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1. Introduction

The Hilbert scheme (or Douady scheme) of n points on C
2, Hilbn

0 (C2), is a crepant
resolution of

(C2)n
0/Sn =

{
q ∈ (C2)n,

∑
j

qj = 0
}/

Sn,

where the symmetric group Sn acts by permutation of the indices:

σ · q = (qσ−1(1), qσ−1(2), . . . , qσ−1(n)).

Hence we have a map
π : Hilbn

0 (C2) → (C2)n
0/Sn.

The complex manifold Hilbn
0 (C2) carries a natural complex symplectic structure that

comes from the Sn invariant one of (C2)n
0 . A compact Kähler manifold admitting a com-

plex symplectic form carries in its Kähler class a hyperkähler metric; this is now a well-
known consequence of the solution of the Calabi conjecture by Yau (see [3]). However,
Hilbn

0 (C2) is non-compact: for instance, Hilb2
0(C

2) = T ∗
P

1(C). There are many exten-
sions of Yau’s result to non-compact manifolds (see, for example, [2,27,28]) and in 1999
Joyce introduced quasi-asymptotically locally Euclidean (QALE) manifolds, which are a
generalization of asymptotically locally Euclidean (ALE) manifolds. When Γ ⊂ O(d) is
a finite subgroup acting freely on S

d−1, a complete ALE manifold (Md, g) asymptotic
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to R
d/Γ is such that outside a compact set, M is diffeomorphic to (Rd \ B)/Γ and the

metric is asymptotic to the Euclidean metric (the precise definition requires estimates of
the difference between g and the Euclidean metric). When Xm is a crepant resolution of
C

m/Γ for Γ ⊂ SU(m) a finite group, then roughly speaking a QALE Kähler metric on
Xm is such that firstly, on pieces of Xm that (up to a finite ambiguity) are diffeomorphic
to a subset of XA ×Fix(A), where A is a subgroup of Γ and XA is a crepant resolution of
Fix(A)⊥/A, the metric is asymptotic to the sum of a QALE Kähler metric on XA and a
Euclidean metric on Fix(A) and secondly the metric is asymptotic to the Euclidean met-
ric elsewhere. Joyce has proven the following theorem (see [16] and [17, Theorems 9.3.3
and 9.3.4]).

Theorem 1.1. If Γ ⊂ SU(m) is a finite group and if Xm → C
m/Γ is a crepant resolution,

then in any Kähler class of QALE metric there is a unique QALE Kähler–Ricci flat metric.
Moreover, if Γ ⊂ Sp(m/2), then this metric is hyperkähler.

In particular, up to scaling, Hilbn
0 (C2) carries a unique hyperkähler metric that is

asymptotic to (C2)n
0/Sn.

Another fruitful construction of hyperkähler metrics is the hyperkähler quotient con-
struction of Hitchin et al . [14]. In fact, in 1999 Nakajima constructed a hyperkähler
metric on Hilbn

0 (C2) as a hyperkähler quotient [25]. Moreover, Nakajima asked whether
this metric could be recovered via a resolution of the Calabi conjecture; Joyce also said
that it is likely that QALE hyperkähler metrics can be explicitly constructed using the
hyperkähker quotient, but outside the case of Γ ⊂ SU(2) = Sp(1) treated by Kron-
heimer [18] he has no examples. The main result of this paper is the following theorem.

Theorem 1.2. On Hilbn
0 (C2), up to a scaling, Joyce’s metric and Nakajima’s metric

coincide.

It should be noted that a given complex manifold can carry two very different
hyperkähler metrics. For instance, it has been clearly explained by Lebrun that C

2 car-
ries two quite different Kähler–Ricci flat metrics: the Euclidean one and the Taub–Nut
metric, which has cubic volume growth [20].

The main straightforward idea of the proof of this result is to study the asymptotics
of Nakajima’s metric; however, in order to use Joyce’s uniqueness result, we also need
asymptotics on the derivatives of Nakajima’s metric. This study could probably be done
at the cost of lengthy computations. Our analysis of the asymptotics of Nakajima’s metric
tells us that Joyce’s metric and Nakajima’s metric differ by O(ρ−2σ−2), where ρ is the
distance to a fixed point and σ is a regularized version of the distance to the singular set.
In order to use the classical argument of Yau that gives the uniqueness of the solution
to the Calabi conjecture, we need to find a function ϕ that vanishes at infinity such that
the difference between the two Kähler forms of Nakajima’s metric and Joyce’s metric
is i∂∂̄ϕ. Joyce has developed elaborate tools to solve equations of the type ∆u = f

on QALE manifolds, but the decay O(ρ−2σ−2) is critical for this analysis. We have
circumvented this difficulty with the Li–Yau estimates of the Green kernel of a manifold
with non-negative curvature [21], and we have obtained the following result, which has
independent interest and which can be generalized to other QALE manifolds.

https://doi.org/10.1017/S1474748010000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000162


On the QALE geometry of Nakajima’s metric 121

Theorem 1.3. If f is a locally bounded function on Hilbn
0 (C2) that satisfies, for some

ε > 0,

f = O

(
1

ρεσ2

)
,

then the equation ∆u = f has a unique solution such that

u = O

(
log(ρ + 2)

ρε

)
.

For further more profound results about the analysis on QALE space, see the very
interesting work by Degeratu and Mazzeo [7].

In the physics literature, Hilbn
0 (C2) is associated with the moduli space of instantons

on non-commutative R
4 [26]. Our motivation for the study of the asymptotic geometry

of the Nakajima metric comes from a question of Vafa and Witten about the space of L2

harmonic forms on Hilbn
0 (C2) endowed with the Nakajima metric. Let Hk be the space

of L2 harmonic k-forms on Hilbn
0 (C2):

Hk = {α ∈ L2(ΛkT ∗Hilbn
0 (C2)), dα = d∗α = 0}.

The following question is posed in [29] (see also the nice survey of Hausel [11]).

Conjecture 1.4.

Hk =

{
{0} if k �= 2(n − 1) = dimC Hilbn

0 (C2),

Im(Hk
c (Hilbn

0 (C2)) → Hk(Hilbn
0 (C2))) if k = 2(n − 1).

However, Vafa and Witten stated: ‘we do not understand the predictions of S-duality on
non-compact manifolds precisely enough to fully exploit them’. The paper [12] contains
some results related to other string theory predictions on L2 harmonic forms.

In fact, Hitchin has shown that the vanishing of the space of L2 harmonic k-forms (for
k �= 2(n−1)) is a general fact for hyperkähler reduction of the flat quaternionic space H

m

by a compact subgroup of Sp(m) [13]; he obtained this result with a generalization of an
idea of Gromov (see [9] and also related works by Jost and Zuo [15] and by McNeal [22]).
For the degree k = 2(n − 1), the cohomology of Hilbn

0 (C2) is well known:

H2(n−1)
c (Hilbn

0 (C2)) � Im(H2(n−1)
c (Hilbn

0 (C2)) → H2(n−1)(Hilbn
0 (C2)))

� H2(n−1)(Hilbn
0 (C2)) � R,

and a dual class to the generator is π−1{0}. Moreover, a general result of Anderson says
that the image of the cohomology with compact support in the cohomology always injects
inside the space of L2 harmonic forms [1]. Hence for the Hilbert scheme of n points in
C

2 endowed with Nakajima’s metric we always have

dim H2(n−1) � 1

and Conjecture 1.4 predicts the equality dimH2(n−1) = 1.
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There are many results on the topological interpretation of the space of L2 harmonic
forms on non-compact manifolds but all of them require a little knowledge of asymptotic
geometry (see [6] for a list of such results); the rough idea is that this asymptotic geometry
would impose a certain behaviour of L2 harmonic forms (decay, polyhomogeneity in a
good compactification) and that would imply a topological interpretation of this space
as a cohomology of a compactification. With our paper [5], our main result implies the
following theorem.

Theorem 1.5. The Vafa–Witten Conjecture (Conjecture 1.4) is true when n = 3.

The case n = 2 can be treated by explicit computation (see [13] for clever computa-
tions).

As the Vafa–Witten Conjecture is in fact more general and concerns the quivers vari-
eties constructed by Nakajima [24], a natural perspective is to understand the asymp-
totic geometry of the quivers varieties; the class of quasi-asymptotically conical manifolds
introduced by Mazzeo should also be useful [23]. In a different direction it would be good
to develop suitable QALE tolls to settle the status of the Vafa–Witten Conjecture.

2. Nakajima’s metric

2.1. The quotient construction

In [25], Nakajima has shown that the Hilbert scheme of n points in C
2 carries a natural

hyperkähler metric; this metric is obtained through the hyperkähler quotient construction
of Hitchin et al . [14]: the complex vector space

Mn = M := {(A, B, x, y) ∈ Mn(C) ⊕ Mn(C) ⊕ C
n ⊕ (Cn)∗, trA = trB = 0}

has a complex structure

J(A, B, x, y) = (B∗,−A∗, y∗,−x∗);

if we let K = iJ , then (M, I = i, J, K := iJ) becomes a quaternionic vector space.
Moreover, the unitary group U(n) acts linearly on M: if g ∈ U(n) and z = (A, B, x, y) ∈
M, then

g · z = (gAg−1, gBg−1, gx, yg−1).

The real moment map of this U(n)-action is

µ(A, B, x, y) =
1
2i

([A, A∗] + [B, B∗] + x ⊗ x∗ − y∗ ⊗ y) ∈ u(n).

If h ∈ u(n) and z = (A, B, x, y) ∈ M, we let

lz(h) =
d
dt

∣∣∣∣
t=0

eth · z = ([h, A], [h, B], hx,−yh).

By definition, we have for z ∈ M, δz ∈ TzM � M:

〈dµ(z)(δz), h〉 = 〈ilz(h), δz〉.
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The action of GLn(C) on M preserves the complex symplectic form

ωC(z, z′) = tr(A · B′ − B · A′) + y′(x) − y(x′),

and the associated complex moment map is

µC(A, B, x, y) = [A, B] + x ⊗ y ∈ Mn(C).

If t > 0, we define

Lt(n) = Lt := µ−1
{

t

2i

}
∩ µ−1

C
{0},

then the map
µ := (µ, µC) : M → u(n) ⊕ Mn(C)

is a submersion near Lt and U(n) acts freely on it; hence the quotient Ht := Lt/ U(n) is
a smooth manifold and this manifold is endowed with the Riemannian metric gN , which
makes the submersion Lt → Lt/ U(n) Riemannian. By definition, the tangent space of
U(n) · z is naturally isometric to the orthogonal of the space

Im lz ⊕ I Im lz ⊕ J Im lz ⊕ K Im lz.

In particular, Ht is endowed with a quaternionic structure that is in fact integrable;
therefore, the metric gN is hyperkähler, and hence Kähler and Ricci flat.

2.2. Some remarks

Because for λ > 0 we have λLt = Lλ2t, all the spaces {Ht}t>0 are homeomorphic and
their Riemannian metrics are proportional.

For t = 0 the quotient L0/ U(n) is not a smooth manifold. It is easy to show that

(A, B, x, y) ∈ L0 ⇔ (x = 0, y = 0, [A, B] = [A, A∗] = [B, B∗] = 0);

hence, if (A, B, 0, 0) ∈ L0, we can define the joint spectrum of (A, B):

Sn · ((λ1, µ1), (λ2, µ2), . . . , (λn, µn)) ∈ (C2)n
0/Sn,

where (C2)n
0 := {(q1, . . . , qn) ∈ (C2)n,

∑
j qj = 0} and the symmetric group Sn acts on

(C2)n
0 by permutation of the indices. We get a homeomorphism (in fact an isometry)

L0/ U(n) � (C2)n
0/Sn.

In fact, for t > 0 we still have

(A, B, x, y) ∈ Lt ⇒ y = 0. (2.1)

Hence, if z := (A, B, x, 0) ∈ Lt, we have

[A, B] = 0
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and therefore there is a g ∈ U(n) such that gAg−1 and gBg−1 are upper triangular
matrices:

gAg−1 =

⎛
⎜⎜⎜⎜⎝

λ1 ∗ · · · ∗

0 λ2
. . .

...
...

. . . . . . ∗
0 · · · 0 λn

⎞
⎟⎟⎟⎟⎠ and gBg−1 =

⎛
⎜⎜⎜⎜⎝

µ1 ∗ · · · ∗

0 µ2
. . .

...
...

. . . . . . ∗
0 · · · 0 µn

⎞
⎟⎟⎟⎟⎠ .

The joint spectrum of (A, B) is still defined and we can define

π(U(n) · z) = Sn · ((λ1, µ1), (λ2, µ2), . . . , (λn, µn)) ∈ (C2)n
0/Sn.

Ht is homeomorphic to Hilbn
0 (C2), the Hilbert scheme of n points (with the centre of

mass removed) in C
2. The map π : Hilbn

0 (C2) → (C2)n
0/Sn is in fact a crepant resolution

of (C2)n
0/Sn.

Remark 2.1. We also remark that if v = (δA, δB, δx, 0) ∈ TζLt is orthogonal to the
range of lζ , then Jv is also in TζLt, and hence δx = 0.

2.3. The geometry of Hilb2
0(C

2)

As an example we look at the geometry of Hilb2
0(C

2). Let z = (A, B, x, 0) ∈ M2(C) ⊕
M2(C) ⊕ C

2 ⊕ (C2)∗ such that trA = trB = 0 and

[A, A∗] + [B, B∗] + xx∗ = t Id, [A, B] = 0.

When detA �= 0 or detB �= 0 we can find a γ ∈ U(2) such that

γAγ−1 =

(
λ a

0 −λ

)
, γBγ−1 =

(
µ b

0 −µ

)

and then let γ(x) = (x1, x2). The equation [A, B] = 0 implies that there is a number ρ

such that a = λρ and b = µρ. The remaining equations for R2 := |λ|2 + |µ|2 are then

|ρ|2R2 + |x1|2 = t, −|ρ|2R2 + |x2|2 = t, −2R2ρ + x1x2 = 0.

We can always choose γ such that x1, x2 ∈ R+, in which case we obtain

ρ2 =

√
4 +

t2

R4 − 2.

Hence

ρ =
t

2R2 + O

(
1

R6

)
;

if x1 =
√

2t sin(φ), x2 =
√

2t cos(φ), then t cos(2φ) = ρ2R2 and t sin(2φ) = 2ρR2. Hence

φ = 1
4π + O

(
1
R

)
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and

x1 =
√

1
2 t + O

(
1
R

)
, x2 =

√
1
2 t + O

(
1
R

)
.

Hence, for (λ, µ) ∈ C
2 \ {0} � (C2)20 we have found

z(λ, µ) =

((
λ λρ(R)
0 −λ

)
,

(
µ µρ(R)
0 −µ

)
, x(R), 0

)
∈ Lt.

Moreover, z(λ, µ) and z(λ′, µ′) are in the same U(2) orbit if and only if (λ, µ) = ±(λ′, µ′);
hence we have a map

z : (C2 \ {0})/{±Id} → Lt/ U(2).

We can show that

z∗gN = 2[|dλ|2 + |dµ|2] + O

(
1

R4

)
.

This shows that (Hilb2
0(C

2), gN ) is an ALE hyperkähler metric asymptotic to C
2/{±Id}.

These manifolds have been classified by Kronheimer [19], so that in this case Nakajima’s
metric is the Eguchi–Hansen metric on T ∗

P
1(C).

2.4. A last useful remark

A priori, it is not clear whether the above map z is holomorphic; the following useful
lemma implies that this is the case.

Lemma 2.2. Suppose that a compact Lie group G acts on H
m by quaternionic linear

maps and let µ : H
m → g∗ ⊗ Im H be the associated moment map. Assume that for some

ζ = (ζR, ζC) ∈ g∗ ⊗ Im H the hyperkähler quotient Q := µ−1{ζ}/G is well defined. If X

is a complex manifold and Ψ : X → µ−1{ζ} is a smooth map such that locally

Ψ(x) = g(x)Ψ̃(x),

where g : X → GC is smooth and Ψ̃ : X → µ−1
C

{ζC} is holomorphic, then the induced
map Ψ̄ : X → Q is also holomorphic.

Proof. If q ∈ H
m, then let Pq be the orthogonal projection onto the orthogonal of

Im lq ⊕I Im lq ⊕J Im lq ⊕K Im lq = Im lCq ⊕J Im lCq , where lq : g → H
q is defined as before

by

lq(h) =
d
dt

∣∣∣∣
t=0

eth · q = h · q.

We must show that if x ∈ X, then, for q := Ψ(x),

Pq(dΨ(x)(Iv)) = IPq(dΨ(x)(v)).

If ġ(x) = dg(x)(Iv)g−1(x) ∈ gC, we then have

dΨ(x)(Iv) = ġ(x) · q + g(x) · dΨ̃(x)(Iv) = lCq (ġ(x)) + g(x) · dΨ̃(x)(Iv).

By definition, Pq(lCq (ġ(x))) = 0 and g(x) and Pq are complex linear; hence

Pq(dΨ(x)(Iv)) = Pq(g(x) · IdΨ̃(x)(v)) = IPq(dΨ(x)(v)).

�
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3. Joyce’s metric

In [16,17], Joyce built many new Kähler–Ricci flat metrics on some crepant resolution of
quotients of C

m by a finite subgroup of SU(m); his construction relies on the resolution
of a Calabi–Yau problem on QALE manifolds. We will follow the presentation given
in [17, §§ 9.1 and 9.2] for the QALE geometry of the Hilbert scheme of n points on C

2.

3.1. The local product resolution of Hilbn
0 (C2)

If p = (I1, I2, . . . , Ik) is a partition of {1, 2, . . . , n}∗, the Il are called the clusters of p.
We define

Vp = {q ∈ (C2)n
0 , ∀l ∈ {1, . . . , k}, ∀i, j ∈ Il : qi = qj}

and Ap = {γ ∈ Sn, γq = q, ∀q ∈ Vp} � Sn1 × Sn2 × · · · × Snk
, where nl = #Il. Then

Wp = V ⊥
p �

k⊕
l=1

(C2)nl
0 .

Let mp = codimCVp = dimC Wp = 2(n − l(p)), where l(p) = k. The set Pn of partitions
of {1, 2, . . . , n} has the following partial order:

p � q ⇔ Vq ⊂ Vp ⇔ Wp ⊂ Wq.

Hence p � q if and only if p is a refinement of q, i.e. if q = (J1, J2, . . . , Jr), then there are
partitions (Il,1, Il,2, . . . , Il,nl

) of Jl = Il,1 ∪ · · · ∪ Il,nl
such that the clusters of p are the

Il,j . The smallest partition is p0 = {1} ∪ {2} ∪ · · · ∪ {n} with Vp0 = (C2)n
0 ; the largest

partition is p∞ = {1, 2, . . . , n} with Vp∞ = {0}.
The fundamental partitions are the pi,j defined by

pi,j = ({i, j}, {k1}, {k2}, . . . , {kn−2})

with {1, 2, . . . , n} \ {i, j} = {k1, k2, . . . , kn−2}; we also have

Vi,j := Vpi,j
= {q ∈ (C2)n

0 , qi = qj}.

And, for any partition p �= p0,
Vp =

⋂
pi,j�p

Vi,j .

We will also define ∆p = {(i, j) ∈ {1, 2, . . . , n}2, pi,j �� p} and ∆c
p = {(i, j) ∈

{1, 2, . . . , n}2, pi,j � p}. The singular locus of (C2)n
0/Sn is the quotient of the gener-

alized diagonal

S =
( ⋃

p�=p0

Vp

)/
Sn =

(⋃
i,j

Vi,j

)/
Sn.

∗ The Il are disjoint and their union is {1, 2, . . . , n}.
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Finally, let

Sp =
( ⋃

(i,j)∈∆p

Vi,j

)/
Ap

and, for R > 0, let Tp be the R-neighbourhood of Sp in (C2)n
0/Ap:

Tp := {q ∈ (C2)n
0 , ∃(i, j) ∈ ∆p, |qi − qj | < R}/Ap.

The resolution π : Hilbn
0 (C2) → (C2)n

0/Sn is a local product resolution; indeed there is a
resolution of Wp/Ap, namely

πp : Hilbp

0(C
2) :=

k∏
l=1

Hilbnl
0 (C2) → Wp/Ap,

such that, for Up = (πp × Id)−1(Tp) ⊂ Hilbp

0(C
2) × Vp and φp : (C2)n

0/Ap → (C2)n
0/Sn,

there is a local biholomorphism onto its image ψp : Up → Hilbn
0 (C2) for which the

following diagram is commutative:

Hilbp

0(C
2) × Vp \ Up

πp×Id
��

ψp �� Hilbn
0 (C2)

π

��
(C2)n

0/Ap \ Tp

φp �� (C2)n
0/Sn

The local biholomorphism ψp can be defined with the hyperkähler quotient description
of Hilbp

0(C
2) and Hilbn

0 (C2). We will identify Vp with (C2)k
0 .

We consider

ζ = ((A1, B1, x1, 0), (A2, B2, x2, 0), . . . , (Ak, Bk, xk, 0)) ∈
k∏

j=1

Lt(nj)

and

η = ((λ1, µ1), (λ2, µ2), . . . , (λk, µk)) ∈ (C2)k
0 \ Up,

such that
i �= j ⇒ |λi − λj |2 + |µi − µj |2 �= 0.

We associate with (ζ, η) the vector (A, B, x, 0) ∈ M(n) such that A and B are block
diagonal matrices with respective main diagonal blocks

(A1 + λ1, A2 + λ2, . . . , Ak + λk) and (B1 + µ1, B2 + µ2, . . . , Bk + µk)

and x = (x1, x2, . . . , xk). Then ψp((U(n1)×U(n2)×· · ·×U(nk)) ·ζ, η) is the set of points
in the GLn(C)-orbit of (A, B, x, 0) satisfying the real moment map equation (see § 4 for
more details).
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3.2. The QALE metric on Hilbn
0 (C2)

We introduce several distance-type functions on (Hilbp

0(C
2)×Vp)\Up. If z ∈ Hilbp

0(C
2)×

Vp \ Up and v = (πp × Id)(z), we define

µp,q(z) = inf
γ∈Ap

d(γ · v, Vq) = d(v, (ApVq)/Ap)

and
νp(z) = 1 + inf

p�=p0
µp,q(z).

A Riemannian metric g on Hilbn
0 (C2) is QALE (asymptotic to (C2)n

0/Sn) if, for each
partition p, there is a metric gp on Hilbp

0(C
2) such that, for all l ∈ N,

∇l(ψ∗
pg − (gp + euclVp

)) =
∑
q ��p

O

(
1

ν2+l
p µ

2mq−2
p,q

)
. (3.1)

However, if q �� p there is always an (i, j) ∈ ∆p such that pi,j �� p and pi,j � q; therefore,

µ
2mpi,j

−2
p,pi,j

= µ2
p,pi,j

� µ
2mq−2
p,q .

If we introduce ρp(z) = inf(i,j)∈∆p
µp,pi,j

(z), then, for v = (πp × Id)(z) ∈ (C2)n
0/Ap, we

have
ρp(z) = inf

(i,j)∈∆p

|vi − vj |.

The asymptotics (3.1) are equivalent to

∇l(ψ∗
pg − (gp + euclVp

)) = O

(
1

ν2+l
p ρ2

p

)
. (3.2)

We introduce two other distance-type functions: when z ∈ Hilbn
0 (C2) and π(z) =

(v1, v2, . . . vn) ∈ (C2)n
0/Sn, we let

ρ(z) =
√∑

i<j

|vi − vj |2

and

σ(z) = inf
i �=j

{|vi − vj |} + 1.

If p is a partition of {1, 2, . . . , n} and ε, τ , R are positive real numbers, then we introduce

Čp0 = {(v1, . . . , vn) ∈ (C2)n
0/Sn, such that |v| > R and ∀i �= j, |vi − vj | > ε|v|},

Čp =
{

(v1, . . . , vn) ∈ (C2)n
0/Ap, such that |v| > R,

∀(i, j) ∈ ∆p, |vi − vj | >

√
2

n(n − 1)
|v| and ∀(i, j) ∈ ∆c

p, |vi − vj | < 2ε|v|
}

.
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It is clear that if ε is small enough then

(C2 \ RB)n
0/Sn =

⋃
p

φp(Čp).

Moreover, on Cp := (πp × Id)−1(Čp), the asymptotic (3.2) is

∇l(ψ∗
pg − (gp + euclVp

)) = O

(
1

σ2+lρ2

)
. (3.3)

Remark 3.1. It can be shown that if all metrics gp are QALE and if the estimates (3.3)
are satisfied, then g is also QALE.

3.3. Joyce’s result

The result of Joyce concerning the Hilbert scheme of n points on C
2 is the following.

Theorem 3.2. Up to scaling, Hilbn
0 (C2) has a unique QALE hyperkähler metric asymp-

totic to (C2)n
0/Sn.

4. The asymptotic of Nakajima’s metric

4.1. The induction hypothesis

In this section we will prove the following result by induction on n.

(i) On Hilbn
0 (C2), Nakajima’s metric gN satisfies the estimate (3.3) for l = 0; more

precisely, if gp is the sum of Nakajima’s metric on Hilbp

0(C
2), then there are an

ε > 0 small enough and an R large enough such that for all partitions p we have,
on (πp × Id)−1(Čp),

ψ∗
p(gN ) − gp + euclVp

= O

(
1

σ2ρ2

)
.

(ii) There is a constant C such that if z = (A, B, x, 0) ∈ Lt then

∀h ∈ un, ‖lz(h)‖2 = ‖[h, A]‖2 + ‖[h, B]‖2 + ‖hx‖2 � C‖h‖2.

(iii) There is a constant M such that for all z ∈ Lt and (δA, δB, 0, 0) ∈ TzLt orthogonal
to Im lz we have

‖[δA, δA∗]‖ + ‖[δB, δB∗]‖ � M

σ2 (‖δA‖2 + ‖δB‖2).

It is easy to check these three conditions for Hilb2
0(C

2) thanks to the explicit description
of Lt in this case (see (2.3)). So we now assume that these induction hypotheses are true
for all m < n.
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4.2. The case of well-separated points

We first prove the easiest case: that is, we prove the induction hypothesis for the
partition p0. More precisely, we consider q = (q1, q2, . . . , qn) ∈ (C2)n

0 such that, for all
i �= j, |qi − qj | > R (R will be chosen large enough), the set of such qs will be denoted
by O0.

If qj = (λj , µj), we search for a solution z = (A, B, x, 0) ∈ M of the equations

[A, A∗] + [B, B∗] + xx∗ = t Id, [A, B] = 0, (4.1)

where A, B are upper triangular matrices with respective diagonals (λ1, λ2, . . . , λn) and
(µ1, µ2, . . . , µn) and upper diagonal coefficients a = (ai,j), b = (bi,j). We obtain the
following equation∗ for the (i, j) coefficients of Equation (4.1):

(λ̄i − λ̄j)ai,j + (µ̄i − µ̄j)bi,j +
∑

k

[āk,iak,j + b̄k,ibk,j − ai,kāj,k − bi,k b̄j,k] = xix̄j ,

−(µ̄i − µ̄j)ai,j + (λi − λj)bi,j +
∑

k

[ai,kbk,j − bi,kak,j ] = 0.

⎫⎪⎪⎬
⎪⎪⎭
(4.2)

And the equation for the diagonal coefficient (i, i) of (4.1) gives∑
k

[|ai,k|2 − |ak,i|2 + |bi,k|2 − |bk,i|2] + |xi|2 = t. (4.3)

We let Ri,j =
√

|λi − λj |2 + |µi − µj |2 and

x0
i =

√
t, a0

i,j = (λi − λj)
t

R2
i,j

, b0
i,j = (µi − µj)

t

R2
i,j

. (4.4)

Then, if we write Equations (4.2) and (4.3) in the synthetic form

F (q,a, b,x) = 0,

where F : (C2)n
0 × C

n(n−1)/2 × C
n(n−1)/2 × C

n → C
n(n−1)/2 × C

n(n−1)/2 × C
n, we have

F (q,a0, b0,x0) = O(σ−2).

Moreover, it is easy to check that when σ is large enough the partial derivative in the
last three arguments D(a,b,x)F (q,a0, b0,x0) is invertible and the norm of the inverse is
uniformly bounded. Because the map F is polynomial of degree 2 in its arguments, the
implicit function theorem implies that Equations (4.2) and (4.3) have a unique solution
such that

(a, b,x)(q) = (a0, b0,x0) + O(σ−2) and Dq(a, b,x)(q) = O(σ−2). (4.5)

We have built a map

Ψ̂0 : O0 → Lt,

q �→ (A(q), B(q), x(q), 0).

∗ With the convention that ai,j = bi,j = 0 if j � i.
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Moreover, Ψ̂0(q) and Ψ̂0(q′) live in the same U(n)-orbit if and only if q and q′ live in
the same Sn-orbit; hence Ψ̂0 induces a map

Ψ0 : O0/Sn → Hilbn
0 (C2).

Moreover, this map Ψ0 is holomorphic according to Lemma 2.2.
The diagonal entries of the matrices A(q) and B(q) are given by (4.4); hence the q-

derivative of the diagonal entries of A(q), B(q) can be computed explicitly. We then
have

x(q) =
√

t(1, . . . , 1) + O(σ−2);

hence with (4.5) we find that

Dqx(q) · v = O(σ−2)v.

We have
|dΨ̂0(q) · v|2 = |DqA(q) · v|2 + |DqB(q) · v|2 + |Dqx(q)|2,

and if v = ((δλ1, δµ1), . . . , (δλn, δµn)), then

|DqA(q) · v|2 =
∑

j

|δλj |2 + |Dqa(q) · v|2,

|DqB(q) · v|2 =
∑

j

|δµj |2 + |Dqb(q) · v|2.

With (4.5), we obtain

|dΨ̂0(q) · v|2 = |v|2 + O

(
|v|2
σ4

)
. (4.6)

In order to check point (i) of the induction hypothesis we must show that

|dΨ̂0(q) · v|2 − |Πz(dΨ̂0(q) · v)|2 = |v|2 + O

(
|v|2
σ4

)
,

where, if Ψ̂0(q) = z ∈ Lt, Πz is the orthogonal projection onto the space Im lz. But, by
construction, if X ∈ Im lz, then IX is normal to TzLt, and hence dΨ̂0(q) · (Iv) ⊥ IX; in
particular, Πz(I · dΨ̂0(q) · (Iv)) = 0. Hence

Πz(dΨ̂0(q) · v) = Πz(dΨ̂0(q) · v + IdΨ̂0(q) · Iv) = 2Πz(∂̄Ψ̂0(q) · v). (4.7)

But, by construction,

|∂̄Ψ̂0(q) · v|2 = |∂̄a|2 + |∂̄b|2 + |∂̄x|2 = O

(
|v|2
σ4

)
. (4.8)

Assertion (i) of the induction hypothesis follows from the estimates (4.6)–(4.8).
For point (ii) of the induction hypothesis, we have, for z = Ψ̂0(q) and h = (hi,j) ∈ un,

‖lz(h)‖2 � 1
2

[∑
i,j

R2
i,j |hi,j |2 + t

∑
i

|hi,i|2
]

− Cσ−2‖h‖2.

Hence, if R is chosen large enough, part (ii) of the induction hypothesis holds on O0.
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Now we check part (iii) of the induction hypothesis. Let

(δA, δB, 0, 0) = dΨ̂0(q) · v − Πz(dΨ̂0(q) · v).

We have just said that
‖Πz(dΨ̂0(q) · v)‖ = O(σ−2)|v|,

so the off-diagonal parts of δA and δB are bounded by O(σ−2)|v|, which implies that

‖[δA, δA∗]‖2 + ‖[δB, δB∗]‖2 � O(σ−4)|v|4.

4.3. The general case

We now examine the region Cp associated with another partition p �= p0; we can always
assume that

p = ({m0 = 1, . . . , m1}, {m1 + 1, . . . , m2}, . . . , {mk−1 + 1, . . . , n = mk}).

Let nl = ml − ml−1. We consider the set Op of

(q,A,B,x) ∈ (C2)k
0 ×

k⊕
j=1

Mnj
(C) ×

k⊕
j=1

Mnj
(C) ×

k⊕
j=1

C
nj

such that if q = (q1, q2, . . . , qk) then, for all i �= j, |qi − qj | >
√

1/n(n − 1)|q| and
|q| � R; and if A = (A1, A2, . . . , Ak), B = (B1, B2, . . . , Bk), x = (x1, x2, . . . , xk), then
each (Aj , Bj , xj) satisfies tr Aj = trBj = 0 and the moment map equation

[Aj , A
∗
j ] + [Bj , B

∗
j ] + xjx

∗
j = t Idnj , [Aj , Bj ] = 0;

and, moreover,
sup

j
(‖Aj‖2 + ‖Bj‖2) � τ2|q|2.

We will search for a solution z = (A, B, x, 0) of the moment map equation that is approx-
imatively

A �

⎛
⎜⎜⎜⎜⎝

A1 + λ1 0 · · · 0

0 A2 + λ2
. . .

...
...

. . . . . .
...

0 · · · · · · Ak + λk

⎞
⎟⎟⎟⎟⎠ ,

B �

⎛
⎜⎜⎜⎜⎝

B1 + µ1 0 · · · 0

0 B2 + µ2
. . .

...
...

. . . . . .
...

0 · · · · · · Bk + µk

⎞
⎟⎟⎟⎟⎠ ,

x � (x1, x2, . . . , xk).
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First we fix some ζ = (q,A,B,x) ∈ Op and we search for a z0 = (A0, B0, x0, 0)
such that if qj = (λj , µj) then x0 = (x1, x2, . . . , xk), A0 (respectively B0) is upper block
triangular with diagonal (A1 + λ1, A2 + λ2 Id, . . . , Ak + λk) (respectively (B1 + µ1, B2 +
µ2, . . . , Bk + µk)) and µ(z0), µC(z0) are block diagonal. Hence we search for matrices
Ai,j , Bi,j ∈ Mni,nj

(C), i < j, such that for all i < j,

(A∗
i + λ̄i)Ai,j − Ai,j(A∗

j + λ̄j) + (B∗
i + µ̄i)Bi,j

−Bi,j(B∗
j + µ̄j) + Q1(i, j) + Q2(i, j) = xix

∗
j ,

−(Bi + µi)Ai,j + Ai,j(Bj + µj) + (Ai + λi)Bi,j − Bi,j(Aj + λj) + Q3(i, j) = 0,

⎫⎪⎪⎬
⎪⎪⎭

(4.9)
where Q1(i, j) (respectively Q2(i, j)) is a quadratic expression depending on the Aα,βs
(respectively on the Bα,βs) and Q3(i, j) is bilinear in the Aα,βs and the Bα,βs. For τ > 0
small enough, with the same arguments given in the preceding paragraph, the implicit
function theorem implies the following lemma.

Lemma 4.1. Equations (4.9) have a solution Ai,j , Bi,j ∈ Mni,nj (C), i < j, which
depends smoothly on ζ ∈ Op; moreover, we have that

∑
i<j

‖Ai,j‖2 + ‖Bi,j‖2 = O

(
1

|q|2

)
.

And the differential of the map ζ �→ (Ai,j , Bi,j) is bounded by O(1/|q|2).

We then obtain that z0(ζ) = (A0, B0, x0, 0) ∈ Mn(C) × Mn(C) × C
n × (Cn)∗ satisfies

[A0, B0] = 0, 2iµ(z0) − t = O

(
1

|q|2

)
.

That is, z0(ζ) is an almost solution of the moment map equation. More precisely, the
off-block-diagonal terms of the moment map equations are zero. We will now use an
argument that we learned from a paper of Donaldson [8, Proposition 17]: we will find a
Hermitian matrix h = ik such that, if

zh = eik · z0 = (ehA0e−h, ehB0e−h, eh · x0, 0),

then 2iµ(zh) − t Id = 0 and µC(zh) = 0 (this latter condition being obvious).
From part (ii) of the induction hypothesis, and if we take τ small enough and R large

enough, we have
∀η ∈ un, ‖lz0(η)‖ � C‖η‖,

the constant C being uniform on Op. Hence, if h = iη with

‖k‖ � δ := min
{

1,
Ce−2

4|z0|

}
,

then
∀η ∈ un, ‖lzh

(η)‖ � 1
2C‖η‖.
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So as soon as we have ∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣ <

4
C2 δ,

Proposition 17 in [8] furnishes an h = ik with µ(eh · z0) = (t/2i) Id and with

‖h‖ � 4
C2

∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣.

But when R is large enough, the condition∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣ <

4
C2 δ

is satisfied; hence there is a Hermitian matrix h = ik such that 2iµ(zh) − t Id = 0 and
µC(zh) = 0.

We need to recall how h is found. For z ∈ M we have a linear map lz : un → TzM � M

and l∗z its adjoint; from the definition of the moment map we have l∗z = dµ(z) ◦ I. The
endomorphism Qz of un is given by Qz = l∗z lz. Then, for every h = ik, with |k| < δ,
Qzh

is invertible and Q−1
zh

has an operator norm bounded by 4C−2. Letting a(z) =
Q−1

z (µ(z) − (t/2i) Id), we follow the maximal solution of the equation

dz

ds
= −ilz(a(z)), z(0) = z0. (4.10)

By definition we have
dµ(zs)

ds
= −

(
µ(zs) − t

2i
Id
)

;

hence

µ(zs) − t

2i
Id = e−s

(
µ(z0) − t

2i
Id
)

.

In fact, zs = gs · z0, where

dgs

ds
= ia(zs) · gs, gs ∈ GLn(C).

The arguments of [8] ensure that the maximal solution of (4.10) is defined on [0, +∞[
and if gs = eηsehs , where ηs ∈ un and hs is Hermitian, then |hs| � δ. We therefore also
obtain

‖ġs‖ � 4
C2

∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣e−seδ,

and hence g∞ = lims→+∞ gs exists and

‖g∞ − Id ‖ � 4eδ

C2

∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣ = O

(
1

|q|2

)
. (4.11)

We clearly have 2iµ(g∞ · z0) = t Id and h = ik is given by e2h = g∗
∞g∞, i.e. the polar

decomposition of g∞ is g∞ = eη∞eh. Moreover, if s � 0, then the operator norm of
lzsQ

−1
zz

remains less than 2/C and hence

‖g∞ · z0 − z0‖ � 2
C

∣∣∣∣µ(z0) − t

2i
Id
∣∣∣∣ = O

(
1

|q|2

)
. (4.12)
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The implicit function theorem tells us that h depends smoothly on z0 and hence on
ζ ∈ Op; indeed,

d
dt

∣∣∣∣
t=0

µ(etik · z) = Qz(k).

The following lemma gives an estimate of the size of the differential of h : ζ ∈ Op →
h(ζ) ∈ iun.

Lemma 4.2. Let v ∈ TζOp is a vector of unit length. Then

‖dh(ζ) · v‖ = O

(
1

|q|2

)
.

Proof. Let ż0 = dz0(ζ0) · v and ḣ = dh(ζ) · v. If

v = (((δλ1, δµ1), . . . , (δλk, δµk)), (δA1, . . . , δAk), (δB1, . . . , δBk), (δx1, . . . , δxk)),

then we define v := (δA, δB, δx, 0) ∈ M, where δA and δB are block diagonal matrices
with respective main diagonal block

δA1 + δλ1 Idn1 , . . . , δAk + δλk Idnk
and δB1 + δµ1 Idn1 , . . . , δBk + δµk Idnk

and δx = (δx1, . . . , δxk).
We have

dµ(zh) · (D exp(h)ḣ · z0 + eh · ż0) = 0.

Recall that

D exp(h)ḣ =
ead h − Id

adh
· ḣ · eh.

Let iη̇ be the Hermitian part of D exp(h)ḣ and let ξ̇ be its skew Hermitian part. Then

dµ(zh) · (D exp(h)ḣ · z0) = dµ(zh)(ilzh
η̇) + dµ(zh)(lzh

ξ̇) = Qzh
(η̇),

and
Qzh

(η̇) + dµ(zh) · (eh · ż0) = 0.

Moreover, from the construction of z0 and Lemma 4.1, we easily obtain that

dµ(z0)(ż0) = O

(
1

|q|2

)

and

ż0 = v + O

(
1

|q|2

)
.

So if k ∈ U(n) is such that g∞ = keh, then

Ad(k) dµ(zh) · (eh · ż0)

= dµ(g∞ · z0) · (g∞ · ż0)

= dµ(g∞ · z0) · ((g∞ − Id) · ż0) + dµ(g∞ · z0 − z0) · ż0 + dµ(z0)(ż0).
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Hence

Qzh
(η̇) + dµ(zh) · (k−1 · (g∞ − Id) · ż0) = O

(
1

|q|2

)
.

We now take the scalar product of this quantity with η̇ and we obtain

‖lzh
(η̇)‖2 � O

(
1

|q|2

)
‖η̇‖ − 〈lzh

(η̇), k−1 · I(g∞ − Id) · ż0〉

� O

(
1

|q|2

)
(‖η̇‖ + ‖lzh

(η̇)‖).

But our construction gives that

‖η̇‖ � 2
C

‖lzh
(η̇)‖;

hence we obtain

‖η̇‖ � 2
C

‖lzh
(η̇)‖ = O

(
1

|q|2

)
.

Now ḣ is a Hermitian matrix and ‖h‖ = O(|q|−2), hence, from the definition of η̇ and ξ̇,
we have

ḣ − iη̇ = O(|q|−2).

The lemma is therefore proved. �

We note that it is straightforward to verify point (ii) at zh because, by construction,

∀η ∈ un, ‖lzh
(η)‖ � 1

2C‖η‖.

We have built a map fp from Op to Lt whose value at a point ζ = (q,A,B,x) ∈ Op

is the zh constructed before. This map is U(n1) × U(n2) × · · · × U(nk)-equivariant and it
therefore induces a map

ψp : Op/(U(n1) × U(n2) × · · · × U(nk)) → Hilbn
0 (C2).

We remark that by adjusting ε, R and τ we obtain

Cp ⊂ Op/(U(n1) × U(n2) × · · · × U(nk)) ⊂ Hilbp

0(C
2) × (C2)k

0 ,

where the last inclusion is an isometry if Hilbp

0(C
2) × (C2)k

0 is endowed with the prod-
uct metric. We now want to compare the metric ψ∗

pgN and the product metric on
Hilbp

0(C
2) × (C2)k

0 . Let v be a vector of TζOp that is orthogonal to the U(n1) × U(n2) ×
· · · × U(nk) orbit of ζ. We will again follow the notation used in the proof of Lemma 4.2
(f(ζ) = zh = eh · z0, ḣ, v, . . . ).

Recall that we have denoted by Πq the orthogonal projection onto Im lq. We therefore
need to compare

‖v‖2 and ‖(Id−Πzh
) · dfp(ζ) · v‖2 = ‖dfp(ζ) · v‖2 − ‖Πzh

· dfp(ζ) · v‖2.
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But
dfp(ζ) · v = lzh

(ξ̇) + ilzh
(η̇) + eh · ż0.

Hence
(Id−Πzh

) · dfp(ζ) · v = (Id−Πzh
) · (ilzh

(η̇) + eh · ż0).

But we have already seen that

‖lzh
(η̇)‖2 = O

(
‖v‖2

|q|4

)
.

But ilzh
(η̇) is orthogonal to Tzh

Lt and hence to the range of Πzh
, so we also have

〈(Id−Πzh
)(ilzh

(η̇)), (Id−Πzh
) · (eh · ż0)〉 = 〈(Id−Πzh

) · ilzh
(η̇), (eh · ż0)〉

= 〈ilzh
(η̇), (eh · ż0)〉

= −〈η̇,dµ(zh)(eh · ż0)〉.

But
dµ(zh)((dfp(ζ) · v) = 0 = dµ(zh)(ilzh

(η̇) + eh · ż0),

so

〈(Id−Πzh
)(ilzh

(η̇)), (Id−Πzh
) · (eh · ż0)〉 = −〈η̇,dµ(zh)(eh · ż0)〉

= 〈η̇,dµ(zh)(ilzh
(η̇))〉

= ‖lzh
(η̇)‖2

= O

(
‖v‖2

|q|4

)
.

It now remains to estimate

‖(Id−Πzh
)(eh · ż0)‖2 = ‖eh · ż0‖2 − ‖Πzh

(eh · ż0)‖2.

Recall that
Πzh

= lzh
Q−1

zh
l∗zh

and l∗zh
(eh · ż0) = dµ(zh)(ieh · ż0).

We have already noticed that

I · ż0 = dz0(ζ) · (I · v) + w,

where w = O(|q|−2)‖v‖, so we get

l∗zh
(eh · ż0) = dµ(zh)(eh dz0(ζ) · (Iv)) + l∗zh

(eh · w)

and the proof of Lemma 4.2 furnishes a w′ = O(|q|−2)‖v‖ such that

dµ(zh)(eh dz0(ζ) · (Iv)) = dµ(zh)(w′) + O(|q|−2)‖v‖.

https://doi.org/10.1017/S1474748010000162 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000162


138 G. Carron

As the operator norm of lzh
Q−1

zh
is bounded by 2/C, we have obtained

‖Πzh
(eh · ż0)‖2 = O

(
‖v‖2

|q|4

)
.

Hence we have obtained

ψ∗
pgN (v,v) = ‖eh · ż0‖2 + O

(
1

|q|4

)
‖v‖2

= ‖ż0‖2 + 2〈ż0, hż0〉 + O

(
1

|q|4

)
‖v‖2.

By construction,

|ż0|2 = ‖v‖2 + O

(
1

|q|4

)
‖v‖2.

And if v = (δq, δA1, δA2, . . . , δAk, δB1, δB2, . . . , δBk, 0) and if hi,j are the blocks of h (of
size ni × nj), then

〈ż0, hż0〉 = 〈v, hv〉 + O

(
1

|q|4

)
‖v‖2

=
∑

j

〈δAj , [hj,j , δAj ]〉 + 〈δBj , [hj,j , δBj ]〉 + O

(
1

|q|4

)
‖v‖2

=
∑

j

〈[δAj , δA
∗
j ] + [δBj , δB

∗
j ], hj,j〉 + O

(
1

|q|4

)
‖v‖2

= O

(
1

σ2|q|2

)
‖v‖2

according to hypothesis (iii).
In order to finish the proof we need to check property (iii) at the point zh. With what

has been proved in the preceding paragraph, we only need to check that if (δA, δB, 0, 0)
is a unitary vector in the tangent space of Lt at zh and orthogonal to the U(n) orbit of
zh, then [δAj , δA

∗
j ] + [δBj , δB

∗
j ] is bounded. This is evident.

5. Conclusion

With the previous asymptotic description of Nakajima’s metric, we will show that Naka-
jima’s metric coincides with Joyce’s one. One way to prove such a result would be to
verify the estimates (3.1) for the orders l � 1; this is probably possible with some extra
work but we will give a different proof here that follows the classical proof of the unique-
ness of the solution of the Calabi–Yau problem. Moreover, our argument gives a new
analytical result on the mapping property of the Laplace operator on QALE space. For
new results that extended those of Joyce and go further than our result, there is the
forthcoming work of Degeratu and Mazzeo [7].

We have already seen that Kronheimer’s classification of hyperkähler ALE four-
dimensional manifolds implies that Nakajima’s metric is the Eguchi–Hansen metric on
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Hilb2
0(C

2) � T ∗
P

1(C). We are going to prove our result by induction on n. Hence we now
assume that up to a scaled factor, Joyce’s and Nakajima’s metrics coincide on Hilbl

0(C
2)

for all integers l < n. We consider g to be the Joyce metric on Hilbn
0 (C2) and ω to be the

Kähler form associated with g (for the complex structure I), and for simplicity of the
forthcoming notation we denote by g′ Nakajima’s metric on Hilbn

0 (C2) with associated
Kähler form ω′.

5.1. The (co)homology of Hilbn
0 (C2)

The homology of Hilbn
0 (C2) is well known; the odd Betti numbers of Hilbn

0 (C2) are
zero and the even ones can be computed explicitly (see [10] and [25, Corollary 5.10]).

Recall that ν = (ν1, . . . , νk) ∈ N
k is a partition of n if

ν1 � ν2 � · · · � νk and
k∑

j=1

νj = n.

The length of such a ν is
l(ν) = k.

We then have that

b2k(Hilbn
0 (C2)) = Card{ν, ν a partition of n, l(ν) = 2n − 2k}.

Moreover, there is a geometric description of a basis of H∗(Hilbn
0 (C2)) (see [25, Exam-

ple 8.18.2]). For instance, H2(Hilbn
0 (C2)) has dimension 1 and the corresponding partition

of n is
(2, 1, . . . , 1).

We consider the top-dimensional stratum S0(n) of the singular set of (C2)n
0/Sn; we have

S0(n) = Ŝ0(n)/Sn,

where
q ∈ Ŝ0(n) ⇔ Card{{i, j}, i < j, qi = qj} = 1.

Then, for any q̄ ∈ S0(n), the homology class of π−1{q̄} � P
1(C) generates

H2(Hilbn
0 (C2)). Moreover, S0(n) being path connected, this homology class does not

depend on the choice of q̄ ∈ S0(n): we will call it Σn.

5.2. Comparison of the two metrics

We can assume that, for any q̄ ∈ S0(n),∫
π−1{q̄}

ω =
∫

π−1{q̄}
ω′.

We will note that R(n) = R̂(n)/Sn, which is the smooth part of (C2)n
0/Sn.
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Moreover, for each partition p of {1, 2, . . . , n}, we have

ψ∗
pg = gp + eucl + O

(
1

σ2ρ2

)

and

ψ∗
pg′ = g′

p + eucl + O

(
1

σ2ρ2

)

on Cp ⊂ Hilbp

0(C
2) × Vp, where gp (respectively g′

p) is the sum of the Joyce (respectively
Nakajima) metric on Hilbp

0(C
2) � Hilbn1

0 (C2) × Hilbn2
0 (C2) × · · · × Hilbnk

0 (C2). We iden-
tity Vp � (C2)k

0/Sn and Wp �
⊕k

j=1(C
2)nj

0 .
We fix j ∈ {1, . . . , k} and (q1, . . . , qk) ∈ Wp �

⊕k
j=1(C

2)nj

0 such that if i �= j, then
qi ∈ R̂(ni), whereas qj ∈ Ŝ0(nj) and we take v ∈ R̂(k) ⊂ Vp � (C2)k

0 . We also consider

Cv = π−1(Sn · (q, v)).

We have, by assumption, ∫
Cv

ω =
∫

Cv

ω′.

Let gj (respectively g′
j) be the Joyce (respectively Nakajima) metric on Hilbnj

0 (C2)
and let ωj (respectively ω′

j) be its Kähler form; that is to say, gp = g1 + g2 + · · ·+ gk and
g′

p = g′
1 + g′

2 + · · · + g′
k. We have∫

Cv

ω =
∫

Σnj

ωj + O

(
1

σ2ρ2

)

=
∫

Cv

ω′

=
∫

Σnj

ω′
j + O

(
1

σ2ρ2

)
.

When ‖v‖ tends to ∞, we obtain ∫
Σnj

ω′
j =

∫
Σnj

ωj .

Our induction hypothesis yields that gj = g′
j for all j and, eventually, we have proven

that

g − g′ = O

(
1

σ2ρ2

)
.

5.3. Coincidence of the Joyce and Nakajima metrics

Following the classical proof of the uniqueness of the solution of the Calabi–Yau prob-
lem, we would like to find a function φ such that

ω − ω′ = i∂∂̄φ.
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However, this is not easy because the weight σ−2ρ−2 is critical in Joyce’s analysis of
QALE manifolds. To circumvent this difficulty, we remark that both metrics g and g′

have an S
1 invariance property coming from the diagonal action of S

1 on (C2)n
0/Sn. For

Joyce’s metric it comes from the uniqueness result of the QALE Kähler–Einstein metric,
which is asymptotic to (C2)n

0/Sn. For Nakajima’s metric, the action of S
1 on M is as

follows. If eiθ ∈ S
1 and if z = (A, B, x, 0) ∈ Lt, then eiθ · z := (eiθA, eiθB, eiθx, 0) ∈ Lt.

And this action is isometric. This S
1 action is holomorphic for the complex structure I

but not for the complex structures J and K. Let X be the g or g′ Killing field associated
with the infinitesimal action of η = 1

2 i. Then X has linear growth on Hilbn
0 (C2): that is

to say, there is a constant c such that

X(z) � c(ρ(z) + 1).

Moreover, if ω1 is the Kähler form of (g, J), ω2 is the Kähler form of (g, K) and ω′
1 and

ω′
2 are the corresponding 2-forms associated with the metric g′, then

ω1 = d(iXω2) and ω′
1 = d(iXω′

2).

Hence if we let
β = iXω2 − iXω′

2,

then we have

ω1 − ω′
1 = dβ and β = O

(
1

σ2ρ

)
.

We now consider the Kähler manifold (Hilbn
0 (C2), g, J). The following analytical result

is the key point of our proof.

Proposition 5.1. There is a (0, 1)-form α on Hilbn
0 (C2) such that

α = O

(
log(ρ + 2)

ρ

)

and
β0,1 = ∆∂̄α = ∂̄∂̄∗α + ∂̄∗∂̄α.

First we explain why this proposition implies that ω1 = ω′
1. This proposition will be

proven in the next subsection.
The 1-form Φ = ∂̄∗∂̄α satisfies ∂̄β0,1 = 0 = ∂̄Φ and ∂̄∗Φ = 0. Moreover, the metric g

has, by definition, bounded geometry, and we therefore have the following uniform local
elliptic estimate:

‖Φ‖L2(B(x,1)) = ‖∂̄∗∂̄α‖L2(B(x,1))

� c‖∆∂̄α‖L2(B(x,2)) + c′‖α‖L2(B(x,2))

� O

(
log(ρ + 2)

ρ

)
.
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But because Φ is harmonic we also have a uniform estimate

|Φ(x)| � c‖Φ‖L2(B(x,1)).

Hence we obtain that

Φ = O

(
log(ρ + 2)

ρ

)
.

But the Ricci curvature of g is zero, so the Bochner formula and the Kato inequality
imply that |Φ| is a subharmonic function and hence Φ is zero by the maximum principle.
We also obtain β0,1 = ∂̄∂̄∗α, and the same argument shows that we can find a (1, 0)-form
α̃ such that β1,0 = ∂∂∗α̃. Hence if we let

iφ = ∂̄∗α − ∂∗α̃,

then we have
dβ = i∂∂̄φ.

Again the same argument as before, using the fact that g has bounded geometry, implies
that

φ = O

(
log(ρ + 2)

ρ

)
.

Both ω1 and ω′
1 are Kähler–Einstein with zero scalar curvature so there is a plurihar-

monic function f such that
ωm

1 = ef (ω′
1)

m;

the function ef is computed with the determinant of (g′−1)g, so we have

f = O

(
1

σ2ρ2

)
.

By the maximum principle we deduce that f = 0. We finish the proof with a classical
argument: the function φ is subharmonic for the metric g [4, Exposé VI, Lemma 1.6] and
decays at infinity, hence by the maximum principle φ is negative; but, reversing the role
of g and g′, −φ is also subharmonic for the metric g′ and −φ is positive and decays at
infinity; hence φ is zero.

5.4. Proof of the analytical result

We first remark that because (Hilbn
0 (C2), g) is asymptotic to the Euclidean metric on

(C2)n
0/Sn, we have

lim
r→∞

volB(x, r)
rd

=
wd

n!
,

where d = 4(n − 1) is the real dimension of Hilbn
0 (C2) and wd is the volume of the unit

ball in R
d. The Bishop–Gromov inequality tells us that for any point x ∈ Hilbn

0 (C2)

wdr
d

n!
� volB(x, r) � wdr

d.
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The result of Li and Yau [21] implies that the Green kernel G of the metric g (that is
to say, the Schwartz kernel of the operator ∆−1) satisfies

G(x, y) � c

d(x, y)d−2 .

Moreover, because g is Ricci flat, the Hodge–de Rham operator acting on 1-forms is
the rough Laplacian

∀v ∈ C∞
0 (T ∗Hilbn

0 (C2)), ∆v = dd∗v + d∗dv = ∇∗∇v.

Hence the Kato inequality implies that if G(x, y) is the Schwartz kernel of the operator
∆−1, then it satisfies

|�G(x, y)| � G(x, y) � c

d(x, y)d−2 .

Proposition 5.1 is a consequence of the following lemma.

Lemma 5.2. If f ∈ L∞
loc(Hilbn

0 (C2)) is a non-negative function that satisfies

f = O

(
1

σ2ρ

)
,

then

u(x) =
∫

Hilbn
0 (C2)

f(y)
d(x, y)d−2 dy

is well defined and satisfies

u = O

(
log(ρ + 2)

ρ

)
.

Proof. Let o ∈ Hilbn
0 (C2) be a fixed point. We can assume that ρ(x) = d(o, x). We

remark that u is well defined because there is a constant c such that, for R > 1,∫
B(o,R)

f � cRd−3.

As a matter of fact, the function 1/σ2ρ is asymptotic to a homogeneous function h of
degree −3 on (C2)n

0/Sn: h(rθ) = r−3h̄(θ), where h̄ is a positive function on S
2d−1/Sn;

this function h̄ is singular on the singular locus of S
2d−1/Sn. If we call this singular

locus Σ, then h̄ behaves like d(· , Σ)−2 near Σ but the real codimension of Σ is 4 so h̄ is
integrable on S

2d−1/Sn and we have

lim
R→∞

R3−d

∫
B(o,R)

1
ρσ2 =

1
d − 3

∫
S2d−1/Sn

h̄.

In order to finish our estimate, we must find a constant c such that if ρ(x) � 10 then

F (x) =
∫

Hilbn
0 (C2)

1
d(x, y)d−2

1
ρ(y)σ(y)2

dy � c
log ρ(x)

ρ(x)
.
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We decompose

Hilbn
0 (C2) = (B(o, 2ρ(x))\B(x, ρ(x)/2))∪B(x, ρ(x)/2)∪(Hilbn

0 (C2)\B(o, 2ρ(x))). (5.1)

Then we have F = F1 + F2 + F3, where Fi is the integral of d(x, y)2−dρ−1σ−2 on the ith
region of the decomposition (5.1). The first and last integrals are easy to estimate:

F1(x) �
(

2
ρ(x)

)d−2 ∫
B(o,2ρ(x))

1
ρσ2 dy � C

1
ρ(x)

.

Concerning F3 we have

F3(x) =
∫

Hilbn
0 (C2)\B(o,2ρ(x))

1
d(x, y)d−2

1
ρ(y)σ(y)2

dy

�
∫

Hilbn
0 (C2)\B(o,2ρ(x))

2d−2

ρ(y)d−1

1
σ(y)2

dy

�
∞∑

k=1

∫
B(o,2k+1ρ(x))\B(o,2kρ(x))

2d−2

ρ(y)d−1

1
σ(y)2

dy

�
∞∑

k=1

1
(2kρ(x))d−2

∫
B(o,2k+1ρ(x))

1
ρ(y)σ(y)2

dy

� C

∞∑
k=1

1
(2kρ(x))d−2 (2k+1ρ(x))d−3

� C ′ 1
ρ(x)

.

It remains to estimate F2. We have

F2(x) � 2
ρ(x)

∫
B(x,ρ(x)/2)

1
d(x, y)d−2

1
σ(y)2

dy.

Let
V (τ) =

∫
B(x,τ)

1
σ(y)2

dy

and note dV , the Riemann–Stieljes measure associated with the increasing function V .
We have∫

B(x,ρ(x)/2)

1
d(x, y)d−2

1
σ(y)2

dy =
∫ ρ(x)/2

0

1
τd−2 dV (τ)

=
V (ρ(x)/2)

(ρ(x)/2)d−2 + (d − 2)
∫ ρ(x)/2

0

V (τ)
τd−1 dτ. (5.2)

We will estimate V : if we let S be the pullback to Hilbn
0 (C2) of the singular locus of

(C2)n
0/Sn and O = {y ∈ Hilbn

0 (C2), such that σ(y) � 2}, then we have V (τ) = V1(τ) +
V2(τ), where V1 is the integral over B(x, τ) ∩ O and V2 is the integral over B(x, τ) \ O.
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V1 is easy to estimate because on this region σ−2 is bounded and hence

V1(τ) � C vol(B(x, τ) ∩ O) � C min{τd, τd−4}. (5.3)

Outside O the metric is quasi-isometric to the Euclidean metric and we can estimate
V2 by a similar integral on (C2)n

0/Sn. Let

D = {q ∈ (C2)n
0 , such that ∀i �= j, |qi − qj | � |q1 − q2|}

and let D′ = {q ∈ D, |q1 − q2| � 1}. D is a fundamental domain for the action of Sn on
(C2)n

0 and if x̄ ∈ D is such that Sn · x̄ = π(x), then

V2(τ) � C

n!

∑
γ∈Sn

∫
D′∩B(γx̄,τ)

1
|q1 − q2|2

dq.

We give three different estimates for V2 according to the relative size of σ(x) and τ :

(1) if σ(x) � 3
2 , then for τ ∈ [0, 1

2 ] we have

V2(τ) = 0;

(2) if σ(x) � 3
2 , then for τ � σ(x)/2 we have

V2(τ) � C

σ(x)2
τd;

and finally

(3) if τ � 1
2σ(x), then there is a point z ∈ S such that d(x, z) = σ(x) − 1, and if z̄ ∈ D

such that Snz̄ = π(z), then∫
D′∩B(γx̄,τ)

1
|q1 − q2|2

dq �
∫

D′∩B(γz̄,3τ)

1
|q1 − q2|2

dq � Cτd−2.

Now, with the estimate (5.3), it is easy to show that in (5.2) the part coming from V1 is
bounded; concerning the part coming from V2, when σ(x) � 3

2 we get

∫ ρ(x)/2

0

1
τd−2 dV2(τ) � C + (d − 2)

∫ ρ(x)/2

1/2

Cτd−2

τd−1 dτ = C ′ + C log ρ(x),

and when σ(x) � 3
2 , we obtain

∫ ρ(x)/2

0

1
τd−2 dV2(τ) � C + (d − 2)

∫ σ(x)/2

0

Cτd

τd−1σ(x)2
dτ + (d − 2)

∫ ρ(x)/2

σ(x)/2

Cτd−2

τd−1 dτ

= C ′ + C log
(

ρ(x)
σ(x)

)
.

And from this we obtain the result. �
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