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SUMMARY
The goal of this paper is to provide a critical review of the
well-known resolved-acceleration technique for the tracking
control problem of robot manipulators in the task space.
Various control schemes are surveyed and classified accord-
ing to the type of end-effector orientation error; namely,
those based on Euler angles feedback, quaternion feedback,
and angle/axis feedback. In addition to the assessed
schemes in the literature, an alternative Euler angles
feedback scheme is proposed which shows an advantage in
terms of avoidance of representation singularities. An
insight into the features of each scheme is given, with
special concern to the stability properties of those schemes
leading to nonlinear closed-loop dynamic equations. A
comparison is carried out in terms of computational burden.
Experiments on an industrial robot with open control
architecture have been carried out, and the tracking
performance of the resolved-acceleration control schemes in
a case study involving the occurrence of a representation
singularity is evaluated. The pros and cons of each scheme
are evidenced in a final discussion focused on practical
implementation issues.

KEYWORDS: Resolved-acceleration control; Euler angles feed-
back; Quaternion feedback; Angle/axis feedback; Industrial robot;
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I INTRODUCTION
Robot tasks are naturally specified in terms of a sequence of
manipulator configurations expressing the end-effector pose
(position and orientation). Two main strategies can be
adopted for motion control of a robot manipulator: joint
space control and task space control. The former strategy
requires the solution of an inverse kinematics problem to
transform the desired end-effector motion into equivalent
joint motions which constitute the reference inputs to a
control scheme using joint position (and velocity) feedback.
On the other hand, no inverse kinematics is required by the
latter strategy and a feedback loop is closed directly on the
end-effector pose (and velocity) variables. Even though
joint space control is a congenial strategy used by industrial
robots performing simple tasks, e.g. pick-and-place, task
space control becomes essential to execute complex tasks,
e.g. those requiring interaction between the end effector and
the environment.1

In order to cope with the nonlinear and coupled nature of
the manipulator dynamic model, inverse dynamics control
can be pursued which consists of designing a model-based
compensating action which globally linearizes and decou-
ples the mechanical system in terms of a resolved task space
acceleration;2 this is chosen on the basis of the end-effector
pose and velocity feedback so as to ensure stable tracking of
the desired trajectory. The expression of the end-effector
position error is rather obvious, whereas different defini-
tions for the end-effector orientation error are feasible.

Since the direct kinematics equation of a robot manip-
ulator is typically expressed in terms of an end-effector
position vector and a rotation matrix, the original resolved-
acceleration control scheme2 used a feedback orientation
error computed from the columns of the desired and the
actual end-effector rotation matrix. As opposed to rotation
matrix feedback, an error based on a minimal representation
of orientation, e.g. Euler angles, was used in the operational
space approach;3 a drawback of this approach is the
occurrence of representation singularities. An effective
alternative to the above two descriptions is represented by a
four-parameter singularity-free representation of the end-
effector orientation error in terms of a unit quaternion,
which has been successfully used for the attitude control
problem of rigid bodies (spacecrafts)4,5 and articulated
bodies (manipulators).6

The contribution of this work is to present a critical
review of resolved-acceleration control of robot manip-
ulators with specific concern to the type of end-effector
orientation error. In particular, three classes of schemes are
surveyed; namely, those based on Euler angles feedback,
quaternion feedback, and angle/axis feedback. In order to
overcome the crucial drawback of representation singular-
ities for the classical Euler angles feedback scheme, an
alternative definition of orientation error based on Euler
angles is proposed. The main features of each scheme are
emphasized, and an insight into the stability analysis is
provided for those schemes leading to nonlinear closed-loop
dynamic equations.

The schemes are compared to one another on the basis of
a computational burden analysis for the resolved angular
acceleration.

Experimental tests on a setup comprising a 6-joint
industrial robot Comau SMART-3S with open control
architecture have been carried out. The tracking perform-
ance obtained with the various resolved-acceleration
controllers is evaluated in a case study involving a motion in
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the neighbourhood of a representation singularity.
The paper ends with an extensive discussion focused on

practical implementation issues related to computational
complexity, tracking capability, trajectory planning, and the
pros and cons of each scheme are highlighted.

II. BACKGROUND
The direct kinematics equation of an open kinematic chain
robot manipulator is typically described in terms of the
relationship between the (n3 1) vector q of joint variables
and the (33 1) position vector p and the (33 3) rotation
matrix

R= [n s a] (1)

describing the origin and the orientation of the end-effector
frame, where n, s, a are the unit vectors of the axes of the
end-effector frame. The above quantities p and R are
referred to a fixed base frame and no superscript is used;
instead, if a matrix or vector quantity is to be referred to a
frame other than the base frame, then a proper frame
superscript shall be used.

The differential kinematics equation gives the relation-
ship between the vector ·q of joint velocities and the (63 1)
vector v= [ṗ T vT]T of the end-effector linear and angular
velocities in the form

v=J(q)q̇ (2)

where J is the (63 n) end-effector geometric Jacobian
matrix; the joint configurtions at which the matrix J is not
full-rank are termed kinematic singularities. The angular
velocity is related to the time derivative of the rotation
matrix by the notable relationship

Ṙ=S(v)R (3)

where S is the skew-symmetric operator performing the
cross product between two (33 1) vectors.

Equation (2) can be differentiated with respect to time to
provide the relationship between the joint accelerations and
the end-effector accelerations as

v̇=J(q)q̈+ J̇(q, q̇)q̇. (4)

The description based on the rotation matrix in (1) is
inherently redundant, since n, s, a are subject to six
orthonormality constraints. A minimal representation of
orientation can be obtained by using a set of three Euler
angles f=[w q c]T. Among the 12 possible definitions of
Euler angles, the (Roll-Pitch-Yaw) ZYX representation can
be considered leading to the rotation matrix

R(f)=Rz(w)Ry(q)Rx(c) (5)

where Rz , Ry , Rx are the matrices of the elementary rotations
about three independent coordinate axes of successive
frames. The Euler angles can be extracted from a given
rotation matrix by using closed-form inversion formulae.1

The relationship between the time derivative of the Euler
angles ·f and the end-effector angular velocity v is given
by

v=T(f) ·f (6)

where T is a transformation matrix that can be obtained

from the time derivative of (5); this matrix is singular
whenever q=±p/2 (representation singularity).

The further time derivative of (6) yields the acceleration
relationship in the form

v̇=T(f)f̈ + Ṫ(f, ḟ)ḟ. (7)

An alternative description can be obtained by resorting to
a four-parameter singularity-free representation in terms of
a unit quaternion (viz. Euler parameters)

h=cos
u

2
(8)

e=sin
u

2
r, (9)

where u and r are respectively the rotation and the (33 1)
unit vector of an equivalent angle/axis description of
orientation. Notice that the scalar part and the vector part of
the quaternion are constrained by

h2 +eTe=1; (10)

also {h, e} and {2h, 2e} represent the same orientation.
Hence, the end-effector frame is aligned with the base frame
as long as h=±1 and e=0. Several algorithms exist to
extract the quaternion from a given rotation matrix; an
efficient one is reported in reference 8, where the above sign
ambiguity can be solved by choosing h$0 for uP[2p, p]
and taking into account the past values of the vector part to
ensure continuity.

The relationship between the time derivative of the
quaternion and the end-effector angular velocity is estab-
lished by the so-called quaternion propagation:

ḣ=2
1

2
eTv (11)

ė=
1

2
E(h, e)v (12)

with

E=h I2S(e). (13)

The dynamic model of a robot manipulator can be written
in the joint space as

B(q)q̈+C(q, q̇)q̇+d(q, q̇)+g(q)=t, (14)

where B is the (n3 n) symmetric positive definite inertia
matrix, Cq̇ is the (n3 1) vector of Coriolis and centrifugal
torques, d is the (n3 1) vector of friction torques, g is the
(n3 1) vector of gravitational torques, and t is the (n3 1)
vector of driving torques.

According to the well-known concept of inverse dynam-
ics, the driving torques can be chosen as

t=B(q)J21(q)(a2 J̇(q, q̇)q̇)+C(q, q̇)q̇+d(q, q̇)+g(q), (15)

where a is a new control input, and perfect dynamic
compensation has been assumed; to this purpose, note that
it is reasonable to assume compensation of the dynamic
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terms in the model (14), e.g. as obtained by a parameter
identification technique.7

In deriving (15), a nonredundant manipulator (n=6)
moving in a singularity-free region of the workspace has
been considered to compute the inverse of the Jacobian. A
damped least-squares inverse can be adopted to gain
robustness in the neighbourhood of kinematic singularities,9

whereas a pseudoinverse can be used in the redundant case
(n>6) in conjunction with a suitable term in the null space
of the Jacobian describing the internal motion of the
manipulator.10

The vector a represents a resolved acceleration2 which
can be partitioned into its linear and angular components,
i.e. a=[aT

p aT
o ]T. Substituting the control law (15) in (14) and

accounting for (4) gives

p̈e =ap (16)

v̇e =ao (17)

where subscript e refers to the actual end-effector pose. The
goal is to design ap and ao so as to ensure tracking of the
desired end-effector pose which is hereafter characterized
by subscript d.

Let pd and pe respectively denote the desired and the
actual end-effector position; the position error can be
defined as

Dpde =pd 2pe (18)

where the operator D denotes that a vector difference has
been taken, and the double subscript denotes that a mutual
position is of concern. Then, the resolved linear acceleration
can be chosen as

ap = p̈d +kVpDṗde +kPpDpde (19)

where kVp , kPp are suitable feedback gains. Substituting (19)
into (16) gives the closed-loop dynamic behaviour of the
position error

Dp̈de +kVpDṗde +kPpDpde =0. (20)

The system (20) is exponentially stable for any choice of
kVp , kPp >0, and thus tracking of pd and ṗd is ensured.

As regards the resolved angular acceleration, ao can be
chosen in different ways, depending on the definition of
end-effector orientation error used. Therefore, in the
following three sections, various definitions of orientation
error are considered which are classified into Euler angles
feedback, quaternion feedback, and angle/axis feedback.

III. EULER ANGLES FEEDBACK
According to the classical operational space approach,3 the
most natural way of defining an orientation error is to
consider an expression analogous to (18), i.e.

Dfde =fd 2fe (21)

where fd and fe are the set of Euler angles that can be
extracted respectively from the rotation matrices Rd and Re

describing the orientation of the desired and the actual end-
effector frame.

In view of (7), the resolved angular acceleration can be
chosen as

ao =T(fe)(f̈d +kVoDḟde +kPoDfde )+ Ṫ(fe , ḟe )ḟe

(22)

where kVo , kPo are suitable feedback gains. Substituting (22)
into (17) gives the closed-loop dynamic behaviour of the
orientation error

Df̈de +kVoDḟde +kPoDfde =0. (23)

where the matrix T(fe ) shall be nonsingular. The system
(23) is exponentially stable for any choice of kVo , kPo >0;
tracking of fd and ḟd is ensured, which in turn implies
tracking of Rd and vd .

The above Euler angles feedback becomes ill-conditioned
when the actual end-effector orientation fe becomes close
to a representation singularity. In order to overcome this
drawback, an alternative Euler angles feedback is proposed
here which is based on the rotation matrix describing the
mutual orientation between the desired and the actual end-
effector frame, i.e.

Re
d =RT

eRd . (24)

Differentiating (24) with respect to time gives

Ṙe
d =RT

e(S
T(ve )+S(vd ))Rd (25)

=RT
eS(vd 2ve )ReR

T
eRd

=S(Dve
de )Re

d

where

Dvde =vd 2ve (26)

is the end-effector angular velocity error, and the properties
of the skew-symmetric operator S in (3) have been
exploited.

Let fde denote the set of Euler angles that can be
extracted from Re

d . Then, in view of (6) and (3), the angular
velocity Dve

de in (25) is related to the time derivative of fde

as

Dve
de =T(fde )ḟde . (27)

By taking the time derivative of (27), the resolved angular
acceleration can be chosen as

ao =v̇d 2
˙
Te(fde )ḟde +Te(fde )(kVoḟde +kPofde ) (28)

where kVo , kPo are suitable feedback gains and

Te(fde )=ReT(fde ). (29)

Substituting (28) into (17) gives the closed-loop dynamic
behaviour of the orientation error

f̈de +kVoḟde +kPofde =0 (30)

where the matrix Te(fde ) shall be nonsingular. The system
(30) is exponentially stable for any choice of kVo , kPo >0;
convergence to fde =0 and ḟde =0 is ensured, which in turn
implies tracking of Rd and vd .

The clear advantage of the alternative over the classical
Euler angles feedback based on (21) is that, by adopting a
representation fde for which T(0) is nonsingular, representa-
tion singularities occur only for large orientation errors, e.g.
when qde =±p/2 for the ZYX representation. Notice that it is
not advisable to choose the widely-adopted ZYZ represent-
tion which is singular right at fde =0! In other words, the
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ill-conditioning of matrix T is not influenced by the desired
or actual end-effector orientation but only by the orientation
error; hence, as long as the error parameter |qde |<p/2, the
behaviour of system (30) is not affected by representation
singularities.

IV. QUATERNION FEEDBACK
In order to overcome the problem of representation
singularities, the orientation error can be defined in terms of
the vector part of the unit quaternion ee

de that can be
extracted from the rotation matrix Re

d in (24).6 The
relationship with the angular velocity error in (26) is derived
by applying the propagation rule (11), (12), i.e.

ḣde =2
1
2

eeT
deDve

de (31)

ėe
de =

1
2

E(hde , ee
de )Dve

de (32)

with E defined as in (13).
The resolved angular acceleration can be chosen as

a0 =v̇d +kVoDvde +kPoede (33)

where kVo , kPo are suitable feedback gains and the orienta-
tion error has been referred to the base frame, i.e.

ede =Ree
e
de . (34)

Substituting (33) into (17) gives the closed-loop dynamic
behaviour of the orientation error

Dv̇de +kVoDvde +kPoede =0. (35)

Differently from all the previous cases (20), (23), (30),
the error system is nonlinear, and thus a Lyapunov argument
is invoked to ascertain its stability.4 Let

V=kPo((hde 21)2 +eT
deede )+

1
2

DvT
deDvde (36)

=kPo((hde 21)2 +eeT
dee

e
de )+

1
2

DvT
deDvde

be a positive definite Lyapunov function candidate. The
time derivative of (36) along the trajectories of system (35)
is

˙
V=2kPo((hde 21)ḣde +eeT

deė
e
de )+DvT

deDv̇de (37)

=kPo(2 (hde 21)eeT
deDve

de +eeT
deE(hde , ee

de )Dve
de )

2kVoDvT
deDvde 2kPoDveT

dee
e
de

= 2kVoDvT
deDvde

where (31), (32) have been exploited.
Since V̇ is only negative semi-definite, in view of

LaSalle’s theorem, the system asymptotically converges to
the invariant set described by the two equilibria:

4 1 ={hde =21, ede =0, Dvde =0} (38)

4 2 ={hde =1, ede =0, Dvde =0}. (39)

The equilibrium 4 1 is unstable. To see this, consider (36)

which, in view of (37), is a decreasing function. At the
equilibrium in (38), it is

VE =4kPo . (40)

Take a small perturbation hde =21+s around the equilib-
rium with s >0; then, it is eT

deede =2s2s2. The perturbed
Lyapunov function is

Vs =4kPo 22skPo <VE (41)

and thus, since (36) is decreasing, V will never return to VE ,
implying that 4 1 is unstable. Therefore, the system must
asymptotically converge to 4 2 , which in turn implies that
tracking of Rd and vd is achieved.

As a final remark, the closed-loop system with quaternion
feedback (35) is nonlinear. If desired, a linear dynamics can
be obtained for the orientation error ede , at the expense of a
much more involved choice of the resolved angular
acceleration.11

V. ANGLE/AXIS FEEDBACK
In the original resolved acceleration control scheme,2 the
orientation error was defined in terms of rotation matrix
feedback as

ode =
1
2

(S(ne )nd +S(se )sd +S(ae )ad ) (42)

with the restriction nT
e nd >0, sT

e sd >0, aT
e ad >0.

An equivalent expression of ode is

ode =sin uderde (43)

where ude and rde are respectively the rotation and the unit
vector of an equivalent angle/axis description of the mutual
orientation that can be extracted from the matrix

Rde =RdR
T
e (44)

which is referred to the base frame. Note that the above
restriction related to (42) is equivalent to udeP(2p/2, p/2).
If ude were extended to the interval (2p, p), the computa-
tion of the error in (43) would still be feasible although it
would lead to a decreasing error norm for an increasing
absolute value of the angle in the interval (p/2, p).

In view of (8), (9), the orientation error in (43) can be also
expressed in terms of a unit quaternion, i.e.

ode =2hdeede (45)

where {hde , ede } can be extracted from (44). It can be
shown12 that the vector part of this quaternion coincides
with (34), which has indeed motivated the use of the same
symbol.

The time derivative of the orientation error (42) can be
related to the desired and the actual end-effector angular
velocity as13

ȯde =LTvd 2Lve (46)

where

L= 2
1

2
(S(nd )S(ne )+S(sd )S(se )+S(ad )S(ae )). (47)

Resolved-acceleration control568

https://doi.org/10.1017/S0263574798000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000290


The second time derivative is

öde =LTv̇d + L̇Tvd 2Lv̇e 2 L̇ve . (48)

The resolved angular acceleration can be chosen as

a0 =L21(LTv̇d + L̇Tvd 2 L̇ve +kVoȯde +kPoode ), (49)

where kVo , kPo are suitable feedback gains, and L is
nonsingular as long as the above restriction holds. In this
respect, if the angle ude is extended to the interval (2p, p),
then a singularity occurs at ude =±p/2 for the matrix L
which does not allow the computation of ao as in (49).

Substituting (49) into (17) gives the closed-loop dynamic
behaviour of the orientation error

öde +kVoȯde +kPoode =0, (50)

which is a linear and decoupled system analogous to the
position error system (20) as well to the orientation error
systems (23), (30). Exponential stability is guaranteed for
any choice of kVo , kPo >0; convergence to ode =0 and ȯde =0 is
ensured, which in turn implies tracking of Rd and vd .

Equation (49) reveals that the price to pay to obtain a
linear and decoupled system is a large computational burden
and the possible occurrence of a singularity. On the other
hand, in the original rotation matrix feedback scheme2 the
resolved angular acceleration was simply chosen as

a0 =v̇d +kVoDvde +kPoode . (51)

In this case, the closed-loop dynamic behaviour of the
orientation error becomes

Dv̇de +kVoDvde +kPoode =0. (52)

The convergence analysis in reference 2 is valid only for
small orientation errors. A Lyapunov stability analysis has
been given later in reference 6 based on the expression of
the orientation error in (45). However, a nonlinear kPo is
required to prove stability; this issue was addressed in
reference 4 in the context of the attitude control problem.

Similarly to the quaternion feedback case above, a
Lyapunov argument is invoked below to ascertain stability
of system (52). Let

V=2kPoe
T
deede +

1
2

DvT
deDvde (53)

=2kPoe
eT
dee

e
de +

1
2

DvT
deDvde

be a positive definite Lyapunov function candidate. The
time derivative of (53) along the trajectories of system (52)
is

V̇=4kPoe
eT
deė

e
de +DvT

deDv̇de (54)

=2kPoe
eT
deE(hde , ee

de )Dve
de

2kVoDvT
deDvde 22kPohdeDveT

dee
e
de

=2kVoDvT
deDvde

where (31), (32) have been exploited.
Since V̇ is only negative semi-definite, in view of

LaSalle’s theorem, the system asymptotically converges to

the invariant set described by the following equilibria:

3 1 ={hde =21, ede =0, Dvde =0} (55)

3 2 ={hde =1, ede =0, Dvde =0} (56)

3 3 ={hde =0, ede : iedei=1, Dvde =0}. (57)

The equilibria in the set 3 3 are all unstable. To see this,
consider (53) which, in view of (54), is a decreasing
function. At any equilibrium in (57), it is

VE =2kPo . (58)

Take a small perturbation hde =s around such equilibrium;
then, it is eT

deede =12s2. The perturbed Lyapunov function
is

Vs =2kPo 22s2kPo <VE (59)

and thus, since (53) is decreasing, V will never return to VE ,
implying that the equilibria in 3 3 are unstable. Therefore,
the system asymptotically converges to either 3 ] or 3 2;
since both quaternions for those equilibria represent the
same orientation, it can be concluded that tracking of Rd and
vd is achieved. Nevertheless, it is worth emphasizing that
the equilibrium 3 1 is of no interest for the angle/axis
feedback scheme based on (51) since it corresponds to an
angle ude which is outside the interval (2p, p) considered
above.

An alternative angle/axis feedback scheme can be
devised on the basis of the following expression for the
orientation error

o9de =uderde . (60)

The stability of the resulting closed-loop scheme can be
analyzed in a formally similar way to the above, as
discussed, e.g. in reference 9.

VI. COMPUTATIONAL ISSUES
The features of the above resolved-acceleration control
schemes can be further investigated from a computational
viewpoint. Since the main differences reside in the way the
orientation feedback is defined, the analysis can be focused
on the issues regarding the computation of the resolved
angular acceleration. In this respect, it is assumed that the
robot manipulator is controlled in a real-time fashion, and
thus the planning of the desired end-effector trajectory shall
be updated on the basis of sensory information about the
surrounding environment where the robot operates. There-
fore, the two key elements in the analysis are the trajectory
generation and the computation of the orientation error.

The most congenial way for the user to specify a desired
orientation trajectory is the equivalent angle/axis method.1

Given the initial and final rotation matrices describing the
orientation of the end-effector frame, the rotation matrix of
the mutual orientation between the two frames is computed;
the equivalent angle and axis unit vector are extracted, and
the orientation trajectory is interpolated from zero to the
total angle while keeping the unit vector constant. This
method provides the user with a meaningful interpretation
of the end-effector orientation along the trajectory from a
geometric viewpoint, and thus is superior to the computa-
tionally lighter Euler angles method for which the
intermediate orientations of the end-effector frame cannot

Resolved-acceleration control 569

https://doi.org/10.1017/S0263574798000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000290


be predicted beforehand. On the other hand, assigning the
equivalent angle and axis directly leads to specifying a
desired trajectory in terms of a unit quaternion via (8), (9).
Upon these premises, it is assumed that the desired end-
effector orientation trajectory is generated in terms of the
rotation matrix Rd; then, the angular velocity vd and
acceleration v̇d are simply computed from the time
derivatives of the interpolating polynomial for the angle.

Regarding the actual orientation of the end-effector
frame, this is typically available from the direct kinematics
equation in terms of the rotation matrix Re which can be
computed from the joint position measurements; further, the
actual end-effector angular velocity ve can be computed
from the joint velocity measurements via (2).

The computational burden of the schemes presented in
the previous sections is evaluated in terms of the number of
floating-point operations and transcendental functions
needed to compute the resolved angular acceleration ao

where the additional computations needed for desired
trajectory generation by those schemes not using Rd , vd and
v̇d are evidenced. In particular, the angle/axis feedback
scheme based on (49) has been ruled out in view of its
inherent computational complexity. The results are reported
in Table I, where the computations have been optimized
whenever possible, e.g. by avoiding multiplications by zero
and carrying out partial factorizations.

It can be recognized that the extraction of Euler angles
augments the overall load for both feedback schemes,
compared to the quaternion and the angle/axis feedback
scheme. The interesting feature of the alternative Euler
angles feedback scheme is the absence of extra computa-
tions for trajectory generation, which instead penalizes the
classical Euler angles feedback scheme due to the extraction
of Euler angles from Rd and the computation of their time
derivatives. The computational load for the quaternion
feedback scheme is smaller than for the Euler angles
feedback schemes, even though an additional effort is
required to compute the desired trajectory in terms of a unit
quaternion. Not surprisingly, the angle/axis feedback
scheme is the most computationally efficient since it
operates directly on the desired and actual rotation matrices,
the desired and actual angular velocities, and the desired
angular acceleration.

VII. EXPERIMENTS
The laboratory setup consists of an industrial robot Comau
SMART-3S (Fig. 1). The robot manipulator has a six-
revolute-joint anthropomorphic geometry with nonnull

shoulder and elbow offsets and non-spherical wrist. The
joints are actuated by brushless motors via gear trains; shaft
absolute resolvers provide motor position measurements.
The robot is controlled by an open version of the C3G 9000
control unit14 which has a VME-based architecture with a
bus-to-bus communication link to a PC Pentium 133. This is
in charge of computing the control algorithm and passing
the references to the current servos through the communica-
tion link at 1 ms sampling rate. Joint velocities are
reconstructed through numerical differentiation of joint
position readings.

The dynamic model of the robot manipulator has been
identified in terms of a minimum number of parameters,
where the dynamics of the outer three joints has been simply
chosen as purely inertial and decoupled. Only joint viscous
friction has been included, since other types of friction (e.g.
Coulomb and dry friction) are difficult to model.

The various resolved-acceleration control schemes have
been implemented as C modules on the PC. The computa-
tional burden with the available hardware amounts to a total
time of: 0.235 ms for the controller based on (15), (19),
(22), 0.205 ms for the controller based on (15), (19), (28),
0.170 ms for the controller based on (15), (19), (33), and
0.155 ms for the controller based on (15), (19), (51). Notice
that, with reference to the data in Table I, these times are
inclusive also of the inverse dynamics computation, the
basic trajectory generation and the manipulator kinematics
computation, and of course the computation of the resolved
linear acceleration.

The feedback gains of the above controllers have been set
to: kVp =75 and kPp =2500 in (19), kVo =75 and kPo =2500 in
(22), (28), (51), while kVo =75 and kPo =5000 in (33). These
values have been chosen so as to assign the same dynamic
behaviour to the various closed-loop error systems, where
the nonlinear equations have been linearized for small
orientation errors. In this way, a fair comparison can be
carried out.

A case study has been developed to analyze the tracking
performance of the various schemes. The end-effector
desired position is required to make a straight line

Table I. Computational load of the angular part for the resolved-
acceleration control schemes

Resolved
acceleration

Trajectory
generation

Angular
feedback scheme Flops Funcs Flops Funcs

Classical Euler 68 8 52 8
Alternative Euler 136 8 0 0
Quaternion 60 1 21 1
Angle/axis 55 0 0 0

Fig. 1. Industrial robot Comau SMART-3S.
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displacement of (0.5, 20.6, 0.5) m along the coordinate
axes of the base frame. The trajectory along the path is
generated according to a 5-th order interpolating polynomial
with null initial and final velocities and accelerations, and a
duration of 5 s. The end-effector desired orientation is
required to make a rotation of 3 rad about the axis (0.5639,
0.5840, 20.5840) with respect to the base frame. The

trajectory is generated according to the equivalent angle/
axis method, where the axis is fixed and the angle is
interpolated by a 5-th order polynomial with null initial and
final velocities and accelerations, and a duration of 5 s. The
initial end-effector pose has been matched with the desired
one.

As shown in the left-hand side of Figure 2, the desired

Fig. 2. Time histories of determinant of T(fd ) and determinant of T(fde ).

Fig. 3. Tracking performance of resolved-acceleration control based on (15), (19), (22).
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end-effector orientation trajectory passes in the neighbour-
hood of a representation singularity for the matrix T(fd );
this is a very demanding task in the face of the typical
capability of a conventional industrial robot control unit.

The results are reported in Figs. 3 and 4 for the two Euler
angles feedback schemes, the classical one and the alter-
native one proposed in this paper. The figures illustrate the
time histories of the norm of the end-effector position error
Dpde , the norm of an end-effector orientation error com-
puted as the largest singular value of the matrix (I2Re

d ), the
norm of the linear velocity error D ṗde , the norm of the
angular velocity error Dvde , and the joint reference motor
currents (expressed in DAC units). Note that the choice of
the above orientation error has been motivated by the desire
of referring to a single measure of tracking performance for
the various schemes, no matter what type of orientation
feedback has been used.

It can be recognised that the performance in terms of the
position and orientation errors is good for both schemes.
The steady-state errors are nonnull because of the unavoida-
ble imperfect compensation of static friction. A degradation
of performance is observed in the linear and angular

velocity errors for the scheme based on the classical Euler
angles feedback; large peaks occur which are reflected also
at the level of the motor currents. This phenomenon can be
clearly understood because of the closeness to the repre-
sentation singularity for the end-effector orientation in
correspondence of the time instant when the determinant of
T(fd ) approaches zero. It should be remarked that its effect
is visible not only on the angular velocity error but also on
the linear velocity error, through the typical kinematic
coupling between position and orientation in the non-
spherical wrist manipulator. On the other hand, the scheme
based on the alternative Euler angles feedback does not
suffer from the occurrence of representation singularities, as
confirmed in the right-hand side of Fig. 2 illustrating the
determinant of the matrix T(fde ) which is nearly equal to
one in view of the small orientation tracking error along the
trajectory.

The overall tracking performance obtained with the
quaternion feedback and the angle/axis feedback schemes is
practically the same as that with the alternative Euler angles
feedback scheme, and thus the numerical results have not
been reported for brevity.

Fig. 4. Tracking performance of resolved-acceleration control based on (15), (19), (28).
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VIII. DISCUSSION
The previous sections have illustrated the analytical deriva-
tion, the stability analysis, the computational burden and the
tracking performance for the various resolved-acceleration
control schemes with special concern to the representation
of the end-effector orientation error. In conclusion, a critical
discussion is in order concerning the pros and cons of each
scheme.

At first sight, the classical Euler angles feedback scheme
might seem the simplest one in view of its similarity with
the position feedback scheme. Nevertheless, the study has
revealed that, besides the heavy computational load due to
Euler  angles extraction, there is no guarantee to avoid the
occurrence of representation singularities even when good
end-effector orientation tracking is achieved. On the other
hand, the effort to plan a singularity-free orientation
trajectory is considerable especially when the equivalent
angle/axis method is adopted for meaningful task specifica-
tion purposes.

The alternative Euler angles feedback scheme proposed
in this paper has the main merit to almost overcome the
above drawback of representation singularities, since it
keenly operates on the set of Euler angles which is extracted
from a single rotation matrix describing the mutual
orientation between the desired and the actual end-effector
frame. It may suffer only in the case of large orientation
errors, but there is no practical worry for a convergent
algorithm with matched initial conditions between the
desired and the actual end-effector orientation. A weakness,
however, is that the computational burden is still consider-
able.

The breakthrough of the quaternion feedback scheme
stands in its applicability for any magnitude of the
orientation error, since it is inherently based on a singu-
larity-free representation of orientation. Its tracking per-
formance is apparently as good as the alternative Euler
angles feedback scheme, although the closed-loop orienta-
tion error dynamics is nonlinear. A further advantage is
represented by the contained computational burden, even
though the orientation error is not directly based on the
desired and actual rotation matrices.

Finally, the angle/axis feedback scheme in the original
resolved-acceleration control technique has the least com-
putational load among all the schemes. Its performance is
worse than that of the quaternion feedback scheme in the

case of large orientation errors, whereas both schemes
exhibit the same good behaviour for small orientation
errors.
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