
http://dx.doi.org/10.4153/S0008439519000754
©Canadian Mathematical Society 2019

Galois Groups of Even Sextic Polynomials

Chad Awtrey and Peter Jakes

Abstract. Let f (x) = x6
+ ax4

+ bx2
+ c be an irreducible sextic polynomial with coeõcients from a

ûeld F of characteristic ≠ 2, and let g(x) = x3
+ ax2

+ bx + c. We show how to identify the conjugacy
class in S6 of the Galois group of f over F using only the discriminants of f and g and the reducibility
of a related sextic polynomial. We demonstrate that ourmethod is useful for producing one-parameter
families of even sextic polynomials with a speciûed Galois group.

1 Introduction

Let F be a ûeld and let f (x) ∈ F[x] be an irreducible polynomial of degree n. Let L/F
denote the splitting ûeld of f in a ûxed algebraic closure F of F. he following two
tasks are of fundamental importance in computational algebra:

T1 Identify the conjugacy class in Sn of the Galois group of f over F.
T2 For each conjugacy class G of transitive subgroups of Sn , identify a family of

polynomials F such that for all f ∈ F the Galois group of f over F is isomorphic
to some G ∈ G.

Task T2 is not always possible; e.g., Galois groups over p-adic ûelds must be solv-
able. But when it is possible, it is helpful to have a symbolic algorithm that accom-
plishesT1. For example, the followingwell-known result determines theGalois group
of an irreducible even quartic polynomial deûned over an arbitrary base ûeld F of
characteristic ≠ 2 by testing whether two elements in F are perfect squares (see, for
example, [6]).

Note hroughout this paper, we identify conjugacy classes of transitive subgroups
of Sn by their “T” number as listed in [1]. For example, 4T1 ≃ C4 (the cylic group of
order 4), 4T2 ≃ V4 ≃ C2 × C2 (the Klein 4-group), and 4T3 ≃ D4 (the dihedral group
of order 8).

Algorithm 1.1 (Even Quartic Polynomials) Let f (x) = x4
+ ax2

+ b ∈ F[x] be an
irreducible polynomial deûned over a ûeld of characteristic ≠ 2. his algorithm returns
the Galois group of f over F.

(i) If b is a perfect square in F, return 4T2 (V4) and terminate.
(ii) Else, if b(a2

− 4b) is a perfect square in F, return 4T1 (C4) and terminate. Other-
wise, return 4T3 (D4) and terminate.
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Table 1: One-parameter families of even quartic polynomials deûned over Q.
Group Name Polynomials
4T2 V4 x4

+ (2t + 1)2

4T1 C4 x4
+ 4tx2

+ 2t2 t ≠ 0
4T3 D4 x4

+ t2 + 1 t ≠ 0

Table 2: Possible Galois groups of irreducible even sextic polynomials. Size gives the
order of the group.

T Name Size
6T1 C6 6
6T2 S3 6
6T3 D6 12
6T4 A4 12
6T6 A4 × C2 24
6T7 S+4 24
6T8 S−4 24
6T11 S4 × C2 48

Using Algorithm 1.1, it is not diõcult to produce families of polynomials that have
the indicated Galois group. See Table 1 for examples of such polynomials deûned
over Q.

Since even polynomials come equipped with a polynomial deûning an index-two
subûeld of the polynomial’s stem ûeld (obtained by halving all exponents), they are
therefore a natural object of study in relation to task T2. And as Algorithm 1.1 makes
it possible to easily accomplish task T2 for even quartics, much attention has been
given to even sextic polynomials; see, for example, [3–5].
For an even sextic polynomial f (x) = x6

+ ax4
+ bx2

+ c ∈ F[x], let K/F denote
the stem ûeld of f , G the Galois group of f , and g(x) = x3

+ ax2
+ bx + c. hen

g deûnes a cubic subûeld K4 of K/F. Under the Galois correspondence, K4 corre-
sponds to a subgroup H of G of index 3 that contains the point stabilizer of 1. Of the
16 transitive subgroups of S6, only 8 have such a subgroup H. Table 2 gives these 8
groups, their transitive numbers, their orders, and a descriptive name for each group.
As is customary, × denotes a direct product, Cn the cyclic group of order n, Dn the
dihedral group of order 2n, and An and Sn are the alternating and symmetric groups
on n letters, respectively.

Note 6T7 and 6T8 are isomorphic copies of S4 that are distinguished by their parity;
that is, 6T7 contains only even permutations while 6T8 does not. his fact is re�ected
in the table by the respective superscripts of each group’s Name.

In [7], the author gives one family of even sextic polynomials for each possible
Galois group over Q, except 6T1. Focusing just on 6T4, [3] gives another family, and
[5] provides four additional families. For both 6T4 and 6T7, [4] provides three more
families. In all instances, the techniques used to accomplish task T1 are speciûc to the
case where the base ûeld F is Q, though [7] does mention that his method “might be
extended to cover other possibilities, such as p-adic or number ûeld base ûelds.”
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he purpose of this paper is to present a generic algorithm for computing Galois
groups of even sextic polynomials deûned over arbitrary base ûelds of characteristic
≠ 2 that is similar in spirit to Algorithm 1.1. his is carried out in Section 2. In partic-
ular, our method involves testing whether three elements of the base ûeld are perfect
squares and whether a related sextic polynomial is reducible. Our method allows us
to easily verify that the families in [3–5,7] have the correct Galois groups. We include
an example of such a veriûcation in Section 2.1. We end with Section 3, where we give
new one-parameter families for each possible Galois group (deûned over Q).

2 Algorithm for Even Sextic Polynomials

As before, let F be a ûeld of characteristic ≠ 2 and let f (x) = x6
+ax4

+bx2
+ c ∈ F[x]

be an irreducible polynomial. Let K/F denote the stem ûeld of f and let G be the
Galois group of f . Let g(x) = x3

+ ax2
+ bx + c. hen g deûnes a cubic subûeld

of K/F. We can determine properties of G from properties of g(x) using the Galois
correspondence.

Note In all of our computational group-theoretic arguments, we performed the com-
putation in the computer algebra system Magma, which includes representatives of
conjugacy classes of transitive subgroups of Sn for n ≤ 47.

Proposition 2.1 Let f (x) = x6
+ ax4

+ bx2
+ c ∈ F[x] be irreducible, let K be the

stem ûeld of f , let G be the Galois group of f , and g(x) = x3
+ ax2

+ bx + c. Let d
denote the discriminant of g so that d = a2b2

− 4b3
− 4a3c + 18abc − 27c2.

(i) −c is a perfect square in F if and only if G is either A4 or S+4 .
(ii) d is a perfect square in F if and only if G is either C6, A4, or A4 × C2.
(iii) −cd is a perfect square in F if and only if G is either S3, A4, or S−4 .

Proof he discriminant of f (x) = x6
+ ax4

+ bx2
+ c is −c(8d)2. herefore, G is a

subgroup of A6 if and only if −c is a square in F. Of the 8 possibilities for G, only A4
and S+4 are subgroups of A6. his proves item (i).

Since d is the discriminant of the cubic polynomial g(x) = x3
+ ax2

+ bx + c, d is
a perfect square if and only if the Galois group of g(x) is C3. But since g(x) deûnes
a cubic subûeld of K/F, the stem ûeld of g(x) corresponds to an index 3 subgroup
H of G containing the point stabilizer of 1 in G. By the Galois correspondence, the
Galois group of g(x) is isomorphic to the image of the permutation representation
of G acting on the cosets G/H. By direct computation on the 8 possibilities for G, we
see that each has a unique such subgroup H of index 3, up to conjugation.

Note his means K/F has a unique cubic subûeld, up to isomorphism. Further
group computations show that in the cases of C6, A4, and A4 × C2, the image of the
permutation representation ofG acting onG/H is isomorphic toC3; in all other cases,
it is isomorphic to S3. his proves item (ii).

If both −c and d are perfect squares, then clearly −cd is a perfect square. Based on
the previous two paragraphs, there is only one group among the 8 where this occurs,
namely, A4. Otherwise, if −cd is a perfect square, it must be the case that both −c and
d are not perfect squares. For the remainder of the proof, we suppose neither−c nor d
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are perfect squares. hus, the polynomials x2
+ c and x2

−d deûne quadratic subûelds
of the splitting ûeld of f (x). By the Galois correspondence, the stem ûeld of x2

+ c
corresponds to Hc = A6 ∩ G. Similarly, if K′ is the normal closure of g(x), then the
subgroup ûxing K′ is the normal core, CoreG(H), ofH in G; recall H is the subgroup
ûxing the stem ûeld of g(x). hus, the stem ûeld of x2

− d corresponds to the unique
subgroup Hd of G of index 2 (up to conjugation) that contains CoreG(H). It follows
that−cd is a perfect square if and only ifHc = Hd . Among the four remaining possible
Galois groups, direct computation shows S3 and S−4 have Hc = Hd . he groups D6
and S4 × C2 have Hc ≠ Hd . ∎

Based on Proposition 2.1, we can now determine when the Galois group of
f (x) = x6

+ ax4
+ bx2

+ c is either A4 or S+4 . If −c is a perfect square, then the Galois
group of f (x) is A4 if d is a perfect square and S+4 if d is not a perfect square. We
note that this observation plays a prominent role in the Galois group computations in
[4, 5], though their context was F = Q.

To determine the Galois group in the remaining six cases, we introduce a degree
six resolvent polynomial.

Proposition 2.2 Let f (x) = x6
+ax4

+bx2
+c ∈ F[x] be irreducible and G the Galois

group of f . Deûne h(x) to be the following degree 6 polynomial:

h(x) = x6
− bx4

+ acx2
− c2 .

(i) h(x) is squarefree if and only if characteristic of F ≠ 2.
(ii) h(x) is reducible if and only if G is either C6, S3, or D6.

Proof Let S = {±r1 ,±r2 ,±r3} be the roots of f in F. he roots of h are {±r1r2 ,±r1r3 ,
±r2r3}, which can be veriûed by expanding (x2

−r21 r22)(x2
−r21 r23)(x2

−r22r23) and using
the theory of elementary symmetric functions to express the resulting coeõcients in
terms of a, b, c. It follows that if the characteristic of F = 2, then h is not squarefree
(e.g., then r1r2 = −r1r2).

Suppose the characteristic of F ≠ 2. Since f is irreducible, we have 0 ∉ S and all
elements of S are distinct. If h were not squarefree, this would imply that two roots
of h are equal. In particular, we would have AB = AC where A, B,C ∈ S. Dividing by
A contradicts the fact that the elements of S are distinct. hus, h must be squarefree,
proving part (i).

To prove part (ii), let H be the subgroup of S6 generated by the permutations (12),
(34), and (3456). hus H is a group of order 48 isomorphic to S2 × S4. Deûne a
function R(x) by

R(x)2
=

Resultanty( f (y), f (x − y))
26
⋅ f (x/2)

.

Using a computer algebra system, we can show that R(x) is the product of x3 and an
even degree 12 polynomial. In fact, this degree 12 polynomial is equal to h̃(x2

) where

̃h(x) = x6
+4ax5+(6a2

−2b)x4
+(4a3

−2ab−26c)x3
+(a4

+2a2b−7b2
−24ac)x2

+ 2(a2
− 3b)(ab − 9c)x + (a2b2

− 4b3
− 4a3c + 18abc − 27c2).
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Table 3: For an irreducible even sextic polynomial f (x) = x6
+ ax4

+ bx2
+ c, let d be

the discriminant of g(x) = x3
+ ax2

+ bx + c and let h(x) = x6
− bx4

+ acx2
− c2. he

table lists whether the values of −c, d, and −cd are perfect squares and whether h(x)
is reducible, according to the Galois group G of f .

T G −c = square d = square −cd = square h(x) = reducible
1 C6 no yes no yes
2 S3 no no yes yes
3 D6 no no no yes
4 A4 yes yes yes no
6 A4 × C2 no yes no no
7 S+4 yes no no no
8 S−4 no no yes no
11 S4 × C2 no no no no

In the language of [2, §6.3], R(x) is the (absolute) resolvent polynomial correspond-
ing to the multivariable function T = x1 + x2 that is stabilized by H. As shown in
[8, Prop. 2.9], the irreducible factors of R(x) that occur with multiplicity one corre-
spond to orbits of the action of G on the cosets S6/H. Direct computation on the
8 possible groups shows that all have an orbit of length 12 except C6, S3, and D6. It
follows that if ̃h(x2

) is squarefree, it is reducible if and only if G is one of these three
groups. Hence, if h̃(x) is squarefree it is reducible if and only if G is either C6, S3,
or D6. By construction, h and ̃h deûne isomorphic sextic sub-algebras of the algebra
deûned by R(x). In fact, h corresponds to an analogous resolvent construction ex-
cept with T = x1x2 instead of T = x1 + x2. Since h is always squarefree (assuming
characteristic F ≠ 2), it follows that h is reducible if and only if G is either C6, S3, or
D6, proving item (ii). ∎

In Table 3, we summarize the information presented in Propositions 2.1 and 2.2.
his table forms the basis for our algorithm for computing the Galois group of an
irreducible even sextic polynomial.

Algorithm 2.3 Let f (x) = x6
+ ax4

+ bx2
+ c ∈ F[x] be irreducible, let d = a2b2

−

4b3
− 4a3c + 18abc − 27c2 be as in Proposition 2.1, and let h(x) = x6

− bx4
+ acx2

− c2
be as in Proposition 2.2. his algorithm returns the Galois group of f (x).
(i) If −c is a perfect square in F, then

(a) if d is a perfect square, return 6T4 (A4) and terminate;
(b) otherwise, return 6T7 (S+4 ) and terminate.

(ii) Else, if d is a perfect square, then
(a) if h(x) is reducible, return 6T1 (C6) and terminate;
(b) otherwise, return 6T6 (A4 × C2) and terminate.

(iii) Else, if −cd is a perfect square, then
(a) if h(x) is reducible, return 6T2 (S3) and terminate;
(b) otherwise, return 6T8 (S−4 ) and terminate.

(iv) Else, if h(x) is reducible, return 6T3 (D6) and terminate. Otherwise, return 6T11
(S4 × C2) and terminate
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Table 4: One-parameter families of even sextic polynomials with speciûed Galois
group over Q.

T G Polynomials
1 C6 x6

+ (t2 + 5)x4
+ ((t − 1)2

+ 5)x2
+ 1

2 S3 x6
+ 3t2

3 D6 x6
+ 2t2

4 A4 x6
− 3t4x2

− t6

6 A4 × C2 x6
− 3t2x2

+ t3, −t ≠ ◻
7 S+4 x6

+ t2x4
− t6

8 S−4 x6
+ (31t2)2x2

+ (31t2)3

11 S4 × C2 x6
+ (2t2)2x2

+ (2t2)3

2.1 An Example

We will use Algorithm 2.3 to compute the Galois group of a family of even sextic
polynomials from [7]. In particular, let t ∈ Z and suppose f (x) = x6

+6x4
+9x2

+3t2+4
is irreducible over the rationals.

In this case, we have

−c = −3t2 − 4,

d = −243t4 − 324t2 = −c(9t)2 ,

−cd = (9ct)2 ,

h(x) = x6
− 9x4

+ (18t2 + 24)x2
− 9t4 − 24t2 − 16

= (x3
− 3x2

+ 3t2 + 4)(x3
+ 3x2

− 3t2 − 4).

So −c is not a square; d is not a square; −cd is a square, and h(x) is reducible. hus,
the Galois group of f is S3, as indicated in [7].

3 One-Parameter Families

In this section, we develop one-parameter families of even sextic polynomials deûned
over Q for each of the 8 possible Galois groups.

Proposition 3.1 he polynomials in Table 4 have the indicated Galois group over Q,
except for values of t that result in reducible polynomials.

Proof Let f (x) = x6
+ ax4

+ bx2
+ c be one of the polynomials in Table 4 and let

g(x) = x3
+ax2

+bx+ c. Let d = a2b2
−4b3

−4a3c+18abc−27c2 as deûned in Propo-
sition 2.1 and let h(x) = x6

− bx4
+ acx2

− c2 be as deûned in Proposition 2.2. Using
a computer algebra system, it can be veriûed that h(x) is reducible (over Q(t)) pre-
cisely in the cases C6, S3, and D6. In particular, for C6, h(x) factors as x3

+(2− t)x2
−

(t + 1)x − 1 times x3
− (2 − t)x2

− (t + 1)x + 1. For S3, h(x) factors as x3
− 3t2 times

x3
+ 3t2. And for D6, h(x) factors as x3

− 2t2 times x3
+ 2t2.

It remains to analyzewhether the following are perfect squares: −c, d, and−cd. But
this is a straightforward computation. he results are listed in Table 5. Comparing the
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Table 5: Discriminant data for polynomials listed in Table 4.
T G −c d −cd
1 C6 −1 [(t2 − t − 1)(t2 − t + 7)]2 −[(t2 − t − 1)(t2 − t + 7)]2

2 S3 −3t2 −3(3t)4
(3t)6

3 D6 −2t2 −3(6t2)2
(6t2)3

4 A4 t6 (3t3)4
(9t9)2

6 A4 × C2 −t3 (9t3)2
−t(3t2)4

7 S+4 t6 −23t12 −23t18

8 S−4 −(31t2)3
−31(31t2)6

(315 t9)2

11 S4 × C2 −(2t2)3
−31(2t2)6 31(2t2)9

data in Table 5 and the reducibility of h(x)with the data in Table 3, it follows that each
of the polynomials in Table 4 has the indicated Galois group (for values of t that result
in irreducible polynomials). ∎
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