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An exceptional point switches stability of a
thermoacoustic experiment
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We identify an exceptional point in the numerical stability map of a combustion
experiment operated with laminar premixed flames. A low-order model of the experiment
allows one to investigate the interplay between the system modes and an exceptional
point. The latter is located in the unstable region of the complex eigenvalue plane.
Under gradual variation of the operating parameters, the branch-switching characteristic
of the exceptional point can facilitate abrupt changes between strong instability and
stable operation. The results also indicate that intrinsic thermoacoustic feedback plays
an important role in the stability characteristics of this experiment.
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1. Introduction

An unsteady flame, which manifests itself in heat release fluctuations Q̇′, produces acoustic
waves (Strahle 1971; Brear et al. 2012; Ghani & Poinsot 2017). In the case of an enclosed
flame, the acoustic properties of the cavity and the flame dynamics define a phase lag
between fluctuations of heat release Q̇′ and pressure p′. For phase lags in the range −π/2
to π/2, the energy released by the flame is transferred to the acoustic field. For such cases,
pressure waves grow in amplitude and attain sound levels up to 150 dB (Rayleigh 1878).
This self-excited phenomenon is referred to as thermoacoustic instability (Candel 2002;
Lieuwen & Yang 2005).

The description of the underlying feedback loop between acoustics, fluid dynamics and
combustion is challenging and important since (i) fundamental research is required to
avoid the occurrence of thermoacoustic instabilities and (ii) the resulting thermoacoustic
instabilities can cause fatal damage to combustion applications, e.g. gas turbines,
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rocket engines and domestic boilers. This makes thermoacoustic instabilities a technical
barrier to novel low-emission energy generation systems (Poinsot 2017).

Although intense research on thermoacoustic instabilities started in the 1950s,
an important mechanism of instability was discovered only in 2014: theoretical,
numerical and experimental studies indicate that a velocity-sensitive flame can trigger
thermoacoustic instabilities even in perfectly anechoic acoustic conditions, hence, without
any coupling with the acoustic eigenfrequencies of the combustor cavity. This instability
mechanism is governed by the flame parameters (e.g. shape and length) rather than by
the cavity acoustics: a pressure wave, generated by the unsteady flame, travels upstream
and impinges upon the flame anchoring position to again provoke perturbations, which
cause the unsteady flame to produce pressure waves. Consequently, this flame-intrinsic
instability mechanism is termed as the intrinsic thermoacoustic (ITA) feedback loop
(Hoeijmakers et al. 2014; Bomberg, Emmert & Polifke 2015; Courtine, Selle & Poinsot
2015; Emmert, Bomberg & Polifke 2015). Associated ITA modes were first reported
for experiments in anechoic acoustic environments (Hoeijmakers et al. 2016) and later
in situations where the acoustic boundaries are partially or fully reflective (Albayrak
et al. 2018; Murugesan et al. 2018; Ghani et al. 2019). This renders ITA modes generally
important in thermoacoustic studies.

Mathematically, combustion systems can be represented as dynamical systems: linear
stability analysis yields the eigenfrequencies of the system and determines whether initial
perturbations of infinitesimal amplitude grow or decay in time. These amplitudes may be
associated with acoustic or ITA modes, as both appear in the complex plane. Acoustic
systems with energy exchange, such as thermoacoustic systems, require a non-Hermitian
description, which can feature exceptional points (EPs) where two (or more) modes
coalesce in their eigenvalues and the corresponding eigenvectors (Latinne et al. 1995;
Cartarius, Main & Wunner 2007; Doppler et al. 2016; Aurégan & Pagneux 2017;
Goldzak, Mailybaev & Moiseyev 2018). EPs, also known as non-Hermitian degeneracies
or branch points, have attracted wide attention across physics, e.g. applications are found in
nanophotonics for light manipulation (Miri & Alu 2019), in single-mode lasers to decrease
the fluctuating level of lasers (Feng et al. 2014) or in augmenting the quality of sensors
(Wiersig 2020). One reason for these recent advances relies on the particular properties of
EPs, as in their vicinity the parameter sensitivity becomes infinite and leads to a sudden
state change of the system (Heiss 2012).

In thermoacoustics, EPs were described first by Mensah et al. (2018), who studied
a theoretical configuration: by variation of two parameters of a simple flame model,
acoustic and ITA modes coalesce in their eigenvalues and eigenfunctions in a specific
point of parameter space. Close to an EP, the trajectories of both acoustic and ITA modes
do not traverse the branch-point singularity, but feature strong veering and variation of
the eigenvalues close to the EP even for small parameter changes. This is caused by
the infinite sensitivity of EPs to parameter variations. Similar results were computed
previously in thermoacoustic spectra without detailed explanations (Magri 2019; Silva,
Yong & Magri 2019). Orchini et al. (2020) confirmed the mode veering feature of
EPs in three-dimensional configurations, where longitudinal and azimuthal modes were
considered. Recently, Schaefer, Guo & Polifke (2021) reported on an EP that was located
in the stable complex plane.

Despite the richness of physical phenomena near EPs, their occurrence in combustion
experiments has not been verified so far. In this paper, we provide evidence of an unstable
EP in the stability map of a combustion experiment. This theoretical study highlights a
key feature of EPs: the stability of the combustor is flipped from unstable to stable due to
the typical branch-switching behaviour of EPs. Our analysis is based on linear acoustics
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Figure 1. (a) Schematic view of the experimental set-up. (b) Instability frequencies and sound pressure level
(SPL) reproduced from Noiray et al. (2007). Filled red markers denote unstable combustion. The frame displays
the cavity lengths studied in this work.

combined with an empirical model for the flame. This well-established framework aims at
(i) reproducing the experimental observations and (ii) exploring the impact of the EP on
the system stability.

The paper is structured as follows. Next, § 2 describes the experimental set-up and
summarizes the observations on combustor stability. Then, in § 3 we present the acoustic
network model of the test rig supplemented with a decoupling strategy to identify the
nature of unstable thermoacoustic modes. Finally, in § 4 we identify an EP in the numerical
stability map by inspecting the transition process from unstable to stable combustion.

2. Experimental set-up and stability map

The experiment by Noiray et al. (2008) (figure 1a) consists of a cylindrical cavity (R =
0.035 m) with a movable piston, which allows one to modify the cavity length in the
range 0.10 m < L < 0.75 m. Air and methane are premixed at an equivalence ratio of φ =
0.86 and enter the plenum with a mean velocity u = 1.2 m s−1 at ambient pressure (p̄ =
1 bar) and temperature (T̄ = 300 K). An ensemble of 420 laminar flames are stabilized
at a perforated plate, where each hole has a radius of 1 mm. The plate thickness is 0.03
m. Pressure fluctuations are measured 0.35 m downstream of the flame location. These
data provide the frequency of instability and the noise levels as functions of the length
of the cavity (figure 1b): noise levels of 120 dB are measured for cavity lengths of 0.10
m, 0.40 m and 0.75 m (filled red markers). For other cavity lengths, distinct instability
frequencies were not reported, but sound pressure levels remain at approximately 80 dB
(Noiray 2007; Noiray et al. 2007). It is often observed that oscillation amplitudes grow
gradually in response to changes in control parameters such as thermal power, equivalence
ratio or plenum length. In the case considered here, changes in cavity length cause rather
abrupt bifurcations in stability, which is a conspicuous point: noise levels switch abruptly
between ∼80 dB and ∼120 dB (figure 1b).

A key parameter to formulate an acoustic flame element is the flame transfer function
(FTF). It relates upstream velocity fluctuations u′

u to heat release fluctuations Q̇′ that are
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Figure 2. Experimentally measured FTF by Noiray et al. (2008) with u′/ū = 0.34. The red vertical dashed
line indicates the frequency at which the −π isoline is crossed.

normalized by their respective mean values (denoted by overbars):

F(ω) = Q̇′(ω)/ ¯̇Q
u′

u(ω)/ūu
, ω ∈ R. (2.1)

The FTF was measured by Noiray et al. (2008) and is plotted in figure 2. Note that the
phase crosses the −π isoline at 400 Hz. Previous studies identified that the phase of the
FTF when crossing the −π isoline predicts the frequency of the ITA mode in anechoic
conditions (Hoeijmakers et al. 2014; Courtine et al. 2015; Emmert et al. 2015; Albayrak
et al. 2018). We will discuss the relevance of this observation in § 4.

3. Model of the experiment

We model the combustion instabilities by linear acoustics combined with a model for
the flame dynamics, which is a well-established framework for thermoacoustic studies
(Keller 1995; Dowling 1997; Morgans & Dowling 2007; Juniper & Sujith 2018). The
philosophy is a divide-and-conquer modelling approach: the entire experiment is divided
into well-defined acoustic subsystems, for which analytical relations are written to describe
the propagation of one-dimensional plane waves at the speed of sound. Each acoustic
subsystem describes how the outgoing waves depend on the incoming waves. The
ensemble of subsystems then describes the entire combustion system. We use a state-space
formulation to (i) interconnect the individual subsystems to the complete system and (ii)
facilitate the computation of the eigenvalues (Schuermans 2003; Emmert et al. 2016).
Essential physical dynamics, i.e. frequency, growth rate and mode shape of every system
mode, are computed within seconds on a standard workstation. Clearly, essential physical
insight and low computational cost are major advantages of this approach compared to
high-fidelity computational fluid dynamics approaches for reacting flows (Poinsot 2017).

The experimental model of interconnected acoustic subsystems contains two reflective
ends, two ducts (cavity and channel inside the perforated plate), two area jumps (before
and after the channel) and the flame element (figure 3). The flame is included as a
compact element that obeys the linearized Rankine–Hugoniot jump conditions (Chu 1953).
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Figure 3. Representation of the full thermoacoustic system as an ITA system coupled to an acoustic system.

(The geometrical extension of the flames is approximately 0.01 m, whereas the unstable
acoustic wavelengths λ = c/f ≈ 350 m s−1/500 Hz ≈ 0.7 m are roughly 70 times larger.)
To close the set of equations, a model for the flame dynamics, the FTF, is used (figure 2).
Following Subramanian et al. (2015) and Albayrak et al. (2018), we use a rational function
with optimized model parameters to fit accurately the measured FTF. The reflection
coefficients for the piston, which represents the inlet of the model, and for the outlet are
reported by Noiray (2007): while the inlet reflection coefficient is close to a hard wall
(RI = 1), the expression for the reflection coefficient at the outlet RO given by Noiray
(2007) contains the acoustic contributions of both the perforated plate and the flame. In
the present study, we wish to clearly distinguish between the acoustic and ITA modes. It is
then appropriate to employ separate acoustic elements, one for the flame dynamics and one
for the reflection coefficient (figure 3). The present study employs the well-known model
of Levine & Schwinger (1948) for the outlet reflection in simplified form (Munjal 1987):

RO = (1 − 1
2 k2R2) exp[i(π − 6

5 tan−1(kR))], (3.1)

where k = ω/c is the wavenumber with angular frequency ω = 2πf and speed of sound
c. The amplitude and phase of (3.1) start at 1 and π, respectively, and decrease with
increasing frequency. This model for an unflanged tube exit is widely employed in
thermoacoustic studies (Moeck et al. 2009; Kraus, Selle & Poinsot 2018; Mukherjee 2018;
Aguilar & Juniper 2020).

The dynamics of the state-space system is analysed by solving the linear eigenvalue
problem:

(sI − M)x = 0, (3.2)

with the Laplace variable s = iω + σ , the growth rate σ , the identity matrix I and the
system matrix M. The eigenvalues are solved by computing the roots of the characteristic
equation:

det M = 0. (3.3)

The system is linearly stable, i.e. initial perturbations are damped by the system if all
eigenfrequencies have negative growth rates. Conversely, perturbations grow in time if one
eigenfrequency has positive growth rate, which renders the system linearly unstable.

We compare the experimentally recorded limit-cycle frequencies against the model
frequencies for linearly unstable modes parametrized by the cavity length L (figure 4).
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Figure 4. Validation of the model results against experimental limit-cycle frequencies reproduced from
Noiray et al. (2007). The insets display the corresponding mode shapes in the cavity.

Overall, good agreement is found for the predicted frequencies, growth rates and stability
limits. Note that frequencies and growth rates are subject to FTF as shown by Noiray et al.
(2008). In this study, we only use the FTF measured with u′/ū = 0.34 (figure 2). The
unstable modes correspond to the first, second and third quarter-wave modes of the cavity.

So far, the model of the experiment allows the thermoacoustic eigenvalues to be
computed, but it does not allow an EP to be identified. To do so, we transform the system
matrix M, without modifying its dynamics, to retrieve the following block structure:

0 =
⎡
⎣ Asys μCF→A

μCA→F F sys

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎣

fi
...

gx
u′

u
q̇′

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

. (3.4)

The matrices Asys and F sys model the acoustic and the ITA subsystems, respectively. The
cross-coupling of these two systems is described by the off-diagonal block matrices CF→A
and CA→F, where the indices indicate the impact of the flame on the acoustics and vice
versa.

Now, the advantage of the block structure is that a coupling factor μ may be introduced,
which decouples the original full system modes (μ = 1) into an ITA system and an
acoustic system (μ = 0), as displayed in figure 3. The ITA system is described by F sys.
The acoustic system Asys provides the eigenfrequencies associated with the cavity modes
while taking into account the temperature jump between the cold and hot gas regions
(‘passive flame’). A sweep from μ = 0 → 1 then identifies the nature of the full system
mode. Setting μ = 0, the dispersion relation reads

det M = (Zdα − Zuξ)︸ ︷︷ ︸
Asys

(α + ξ + θF)︸ ︷︷ ︸
Fsys

= 0, (3.5)
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Figure 5. Eigenvalues computed for the full, ITA and acoustic systems (figure 3). The coupling factor traces
the path of both acoustic and ITA systems (μ = 0) to the original full system (μ = 1). Cavity length is denoted
as L, which varies from 0.05 m to 0.18 m. The acoustic and ITA modes are only computed for μ = 0 at each
cavity length. The acoustic mode for each cavity length corresponds to the first unstable mode.

where F is the complex-valued flame transfer function, θ = Td/Tu − 1 the specific ratio
of temperatures up- and downstream of the flame, ξ = (ρucu)/(ρdcd) the ratio of specific
acoustic impedances, α the area ratio of the plate cross-section and Z the acoustic
impedance upstream (u) and downstream (d) of the flame. The factorized dispersion
relation ((3.5)) separates the acoustic system Asys and the ITA system F sys eigenvalues.

This approach has been developed by Emmert et al. (2017) and associates (unstable)
system modes with either acoustic or ITA modes. The procedure is briefly recapitulated
in the Appendix. In this work, the coupling parameter is discretized into 40 increments
to visualize the trajectories from both acoustic and ITA systems to the full system in a
high-resolution parameter map.

4. Identification of exceptional points

With the model described above, which includes a decoupling feature, we report an EP
in the numerical stability map of an experimental combustion device. To do so, two
parameters are changed: (i) the cavity length L, which changes the acoustic modes, and (ii)
the coupling parameter μ, which decouples the acoustic system from the flame dynamics,
i.e. ITA system.

The stability map is shown in figure 5, where the abscissa displays the growth
rate: the right half contains eigenfrequencies with positive growth rates, which
yield unstable combustion. The computed eigenvalues correspond to cavity lengths
0.05 m ≤ L ≤ 0.18 m, for which a switch from unstable to stable combustion is reported
(figure 1b). Note that the smallest cavity length tested experimentally is 0.085 m. For the
sake of brevity, we concentrate on this first transition from unstable to stable combustion.
The same mechanism accounts for the stability transitions at 0.35 m ≤ L ≤ 0.45 m and
0.70 m ≤ L ≤ 0.75 m (figure 1b).

The ITA system is unstable at 418 Hz (figure 5, red square), which is coherent with
the −π criterion for the phase of the FTF (figure 2) (Hoeijmakers et al. 2014; Courtine
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et al. 2015; Emmert et al. 2015). For L ≤ 0.11 m, the ITA mode couples to very strongly
damped full system modes at approximately 210 Hz. In contrast, the acoustic modes
couple to the unstable full system modes, for which the highest growth rates are found
for frequencies around 510 Hz ± 5 Hz (figure 5), which is in agreement with experimental
stability observations (figure 1b).

As the cavity length is further increased (L ≥ 0.12 m), the nature of the unstable full
system mode changes: now, the acoustic modes couple to the strongly damped full system
modes at approximately 210 Hz, whereas the ITA mode couples to the unstable full system
modes.

Figure 6 highlights the change in mode nature in more detail. Figure 6(a), for L =
0.11 m, shows that the acoustic modes couple to the unstable full system mode, while
the ITA mode couples to damped modes at approximately 210 Hz for μ = 1. Figure 6(b)
displays the stability map for L = 0.12 m. Conversely to figure 6(a), the damped full
system mode originates from the acoustic mode and the ITA mode drives the unstable
combustion process at frequencies of approximately 470 Hz. This change in mode nature
is due to a branch switch. This pattern continues for the next cavity length L = 0.13 m
(figure 6c) but growth rates start to decay. Further increase of the cavity length L > 0.13 m
drastically decreases the growth rates until the unstable mode becomes stable (figure 5).
The location of the EP is roughly estimated as the intersection of the average mode
distances in the area where no modes are active.

To confirm the location of the EP, we use a contour integral method (Gavin, Miedlar &
Polizzi 2018) as done by Mensah et al. (2018). Next, we applied the method to the present
target configuration (figure 7). By varying the cavity length L and the coupling parameter μ

in a small range, we found the exact location of the EP to be close to the estimated location
(figure 6). Figure 7 features another property of EPs: when varying the cavity length for the
constant coupling parameter μ = 0.34, the eigenvalue trajectories collide from opposite
directions at the EP and, for further increase of L, veer off in a perpendicular direction.
As discussed in Seyranian, Kirillov & Mailybaev (2005) and Mensah et al. (2018), this
veering pattern is a unique feature of EPs. Finally, we show that the inner product of the
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eigenfunction close to the EP is approximately unity (figure 8): this demonstrates that, at
the EP, the eigenvalues and the corresponding eigenfunctions coalesce.

In this work, the most striking consequences of an EP are found: (i) a region indicating
large parameter sensitivities, (ii) where strong veering of mode paths is found (figure 5),
and (iii) a branch switch that changes the nature of the instability (figure 6). We confirmed
our results by computing the exact EP location and the corresponding (almost perfectly)
parallel eigenvectors for the same frequency. The branch-switching behaviour provides
a possible explanation for the experimentally observed sudden change in noise levels
between 80 dB and 120 dB (figure 1b). We also highlight the fact that the ITA mode
plays a significant role in the stability of this set-up. To the best of our knowledge, this
point has not been reported before.

5. Conclusion

Only recently, the theoretical studies of Mensah et al. (2018) featured EPs located in the
stable complex plane of prototypical, canonical test cases. In this study, we identify an
unstable EP in the numerical stability map of an experimental combustion system. By
tracing the nature of the full system modes, the mode paths displayed strong veering
and a branch switch close to the EP. The latter was found in the unstable complex plane
and triggered stability transition. The results reveal that the ITA feedback loop plays an
important role in this stability transition.

The identification of EPs requires two parameters to be changed. In this study, we
propose a numerical tool to study EPs that uses one physical parameter (the cavity length
L) together with a ‘virtual parameter’ (the coupling parameter μ, which decouples the
full system into acoustic and ITA modes to understand the nature of the thermoacoustic
mode): it can also be used to reduce the experimental complexity of the set-up, as only
one variation is needed instead of two.

Future work will focus on the impact of nonlinear forcing amplitudes to incorporate the
experimentally reported Flame Describing Function.
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Appendix. Acoustic network model

Fluctuations of velocity u′ and pressure p′ are linked via characteristic wave amplitudes:

f = 1
2

(
p′

ρc
+ u′

)
, g = 1

2

(
p′

ρc
− u′

)
. (A1a,b)

From (A1), primitive variables can be computed via u′ = f − g and p′/ρc = f + g. The
ratio of the characteristic waves describes reflection coefficients as Ru = gu/fu and Rd =
fd/gd. Using the definition of the acoustic impedance, these can be written as

Ru = (Zu + 1)/(Zu − 1),

Rd = (Zd − 1)/(Zd + 1).

}
(A2)
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The configuration shown in figure 3 contains acoustic elements up- and downstream
of the flame, which can be lumped together as impedances Zu and Zd, respectively.
Considering the flame as a compact element, the Rankine–Hugoniot jump conditions (Chu
1953) formulate an acoustic flame model. Combining the compact flame element together
with the upstream cross-sectional area change (figure 3), the scattering matrix is

[
fu
gd

]
=

⎡
⎢⎢⎣

α − ξ

α + ξ

2
α + ξ

θ

α + ξ

2αξ

α + ξ

ξ − α

α + ξ

ξθ

α + ξ

⎤
⎥⎥⎦

⎡
⎣ fd

gu
q̇′

⎤
⎦ , (A3)

where q̇′ = F(ω)u′
u with u′

u = fu − gu. The system matrix M is obtained by combining
(A2) and (A3):

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
Zu + 1
Zu − 1

0 0 0 0

α − ξ

α + ξ
−1 0

2
α + ξ

0
θ

α + ξ

2αξ

α + ξ
0 −1

ξ − α

α + ξ
0

ξθ

α + ξ

0 0
Zd − 1
Zd + 1

−1 0 0

1 −1 0 0 −1 0

0 0 0 0 F −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎣

fu
gu
fd
gu
u′

u
q̇′

⎤
⎥⎥⎥⎥⎥⎦ , (A4)

Emmert et al. (2017) proposed to separate out the upstream outgoing wave gu caused by
the flame. From (A4), we find that (i) the heat release q̇′ drives gu via θ/(α + ξ), (ii) gu
acts on (Zu + 1)/(Zu − 1) via the upstream ingoing wave fu and (iii) gu also acts on the
velocity fluctuation u′

u by −1. The equations are rearranged such that q̇′ directly affects fu
and the coupling term μ is introduced:

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
Zu + 1
Zu − 1

0 0 0 μ
Zu + 1
Zu − 1

θ

α + ξ

α − ξ

α + ξ
−1 0

2
α + ξ

0 0

2αξ

α + ξ
0 −1

ξ − α

α + ξ
0 μ

ξθ

α + ξ

0 0
Zd − 1
Zd + 1

−1 0 0

μ −μ 0 0 −1 − θ

α + ξ

0 0 0 0 F −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎣

fu
gu
fd
gu
u′

u
q̇′

⎤
⎥⎥⎥⎥⎥⎦ . (A5)

By transforming the system, the dynamics are not modified, thus the characteristic
equation and eigenvalues do not change, but now the system has a block matrix structure
(3.4).
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