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Abstract

We give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne
which can be seen as a generalization of a characterization of Poisson law due to Rényi
and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the
moments of the compound distributions occurring in the extended collective model in
non-life insurance.
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1. Introduction

The aim of this paper is to prove a generalization of the Rényi–Srivastava characterization
of the Poisson law [10]; see Theorem 2 below. The generalization we deal with was stated by
D. Pierre-Loti-Viaud and P. Boulongne in Theorem III.1 of [9] (in French), which is restated
below as Theorem 1. In these two characterizations of Poisson law, only the necessary condi-
tion is non-trivial. We give two distinct, original proofs of Theorem 1, which are the first to
be published in English; to date the only available proof of Theorem 1 has been in French [9].
A by-product of our new approach consists of explicit closed formulas for the moments and
mixed moments of the so-called compound variables defined by (2)–(3). This type of variable
provides a fundamental tool in a wide range of applications including probability theory, math-
ematical statistics, and their applications as reliability theory and non-life insurance. Therefore
they appear under different names in the literature, as stopped-sum distributions in [6, Chapter
9], compound random variables in [5, Chapter 9], and random sums in [3, Example (d) and
Exercise 24, Chapter 5].

Our paper is organized as follows. In Section 2 we introduce the random variables (RVs) N,
S, and (Sr)1≤r≤R defining the extended collective model in non-life insurance. We show that
Theorem 1 can be seen as a generalization of a well-known characterization of Poisson law
restated for reference in Theorem 2.

In Section 3 we introduce analytic tools as the characteristic and certain generating
functions relevant to a general proof. The proof of Theorem 1 is given at the end of Section 3.

When the random variables under discussion are completely determined by their moments,
a second proof of Theorem 1, essentially algebraic, is available and is the object of Section 4.
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Poisson law characterization 69

The generating functions introduced in Section 3 admit the developments (20)–(21) involving
moments and cumulants. Bell polynomials provide a convenient formalism to express the
moments of our RVs. For the use of such formal tools in applied probability theory, the reader
is referred to [13].

The analytical and algebraic methods we use are familiar to theoreticians but not to all
practitioners. Thus the aim of this paper is to be self-contained in order to provide applied
mathematicians with a survey of analytical and algebraic methods underlying the objects of
their studies. Note that our first proof differs from that in [9] by the use of a wider variety of
generating functions, whereas the second based on moments is a fundamentally new approach.
All the RVs we shall consider in this paper take non-negative values and will be distinct from
a degenerate RV constant equal to zero.

2. The collective model in non-life insurance

For a general introduction we refer to [9, Chapters I–III], [5, Chapter 9], and the numerous
references therein. The collective risk model, or aggregate loss model, is an infinite set of RVs
consisting of an RV N and a sequence (Yk)k≥1. The RV N is the claim count random variable. It
takes non-negative integer values and we set EN = m ∈ (0, ∞], P(N = k) = νk, k ∈N. Note the
important particular case where the count distribution follows a Poisson law with expectation
m ∈ (0, ∞), in other words

P(N = k) = e−mmk/k! (k = 0, 1, . . . ).

For a positive integer k, Yk is the kth individual-loss random variable. We assume that (i)
the RVs N, Y1, Y2, . . . are independent (hypothesis of independence of relative frequency
and cost), and (ii) the RVs Y1, Y2, . . . are identically distributed (hypothesis of the stationary
character of losses). They follow the distribution of an RV that will be denoted Y.

The aggregate losses RV is the sum S = ∑N
k=1 Yk. A refinement of the collective model is

provided by the extended collective risk model; see [9, Definition III.1]. In this model each loss
Yk is allotted to a specific class of risks denoted by an integer r ∈ {1, . . . , R}. Henceforth r and
r′ will always denote two distinct elements from the set {1, . . . , R} with R ≥ 2. Two classes
denoted by distinct integers do not overlap. Mathematically this split of the sequence (Yk)k≥1
can be modeled by a Bernoulli scheme, i.e. a finite set of random variables

B1, . . . , BR ∈ {0, 1} with B1 + · · · + BR = 1 (1)

and the probabilities P(Br = 1) = pr > 0 with
∑R

r=1 pr = 1. We introduce a sequence

{(Br,k)1≤r≤R : k = 1, 2, . . .}

of independent copies of (Br)1≤r≤R, our last assumption in the model being that, for every
triple (r, k, l), the RVs N, Yk, Br,� are independent.

Let us now define, for k = 1, 2, . . . , the RVs

Ŷr = BrY =
{

Y if Br = 1,

0 if Br = 0,
Yr,k = Br,kYk =

{
Yk if Br,k = 1,

0 if Br,k = 0.
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70 J.-R. PYCKE

Then the number of losses, say Nr, and the aggregate losses, allotted to the rth class of risks,
say Sr, are given by

Nr =
N∑

k=1

Br,k, Sr =
N∑

k=1

Yr,k (r = 1, . . . , R). (2)

We are now in a position to state the following theorem.

Theorem 1. ([9].) The random variables of the extended collective risk model satisfy the
equality

S =
R∑

r=1

Sr (3)

and enjoy the following properties.

(i) The RVs Sr, r = 1, . . . , R, are mutually independent if and only if N follows a Poisson
law.

(ii) The RVs Sr and Sr′ are identically distributed if and only if pr = pr′ .

Note that if Y is a deterministic variable, constant equal to 1, then Sr = Nr corresponds
to a binomial split of the counting variable N, and assertion (i) in the above theorem can be
rewritten as follows, in the case R = 2.

Theorem 2. ([10, 12].) With the above notation we have N = N1 + N2 and the variables N1
and N2 are mutually independent if and only if N follows a Poisson distribution.

This remarkable characterization of the Poisson distribution was stated in the case R = 2
by Srivastava [12, Theorem 2], who presented this result as the corollary of a result proved
by Rényi [10, Theorems 1 and 2]. For various characterizations of Poisson law, see [6, §4.8],
particularly the reference to [12] on page 182.

Thus Theorem 1 can be seen as a generalization of the Rényi–Srivastava characterization of
the Poisson law.

3. General proof

Let us introduce some of the functions characterizing a random vector (X1, . . . , Xn) (with
n = 1, 2, . . . , and without parentheses if n = 1). As well as the characteristic function (see [6,
(1.264–265)], and [7, (34.8)]), defined for t1, . . . , tn ∈R by

�(X1,...,Xn)(t1, . . . , tr) =E exp

{
i

n∑
r=1

trXr

}
,

we will make use of the (uncorrected) moments (see [6, (1.227)] and [7, (34.9)]), the
(descending) factorial moments and factorial cumulants (see [6, (1.249), (1.256), and (1.274)])
generating functions denoted and defined by

M(X1,...,Xn)(t1, . . . , tn) =E
(
et1X1+···+tnXn

)
for t1, . . . , tn ≤ 0, and

M[N](t) =E(1 + t)N = ν0 +
∞∑

k=1

νk(1 + t)k,

K[N](t) = log M[N](t)
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for −1 < t ≤ 0. For the sake of notational simplicity we will also use the notations φX =
�X − 1 and mX = MX − 1.

These functions are easily seen to be well-defined and taking finite values on the given
domain of definition. Furthermore MX and mX are increasing with respect to each variable, and
for an integer-valued random variable N the following equalities hold: MN( − ∞, 0] = (ν0, 1],
M[N](et − 1) = MN(t) and

M[N](0) = 1, K[N](0) = 0, (4)

M′
[N](0) = K′

[N](0) = lim
t→0− K[N](t)/t =EN. (5)

A first result is as follows.

Proposition 1. The characteristic and moment generating functions of (S1, . . . , SR), S, and Sr

are given by

�(S1,...,SR)(t1, . . . , tR) = M[N]

{ R∑
r=1

prφY(tr)

}
, (6)

M(S1,...,SR)(t1, . . . , tR) = M[N]

{ R∑
r=1

prmY(tr)

}
, (7)

�S(t) = M[N]{φY(t)}, (8)

MS(t) = M[N]{mY(t)}, (9)

�Sr (t) = M[N]{prφY(t)}, (10)

MSr (t) = M[N]{prmY(t)}. (11)

Proof. On one hand the formula for conditional expectation (see [3, (10.6)]) enables us to
write

�(S1,...,SR)(t1, . . . , tR) = ν0 +
∞∑

n=1

νnE

(
exp

{ R∑
r=1

itrSr

}
| N = n

)

= ν0 +
∞∑

n=1

νnE

(
exp

{ R∑
r=1

itr

n∑
k=1

Yr,k

}
| N = n

)

= ν0 +
∞∑

n=1

νnE exp

{ n∑
k=1

R∑
r=1

itrYr,k

}

= ν0 +
∞∑

n=1

νn

n∏
k=1

E exp

{ R∑
r=1

itrYr,k

}

= ν0 +
∞∑

n=1

νn

{
E exp

{ R∑
r=1

itrŶr

}}n

= M[N]

(
E exp

{ R∑
r=1

itrŶr

}
− 1

)
,
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keeping in mind that N and Yr,k are independent. On the other hand, keeping in mind the
defining properties (1), it is easily checked that

e
∑R

r=1 itrŶr − 1 = e
∑R

r=1 itrBrY − 1 =
R∑

r=1

Br{eitrY − 1},

and by taking the expectation of both sides we obtain

Ee
∑R

r=1 itrŶr − 1 =
R∑

r=1

EBrE{eitrY − 1} =
R∑

r=1

prmY(tr).

The proof for M(S1,...,Sr) is similar, replacing itr with tr. The last four equalities are one-variable
versions of the first two equalities, with pr = 1 for S. �

Let us see in which way MX characterizes a non-negative random variable X.

Lemma 1. If MX and MX′ coincide over a non-empty set S ⊆ ( − ∞, 0) having one accu-
mulation point s0 ∈ S, then the two non-negative random variables X and X′ are identically
distributed.

Proof. Introduce the distribution function FX(t) = P(X ≤ t), t ≥ 0. The Laplace transform
of X is given by the Stieljes integral

�X(z) =
∫ ∞

0
e−uz dFX(u),

where z = x + iy is a complex variable with real and imaginary parts x = Re(z) and y = Im(z)
respectively ([14, (1)]). It is clear that �X(z) exists over the half-plane H+ = {z : Re(z) > 0}. In
fact it defines an analytic function over H+ ([14, Theorem 5a]). Now, by using similar notations
for X′, our assumption implies, for each t ∈ S,

�X( − t) = MX(t) = MX′ (t) = �X′ ( − t).

We have shown that the two functions �X′ and �X are analytic over H+ and coincide over −S.
This means that �X − �X′ is an analytic function for which −s0 is a non-isolated zero. Thus
�X − �X′ is the zero function over H+ (see [2, Theorem 5.1]). By uniqueness of the Laplace
transform ([14, Theorem 6.3]), we have FX = FX′ . �

Let us now recall two characterizations of Poisson law, noting that (13) expresses the
linearity of the factorial cumulant generating function.

Lemma 2. Assume m > 0. The following propositions are equivalent.

(i) The RV N follows a Poisson distribution with expectation m.

(ii) For each t ∈R we have

M[N](t) = exp (mt), (12)

K[N](t) = mt. (13)

(iii) There exists a non-empty open interval I ⊂ ( − ∞, 0) such that

M[N](t) = exp (mt) for all t ∈ I, (14)

K[N](t) = mt for all t ∈ I. (15)
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Proof. From [6, §4.3] we know that (i) implies (ii), and perforce (iii). Next (iii) implies (i)
by Lemma 1 with S = I. �

The following lemma is elementary but deserves to be stated explicitly as a key step in our
general proof.

Lemma 3. If the (Sr)1≤r≤R are mutually independent, then for any r �= r′ we have

K[N]{prmY(t) + pr′mY(t)} = K[N]{prmY(t)} + K[N]{pr′mY(t)} for all t ≤ 0. (16)

Therefore, if we set

x0 = −(pr + pr′ )mY( − ∞), p = pr/(pr + pr′ ),

the function f (x) = −K[N]( − x) is non-negative, continuously differentiable, and satisfies
relations

f (0) = 0, lim
x→0+ f (x)/x = m, (17)

f (x) = f (p x) + f ({1 − p}x) for all x ∈ [0, x0). (18)

Proof. Independence implies

M(S1,...,SR)(t1, . . . , tR) =
R∏

r=1

MSr (tr).

Then choose (t1, . . . , tR) with all coordinates equal to zero except tr = tr′ = t, write (7), and
take the logarithm to obtain (16). Then (17) is simply a reformulation of the appropriate identi-
ties in (4)–(5), and (18) is (16) with x = −(pr + pr′ )mY(t). The non-negativity and continuous
differentiability of f follows from that of K. �

A converse of the above lemma is provided by the following one which, like the former,
though elementary, is a key step in our proof of Theorem 1 (i).

Lemma 4. Let x0 > 0, m ∈R and let f : [0, x0) → [0, ∞) be a continuously differentiable
function satisfying (17)–(18). Then f is the linear function f (x) = mx.

Proof. Without loss of generality we can assume p ≤ 1/2 so that q = 1 − p ≥ p. From (18)
and by a straightforward induction we see that for every positive integer n

f (s) =
n∑

k=0

(
n

k

)
f
(
pkqn−ks

)
. (19)

By continuity of f ′, for every positive integer n, the numbers an = minx∈[pn,qn] f ′(x) and
bn = maxx∈[pn,qn] f ′(x) are well-defined, finite, and satisfy lim an = lim bn = f ′(0) = m. Rolle’s
theorem implies, for every n, anpkqn−ks ≤ f (pkqn−ks) ≤ bnpkqn−ks. By summing the latter
inequalities over k and in view of (19), we obtain

ans =
n∑

k=0

(
n

k

)
anpkqn−ks ≤ f (s) =

n∑
k=0

(
n

k

)
f
(
pkqn−ks

) ≤
n∑

k=0

(
n

k

)
bnpkqn−ks = bns.

These inequalities lead, as n tends to infinity, to f (s) = ms, which proves the desired result. �
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Proof of Theorem 1(i). If the random variables Sr and Sr′ are independent, then we know
from Lemmas 3 and 4 that (15) holds with I = ( − x0, 0), so N is a Poisson random variable.
Conversely, if N follows a Poisson law then (12) holds for t ∈R, so relations (6) and (10)
in Proposition 1 imply �(S1,...,SR)(t1, . . . , tR) = ∏R

r=1 �Sr (tr); in other words S1, . . . , SR are
mutually independent. �

Proof of Theorem 1(ii). We infer from Lemma 1 that the random variables Sr and Sr′ are
identically distributed if and only if MSr = MSr′ . In view of (9) and keeping in mind that M[N]
is injective, this is equivalent to prmY = pr′mY; the latter is equivalent to pr = pr′ since mY is
not the zero function. �

4. A proof based on moments and cumulants

In this section we shall prove Theorem 1 by means of moments and cumulants. For
d = 1, 2, . . . we will let μd(X) =EXd denote the moment of order d of the RV X. Recall
that assuming μd(X) < ∞ is equivalent to assuming the finiteness of the factorial moments
μ[d](X) =EX(X − 1) · · · (X − d + 1), or of the cumulants κd(X), or of the factorial cumulants
κ[d](X), these coefficients being given, provided relation

lim sup
d→∞

{
d−1μ

1/d
d (X)

}
< ∞

holds (see [3, XV.4, (4.15)]), by the developments

MX(t) = 1 +
∞∑

k=1

μk(X)
tk

k! = 1 + mX(t), (20)

KX(t) =
∞∑

k=1

κk(X)
tk

k! , (21)

M[N](t) = 1 +
∞∑

k=1

μ[k](N)
tk

k! , (22)

K[N](t) =
∞∑

k=1

κ[k](N)
tk

k! (23)

(see [6, §1.2.7], specifically formulas (1.227) for MX, (1.249) for KX, (1.256) for KN, and
(1.274) for M[N]). The latter developments converge over a neighbourhood of the origin.

Let us now introduce basic facts and notation from combinatorics. The first tool we will
need from this field consists of the partitions of integers and the associated Young diagrams.
Consider two integers d ≥ k ≥ 1. The k-tuple of integers L = (�1, . . . , �k) is called a k-partition
of d provided (see [1, 1a])

∑k
i=1 �i = d and �1 ≥ · · · ≥ �k ≥ 1. The set of k-partitions of d is

denoted Ld,k. Any element of the set Ld = ∪d
k=1Ld,k is called a partition of d.

A convenient and visual representation of partitions is provided by Young diagrams,
equivalent to Ferrers diagrams discussed in [1, §2.4].

The Young diagram associated with L = (�1, . . . , �k) ∈Ld,k is a set of d cells arranged
in k left justified rows, the ith row consisting of �i cells. For a given partition let
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s = Card{�1, . . . , �k} be the number of distinct summands. We will let λ1 = �1 > · · · > λs =
�k ≥ 1 and α1, . . . , αs ≥ 1 denote the two sequences such that

L = ( λ1, . . . , λ1︸ ︷︷ ︸
α1 times

, . . . , λs, . . . , λs︸ ︷︷ ︸
αs times

).

These coefficients satisfy the equalities

s∑
i=1

αiλi = d,

s∑
i=1

αi = k.

Therefore an alternative notation for the partition L = (�1, . . . , �k) is L = [λα1
1 , . . . , λ

αs
s ], where

an exponent can be omitted if it equals 1.
For L = (�1, . . . , �k) = [λα1

1 , . . . , λ
αs
s ] ∈Ld,k, let us introduce the coefficients

cL = d!
�1! · · · �k! α1! · · · αs! = d!

λ1!α1 · · · λs!αs α1! · · · αs! ,

μL(Y) = μ�1 (Y) · · · μ�k (Y) = μ
α1
λ1

(Y) · · · μαs
λs

(Y).

A convenient tool we will borrow from combinatorics is the family of Bell polynomials.
The complete Bell polynomials {Bn(X1, . . . , Xn)}n≥1, the partial Bell polynomials

{Bn,k(X1, . . . , Xn−k+1)}n≥k≥1

(see [1, §III.3, formulas [3a]–[3c]]), and the polynomials {bn(X;.)}n≥1 which we will call asso-
ciated Bell polynomials (see [11, §4.1.8]), are defined via the following generating functions:

1 +
∞∑

n=1

bn(x; x1, . . . , xn)

n! tn = exp

(
x

∞∑
k=1

xk

k! tk
)

, (24)

Bn(x1, . . . , xn) = bn(1; x1, . . . , xn)

=
n∑

k=1

Bn,k(x1, . . . , xn−k+1), (25)

bn(x; x1, . . . , xn) =
n∑

k=1

Bn,k(x1, . . . , xn−k+1)xk

=
n∑

k=1

Bn,k(xx1, . . . , xxn−k+1)

= Bn(xx1, . . . , xxn). (26)

All these polynomials have positive integer-valued coefficients and Bn,k is k-homogeneous. By
convention we set b0 = B0 = B0,0 = 1 and Bn,0 = 0 for n ≥ 1. Bell polynomials are related to
Stirling numbers, of the first kind by formula s(n, k) = ( − 1)n+kBn,k(0!, . . . , (n − k + 1)!), of
the second kind by formula S(n, k) = Bn,k(1, . . . , 1) (see [1, eqs [3g], [3i], and [5d]]). From
(20)–(21) and definitions (24)–(25) the moments and cumulants of an RV are related by the
equality

Bd(κ1, . . . , κd) = μd;
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76 J.-R. PYCKE

this formula amounts to (3.33) of [4], a fundamental reference in which, however, Bell poly-
nomials are not referred to. Henceforth, when the RV is omitted μd will always mean μd(Y),
and μL = μL(Y). A standard expression for partial Bell polynomials (see [1, Theorem A]) is
given by

Bd,k(x1, . . . , xd−k+1) =
∑ d!

c1!c2! · · · (1!)c1 (2!)c2 · · ·xc1
1 xc2

2 · · · , (27)

where the summation takes place over the set C(d, k) of sequences c : c1, c2, . . . ≥ 0 of integers
such that

c1 + 2c2 + 3c3 + · · · = d, c1 + c2 + c3 + · · · = k.

The following lemma gives, for partial Bell polynomials (27), a more explicit expression (28)
in terms of Young diagrams.

Lemma 5. We have
Bd,k(μ1, . . . , μd−k+1) =

∑
L∈Ld,k

cLμL. (28)

Proof. Each sequence in C(d, k) has a finite number of non-zero terms whose list can be
written in a unique way as cφ(1), . . . , cφ(s) with φ(1) > · · · > φ(s). We build a bijection between
C(d, k) and Ld,k by associating c with the Young diagram

L(c) = [
λ

α1
1 , . . . , λαs

s

] = [φ(1)cφ(1), . . . , φ(s)cφ(s) ]

for which

cL = d!
λ1!α1 · · · λs!αs α1! · · · αs!

= d!
φ(1)!cφ(1) · · · φ(s)!cφ(s) cφ(1)! · · · cφ(s)!

= d!
(1!)c1 (2!)c2 · · · c1!c2! · · · ,

μL = μ
α1
λ1

· · · μαs
λs

= μ
cφ(1)
φ(1) · · · μcφ(s)

φ(s) = μ
c1
1 μ

c2
2 · · · ,

and this completes the proof of the claimed result. �
We are now in a position to state a first important result.

Theorem 3. Consider an integer d ≥ 1.

(i) The moment of order d of the random variable S admits the expression

μd(S) =
d∑

k=1

μ[k](N)Bd,k(μ1, . . . , μd−k+1)

=
∑

L∈Ld

μL(N)μL(Y)

=
d∑

k=1

μ[k](N)
∑

L∈Ld,k

cLμL(Y), (29)
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and therefore satisfies the inequality

μd(S) ≤ μd(N)μd(Y), (30)

with equality if and only if μk(Y) = μk
1(Y), k = 1, . . . , d.

(ii) The cumulant of order d of the random variable S admits the expression

κd(S) =
d∑

k=1

κ[k](N)Bd,k(μ1, . . . , μd−k+1)

=
d∑

k=1

κ[k](N)
∑

L∈Ld,k

cLμL(Y). (31)

Proof. Use Theorem A (Faà di Bruno Formula) of [1] with functions f , g and h = f ◦ g
defined to be f = M[N], g = mY, so that from (9) we get h = MS. Then formula [4c] from [1] is
exactly (29). The proof is similar for the cumulants.

For inequality (30), let us first use the well-known Lyapunov inequality (see [3, §V.8(c)]):
μλ ≤ μ

λ/d
d provided λ ≤ d, to get

μL(Y) =
s∏

i=1

μλi (Y)αi ≤
s∏

i=1

μd(Y)αi(λi/d) = μd(Y)(
∑

αiλi)/d = μd(Y).

Note in passing that equality holds if and only if μλ = μ
λ/d
d for λ = 1, . . . , d, which is

equivalent to μλ = μλ
1 for λ = 1, . . . , d.

Now, using this inequality we obtain

μd(S) ≤ μd(Y)
d∑

k=1

μ[k](N)
∑

L∈Ld,k

cL. (32)

Lemma 5 with Y chosen as a constant equal to 1, hence μL(Y) = 1 for every L, leads to

d∑
k=1

μ[k](N)
∑

L∈Ld,k

cL =
d∑

k=1

μ[k](N)Bd,k(1, . . . , 1) =
d∑

k=1

μ[k](N)S(d, k) = μd(N)

(see [6, (1.246)] and [1, [2.c]]). When combined with (32), this completes the proof
of (30). �

A straightforward consequence of (30), justifying our approach based on moments, is as
follows.

Corollary 1. Let α = 1 − β ∈ [0, 1]. If N and Y are completely determined by their moments
due to

lim sup
d→∞

{d−αμ
1/d
d (N)} < ∞,

lim sup
d→∞

{d−βμ
1/d
d (Y)} < ∞,

then lim sup
d→∞

{d−1μ
1/d
d (S)} < ∞,

lim sup
d→∞

{d−1μ
1/d
d (Sr)} < ∞ (r = 1, . . . , R),

then S and Sr, (r = 1, . . . , R) are completely determined by their moments.

https://doi.org/10.1017/jpr.2020.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.72


78 J.-R. PYCKE

In the case when N is a Poisson random variable with expectation μ[1] = m, the other
factorial moments are given by

μ[k] = mk (k = 1, 2, . . . ), (33)

so that in view of (26), another corollary of (29) is the following. Recall that the associated
Bell polynomials bn, n ≥ 1, were defined above by formulas (24)–(26).

Corollary 2. If N follows a Poisson law with expectation m, then the moments and cumulants
of S are given by

μd(S) = bd(m; μ1, . . . , μd), κd(S) = mμd(Y).

For the extended collective model the following result holds.

Theorem 4. The moment and the cumulant of order d of the random variable Sr are given by

μd(Sr) =
d∑

k=1

pk
r μ[k](N)Bd,k(μ1, . . . , μλd−k+1 ), (34)

κd(Sr) =
d∑

k=1

pk
r κ[k](N)Bd,k(μ1, . . . , μλd−k+1 ). (35)

Proof. Apply Theorem 3 to the RV Ŷr, i.e. (29)–(31) with μd = μd(Ŷr) = prμd(Y) and the
k-homogeneity of Bn,k. �

For a reason similar to that given before Corollary 2, the following result is a straightforward
consequence of Theorem 4.

Corollary 3. If N follows a Poisson law with expectation m, then the moments and cumulants
of Sr, r = 1, . . . , R, are given by

μd(Sr) = bd(prm; μ1, . . . , μd),

κd(Sr) = prmμd (d = 1, 2, . . . ).

We are now in a position to prove the necessary condition in Theorem 1 (i).

Proposition 2. If the random variables Sr and Sr′ are independent then N follows a Poisson
distribution.

Proof. The cumulants satisfy κd(Sr + Sr′ ) = κd(Sr) + κd(Sr′ ). In view of (34), this implies,
for every d,

d∑
k=1

(pr + pr′ )k κ[k](N)Bd,k(μ1, . . . , μλd−k+1 ) =
d∑

k=1

(
pk

r + pk
r′
)
κ[k](N)Bd,k(μ1, . . . , μλd−k+1 ).

These equalities, due to

Bd,k(μ1, . . . , μλd−k+1 ) > 0, pk
r + pk

r′ < (pr + pr′ )k (k ≥ 2)

can hold if and only if κ[k](N) = 0 for k ≥ 2, in other words K[N](t) = κ[1]t, which is one of the
characterizations of a Poisson law in Lemma 2. �
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Let us now complete the proof of Theorem 1 (i) by proving the result stated below as
Corollary 4.

To this end it suffices to show that, for any J ∈ {2, . . . , R},
J∏

j=1

μdj (Srj) =
J∏

j=1

ES
dj
rj =E

( J∏
j=1

S
dj
rj

)
, (36)

for r1 < · · · < rJ ∈ {1, . . . , R} and d1, . . . , dJ ≥ 1. The left-hand side of (36) can be obtained
from (34). Let us introduce some notations that will enable us to compute the right-hand side
of (36). Introduce, for 1 ≤ k ≤ n, the index sets

In,k = {I = (i1, . . . , ik) ∈ {1, . . . , n}k, Card{i1, . . . , ik} = k}.

In this setting, for n ≥ d, the multinomial formula can be written as

(x1 + · · · + xn)d =
d∑

k=1

∑
L∈Ld,k

∑
I∈In,k

d!
�1! · · · �k! α1! · · · αr!x�1

i1
· · · x�k

ik
. (37)

Consider the elementary and power symmetric polynomials

πm(t1, . . . , tn) = tm1 + · · · + tmn ,

σk,n(t1, . . . , tn) = 1

k!
∑

I∈In,k

ti1 · · · tik =
∑

1≤i1<···<ik≤n

ti1 · · · tik

for 1 ≤ k ≤ n, and the random variables

Zk =
⎧⎨
⎩1 if k ≤ N,

0 if k > N,
N(n) =

n∑
k=1

Zk,

Sr,n =
n∑

k=1

Yr,kZk.

We will first need the following basic identities.

Lemma 6. Assume 1 ≤ k ≤ n. Then we have

πk(Z1, . . . , Zn) = π1(Z1, . . . , Zn) = N(n), (38)

k! σk,n(Z1, . . . , Zn) = N(n)(N(n) − 1) · · · (N(n) − k + 1). (39)

Proof. Equality (38) is a straightforward consequence of Zk
i = Zi if k and i are positive

integers. For (39) we will use some of the well-known properties of Bell polynomials; see
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e.g. [1], specifically formula [3i], the last equation of §9, and [5d–e]. Let us fix n and use the
abbreviation πk = πk(Z1, . . . , Zn), so that πk = N(n) for every k ≥ 1. Calculations give

k! σk,n(Z1, . . . , Zn)

= ( − 1)kk! σk,n( − Z1, . . . , −Zn)

= ( − 1)k Bk( − π1, −π2, . . . , −(k − 1)!πk)

= ( − 1)k
k∑

j=1

Bk,j( − N(n), . . . , −(k − j + 1)! N(n))

= ( − 1)k
k∑

j=1

( − 1) jBk,j(N(n), . . . , (k − j + 1)! N(n))

=
k∑

j=1

( − 1)j+k(N(n)) j Bk,j(0!, . . . , (k − j + 1)!)

=
k∑

j=1

s(k, j)(N(n)) j = N(n)(N(n) − 1) · · · (N(n) − k + 1),

and the result is proved. �
We are now equipped to compute the product-mixed moments.

Theorem 5. With the notation above we have

E
(
Sd

r Sd′
r′
) =

d∑
k=1

d′∑
k′=1

pk
r pk′

r′ μ[k+k′](N)Bd,k(μ1, . . . , μd−k+1) Bd′,k′ (μ1, . . . , μd′−k′+1), (40)

and more generally, for J ∈ {2, . . . , R},

E

( J∏
j=1

S
dj
rj

)
=

d1∑
k1=1

· · ·
dJ∑

kJ=1

{
μ[∑J

j=1 kj

](N)
J∏

j=1

p
kj
rj Bdj,kj (μ1, . . . , μdj−kj+1)

}
. (41)

Proof. We shall only prove (40), the mechanism being easily extended to prove (41). Let
Xr,i = Yr,iZi, i = 1, 2 . . . . First note that for (i1, . . . , ik) = I ∈ Id,k,

EX�1
r,i1

· · · X�k
r,ik

=E
(
Y�1

r,i1
· · · Y�k

r,ik
Z�1

i1
· · · Z�k

ik

)
=EŶ�1

r · · ·EŶ�k
r E(Zi1 · · · Zik )

= pk
r EY�1 · · ·EY�kE(Zi1 · · · Zik )

= pk
r μL(Y) E(Zi1 · · · Zik ).

Thus, by using (37), we obtain

ESd
r,nSd′

r′,n =E(Xr,1 + · · · + Xr,n)d(Xr′,1 + · · · + Xr′,n)d′

=E

( d∑
k=1

∑
L∈Ld,k

cL

∑
I∈In,k

X�1
r,i1

· · · X�k
r,ik

)
×

( d′∑
k′=1

∑
L′∈Ld′,k′

cL′
∑

I′∈In,k′
X

�′
1

r′,i′1 · · · X
�′

k′
r′,i′

k′

)
.
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On one hand, if I ∩ I′ �= ∅, then

X�1
r,i1

· · · X�k
r,ik

X
�′

1
r,i′1

· · · X
�′

k′
r,i′

k′
= 0

because for each k, Yr,kYr′,k = 0. Thus

ESd
r,nSd′

r′,n

=
d∑

k=1

∑
L∈Ld,k

d′∑
k′=1

∑
L′∈Ld′,k′

∑
I∈In,k,I′∈In,k′ ,I∩I′=∅

cLcL′EX�1
r,i1

· · · X�k
r,ik

X
�′

1
r′,i′1

· · · X
�′

k′
r′,i′

k′

=
d∑

k=1

∑
L∈Ld,k

d′∑
k′=1

∑
L′∈Ld′,k′

pk
rcLμL(Y)pk′

r′ cL′μL′ (Y)E
∑

I∈In,k,I′∈In,k′ ,I∩I′=∅
Zi1 · · · Zik Zi′1 · · · Zi′

k′

=
d∑

k=1

∑
L∈Ld,k

d′∑
k′=1

∑
L′∈Ld′,k′

pk
rcLμL(Y)pk′

r′ cL′μL′ (Y)(k + k′)!Eσk+k′,n(Z1, . . . , Zn)

=
d∑

k=1

∑
L∈Ld,k

d′∑
k′=1

∑
L′∈Ld′,k′

pk
rpk′

r′ cLcL′μL(Y)μL′(Y)μ[k+k′](N
(n)).

The claimed result is obtained as n tends to infinity by the dominated convergence theorem and
the increasing convergence 0 ≤ Sd

r,nSd′
r′,n ↗ Sd

r Sd′
r′ . �

The sufficient condition for Theorem 1 (i) is now within our reach.

Corollary 4. If N follows a Poisson distribution, then the random variables Sr, r = 1, . . . , R
are mutually independent.

Proof. For the Poisson law, (33) holds. Write the product whose factors are given by formula
(34) for the values r1, . . . , rJ , with μ[kj](N) = mkj ; then write (41) with

μ[
∑J

j=1 kj]
(N) = m

∑J
j=1 kj .

It is clear that (36) is satisfied, which proves the claimed result. �
The proof of Theorem 1 (ii) is the object of the following result.

Corollary 5. The random variables Sr and Sr′ are identically distributed if and only if pr = pr′ .

Proof. The two random variables are determined by their moments, so they are identically
distributed if and only if all their moments are equal. Let us use Theorem 3. If pr = pr′ , then
μd(Sr) = μd(Sr′ ) for every d. Conversely, if μd(Sr) = μd(Sr′ ) for every d, then d = 1 yields

μ1(Sr) = prμ[1](N)B1,1(μ1) = pr′μ[1](N)B1,1(μ1) = μ1(Sr′ ),

so pr = pr′ because μ[1](N)B1,1(μ1) = μ[1](N)μ1(Y) > 0. This proves our result. �
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