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‖DISIM, Università dell’Aquila, L’Aquila, Italy

Email: Filippo.Mignosi@di.univaq.it

Received 27 January 2014; revised 7 March 2015

Given a set D of q documents, the Longest Common Substring (LCS) problem asks, for any

integer 2 � k � q, the longest substring that appears in k documents. LCS is a well-studied

problem having a wide range of applications in Bioinformatics: from microarrays to DNA

sequences alignments and analysis. This problem has been solved by Hui (2000 International

Journal of Computer Science and Engineering 15 73–76) by using a famous constant-time

solution to the Lowest Common Ancestor (LCA) problem in trees coupled with the use of

suffix trees.

In this article, we present a simple method for solving the LCS problem by using suffix trees

(STs) and classical union-find data structures. In turn, we show how this simple algorithm

can be adapted in order to work with other space efficient data structures such as the

enhanced suffix arrays (ESA) and the compressed suffix tree.

1. Introduction

One of the most powerful techniques to study living organisms is to sequence their

genomes.

Bioinformatics is of course the major discipline involved in such a task and the design

of algorithms capable to compare biological sequences faster and faster is of great interest

for the life science community.

What Gusfield (1997) claims as ‘the first fact of biological sequence analysis’ is that: ‘In

biomolecular sequences (DNA, RNA or amino acid sequences), high sequence similarity

usually implies significant functional or structural similarity.’ This approach has allowed

the identification of critical amino acids for specific proteins allowing for example the

prediction of the severity of amino acid substitutions in certain pathologies. In this respect,

the possibility to have an algorithm capable to compare orthologous genes from a very

large dataset of species could give some extra information with respect to the actual state

of the art.
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One of the theoretical problem borrowed from the stringology field that suit this purpose

is the LCS problem, which is meant to identify the substrings, i.e. a sequence of contiguous

letters, that are common to two or more documents. To put it in bioinformatics terms,

given a collection of q genomes, the aim of the LCS problem is to find the sequences

that appear in at least k different genomes, 2 � k � q. Those common parts probably are

conserved sequences, which deserve a further biological investigation. As Gusfield (1997)

says: ‘the problem of finding (exactly matching) common substrings in a set of distinct

strings arises as a subproblem of many heuristics developed in the biological literature to

align a set of strings. That problem (is) called multiple alignment problem.’ On the side

of evolutionary studies, the k genomes having a such long common sequence are likely to

have a common ancestor in the tree of life.

In this article, we present an original solution that is easier to implement and it is

candidate to be faster in practice using less space than previous solutions. In Section 2, we

recall some basic notions from the stringology field and we define the notation used in this

paper. In Section 3, we review the classic solution that uses the ST and the LCA query.

We present in Section 4 an original linear time solution that uses the classic union-find

data structure and, in Section 5, we present some variants of this solution which are more

space efficient.

2. Preliminaries

A string, also called document in this paper, is a sequence of zero or more symbols (or

letters) from an alphabet Σ. A string t of length n is denoted by t[1 . . n] = t1t2 . . . tn, where

ti ∈ Σ for 1 � i � n. The length of t is denoted by |t| = n. ε is the empty (zero-length)

string.

A string w is a factor of t if t = uwv for u, v ∈ Σ∗; in this case, the string w occurs at

position |u| + 1 in t. The factor w is denoted by t[|u| + 1 . . |u| + |w|]. A prefix (or suffix)

of t is a factor t[x . . y] such that x = 1 (y = n), 1 � y � n (1 � x � n). We define the ith

suffix of t as the suffix starting at position i, i.e. t[i . . n], 1 � i � n.

Given a text t of length n and a pattern p of length m such that m � n, p is said to

occur in t at position i (i.e. exact match) if p = t[i . . i+m− 1]. The position i is said to be

an occurrence of p in t.

In many full-text indexing solutions, one of the fundamental data structures is the

ST. Another one is the suffix array (SA). A complete description of the ST and the SA

is beyond the scope of this paper, and can be found in any textbook on stringology

(e.g. Crochemore et al. (2007); Gusfield (1997); Ohlebusch (2013)). Here we give a very

concise definition of those data structures.

The suffix tree ST t is a compacted trie of all the suffixes of the text t, that is, each

suffix t[i . . n] of t, 1 � i � n, can be read on the suffix tree ST t in a path starting at the

root and ending in the ith leaf. The number of leaves in such tree is exactly n and, since

any internal explicit node is a branching node, the number of internal nodes (non-leaf) is

strictly less than n. Hence, the total number of nodes is linear in the length of the text, i.e.

O(n). Any substring w of t can be read from the root to an internal node, either explicit

or implicit (i.e. a node in the middle of a compacted path represented by a single edge).

Auxiliary informations used by many construction algorithms are the suffix links. If u is
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the node corresponding to the path aw and v is the node corresponding to the path w,

then a link from node u to node v is called suffix link. Given two nodes v and u in ST t,

the LCA of u and v is LCA(u, v) = z that is the lowest explicit node traversed by both the

path to u and v. The string corresponding to the path from the root to z is the LCP

between the string of the path to u and the string of the path to v. Notice that ε is prefix

of any string, and the root is a common ancestor of any node in the tree. Given a set

D = {t1 . . tq} of documents (or strings), the generalized suffix tree STD is the ST of the

text obtained by concatenating the documents of D with a symbol $i appended at the end

of each document, i.e. the generalized suffix tree STD is equal to the truncated suffix tree

ST t, where t = t1$1 . . ti$i . . tq$q and every path is truncated after the first $.

The ST was introduced by Weiner (1973) together with a linear time construction

algorithm. Other notably (online) linear time construction algorithms (also for integer

alphabets) are (Breslauer and Italiano 2013; Farach-Colton et al. 2000; McCreight 1976;

Ukkonen 1995). The pattern matching query time is optimal, i.e. O(m+ occ), where occ is

the number of occurrences and m is the length of the pattern.

The recent research trend is to build compact or compressed version of the ST (Abeliuk

et al. 2013; Abouelhoda et al. 2004; Fischer and Heun 2008; Fischer et al. 2009; Gog

and Ohlebusch 2013; Grossi and Vitter 2005; Kim and Park 2005; Kim et al. 2008; Lin

et al. 2009; Navarro and Mäkinen 2007; Ohlebusch and Gog 2009; Russo et al. 2011),

basically using a (compressed) SA and some auxiliary structures that provide almost all

the ST functionalities (for instance, top-down and bottom-up traversal, substring retrieval

and pattern matching functionalities).

The suffix array SAt of a text t[1 . . n] is a permutation of [1 . . n] such that SAt[i] = j

if and only if, t[j . . n] is the ith suffix of t in (ascending) lexicographic order. The SA

was first introduced in Manber and Myers (1993), where a construction algorithm having

O(n log n) time and an O(m+ log n + occ) time pattern matching solution were presented.

Later, linear time construction algorithms for the SA were presented (Kärkkäinen et al.

2006; Kim et al. 2005; Ko and Aluru 2005; Puglisi et al. 2007). The query time was also

improved to the optimal O(m+occ) in Abouelhoda et al. (2004); Fischer and Heun (2008);

Fischer et al. (2009); Kim et al. (2008) with the help of another array essentially storing

the lengths of LCPs between consecutive suffixes, in lexicographic order.

We remark that the query time of ST (and other similar data structures) always contains

a hidden O(log |Σ|) factor, where Σ is the underlying alphabet. However, since in most

of the cases the size of the alphabet Σ is a constant, the trend in the literature is to

omit the O(log |Σ|) factor from the stated time complexity. In this paper, we focus on

biological sequences where usually the underlying alphabet size is a very small constant

(e.g. 4 for DNA/RNA sequences and 20 for protein/amino acid sequences). Finally, we

note that there are several linear time ST and SA construction methods working with

integer alphabet as well, e.g. Farach-Colton et al. (2000); Kim et al. (2005); Ko and Aluru

(2005).

3. The classical solution

Given a set D of q documents, the LCS problem (also known in the literature as multiple

common substring problem and longest k-common substring problem (Gusfield 1997))
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asks, for any integer 2 � k � q, for the length of the longest substring that appears in at

least k documents. This problem has been solved by Hui (1992, 2000) in optimal linear

time by using a generalized ST and a famous constant-time solution for the LCA query.

This solution is also reported in the Gusfield’s book (Gusfield 1997, Sections 7.6 and 9.7)

and it is briefly reviewed in this section.

Let us suppose to have the generalized suffix tree STD of the set D = {t1 . . tq} of

documents. Recall that the generalized suffix tree STD is defined as the suffix tree ST t

of the text t[1 . . n] = t1$1 . . ti$i . . tq$q . Due to the uniqueness of symbols $i and since

any internal node in the ST is a branching node, there are no internal nodes in the tree

corresponding to a substring containing a dollar. That is, each path in the tree containing

a $ corresponds to a leaf or to a leaf incoming edge. Hence, we can think of STD as

a truncated tree, where any path is truncated as soon as a $ is met. The advantage of

the truncated tree is that it does not contain any artificial string produced by document

concatenation. Moreover, the last symbol in any path ending on a leaf is a $, and, then, it

is easy (i.e. a constant-time operation) to know, given a leaf, what document it represents

a suffix of. Alternatively, we can associate each leaf in STD to a document ti, i.e. we can

mark with i every leaf having $i as the first dollar (left to right) contained in its path from

the root.

Now, let us suppose to associate to any internal node v the value C(v) that is the counter

of how many different documents are associated to the leaves in the subtree rooted in v. It

is easy to prove that one can populate an array L[k], 1 � k � q, accumulating the lengths

of the longest substring common to exactly k documents while visiting such augmented

tree via a depth-first traversal. (In the meantime, by using a simple book-keeping strategy,

we can store a reference to one of such substrings.) A further scan of the array L will

produce the correct LCS[k] array, 2 � k � q, where LCS[k] is the length of the longest

substring that appears in at least k different documents.

Now the point is how to compute the C values. This is a classic problem on trees: the

Color-Set-Size (CSS) problem.

Definition Given a tree T with coloured leaves, the CSS problem asks, for each internal

node v in T , for the number of different colours that are present in the sub tree rooted

in v.

L. Hui presented in his paper (Hui 1992) a solution to the CSS problem where the

desired C value, for each internal node, is computed as the number of leaves in the rooted

subtree minus the number of the duplicated colours in such subtree.

In order to efficiently compute the number of duplicated colours in a subtree, given

a tree with n leaves and q colours, one builds q lists of pointers to the leaves having

the same colour as they appear at the bottom of the tree from left to right, that is, q

lists of lexicographically ordered leaves of the same colour. Obviously, the sum of the

length of all the lists is equal to n. Let us assume that every node in the tree is equipped

with a counter d. After preparing in linear time the tree for constant-time LCA queries

(Berkman and Vishkin 1993; Gonnet et al. 2000; Harel and Tarjan 1984; Schieber and

Vishkin 1988), such queries are conducted on pairs of adjacent elements in the lists. Let

u, v be two of such adjacent leaves and LCA(u, v) = z. For each node z that is the LCA
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Fig. 1. Generalized suffix tree of the set D = {acgat, accgta, cgaat} illustrated together

with the |D| = 3 lists of leaves of a same (document) colour. Numbers between

parenthesis are counter d values. For instance, if we call v the node of path a, since

LCA(1, 4) = LCA(12, 7) = LCA(16, 17) = v, then d(v) = 3.
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Fig. 2. Generalized suffix tree of the set D = {acgat, accgta, cgaat} illustrated. C(v) value

of any internal node v is reported within square brackets.

of two consecutive leaves, d of z is incremented; Figure 1 shows an example. Let us call

D(v) the sum of the counters d(u) of all nodes u in the subtree rooted in v. D(v) is the

number of occurrences of duplicated colours in the subtree of v and it can be computed

via a post-order traversal of the tree. In this way, the number C(v) of distinct colours is

computed, for each node v of the tree, as the difference C(v) = S(v) − D(v) between the

total number S(v) of leaves in the rooted subtree and the number of duplicated colours

D(v) =
∑

u d(u), u ∈ {subtree rooted in v}. See Figure 2 for an illustration. Notice that

computing S(v) is a standard operation on trees.
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In the next section, we present a new solution for the CSS problem that uses a well-

known, fast and space efficient union-find data structure instead of the LCA queries used

in the classical solution. Even if the time complexity does not get asymptotically improved,

the union-find based solution has some advantages that make it be simple, fast, and easily

extendible to more space efficient variants.

4. A simple linear time solution

In previous section, we have briefly summarized the classic solution for the LCS problem.

It essentially reduces the LCS problem to the CSS problem on the generalized ST of a

document collection. Maintaining this approach, we show a simple solution for the CSS

problem that turns out to be a simple solution for the LCS problem, as well.

These two problems are strictly related. Therefore, as in the classical solution, if we

build the generalized suffix tree STD of a set D of documents and we colour any leaf

by assigning a different colour to each document, the LCS problem can be solved with

a simple traverse of STD provided that STD has been preprocessed to solve the CSS

problem. Notice that the CSS solution presented by Hui requires the preprocessing of the

generalized ST in order to answer efficiently (in constant time) the LCA query.

In the last decades, many papers have appeared dealing with a set of problems called

coloured range queries, see, for instance, (Gagie et al. 2013; Navarro 2014) and references

therein. These problems of the computational geometry research field also have many

applications in algorithms on strings and information retrieval fields, where many of the

recent solutions make use of the SA of a text and a geometry query on it. Indeed, also

the LCS problem can be addressed in such a settings, as we will show in next section, by

using a compressed suffix tree (CST) on top of a compressed SA and the range minimum

query. Since a complete dissertation on coloured range queries is out of the scope of this

paper, we just report that the time and space complexity achieved by the solutions treated

in this paper for the LCS problem are equivalent to the one achieved by using the SA,

either compressed or not, and the coloured range queries.

In this section, we present a new simple solution for the CSS problem that uses a

classical union-find data structure. The union-find data structures for disjoint sets have

myriads of practical applications, see, for instance, (Galil and Italiano 1991). Their running

time, due to a multiplicative inverse of the Ackermann function, is not linear, but, due

to their simplicity and to the small constants involved, they turn out to be very fast, in

practice. Moreover, from a theoretical point of view, Tarjan et al. (Gabow and Tarjan

1985) showed how to get rid of the multiplicative Ackermann function when the tree

of the union is known in advance. In Loebl and Nesetril (1988a,b); Lucas (1990) it is

shown that if the finds are performed in post order, at most one find for each element,

then the overall time is truly linear. Moreover, when the union-find data structure in

Gabow and Tarjan (1985) is used, the representative element of a set, i.e. the element

returned by a find operation, it is known in advance, and it is the father between the

two representatives. In the general case, the representative of a set is a generic element

of the set. In what follows, we use union-find to handle sets of nodes of a tree and the

union are always performed on two sets containing an element that is an ancestor of all
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the nodes in both sets. We can associate such ancestor to the representative of the set

generated by union, with a simple book-keeping strategy with constant-time operations

after any union. We assume, in the rest of the paper, that a find operation returns such

ancestor node within the queried set and we hide all the necessary operations to handle

the associations between the representative and the ancestor node. Notice that when the

structure in Gabow and Tarjan (1985) is used, no operation has to be hidden.

Recently, many algorithms appeared that, under some special conditions, achieve union-

find in linear time (see, for instance, (Fiorio and Gustedt 1996; Gustedt 1998)) even

including a new operation delete (Alstrup et al. 2005; Ben-Amram and Yoffe 2011;

Dillencourt et al. 1992).

4.1. A new colorsetsize algorithm

For the sake of clarity, we first present a simple algorithm that solves the CSS problem

in a non-efficient way and we refine it later into a linear time solution.

Assume a tree T is given and any node in T is augmented by a counter C. We follow

the simple idea of dynamically assigning a set of colours to each node, where the colours

are the unique colours present in the subtree rooted at the node. Proceeding in a recursive

way along a post-order visit of the given tree, we assign to a leaf a set containing the

colour of the leaf, and we assign to an internal node the union of the sets coming from

its children. At the end of any recursive step, we store the size of the current set to the

colour counter C of the examined node. Algorithm 0 follows this idea.

Algorithm 0 Recursive processing the tree T to compute the C values.
1: function ColorSetSize(v)

2: set ←�
3: if v is a leaf then

4: union(set,{color(v)})
5: else

6: for each child u of v do

7: union(set,ColorSetSize(u))

8: end for

9: end if

10: C(v) ← size(set)

11: return set

12: end function

13: ColorSetSize(root(T ))

Algorithm 0 is conceptually very simple and it correctly computes, for any node v in

T , the number of different colours C(v) present in the subtree rooted in v. A proof of

this fact is straightforward and uses a simple property on sets. Unfortunately, Algorithm

0 cannot be implemented in an efficient time, because of the union of sets that are not

disjoint. We can improve it by keeping disjoint sets of sibling nodes. We maintain sets of

leaves instead of set of colours and we use, in a book-keeping strategy, a global array

of previous occurrence of colours to maintain sets whose colours are disjoint. We also
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keep track of the size of the set associated with a node by maintaining this value in the

colour counter field of the node. Hence, we initialize the C counter of each node to 0, and

we increment it accordingly to the cardinality of the associated set. In order to manage

the set of leaves, we use a classic union-find data structure for disjoint sets. Instead of

associating a set with a node, we include such node into a set. Hence, for any node v,

there exist a set containing v and all the nodes in the subtree rooted in v. Algorithm 1 is

the resulting algorithm.

Let us summarize Algorithm 1 steps in what follows. Assume that q is the number of

different colours in the given tree T . An auxiliary global array P (P stands for ‘previous

visited leaf’) of size q is used along a recursive post-order traversal of T in order to keep

track of the previous occurrence of the colour ck, 1 � k � q.

Algorithm 1 Recursive processing the tree T to compute the C values. make-set, union and find

are common operations on union-find data structures. The operation colour on a leaf v returns the

associate colour ck . find (null) returns null. Notice that z will always be an ancestor of v.
1: function ColorSetSize(v)

2: make-set(v)

3: C(v) ← 0

4: if v is a leaf then

5: z ← find(P[color(v)])

6: P[color(v)] ← v

7: if z is not null then

8: C(z) ← C(z) − 1

9: end if

10: C(v) ← 1

11: else

12: for each child node u of v do

13: ColorSetSize(u)

14: union(find(v), find(u))

15: C(v) ← C(v) + C(u)

16: end for

17: end if

18: end function

19: ColorSetSize(root(T ))

Recursively, we associate to any node a set containing itself and the union of the

sets associated to its children and we add children colour counter values to the parent

counter. Once a leaf is visited, we find the root of the smallest subtree containing it and

the previous visited leaf having the same colour, and we decrement its colour counter as

this colour will be added again at the end of the recursion of such subtree. At the end

of each recursion, the colour counter field C of the examined node is fixed, i.e. it does

not change any more, and it stores the number of different colours in the rooted subtree.

Figure 3 illustrates some (non-consecutive) steps of an example.
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Fig. 3. Some key steps of Algorithm 1 illustrated. Algorithm 1 computes C for any node

v in the given tree. Array P is reported together with the list R of recursive calls to

function ColorSetSize, and the sets maintained by the union-find data structure. The

arrow indicates the node currently considered.

Proposition 4.1. Assume a tree T is given. For each internal node v in T , ColorSetSize of

v correctly computes the C value of any node in the subtree rooted in v, v included.

Proof. The property that we want to prove is the following: After a call to function

ColorSetSize(v), the set containing v also contains all the nodes in the subtree Tv rooted

in v. Moreover, ColorSetSize(v) correctly computes the C value of all the nodes in the

subtree Tv . The proof is by induction on the number of nodes (internal nodes and leaves)

in the subtree Tv rooted in v.

If the number of nodes in Tv is 1, its root v is a leaf and the base of the induction

is clearly correct. Indeed, C(v), i.e. the colour counter of node v, is set to 1 on line 10.

Notice that the global array P is initialized with null pointers. Let u1 · · · uh, h � 1, be the

sequence of children of v in the same order as they are considered in the for cycle at line
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12. The inductive hypothesis holds on the tree Tv|uh that is the original subtree Tv without

the subtree rooted in uh, and it holds also for Tuh itself. Let us focus on the execution

of function ColorSetSize(v) and freeze it after the child uh−1 has been processed by the

whole for cycle on lines 12–16. Up to this point, ColorSetSize(v) has executed the same

operations as ColorSetSize(root(Tv|uh)) would have executed. We call C’(v) the value of

C(v) at this step of the algorithm. Hence, by inductive hypothesis applied to Tv|uh , the set

that contains v it also contains the internal nodes of its subtree, and all the leaves that are

present in Tv|uh . Moreover, the C values on all the nodes of the subtree Tv|uh have been

correctly computed and have been stored in their C fields, C’(v) included. Notice that, all

the leaves in subtree Tv|uh are contained in the set containing v by effect of the union call

at line 14.

Let us move forward on the execution of ColorSetSize(v) considering for cycle on line

12 for the child uh. Let us also suppose that the number of leaves in Tv|uh having a

colour that also appears in Tuh is d, that is, the number of duplicated colours in those

two subtrees. After we make the call ColorSetSize(uh) on line 13, by inductive hypothesis

applied to Tuh , the set containing uh also contains the node uh and all the nodes in Tuh .

Moreover, the C values on all nodes in Tuh , C(uh) included, have been correctly computed.

Furthermore, for each leaf in Tuh , the colour counter of the representative of the set

containing the previous occurrence of a leaf having the same colour (pointed by array

P) has been decremented by effect of lines 5 and 8, and the array P is then accordingly

updated at line 6. Hence, since d is the number of colours in Tv|uh that appear also in Tuh

and since all the leaves in Tv|uh are, at this step, contained in the same set of v, the colour

counter of node v is now equal to C(v) = C’(v) − d.

Then, at line 15, the number of colours in Tuh , i.e. C(uh) � d, which is correct by

induction hypothesis, is added to C(v) without counting duplicate colours, and the set

containing v also contains the nodes in Tv|uh , by hypothesis, together with the nodes in

Tuh by the union performed at line 14. This concludes the proof.

Let us now analyse the time and space requirements of Algorithm 1. From a simple

analysis of the pseudocode of Algorithm 1, it is easy to see that any recursion of Algorithm

1 executes some constant-time assignments and at most a fixed number of any of the

make-set, union and find operations of a union-find data structure. Let us call tm, tu, tf
the time of make-set, union and find operations, respectively.

Theorem 4.2. Assume tree T having n nodes is given. Algorithm 1 runs in O(n (tm+tu+tf))

time.

The make-set and union operations are standard constant-time operation in many

common linear space union-find data structure, i.e. tm = tu = O(1) (Gabow and Tarjan

1985; Galil and Italiano 1991; Loebl and Nesetril 1988a,b; Lucas 1990). There are many

classical union-find solutions providing a find operation in tf = O(logm), where m is

the cardinality of the set containing the queried element (Galil and Italiano 1991). The

time used by such structures to execute a find query amortized over the n elements is

O(α(m)), where α is a functional inverse of Ackermanns function, that is an extremely slow

growing function that, for any practical number m, is less than 4. Practically speaking,
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α(m) is usually considered just a small constant. Moreover, since there exist union-find

implementations that are very fast in practice, such solutions are usually preferred to

theoretically more efficient solutions. In Galil and Italiano (1991), six algorithms are

described that make use of either union by size or union by rank as union strategy,

and they use compaction rules to speed up the time bound (Galil and Italiano 1991,

Theorem 1.1.1).

Corollary 4.3. Assume tree T having n nodes is given. By using any data structure for

disjoint set in Galil and Italiano (1991) that make use of union by size or union by rank,

Algorithm 1 runs in O(n α(n)) time and linear space in the RAM model.

However, the union-find data structure presented in Gabow and Tarjan (1985) is able

to answer to a find query in amortized constant time, when a find operation is followed

by a union operation and the sequence of find operations is known in advance. This is

the case of Algorithm 1, where the union operations strictly follow the recursive visit of

the input tree.

Corollary 4.4. Assume tree T having n nodes is given. By using Tarjan’s data structure

(Gabow and Tarjan 1985), Algorithm 1 runs in linear time and linear space in the RAM

model.

5. Reducing space

In this section, we describe how to reduce the space used by the CSS solution presented

in the previous section and the total space used for the LCS problem.

A first observation leads to keep low the space used by the union-find data structure.

Algorithm 1 uses, at any moment, the leaves pointed by array P and no other leaves

are used in order to adjust the colour counters in case of duplicates. At any time, those

leaves are at most q, same as the number of encountered different colours. Moreover,

the internal nodes are to be released as soon as their subtree is entirely visited. Putting

these observations together, we adapt Algorithm 1 to use the delete operation provided

by Alstrup et al. (2005) to keep low the space used by the union-find-delete data structure.

Algorithm 2 reports the adapted pseudocode.

The delete operation is not part of the classical set of operations of the union-find data

structures, where the element in the set are always maintained once they are created by a

make-set operation. The delete operation appears only in an extension of the union-find

data structures called union-find-delete data structures (Alstrup et al. 2005; Ben-Amram

and Yoffe 2011). Recall that, in Alstrup et al. (2005), the delete operation is also a

constant-time operation, same as make-set and union operations, while a find takes

O(α(m)) amortized time, where m is the number of elements in the set returned by the find

operation, and α is a functional inverse of Ackermanns function. The space is linear in

the number of elements simultaneously maintained, at any time. Algorithm 2 maintains,

at any time, one internal node for any nested call to the function ColorSetSize and, at

most, q leaves.
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Algorithm 2 Recursive processing the tree T to compute the C values. make-set, union, find and

delete are common operations on union-find-delete data structures.
1: function ColorSetSize(v)

2: make-set(v)

3: C(v) ← 0

4: if v is a leaf then

5: z ← find(P[color(v)])

6: if z is not null then

7: delete(P[color(v)])

8: C(z) ← C(z) −1

9: end if

10: P[color(v)] ← v

11: C(v) ← 1

12: else

13: for each child u of v do

14: ColorSetSize(u)

15: union(v,u)

16: C(v) ← C(v) + C(u)

17: if u is NOT a leaf then

18: delete(u)

19: end if

20: end for

21: end if

22: end function

23: ColorSetSize(root(T ))

The number of recursions of function ColorSetSize is bounded by the height of the tree

T , that is the number of explicit nodes in the deepest path in the tree. Then, for a general

tree having n nodes, the number of recursions is n in the worst case, but it is expected to

be much less in practical cases, where the tree T is more balanced.

When CSS is used for the LCS problem, the tree T is a ST and it is proved by

Szpankowski (1993, 2001) that the height of such trees tends almost surely to O(log n)

under some probabilistic models, where n is the length of the text.

Moreover, a space linear in the height of the tree is also implicitly used by the recursion

stack. Even if algorithms in this paper are stated in recursive form, it is easy to obtain non-

recursive versions by using standard programming techniques, where a stack is explicitly

used to perform the post-order visit of the tree.

Let us summarize the results presented so far in the following proposition.

Proposition 5.1. Assume a tree T is given having n nodes, equipped with a counter, and

coloured leaves with q different colours. By using the union-find-delete data structure of

(Alstrup et al. 2005), Algorithm 2 runs in O(n α(n)) time and uses O(q + height(T )) extra

space to compute all the C values.
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The second observation of this section concerns the output size of CSS and LCS

problems. Even if the two problems are deeply related, their outputs are totally different

in size. In fact, the problem CSS has input and output of the size of the given tree T ,

while LCS has output of size q, that is the number of different colours.

While the output of the first problem maintains the tree structure, the output of the

second is an array L that, for each k, 2 � k � q, contains the length of a longest substring

that appears in at least k strings and, optionally, a pointer to one of such substrings (i.e.

the document and the position where it appears). The outputs is then proportional to q

(more precisely it has the size of O(q) integers).

We want to obtain a direct solution of the LCS problem that does not use a full solution

of the CSS problem and, consequently, does not use CSS output space. First of all, we

notice that array L can be obtained during the tree traversal of above algorithms. Indeed,

if a node has been examined together with its rooted subtree during the visit, that is, at

the end of a recursion, its colour counter C will not change anymore. Therefore, if the

colour counter is equal to k and the string depth of the node is greater than the length

contained in L[k], then we replace the contents of L[k] with the string length of such

node†. In addition, a pointer to one occurrence (document and starting position) of such

string can be stored as well. Since array L is defined for 2 � k � q, according with LCS

definition, and since the C values of leaves are equal to 1 by definition, then the check for

an update of array L is executed right after a C value is computed for an internal node,

avoiding useless checks on leaves.

In this way, L[k] contains, at any moment, the length of a longest string that is common

to exactly k substrings, up to that step of the visit over the tree. Along a further linear

scan of the array L, from the smallest to the bigger index, we can simply adjust the values

to fit the at least k requirement of the LCS problem.

Function ColorSetSize of Algorithm 2 can easily report the correct C value of a node

as soon as a recursion ends. But, the algorithm also stores temporary values in the colour

counter C of parent nodes, while a subtree is traversed. The number of subtree roots

whose colour counter can virtually be decremented, according to the presence of duplicate

colours, is, at most, height(T ). Hence, we maintain such temporary counters in a global

array C of length height(T ) indexed by node depth.

Now, since we already know how to get rid of the C counter fields in the tree nodes,

we notice that it is possible to use a compressed index to simulate the functionalities of

a ST, and, in particular, to perform a post-order visit on it. Obviously, such compressed

structures have query time and space requirements strongly dependent on the underling

compressed SA used and some parameters.

The research of efficient (mainly in space) data structures that can be used instead of

STs has become an independent research field. Up to less than a decade ago, the most

commonly used data structures are STs, SAs, DAWGs and compact DAWGs. Usually

any problem that can be settled by using one of such data structures can also be settled

by using any of the other ones.

† The string length of a node is classically defined as the length of the concatenated labels on the path from

the root to such node.
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Algorithm 3 Processing the collection D to solve the LCS problem by using a compressed suffix

tree and a union-find data structure.

1: function LightweightCSS(v)

2: make-set(v)

3: C[node-depth(v)] ← 0

4: if v is a leaf then

5: z ← find(P[color(v)])

6: if z is not null then

7: delete(P[color(v)])

8: C[node-depth(z)] ← C[node-depth(z)] − 1

9: end if

10: P[color(v)] ← v

11: C[node-depth(v)] ← 1

12: else

13: for each child u of v do

14: C[node-depth(v)] ← C[node-depth(v)] + LightweightCSS(u)

15: union(v,u)

16: if u is NOT a leaf then

17: delete(u)

18: end if

19: end for

20: if L[C[node-depth(v)]] < string-depth(v) then

21: L[C[node-depth(v)]] ← string-depth(v)

22: S[C[node-depth(v)]] ← pos(v)

23: end if

24: end if

25: return C[node-depth(v)]

26: end function

27:

28: Initialize P, L, and S

29: Build CSTD
30: LightweightCSS(root(CSTD))

31: for i = q, q − 1, . . . 2 do

32: if L[i− 1] < L[i] then

33: L[i− 1] ← L[i]

34: S[i− 1] ← S[i]

35: end if

36: end for

37: return L,S

In the meantime, other space-efficient related data structures started to appear in

research papers. For instance, compressed SA and CST are showed to have the potential

to replace in many applications STs by using less space exploiting redundancy of the text.

(Abeliuk et al. 2013; Abouelhoda et al. 2004; Fischer and Heun 2008; Fischer et al. 2009;

Gog and Ohlebusch 2013; Grossi and Vitter 2005; Kim et al. 2008; Kim and Park 2005;

Lin et al. 2009; Navarro and Mäkinen 2007; Ohlebusch and Gog 2009; Russo et al. 2011).
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Latter data structures are space thrifty by using only nHk+O(n) bits. We refer to Fischer

et al. paper (Fischer et al. 2009) for a comparison between different compressed indexes

and their trade-off between occupied space and query time, where they summarize crucial

values in Fischer et al. (2009, Table 1). We propose Algorithm 3 as a variant of our LCS

solution using a CST. Given a document collection D, we associate a unique colour to

each of the q documents in D. The Algorithm returns the array L and S; L contains, for

2 � k � q, the length L[k] of a longest substring common to at least k documents, and

S[k] contains a reference to one of such substrings. Function colour retrieves the colour

associated to a leaf. Function make-set, union, find and delete are standard operations on

union-find-delete data structures. Function node-depth, string-depth and pos are standard

functions on STs (and CSTs), as well as, to know if a node is a leaf, and performing a post-

order traversal of a rooted subtree. Notice that, every call to function LightweightCSS

needs to query the CST to retrieve children, node-depth and string-depth of a given

internal node.

Proposition 5.2. Assume a collection D of q documents having total length n is given. By

using the compressed suffix tree CSTD of Sadakane (2007) and the union-find-delete data

structure of Alstrup et al. (2005), it is possible to solve the LCS problem in O(n α(n))

time and O(n) + (1 + 1/ε)nHk bits space, where 0 < ε < 1 and Hk is the k-order empirical

entropy of the concatenated text in D.

As last observation, we notice that in many compressed text index based on a

compressed SA, many functionality are obtained by using a range minimum query on the

longest common prefix (LCP) table, and, moreover, they support LCA queries without

using extra space or extra preprocessing.

Let us recall how to simulate a LCA query over a SA. Given a tree T and two

nodes u and v, the problem of finding the lowest node in the tree that has both u and

v in its rooted subtree is called LCA. This problem was posed in Aho et al. (1976),

but the first linear preprocessing time solution and constant-time query is due to Harel

and Tarjan (1984) based on heavy path decomposition. Many improvements, mostly in

practical space requirements, appeared recently (see, for instance, (Bender and Farach-

Colton 2000; Fischer and Heun 2006; Schieber and Vishkin 1988)) which use different

approaches: Cartesian trees, geometrical range queries and lookup tables.

In the case where T is the suffix tree STt of a text t, the LCA of two leaves is equivalent

to the LCP of two suffixes. By using the suffix array SA of t and the associated LCP

table (which contains the LCP values of consecutive suffixes in lexicographic order, that

is, LCP[i] = LCP(SA[i− 1], SA[i])), it is possible to find the LCP of two given suffixes u

and v by computing the minimum value in LCP[x . . y], where x and y are the index of

i and j in the SA, respectively. Therefore, suppose to have the inverse suffix array SA−1

(SA−1[i] = x ⇐⇒ SA[x] = i), it is possible to compute in constant time the LCP of i and

j as min {LCP [x] | SA−1[i] � x � SA−1[j]} by using the range minimum query algorithm

(see for instance (Fischer and Heun 2007)).

Since many CSTs (Fischer and Heun 2007; Russo et al. 2011; Sadakane 2007) support

LCA query using no extra space, we show a variant of Algorithm 3 that uses LCA instead
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Algorithm 4 Processing the collection D to solve the LCS problem by using a compressed suffix

tree supporting the LCA query.
1: function LightweightCSS(v)

2: C[node-depth(v)] ← 0

3: if v is a leaf then

4: if P[color(v)] is not null then

5: z ← LCA(P[color(v)])

6: C[node-depth(z)] ← C[node-depth(z)] − 1

7: end if

8: P[color(v)] ← v

9: C[node-depth(v)] ← 1

10: else

11: for any child u of v do

12: C[node-depth(v)] ← C[node-depth(v)] + LightweightCSS(u)

13: end for

14: if L[C[node-depth(v)]] < string-depth(v) then

15: L[C[node-depth(v)]] ← string-depth(v)

16: S[C[node-depth(v)]] ← pos(v)

17: end if

18: end if

19: return C[node-depth(v)]

20: end function

21:

22: Initialize P, L, and S

23: Build CSTD
24: LightweightCSS(root(CSTD))

25: for i = q, q − 1, . . . 2 do

26: if L[i− 1] < L[i] then

27: L[i− 1] ← L[i]

28: S[i− 1] ← S[i]

29: end if

30: end for

31: return L,S

of union-find. We simply replace a find(u) call in Algorithm 3 by a LCA(u, v) query. In

fact, due to the post-order visit of the tree, i.e. the nested recursion of our algorithms,

those two operations are equivalent. Algorithm 4 reflects this observation and it turns out

to be conceptually very close to the classical solution of the CSS problem implemented

by using CSTs (Ohlebusch 2013).

We state our results by using the most efficient compressed index, to the best of our

knowledge, in terms of space occupancy.

Proposition 5.3. Assume a collection D of q � 2 documents having total length n is given.

By using the Compressed Suffix Tree CSTD in Russo et al. (2011), Algorithm 4 solves
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the LCS problem in O(n log1+ε n) time and O(q + height(STt)) + nHk + o(n) bits of space,

where Hk is the k-order empirical entropy of t, and 0 < ε < 1.

Notice that, O(q + height(STt)) + nHk + o(n) bits can be sublinear in n. Recall that,

given a collection of strings of total length n whose longest string has length m, the

height of the generalize ST of such collection is, in the worst case, O(m), and, in average,

O(logm) (Szpankowski 1993, 2001). Moreover, due to the simplicity of this solution, which

essentially is a post-order visit on a CST supporting LCA queries and a simple book-

keeping of q values, any further improvement of CST in terms of query time and occupied

space, can be directly integrated to above algorithms and leads to better performances.
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