p1 > 0 and p2 > 0, the critical time can diverge to infinity, leading to a non-self-similar
regime. The conditions {

σ2 − σ1 + p1 > 0
σ1 − p1 > σ2 − p2 → σ1 > σ2

(4.18)

will have to hold in order for an infinite critical time to be observed. The black
region in figure 10 represents the value of the parameters [σ1, σ2] for which tc = +∞.
Combining (4.18), the evolution of a non-self-similar regime will be observed if
σ1 − p1 < σ2 < σ1.

If the effects of the initial transient are neglected, an approximation to the critical
time can easily be deduced from the power law describing the decay of the two scales.
At time tc the following relation is satisfied:

l1(0) tc
2p2/(σ2−σ1+p1)(σ2−p2+3) = l2(0) tc

2/(σ2−p2+3). (4.19)

Equation (4.19) can be manipulated to obtain the critical time tc as

tc = (l2(0)/l1(0))
αc, αc = 1

2
(σ2 − σ1 + p1)(σ2 − p2 + 3)
(σ1 − p1)− (σ2 − p2)

. (4.20)
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FIGURE 10. Values of the parameters σ1, σ2 leading to a finite critical time (white) and an
infinite critical time (black).

nu2 nl nε

t < tc 2(σ2 − p2 + 1)/(σ2 − p2 + 3) 2/(σ2 − p2 + 3) (3(σ2 − p2)+ 5)/(σ2 − p2 + 3)
t > tc 2(σ1 − p1 + 1)/(σ1 − p1 + 3) 2/(σ1 − p1 + 3) (3(σ1 − p1)+ 5)/(σ1 − p1 + 3)

TABLE 1. Analytical formulae obtained by the theoretical approach derived from the
analysis of the three-range energy spectrum, in the case of a finite value of the critical
time tc.

An important deduction from the above analysis is that the three-range spectrum
will undergo a transition to a two-range spectrum if one of the ranges is initially
imposed with a slope coefficient σ for which the PLE hypothesis is satisfied.

At the critical time tc, the second and third terms in (4.8) will cancel out, and the
theoretical analysis will become identical to the two-range spectrum case discussed
above. The parameter σ1 will govern the decay regime and the characteristic velocity
of the flow will be related to the turbulent kinetic energy u2. The results of the
analysis are summarized in table 1, which shows a transition between a pseudo-
self-similar and a true self-similar regime, whose characteristics are driven by the
parameters σ2 and σ1, respectively. In particular, an invariant based on σ2 will no
longer be invariant after the bifurcation of the decay regime. Conversely, some time-
evolving quantities considered will become invariants as the turbulent flow turns out to
be sensitive to the parameter σ1. The transition between the two states will be smooth,
since when l1 and l2 are sufficiently close, scales belonging to both ranges are involved
in the energy cascade process. In particular, it is not possible to deduce the time
evolution of the shape of the energy spectrum between the two length scales l1(t) and
l2(t) from the theoretical framework proposed. In § 5, this point will be investigated by
using EDQNM simulations.

5. EDQNM results for composite three-range energy spectra
The theoretical analysis reported in § 4 will now be assessed by comparison

with EDQNM results, imposing a composite three-range initial energy spectrum
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FIGURE 11. (a) Time-evolving energy spectra and (b) corresponding slope for a composite
three-range initial energy spectrum. The case of σ1 = 3 and σ2 = 2 is investigated.

at Reλ(0) = 105. The initial energy spectrum is inspired by Pope’s model spectrum
(see Pope 2000):

E(k)=
{

A kσ1 kl1� 1,
Ck ε

2/3k−5/3fl(kl2) kl1� 1,
(5.1)

with

fl(kl2)=
(

kl2

[(kl2)
α +β]1/α

)5/3+σ2

. (5.2)

This formulation smoothly connects the second range at large scales with the
Kolmogorov inertial range. The smoothness of this transition is controlled by the
parameter α, which is set to α = 1.5 as in the study of Batchelor turbulence reported
in § 3.2. In the same way, the parameter β is fixed to impose the condition l2(0) = 1
for all initial conditions considered. The length scales l1 and l2 are initially separated
by three decades, i.e. l1 = 103 l2. The corresponding condition l0 = 106l1 is initially
imposed.

First, cases in which the PLE hypothesis holds are considered in § 5.1. In these
cases, there is finite critical time. Decay with finite critical time but with PLE
breakdown is investigated in § 5.2. Finally, cases with infinite critical time tc, i.e.
cases in which the flow never reaches a true self-similar state, are considered in § 5.3.

5.1. Three-range energy spectrum with PLE hypothesis satisfied
We now consider σ values for which the PLE hypothesis is satisfied. The case of
σ1 = 3 and σ2 = 2 is selected. Using (4.20), we can expect the transition between the
two regimes to occur at a critical time tc = 107.5t0.

The numerical results are in excellent agreement with the theoretical framework
proposed. As seen in figure 11, which displays the energy spectrum and its slope, the
length scale l1 does not vary in time as the turbulent flow decays and the three-range-
shape of the energy spectrum is conserved until the length scale l2 reaches the same
order of magnitude as the scale l1. The transition is smooth, as observed in figure 12,
where the time evolution of Reλ is plotted. The largest scales are frozen in this case,
since they do not evolve until the critical time is reached.
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FIGURE 12. Time evolution of the Reλ number for a composite three-range initial energy
spectrum. The case of σ1 = 3 and σ2 = 2 is investigated.

As a consequence, this case corresponds to the transition from a non-self-similar
regime (the spectrum is defined by two independent length scales) to a self-similar
regime (obtained once the spectrum has become a classical two-range spectrum).

A similar trend is found for the power-law coefficients related to the analysed
physical quantities, as shown in figure 13. The results dealing with the power-law
exponents, which are reported in figure 13(a–c), are in excellent agreement with the
theoretical analysis. The transition between the two regimes is mainly smooth, even
if a kink is locally observed before the regime governed by σ1 is fully established. It
appears that this phenomenon is more significant in the prediction of the power-law
coefficient related to the characteristic length l2. Moreover, it seems that the transition
between the two states takes a long time to fade, approximately four time decades, and
in particular, it appears that the length scale l2 dynamics are affected by the transition
significantly before than those related to the dissipation rate ε. We can also observe
that the transition seems to occur slightly earlier than the predicted critical time: this
is probably due to the non-negligible effects of the initial transient. Nevertheless, the
critical time recovered by (4.20) is a very good estimation of the transition time
between the two regimes.

The invariant based on the turbulent kinetic energy u2 and the characteristic length
scale l2 is shown in figure 13(d). The results are again consistent with the theoretical
formulation and significant long time invariance is observed. The reader should
observe that, as predicted by the theoretical analysis, the invariant based on σ2 is
constant until l2 ≈ l1. It then decays in time, while the invariant based on σ1 grows
until the two scales are of the same order of magnitude. It then becomes an invariant
in the latter stages of the numerical simulation.

The computed long-range velocity correlations, which are reported in figure 14,
show that during the early stages of the decay u2f ∝ r−(σ2+1). Conversely, if the
energy spectrum is sampled after the critical time tc, the spatial decay of long-range
interactions is governed by the power-law exponent m= σ1 + 1.

An interesting result is that during the first evolution time, the spectrum is defined
by two independent length scales, and therefore the solution is not self-similar. But the
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FIGURE 13. Time evolution of power-law exponents relative to (a) turbulent kinetic energy,
(b) characteristic length and (c) dissipation rate. (d) The invariant based on turbulent kinetic
energy and characteristic length scale. A composite three-range energy spectrum is initially
imposed at Reλ = 105 for σ1 = 3 and σ2 = 2. Symbols denote theoretical values obtained via
the CBC-like analysis.
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FIGURE 14. Long-range velocity correlations u2f obtained by EDQNM simulations. The
initial energy spectrum is a three-range spectrum with σ1 = 3, σ2 = 2. The energy spectrum
was sampled at (a) τ = 102 and (b) τ = 1010; r is expressed in the initial length scale l2(0)
units.

decay is almost identical to a self-similar regime for a classical two-range spectrum
with slope σ2 at very large scales. It may be considered as a pseudo-self-similar
regime, from the dynamical point of view. This result is confirmed by the analysis of
the nonlinear transfer of energy T(k), which is shown in figure 15 for two different

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.396


On non-self-similar regimes in homogeneous isotropic turbulence decay 383

0.5

1.0

0.5

0

10–7 10–5 10–3 10–1 101 103 105 107 10–7 10–5 10–3 10–1 101 103 105 107

10–7 10–5 10–3 10–1 101 103 105 107 10–7 10–5 10–3 10–1 101 103 105 107

0.5

–0.5

0

1.0

–1.0

0.5

–0.5

0

1.0

0

1.0

–1.0

k k

(a) (b)

(c) (d )

FIGURE 15. (a,b) Energy transfer terms T+(k) (forward cascade), T−(k) (inverse cascade),
TNL(k) (non-local energy transfer). (c,d) Premultiplied nonlinear energy transfer kT(k), with
T(k) = T+(k) − T−(k) + TNL(k). The initial energy spectrum is a three-range spectrum
with σ1 = 3, σ2 = 2. The energy spectrum was sampled at (a,c) τ = 102 < tc and (b,d)
τ = 1010 > tc.

simulation times, before and after the bifurcation to a true self-similar state. In both
cases, it appears that the scales larger than 10 times the integral scale do not receive
or transfer a significant amount of energy; the largest scales can be considered as
frozen from the dynamical point of view. Therefore, it appears that the decay regime
is governed by the large scales located near the energy spectrum peak and the features
of E(k) for k ' 1/l2, not by the asymptotically case k→ 0. A connection between
asymptotic behaviour of the energy spectrum at very large scales and the decay regime
is therefore relevant only in the case in which a single range with constant slope exists
between k = 0 and k ' 1/l.

5.2. Three-range energy spectra when the PLE hypothesis does not hold: finite critical
time

Let us now consider the case of a composite three-range energy spectrum for which
3.2 < σ2 6 4. From the considerations expressed in the previous section, we expect
breakdown of self-similarity if σ1 − p1 < σ2 < σ1, while the system evolves through a
pseudo-self-similar and a true self-similar regime if σ2 < σ1 − p1 or σ2 > σ1. These two
conditions correspond to an infinite and finite critical time, respectively.
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FIGURE 16. (a) Time-evolving energy spectra and (b) corresponding slope for a composite
three-range initial energy spectrum. The case of σ1 = 2 and σ2 = 4 is investigated.

We consider the case of a finite critical time, choosing the initial conditions σ1 = 2
and σ2 = 4. The energy spectrum evolution and the corresponding slope are displayed
in figure 16. As can be observed in figure 16(b), the slope of the energy spectrum
evolves in time, since both scales l1 and l2 are time-dependent. Nevertheless, since l2

grows faster than l1, the two scales will have the same magnitude at the critical time
tc. The use of (4.20) allows us to estimate this time, which for these specific initial
conditions is tc ≈ 1013t0. The power-law coefficients related to the turbulent kinetic
energy and the other physical quantities investigated are displayed in figure 17(a–c).
The results confirm the trend that was previously observed in § 5.1. The transition to
the true self-similar state is triggered at significantly higher values of the normalized
time τ . This delay is due to the lower magnitude of the coefficient nl2 for σ2 = 4
compared to the case analysed in the previous section. Moreover, when the simulation
time reaches the computed critical time tc, the transient between the two regimes has
faded. These results differ from those found in the case of σ1 = 3 and σ2 = 2. This is
explained by the fact that, because l1 evolves in time, the part of the energy spectrum
located between the two scales tends to exhibit intermediate values of the slope,
favouring an earlier transition. This result is confirmed by the slope of the energy
spectra shown in figure 16(b). The long-range velocity correlations found, which are
reported in figure 18, also show very good agreement with the theoretical framework
proposed. As a last point, we consider the nonlinear energy transfer T(k), which is
shown in figure 19. The reader can observe that the results are very similar to those
found in the case σ1 = 3 and σ2 = 2, yielding the same conclusion about the role of
very large scales in the control of the energy decay rate.

5.3. Three-range energy spectra when the PLE hypothesis does not hold: infinite critical
time

We now address the case of an infinite critical time tc. This is the case corresponding
to breakdown of self-similarity, as two different scales exist at all times. To observe
this regime, we impose as initial condition σ1 = 4 and σ2 = 3.7, which satisfies the
requirement σ1 − p1 < σ2 < σ1.

The energy spectrum evolution and the corresponding slope are plotted in figure 20.
As observed in figure 20(b), the slope of the energy spectrum evolves in time. In
particular, it appears that the energy spectrum between the two evolving scales
gradually assumes an intermediate slope between the two imposed initial values,
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FIGURE 17. Time evolution of the power-law coefficient related to the turbulent kinetic
energy in the case of a composite three-range energy spectrum: (a) the turbulent kinetic
energy, (b) the characteristic length scale, and (c) the dissipation rate. The case of σ1 = 2 and
σ2 = 4 is investigated.
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FIGURE 18. Long-range velocity correlations u2f obtained by EDQNM simulations. The
initial energy spectrum is a three-range spectrum with σ1 = 2, σ2 = 4. The energy spectrum
was sampled at (a) τ = 102 and (b) τ = 1015; r is expressed in the initial length scale l2(0)
units.

as in the previous case with finite tc. But now, since the scales diverge, we do
not expect that the regime will asymptotically converge to the theoretical regime
associated with σ1.
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FIGURE 19. (a,b) Energy transfer terms T+(k) (forward cascade), T−(k) (inverse cascade),
TNL(k) (non-local energy transfer). (c,d) Premultiplied nonlinear energy transfer kT(k), with
T(k) = T+(k) − T−(k) + TNL(k). The initial energy spectrum is a three-range spectrum
with σ1 = 2, σ2 = 4. The energy spectrum was sampled at (a,c) τ = 102 < tc and (b,d)
τ = 1015 > tc.
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FIGURE 20. (a) Time-evolving energy spectra and (b) corresponding slope for a composite
three-range initial energy spectrum. The case of σ1 = 4 and σ2 = 3.7 is investigated.

The results shown in figure 21 confirm that the predicted power-law coefficients,
after a transient time, are close to the theoretical value associated with the regime
σ2 = 3.7. Nevertheless, the predicted power-law coefficients evolve in time to a value
which is between the regimes associated with σ2 = 3.7 and σ1 = 4. In this case
the turbulent decay, even if not self-similar, can be roughly approximated as being
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FIGURE 21. Time evolution of the power-law coefficient related to the turbulent kinetic
energy in the case of a composite three-range energy spectrum: (a) the turbulent kinetic
energy, (b) the characteristic length scale, and (c) the dissipation rate. The case of σ1 = 4 and
σ2 = 3.7 is investigated.

self-similar, and governed by a parameter σ∞ which is estimated to be in the range
σ2 < σ∞ < σ1. This conclusion is confirmed by looking at the long-range velocity
correlations in figure 22. In fact, the reader can observe that the associated power-law
coefficient m is included in the range 5< m< 6.

The nonlinear energy transfer term is illustrated in figure 23. As in previous cases,
we can observe that energy transfer at very large scales is negligible, supporting the
conclusion that the decay regime is not governed by the asymptotic behaviour of the
spectrum E(k→+∞), but by the features of E(k) at scales close to the peak of the
energy spectrum.

6. Conclusions
A theoretical approach to estimating the conditions leading to self-similarity

breakdown in HIT decay at high Reλ number has been proposed and assessed via
extended EDQNM simulations.

The classical cases of a two-range energy spectrum for σ = 1, 2, 3, 4 were first
investigated. Excellent agreement between theoretical and numerical results is obtained
when the PLE hypothesis is satisfied. The results are in agreement when the power-law
coefficients of the physical quantities investigated are considered, as well as when
the invariants based on those physical quantities are investigated. The same trend is
observed when long-range velocity correlations are analysed.
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FIGURE 22. Long-range velocity correlations u2f obtained by EDQNM simulations. The
initial energy spectrum is a three-range spectrum with σ1 = 4, σ2 = 3.7. The energy spectrum
was sampled at (a) τ = 102 and (b) τ = 1010; r is expressed in the initial length scale l2(0)
units.
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FIGURE 23. (a,b) Energy transfer terms T+(k) (forward cascade), T−(k) (inverse cascade),
TNL(k) (non-local energy transfer). (c,d) Premultiplied nonlinear energy transfer kT(k), with
T(k) = T+(k) − T−(k) + TNL(k). The initial energy spectrum is a three-range spectrum with
σ1 = 4, σ2 = 3.7. The energy spectrum was sampled at (a,c) τ = 102 and (b,d) τ = 1010.

The results of the analysis indicate that, when very high values of the σ parameter
are considered, distant triads have a significant impact, leading to failure of the PLE
hypothesis, and the classical relation between the decay exponent and the energy
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spectrum slope must be corrected. The present results indicate that the threshold value
is about σ = 3.2.

The decay regime streaming from an initial composite three-range energy spectrum
has been successively investigated. If the value of the initial parameters σ1 and σ2

is chosen such that for one of the two parameters the relation σi 6 3.2 is true, two
different regimes are observed in long time evolution. In the first regime, the spectrum
is governed by two independent length scales, resulting in breakdown of self-similarity.
However, the dynamics is almost identical to self-similar evolution of a classical two-
range spectrum, whose large-scale shape is equal to the energetic large scales in the
composite solution. Therefore this regime can be considered as a pseudo-self-similar
regime. The second regime is classical self-similar decay. The transition occurs at a
critical time tc = tc(σ1, σ2, l1(0)/l2(0)). In the case σi > 3.2, a non-self-similar regime
is triggered. The permanence in time of this non-self-similar regime depends on the
parameter σ1 and σ2 initially imposed, and it cannot be detected solely by analysis
of the time evolution of the global physical quantities. In fact, the decay regime will
behave as if it were self-similar and driven by the parameter σ2.

A striking conclusion of the present work is that the decay rate of kinetic energy
is not tied to the asymptotic behaviour of large scales, i.e. E(k→ 0) in the general
case of a three-range initial energy spectrum. Both theoretical analysis and detailed
investigation of nonlinear transfers via EDQNM show that very large scales are
not active, in the sense that their associated transfers are almost negligible. On the
contrary, large scales close to the peak of the energy spectrum are of major importance
in the energy cascade. Therefore, the classical asymptotic results that connect the
spectrum slope σ with E(k) ∝ kσ or the decay rate m of two-point velocity correlation,
i.e. f (r) ∝ r−m, are valid if and only if the spectrum exhibits a single range between
k = 0 and the spectrum peak.

From the physical point of view, the dependence on detailed features of the
spectrum at large scales certainly warrants further investigation, and may at least
partially explain the discrepancies observed between experimental data and theoretical
predictions, since detailed features of the energy peak may be intimately related to the
turbulence production mechanisms, which are not universal.

Appendix. Mathematical details of the EDQNM approximation
EDQNM is a quasi-normal closure used to predict triadic energy transfer. This

method has been extensively used to investigate HIT decay, and its relevance is
verified by several works reported in the literature (Frisch, Lesieur & Schertzer 1980;
Cambon, Mansour & Godeferd 1997). Let us consider the spectral formulation of the
Navier–Stokes equation in the form NS(k):

∂u(k)

∂t
= u u− νk2u(k) (A 1)

where u is the velocity field and k is a general spectral element. The two-point velocity
correlation dynamics can be estimated considering the pair [k, p]. If the equations
u(p)NS(k) and u(k)NS(p) are summed and averaged, we obtain[

∂

∂t
+ ν(k2 + p2)

]
〈u(k) u(p)〉 = 〈uuu〉. (A 2)

The equation, which is governed by the third-order moment term on the right-
hand side, is equivalent to the Lin equation, which is the spectral counterpart of the
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von Kármán–Howarth equation:

∂E(k, t)

∂t
+ 2νk2E(k, t)= T(k, t), (A 3)

where the terms E(k, t) and T(k, t) are the energy spectrum and the spectral energy
transfer respectively. A comparison of (A 2) and (A 3) shows that the third-order
moments, which represent the interactions between the triad [k, p, q], are equivalent to
the nonlinear transfer term between the energetic scales.

If the procedure used to obtain the equation (A 2) is repeated for the triad [k, p, q],
the resulting equation is[

∂

∂t
+ ν(k2 + p2 + q2)

]
〈u(k) u(p) u(q)〉 = 〈uuuu〉. (A 4)

The standard quasi-normal (QN) approximation model is based on the assumption
that the fourth-order moments, represented in the right-hand side of (A 4), are
associated with a Gaussian random variable. This means that the difference between
the actual fourth-order moment and the Gaussian fourth-order moment, which is
usually referred to as a fourth-order cumulant, is set to zero as a closure assumption.
In this way, the fourth-order moment can be represented by a sum of products of
second-order moments (for details see Lesieur 2008):[

∂

∂t
+ ν(k2 + p2 + q2)

]
〈u(k) u(p) u(q)〉 =

∑
〈uu〉〈uu〉. (A 5)

If the homogeneity constraint is imposed, (A 3) can be conveniently rewritten as

∂E(k, t)

∂t
+ 2νk2E(k, t)=

∫ t

0
dτ
∫

p+q=k

[
e−ν(k

2+p2+q2)(t−τ)
]∑
〈uu〉〈uu〉 dp. (A 6)

Correcting the basic assumption of QN closure, Orszag (1970) observes that the
effects of fourth-order cumulants can be taken into account by a linear damping term.
The resulting eddy-damped quasi-normal (EDQN) equation is given by[

∂

∂t
+ ν(k2 + p2 + q2)+ µkpq

]
〈u(k) u(p) u(q)〉 =

∑
〈uu〉〈uu〉, (A 7)

where the term µkpq represents the eddy-damping rate of the third-order moments
associated with the triad [k, p, q]. In isotropic turbulence, a very good approximation
of this term is

µkpq = µk + µp + µq, µk =
[∫ k

0
p2E(p, t) dp

]1/2

. (A 8)

The corresponding equation representing the time evolution of the energy spectrum
becomes

∂E(k, t)

∂t
+ 2νk2E(k, t)=

∫ t

0
dτ
∫

p+q=k

[
exp(−(µkpq + ν(k2 + p2 + q2))(t − τ))]

×
∑
〈uu〉〈uu〉 dp. (A 9)

Nevertheless, the EDQN approximation does not always reproduce a physical energy
spectrum, as negative values in the energy magnitude have been observed under
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particular conditions. This drawback can be corrected by a Markovianization operation.
In the resulting model, the characteristic time (µkpq + ν(k2 + p2 + q2))

−1 associated
with the integrand in the right-hand side of (A 9) is assumed to be negligible
with respect to the characteristic evolution time

∑〈uu〉〈uu〉. This leads to dramatic
simplification of (A 9), since the integral can be approximated by∫ t

0

[
exp(−(µkpq + ν(k2 + p2 + q2))(t − τ))] dτ

= 1− exp(−(µkpq + ν(k2 + p2 + q2))t)

µkpq + ν(k2 + p2 + q2)
=Θkpq. (A 10)

The Markovianization procedure leads to the standard version of the EDQNM
model, which reads

∂E(k, t)

∂t
+ 2νk2E(k, t)= TE(k, t)= T+(k, t)− T−(k, t)

=
∫

p+q=k
Θkpq

∑
〈uu〉〈uu〉(t) dp. (A 11)

The EDQNM approach is able to predict accurately the three-point velocity
correlations when the elements of the triad [k, p, q] are of the same order of
magnitude, because of the logarithmic discretization of wavenumber space. Conversely,
very elongated non-local triads are exactly recovered only when the triads k = p or
k = q are taken into account. This can have a significant impact on the accuracy of
the predicted results, particularly if the two-point velocity correlation decays fast. A
possible solution is to correct (A 11), introducing the analytically computed non-local
interactions.

Following the work by Lesieur & Schertzer (1978), the EDQNM equation is
extended to obtain high accuracy for very elongated non-local triads, by explicitly
including the contribution of these triads:

∂E(k, t)

∂t
+ 2νk2E(k, t)= TE(k, t)+ TNL(k, t). (A 12)

The non-local energy transfer term TNL(k, t) is

TNL(k, t)=− 2
15

k2E(k, t)
∫ +∞

k/a
Θkpp

[
5E(p, t)+ p

∂E(p, t)

∂p

]
dp

+ 14
15

k4

∫ +∞
k/a

Θkpp
E2(p, t)

p2
dp (A 13)

where a = 0.2. The addition of the non-local energy transfer term improves
the accuracy of the results if fast-decaying two-point correlations are considered.
Preliminary tests showed that, in the case of Batchelor turbulence, the slope of the
energy spectrum is obtained with an error lower than 1 % for all the decay time
analysed. Conversely, an error up to 8 % was observed using the standard version of
the EDQNM model.
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