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Impinging planar jet flow on a horizontal surface
with slip
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The flow of a planar jet (sheet) impinging onto a solid flat plate with slip is examined
theoretically. The jet is assumed to spread out in a thin layer bounded by a hydraulic
jump, and draining at the edge of the plate. In contrast to an adhering jet, a slipping
jet does not admit a similarity solution. Taking advantage of the different scaling in
each region, series expansions are used in the developing and fully viscous layers,
which are matched at the transition point. We show that a slipping film exhibits a
singularity in the normal stress at the leading edge of the boundary layer, as opposed
to the singularity in velocity and shear stress for an adhering film. The boundary-layer
and film heights are both found to decrease with slip relative to a smooth substrate,
roughly like

√
30x/Re− 2S, whereas the slip velocity intensifies like S

√
Re/30x with

slip. Here, x is the distance along the plate, S is the slip length and Re is the Reynolds
number (in units of the jet width). The transition is delayed by slip. Guided by the
measurements of Duchesne et al. (Europhys. Lett., vol. 107, 2014, p. 54002) for a
circular adhering jet, the hydraulic-jump height and location are determined for a
planar jet, and are found to increase with the Froude number (flow rate) like Fr1/4

and Fr5/8 respectively, essentially independently of slip length.

Key words: interfacial flows (free surface), mathematical foundations, thin films

1. Introduction
We examine the two-dimensional thin-film flow formed when a free laminar jet

(sheet) of a Newtonian fluid impinges vertically onto, and spreads over, a horizontal
hydrophobic or slippery plate. Recent studies have focused on quantifying the
magnitude of the slip length and its dependence on parameters such as the wettability
and surface roughness (Rothstein 2010). Flowing liquid films of thickness of the order
of microns or smaller can be strongly influenced by the substrate microstructure and
the hydrodynamic characteristics at the solid–liquid interface (Dressaire et al. 2009,
2010). Our objective is to examine this influence on the spread of the impinging thin
film and the ensuing hydraulic jump.

The liquid spreads in a thin layer until the depth increases, suddenly forming a
hydraulic jump (see figure 1). The problem thus consists of examining the influence of
slip on the shape of the free surface, the flow field within the film and the jump region.
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Impinging planar jet flow on a horizontal surface with slip 259

As the boundary layer develops from the stagnation region, it gradually absorbs the
whole of the flow until the viscous forces reach the free surface and the spreading jet
is in the fully viscous boundary-layer region in the form of a thin film. The flow of
thin Newtonian and non-Newtonian films, in turn, has been extensively investigated in
the literature (see, for instance, Khayat & Kim 2006 and the references therein).

An impinging jet on a hydrophilic surface has been extensively investigated in
the literature. The impingement of an adhering jet was considered earlier by Watson
(1964), who examined both the radial and the planar jet spread for steady laminar
and turbulent flows. Neglecting the surface-tension effect and using a thin-film or
boundary-layer approach, Watson found that for a two-dimensional jet at impinging
velocity V0, the steady jet surface height (in units of the half jet width a) grows at a
rate equal to 1.81/Re, where Re= aV0/ν is the Reynolds number, with ν being the
kinematic viscosity. A relation between the jump location and the height was also
obtained for both laminar and turbulent flows. Watson’s theory was tested in a number
of experimental investigations, including those of Watson himself, Craik et al. (1981),
Stevens & Webb (1992), Bush & Aristoff (2003) and Baonga, Louahlia-Gualous
& Imbert (2006). In particular, Watson’s theoretical predictions for the free-surface
velocity and film thickness were experimentally verified by Stevens & Webb (1992)
and Baonga et al. (2006). Liu & Lienhard (1993) observed that Watson’s predictions
are least satisfactory in the limit of relatively weak jump, specifically when the
ratio of the layer depths after and before the jump is small. In an effort to improve
Watson’s theory, Bush & Aristoff (2003) included the influence of surface tension
for small-radius circular jumps, leading to better agreement with experiment. It is,
however, generally agreed that Watson’s theory is adequate for circular jumps with
large radius and height. Since only planar flow is examined in the current work, the
surface-tension effect will be neglected. Other extensions have also been considered,
such as the flow of an impinging jet on an inclined plane (Benilov 2015). For an
impinging non-Newtonian jet, far fewer studies are available. The reader is referred
to the work of Zhao & Khayat (2008) and the references therein.

To the best of our knowledge, there is no adequate study that addresses the
influence of slip for a jet impinging on a hydrophobic surface. In contrast to the
impinging jet of an adhering fluid, the slip condition on a hydrophobic surface
prohibits a similarity solution, making the problem challenging. A closely related
problem is that of the boundary-layer flow over a semi-infinite flat plate with slip,
which, despite early attempts using asymptotic analysis and more recent numerical
studies, remains essentially unsolved. Laurmann (1961) used a linearized approach,
and solved the resulting Oseen equation using Fourier transform. However, inversion
was impossible to obtain. Using a Wiener–Hopf technique, an asymptotic solution
was also obtained, and was later improved by Murray (1965) by adding more terms.
More recently, the problem was treated by incorrectly assuming local similarity while
solving the Blasius equation (Martin & Boyd 2001; Ajadi, Adegoke & Aziz 2009).

The challenges due to the non-similar character of the boundary-layer flow are
even more formidable for the impinging jet problem. Here too, various levels of
approximation and assumptions have been adopted. Dressaire et al. (2009, 2010)
examined the problem of a circular jet impinging on a microdecorated surface.
Their measurements focused mainly on the location and size of the hydraulic jump,
assessing the influence of surface roughness that consisted of regular arrays of
micron-size posts. In order to accommodate a similarity solution in their theoretical
model, they chose the (variable) slip length to be proportional to the film surface (see
the discussion in § 3 below). Moreover, the flow field near impact was approximately
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260 R. E. Khayat

imposed since only the boundary-layer height is needed. In contrast, and as we
shall see, for a general slipping jet, the entire flow field must be matched at the
transition point. Later, Prince, Maynes & Crockett (2012) examined the influence of
constant slip length on a circular impinging jet by adopting an integral approach and
assuming a cubic behaviour for the velocity profile in both the developing and viscous
boundary-layer regions. While this approach is convenient, it lacks the accuracy
typically resulting from the use of the Karman–Pohlhausen (K–P) approximation.
Prince et al. (2012) assessed the accuracy of their approach by comparing their
results with ones based on Watson’s similarity solution (1964) for an adhering jet.
The K–P approach may be suitable for the estimation of the boundary-layer height;
the very definition of height in this case is arbitrary despite the common acceptance
that it corresponds to the location where the flow velocity reaches 99 % of the
free-stream level. We shall conduct a comparison between the K–P solution and more
rigorous local solutions for a planar slipping jet.

The height and position of the hydraulic jump cannot be uniquely determined in
general. However, the recent measurements of Duchesne, Lebon & Limat (2014)
show that, for an adhering circular jet, the Froude number based on the jump height
and velocity remains constant when the flow rate, viscosity and surface tension
are varied. This remarkable result, along with their thin-film analysis, leads to the
explicit dependence of the jump location and height on the flow rate and viscosity,
simultaneously confirming and improving the earlier scaling of Bohr, Dimon &
Putzkaradze (1993) and Rojas, Argentina & Tirapegui (2013). We will take guidance
from Duchesne et al. (2014), and adopt their observations for the planar jet, which
would allow the unique determination of the jump height and position.

The focus of the current study is on the interplay between inertia and slip effects
for thin-film flow. Watson’s (1964) assumptions remain valid, particularly those
of moderately large inertia effect and a jump occurring far from impingement.
Consequently, the surface-tension effect will be neglected. The gravitational pressure
gradient is similarly neglected except in the hydraulic-jump region. In § 2, the
large-Reynolds-number limit of the conservation equations is established as well as
the boundary conditions in both the streamwise and transverse directions. In § 3,
asymptotic series solutions are sought in the developing boundary-layer region. The
implementation of a finite-difference scheme is also discussed. The boundary-layer
height and transition location are determined using a K–P approach. In § 4, we
consider the fully developed viscous boundary-layer region where the flow field and
film thickness are determined. In § 5, the principle of momentum conservation is
applied at the hydraulic jump, and a relation is derived between the position and
height of the jump. Both inviscid and viscous films are considered downstream of
the jump. Finally, some concluding remarks are given in § 6.

2. Problem statement and physical domain

Consider the steady laminar incompressible flow of a planar jet (sheet) of a
Newtonian fluid of width a, impinging at a (uniform) velocity V0 on a fixed flat plate
lying normal to the jet direction. The flow configuration is depicted schematically
in figure 1. The length and velocity scales are taken to be respectively a and V0 in
both the streamwise and transverse directions. It should be noted that dimensionless
variables are used in figure 1. The x-axis is taken along the flat plate and the y-axis is
parallel to the jet. In this case, u(x, y) and v(x, y) are the corresponding dimensionless
velocity components. Three dimensionless groups emerge in this case, namely the
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Stagnation
flow region (i)

Developing
boundary-layer (ii)

Fully viscous
boundary-layer (iii) Hydraulic-jump (iv)

Inviscid region

1

x

y

FIGURE 1. Schematic illustration of the plane jet (sheet) flow impinging on a flat
solid plate. The stagnation region (i), developing boundary-layer region (ii), fully viscous
boundary-layer region (iii) and hydraulic-jump region (iv) are illustrated. All notations are
dimensionless.

Reynolds number Re= aV0/ν, where ν is the kinematic viscosity, the slip parameter
S = s/a, where s is the slip length, and the Froude number Fr = V0/

√
ag, g being

the acceleration due to gravity. The velocity at the wall is assumed to experience
a first-order (Navier) slip. Hence, u(x, y= 0) = S∂u/∂y(x, y= 0), with S defined
such that a linear extrapolation of the velocity based on the gradient at the wall
vanishes at y = −S. There is no restriction on the order of magnitude of S. Thus,
a relatively large slip length, which is not uncommon for superhydrophobic surfaces
(Rothstein 2010), can be accommodated in the present formulation. A large slip
length is detected in the presence of an air–water interface in microridges. Ou &
Rothstein (2005) used micro-particle image velocimetry (µ-PIV) measurements to
examine the flow kinematics in a microchannel at length scales well below that of
the microridges on the superhydrophobic surface. The flow was observed to come
to rest along the microridges, but slip velocities greater than 60 % of the average
velocity were detected along the air–water interface.

2.1. Physical domain
Following Watson (1964), four distinct regions of flow are identified for a slipping
fluid, with smooth passage from one region to the next: a stagnation flow region (i),
a developing boundary-layer region (ii) and a fully viscous thin-film region (iii). Under
some flow conditions, a hydraulic jump may form in region (iv). In the vicinity of the
stagnation point, in region (i), x= O(1). The speed outside the boundary layer rises
rapidly from 0 at the stagnation point to the impingement velocity in the inviscid far
region. For an adhering as well as a slipping jet, the impinging inviscid flow is not
affected by slip, and the boundary-layer thickness remains negligibly small. Obviously,
this would be the case for a jet at relatively large Reynolds number, especially for a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.620


262 R. E. Khayat

slipping fluid. Ideally, the flow at the boundary-layer edge should correspond to the
inviscid flow near the stagnating jet, with the boundary-layer leading edge coinciding
with the stagnation point (Liu, Gabour & Lienhard 1993). However, the assumption of
uniform horizontal flow near the wall and outside the boundary layer (as illustrated in
figure 1) is not unreasonable. For an adhering jet, the flow acquires a similar character;
the position or effect of the leading edge is irrelevant. This is not the case for a
slipping jet, where, as we shall see, a non-similarity solution is sought subject to
initial conditions at the leading edge. However, as argued above, the dominance of
inertia and slip should make the assumption of uniform flow and a delayed leading
edge plausible.

In region (ii), the boundary layer is expected to grow like
√

x/Re, at a rate that
diminishes with S (see Khayat 2016). The elongation rate or normal stress weakens
with distance, but the flow remains two-dimensional as a result of non-negligible
surface curvature. The speed outside the boundary layer remains almost constant,
equal to 1 (in units of V0), as the fluid here is unaffected by the viscous stresses.
For x � 1, the flow field in region (ii) is not affected by the stagnation flow of
region (i). The region 1� x< x0 will be referred to as the developing boundary-layer
region, with boundary-layer thickness δ(x), outside which the flow is inviscid and
constant. Here, x0 is the location of the transition point at which viscous stresses
become appreciable right up to the free surface, where the whole flow is of the
boundary-layer type. At this point, for an adhering jet, the velocity profile changes
from the Blasius type to the similarity profile. In contrast, a similarity profile does
not exist for a slipping jet. The flow in region (iii), x > x0, which will be referred
to as the fully developed boundary-layer region, is bounded by the flat plate and the
free surface y= h(x).

Finally, the hydraulic jump in region (iv) occurs at a location x = xJ , which can
be larger or smaller than x0 since the jump may occur at any point in the flow. The
jump height H(x) is generally not constant but different from the height immediately
downstream of the jump, HJ =H(x= xJ). In practice, the fluid is drained at the end
x = x∞ (trailing edge) of the plate to maintain steady flow, with the film thickness
denoted by H∞. Although it is common practice to assume the jump height to remain
equal to HJ , this assumption is only valid for fluids of low viscosity. In this study, we
consider both an inviscid layer and a viscous layer downstream of the jump.

2.2. Governing equations and boundary conditions
Unless otherwise specified, Re will be assumed to be moderately large. Thus, for a
thin jet, the conservation equations reduce to

ux + vy = 0, (2.1a)

Re(uux + vuy)=− Re
Fr2

H′ + uyy. (2.1b)

The gravitational effect will only be considered downstream of the jump. Here, a
prime denotes total differentiation (with respect to x in this case) and a subscript with
respect to x or y denotes partial differentiation. At the plate, the (partial) slip and
no-penetration conditions are assumed to hold, so that

u(x, y= 0)= Suy(x, y= 0), v(x, y= 0)= 0. (2.2a,b)
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Impinging planar jet flow on a horizontal surface with slip 263

The flow field is sought separately in the developing boundary-layer region (x< x0),
fully developed viscous boundary-layer region (x> x0) and hydraulic-jump region.
Consequently, the additional boundary conditions are as follows. In region (ii), or the
developing boundary-layer region (1� x< x0), the flow is assumed to be sufficiently
inertial for inviscid flow to prevail between the boundary-layer limit and the free
surface (see figure 1). In this case, the following condition at the outer edge of the
boundary layer must hold:

u(1< x< x0, δ 6 y< h)= 1. (2.3)

Additionally, a boundary condition is needed at the origin (x= 0), namely

u(x= 0, y)= 1, (2.4)

which reflects the uniformity of the flow at the leading edge of the boundary
layer and will be referred to as the initial condition. For region (iii), we let
U(x) ≡ u(x> x0, y= h) and V(x) ≡ v(x> x0, y= h) denote the velocity components
at the free surface. In the absence of surface tension, the kinematic and dynamic
conditions can be written respectively as

V(x)=U(x)h′(x), (2.5)
uy(x> x0, y= h)= 0. (2.6)

Here again, given the non-similar character of the flow, an initial condition is needed
for the solution in region (iii), which is provided by matching the flow at the transition
point:

u(x= x−0 , y)= u(x= x+0 , y). (2.7)

Although the Reynolds number and slip parameter appear explicitly in problem
(2.1)–(2.7), it is possible to deduce universal behaviour for the flow with respect to
these two dimensionless groups. It is not difficult to show that, upon substituting x by
x/Re and v by Rev, the entire problem can be treated independently of the Reynolds
number. Less obvious is the universality with respect to S, which will be discussed
in the next sections.

2.3. Overall solution strategy
We use different solution strategies in each flow region. We propose two approaches in
region (ii) to examine the boundary-layer flow, namely a rigorous series or asymptotic
approach for large and small slip lengths, and a K–P approximation, the latter being
most convenient to estimate the boundary-layer height and validate the series solution.
A numerical approach is also implemented and discussed. However, as expected, the
numerical solution performs poorly near the leading edge due to the flow singularity.
The flow in the entire boundary-layer domain is obtained upon matching the flows
between the developing and fully viscous boundary-layer regions. A series solution is
also used in region (iii), this time taking advantage of the small film thickness. In
region (iv) downstream of the hydraulic jump, inertia will be neglected, allowing an
analytical solution in the presence of gravity.
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3. Influence of slip on the flow in the developing boundary-layer region (x < x0)

As for an adhering jet, it is convenient to recast the problem for a slipping jet in
terms of the streamfunction, and introduce the following change of coordinates:

ξ(x, y)= x
Re
, η(x, y)= y

√
Re
x
. (3.1a,b)

We express u(ξ , η) and v(ξ, η) in terms of the function f (ξ , η), such that

u(ξ , η)= fη(ξ , η), Re v(ξ, η)=−√ξ fξ (ξ , η)+ 1
2
√
ξ
ηfη(ξ , η)− f (ξ , η)

2
√
ξ
. (3.2a,b)

Equation (3.2b) is obtained upon integrating the continuity equation (2.1a) and taking
the plate as the base streamline. In this case, equation (2.1b) as well as conditions
(2.2) and (2.3) become (neglecting the gravitational effect)

fηηη = ξ(fηfηξ − fξ fηη)− f
2

fηη, (3.3)

fη(ξ , η= 0)= S√
ξ

fηη(ξ , η= 0), f (ξ , η= 0)= 0, fη(ξ , η� 1)= 1. (3.4a−c)

Additionally, the initial condition (2.4) of uniform flow leads to

f (ξ = 0, η)= η, fη(ξ = 0, η)= 1. (3.5a,b)

Interestingly, this initial condition satisfies both equation (3.3) and conditions (3.4),
which is not the case for an adhering fluid; in the limit S= 0, a uniform flow is not
accommodated by the no-slip condition. This is an important departure for a slipping
flow from an adhering flow, reflecting the difference in the singular character at the
leading edge (see below). The universality with respect to S mentioned earlier is
now more apparent from problem (3.3)–(3.5a,b). Indeed, it is not difficult to show
that, for non-vanishing slip length (S> 0), substituting ξ by ξ/S2 leads to a problem
independent of S. Both a numerical and an asymptotic approach are suggested.

Although (3.3) and the latter two conditions in (3.4) clearly accommodate a
similarity solution, of the form f (η), the slip condition prohibits such a solution.
Surprisingly, several studies actually do carry out the solution by invoking the
so-called local similarity, whereby f is taken to depend only on η, simplifying (3.3)
to the Blasius equation, fηηη = −f /2fηη, and solving it subject to (3.4) while fixing
ξ as a parameter (see, for instance, Martin & Boyd (2001); Ajadi et al. (2009)).
The slip condition in (3.4) indicates that such a similarity solution is possible only
in the limit of vanishing slip length (S = 0) or at large distance from the leading
edge (ξ→∞). In both limits, adherence is recovered. Another possibility that would
allow the implementation of a similarity technique consists of taking S to vary
like
√
ξ . However, this model is restrictive as it corresponds to a particular surface

structure. A similar approach was proposed by Dressaire et al. (2009, 2010). They
assumed the slip length to be proportional to the film thickness above the posts, with
the proportionality constant determined empirically as a function of the roughness
porosity and aspect ratio of the posts.
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3.1. Flow behaviour for large slip length
A series solution is sought by expanding the streamfunction and velocity in suitable
powers of ξ . For the slip velocity u(ξ , η= 0) to remain finite and non-zero, the slip
condition in (3.4) suggests that we must have fηη(ξ , η= 0) ∼ √ξ to leading order.
Similarly, for v(ξ, η) to remain finite near the origin, equation (3.2) suggests that
f (ξ→ 0, η)∼√ξ . Thus, we set

f (ξ , η)= η+
∑
n=1

Fn(η)

(√
ξ

S

)n

, (3.6a)

u(ξ , η)= fη(ξ , η)= 1+
∑
n=1

F′n(η)
(√

ξ

S

)n

. (3.6b)

Expansions (3.6) satisfy the initial conditions (3.5a,b), and are expected to be valid
(converge) for large and/or small ξ . The extent of the developing boundary-layer
region will indeed turn out to be small for moderately large Reynolds number,
allowing relatively smaller slip lengths to be considered. Upon substituting (3.6) into
(3.3), we get

∑
n=1

(2F′′′n − nF′n + F′′n)
(√

ξ

S

)n

=
∑
n=1

∑
m=1

[mF′nF′m − (m+ 1)F′′n Fm]
(√

ξ

S

)n+m

.

(3.7)

In this case, it is not difficult to show that the recurrence relation takes the form

2F′′′m + F′′m −mF′m =
m−1∑
n=1

[nF′m−nF′n − (n+ 1)F′′m−nFn]. (3.8)

The corresponding boundary conditions read

Fn(η= 0)= 0, F′n(η� 1)= 0,

F′′1(η= 0)= 1, F′′n>1(η= 0)= F′n−1(η= 0).

}
(3.9)

We list the first two modes for reference, namely

F1(η)= e−η − 1, (3.10a)
F2(η)= a− be−rη + 2e−η + e−2η/8, (3.10b)

where the following constants are introduced for simplicity: a = 0.009, b = 2.134
and r= 1.281.

The non-similar character of the flow is perhaps best illustrated by examining the
behaviour of f (x, η). Figure 2 shows the variation of f with η at various x positions,
with an increment of ∆ = 0.01/ReS2 over the range 0 6 x/ReS2 6 0.1. The figure
illustrates clearly the dependence of f on x, and suggests that saturation occurs as
the distance grows from the leading edge of the boundary layer. The saturation is a
reflection of the growing viscous effect as the fluid advances, slowing the flow. More
importantly, the slowing rate can be determined accurately as function of Re and S.
The overall behaviour appears to be close to linear, with a slope diminishing with
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FIGURE 2. Streamfunction profiles at different positions from the leading edge of the
boundary layer.

distance, confirming the weakening of the flow across the boundary layer, and not
just at the plate.

The flow in the boundary layer is illustrated in figure 3, which displays the profiles
of the streamwise (figure 3a) and transverse (figure 3b) velocity components over the
range 0.01 < x/S2Re < 0.1. As for an adhering jet, u and v increase monotonically
with height. While these observations essentially hold for both adhering and slipping
jets, there is a dramatic departure in behaviour for a slipping jet.

The contrast to an adhering jet becomes particularly evident when examining
the flow at the plate. For this, we have included the slip velocity dependence on
distance, reported in the inset of figure 3(a). The velocity is readily available from
(3.6) as u(ξ , η= 0) = 1 +∑n=1 F′n(η= 0)(

√
ξ/S)n. It should be recalled that, for an

adhering jet, there is a sudden drop in velocity from 1 to 0 at the leading edge of the
boundary layer, accompanied by a sudden jump in the shear stress, causing in fact the
emergence of the boundary layer at the leading edge. For a slipping jet, the transition
is continuous for both the velocity and the shear stress, with the latter behaving
like
√
ξ and the former remaining close to 1 near the leading edge (see the inset

in figure 3a). Consequently, it is the discontinuity in the normal stress uξ (ξ , η= 0),
which behaves like −1/

√
ξ near the origin, that causes the formation of the boundary

layer. It should be recalled that the normal stress remains continuously zero for an
adhering jet. Moreover, unlike an adhering jet, the v profiles in figure 3(b) display a
non-zero slope at the plate. For S=0, equation (3.2) shows that the transverse velocity
component reduces to 2

√
Reξv(ξ, η)=ηfη(η)− f (η), leading to vη(ξ , η= 0)= 0. More

generally, for S > 0, equation (3.2) leads to

√
Revη(ξ , η= 0)=−√ξ fηξ (ξ , η= 0)=−√ξuξ (ξ , η= 0)∼ 1

2S
, (3.11)

which confirms the singular character of an adhering fluid.
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FIGURE 3. Streamwise (a) and transverse (b) velocity profiles at different distances from
the leading edge in the developing boundary-layer region (ii), based on series solution.
The inset in (a) shows the slip velocity against the distance along the plate.

Figure 4 shows a comparison between the numerical and series solutions for the
evolution of the slip velocity with distance. We also show the influence of the number
of modes on the series solution, which reflects rapid convergence when only three
modes are included. As expected, the need for higher-order modes increases as the
discrepancy grows with distance. However, as we shall see below, the transition
to fully developed flow occurs at a relatively short distance from the leading edge
(origin), and three modes turn out to be amply sufficient for our purposes. Comparison
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FIGURE 4. Dependence of the slip velocity on the position in the developing boundary-
layer region (ii). The profiles based on the series solution with 1, 2 and 3 modes, the
Karman–Pohlhausen approximation and the numerical solution are shown.

with the numerical solution indicates an overall agreement of 2–4 %. However, there
is a significant qualitative disagreement near the origin; the stress singularity at the
origin is not captured by the numerical solution. Ideally, some local (asymptotic)
treatment is required that would provide a suitable initial condition for the numerical
integration to start at some point downstream of the origin (see Khayat 2016). There
are additional challenges facing the implementation of a numerical approach for
the present problem, particularly when matching the flow at the transition location.
Further details and discussion are given in appendix A. We shall not pursue the
numerical approach beyond this point.

Figure 4 also shows the slip velocity based on the K–P parabolic approximation,
which will be discussed below and given in (3.22). There is good agreement with
the series solution near the origin, reflecting the capability of the K–P solution to
capture the singular character at the leading edge. However, it tends to underestimate
the level of slip velocity overall by a few per cent. A velocity profile different
from the parabolic profile (3.22) may yield closer agreement. However, in addition
to the expected cumbersome manipulation of a more complicated profile, there is
no physical justification or systematic approach for the generation of such a profile
(Prince et al. 2012).

Finally, it should be noted that the series solution (3.6) is valid for finite S only;
in fact, the solution is singular for S = 0. Thus, for the solution to apply close to
the leading edge, S must be relatively large. We propose next a series solution that is
valid for small S, including the S= 0 limit.

3.2. Flow behaviour for small slip length
If S is small, it can be adopted as the small parameter for the problem, and we can
seek a perturbation expansion of the streamfunction in powers of S. In this case, the
similarity solution f0(η), corresponding to an adhering jet, is taken as the leading-order
term. Clearly, this term should not be confused with the one in (A 3a,b). Thus, the
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solution of (3.3) can be written as

f (ξ , η)= f0(η)+
∑
n=1

Snfn(ξ , η), u(ξ , η)= f ′0(η)+
∑
n=1

Snfnη(ξ , η). (3.12a,b)

It should be recalled that the leading-order function satisfies the following similarity
problem (Schlichting 2000):

f ′′′0 =−
f0

2
f ′′0 , f ′0(η= 0)= f0(η= 0)= 0, f ′0(η� 1)∼ 1. (3.13a−c)

Upon substituting (3.12) into (3.3), and using (3.13), we obtain the following
recurrence equations for the perturbation coefficients, namely, for n > 1:

fnηηη = ξ( f ′0 fnηξ − f ′′0 fnξ )− 1
2
(f0fnηη + f ′′0 fn)

+
n−1∑
m=1

[
ξ(fmη fn−mηξ − fmξ fn−mηη)− 1

2
fmfn−mηη

]
. (3.14)

By inspecting (3.14) and corresponding boundary conditions, it is not difficult to see
that the solution is of the form fn(ξ , η) = Hn(η)ξ

−n/2, where the coefficients Hn are
governed by

2H′′′n + nf ′0H′n + (1− n)f ′′0 Hn − f0H′′n +
n−1∑
m=1

[
((n−m)H′mH′n−m + (1−m)HmH′′n−m)

]= 0,

(3.15)

H′n+1(η= 0)=H′′n (η= 0), Hn(η= 0)=H′n(η� 1)= 0. (3.16a,b)

We observe that for small S, S/
√
ξ must remain small for expansion (3.12) to be valid,

whereas for finite S, it is
√
ξ/S that must be small for expansion (3.6) to hold. In other

words, expansion (3.12) is valid far from the leading edge, whereas (3.6) is applicable
for small distance.

The flow is then given by

f (ξ , η) = f0(η)+
∑
n=1

Hn(η)

(
S√
ξ

)n

, u(ξ , η)= f ′0(η)+
∑
n=1

H′n(η)
(

S√
ξ

)n

.

(3.17a,b)

The slip velocity is given by u(ξ , η= 0) = 0.332S/
√
ξ − 0.0805S2/ξ + O(S3/ξ 3/2),

where we recall that f ′′0 (η= 0)≈ 0.332 (Schlichting 2000). As an illustration, figure 5
depicts the influence of slip length on the velocity profile for small S, to O(S3/ξ 3/2).
In particular, one should note the gradual departure from the similarity profile
(S2Re/x= 0), and the contrast to figure 3(a).
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FIGURE 5. Influence of the slip length on the velocity profile for small S, plotted at
various positions along the plate in the developing boundary-layer region.

3.3. Boundary-layer height
A more physically insightful and reasonably accurate approach is to determine the
boundary-layer height δ(x) using the K–P integral method. Considering the mass and
force balance over the boundary-layer region, the integral form of (2.1) leads to

Re
d
dx

∫ δ(x)

0
u(x, y)[1− u(x, y)] dy= uy(x, y= 0). (3.18)

As in the case of an adhering jet, the balance of terms in (2.1b) suggests that
δ '√x/Re for a slipping jet as well. In this case, letting

ξ = x
Re
, η= y

δ(x)
, (3.19a,b)

and recalling the slip condition in (2.2), equation (3.18) reduces to

S
d

dξ
δ(ξ)

∫ 1

0
u(ξ , η)[1− u(ξ , η)] dη= u(ξ , η= 0). (3.20)

We adopt a parabolic profile for the velocity, subject to the following conditions:

u(ξ , η= 0)= S
δ(ξ)

uη(ξ , η= 0), u(ξ , η= 1)= 1, uη(ξ , η= 1)= 0. (3.21a−c)

In this case,

u(ξ , η)=− δ(ξ)

δ(ξ)+ 2S

[
η2 − 2

(
η+ S

δ(ξ)

)]
. (3.22)
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This profile yields an error of a few per cent for S= 0, relative to the estimate of the
boundary-layer thickness based on the similarity solution White (2015). As reported in
figure 4, the same level of accuracy holds for a slipping jet as well. The slip velocity
becomes

u(ξ , η= 0)= 2
S

δ(ξ)+ 2S
, (3.23)

which reflects similar qualitative flow features, distinct to a slipping jet, to the series
solution (3.6). In particular, the continuity of the flow velocity and discontinuity of
normal stress are ensured for a slipping jet. Thus, for S > 0, near the origin, u ∼ 1
and uξ ∼−1/

√
ξ . This explains the agreement between the K–P and series solutions

depicted in figure 4 for small distance, and establishes the range of validity of the
K–P approach. Despite its limitation, the profile (3.22) has the significant advantage
of being uniformly valid for any S value. In contrast, the asymptotic solutions in §§ 3.1
and 3.2 are limited to the large and small S values respectively.

Inserting (3.22) into (3.20), we obtain the following equation:

dδ
dξ
= 15

(δ + 2S)2

δ3 + 6Sδ2 + 20S2δ
. (3.24)

Assuming that δ(ξ = 0) = 0, we finally obtain a transcendental relation for the
boundary-layer height, namely

24S3

δ + 2S
+ 8S2 ln

(
δ + 2S

2S

)
+ δ

2
(δ + 4S)− 12S2 = 15ξ . (3.25)

Equation (3.24) is the counterpart of equation (11) of Prince et al. (2012) for a
circular jet.

Figure 6 depicts the influence of slip on the profiles of the boundary layer
(figure 6a) and slip velocity (figure 6b), including the limit of an adhering film
(S= 0). While the boundary-layer thickness grows indefinitely with distance, the
slip velocity eventually vanishes regardless of the slip length, as also suggested by
(3.23). As expected, the more slipping jet tends to exhibit a thinner boundary layer,
moving faster at the plate. The drop in δ(ξ) and the jump in u(ξ , η= 0), relative
to an adhering jet, are significant for a weakly slipping jet. For small S and a
position not too close to the leading edge (S≺√ξ), equation (3.25) suggests that
δ(ξ)∼√30ξ − 2S. In the limit S= 0, one recovers the boundary-layer height for an
adhering jet, namely δ(ξ)=√30ξ (White 2015). For small slip, (3.23) suggests that
the slip velocity behaves like u(ξ , η= 0) ∼ S/

√
30ξ . In other words, both the drop

in the boundary-layer height and the jump in the slip velocity are linear with respect
to the slip length for weakly slipping flow. For larger slip length, δ(ξ) displays
saturation and a non-zero limit, whereas the slip velocity reaches the free-stream
value. This saturation suggests insensitivity of the flow to the effect of slip length
for strongly slipping liquids, and is also evident from figure 3 of Prince et al. (2012)
for a circular jet. Equations (3.23) and (3.25) indicate that the curves in figure 6 are
collapsible onto one curve when δ/S and the slip velocity are plotted against x/ReS2.
In fact, these curves correspond to S = 1 in figures 6(a) and 6(b) respectively. This
same universality was also exhibited by the series solution in figures 3 and 4.

These predictions corroborate closely the observations and measurements of
Dressaire et al. (2009, 2010), who examined the flow of a circular jet impinging on
smooth and microdecorated substrate surfaces, the latter consisting of a regular array
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FIGURE 6. Influence of slip on the boundary-layer thickness (a) and slip velocity (b). All
curves collapse onto the S= 1 curve when δ/S is plotted against x/ReS2. The large-S limit
is also added as a solid (lowest) curve.

of micron-size posts. They rationalized their observations by considering a leakage
flow (through the posts) coupled to an effective slip length. Dressaire et al. (2010)
observed that the thickness of the boundary layer decreases as the slip coefficient
and the leakage flow in the porous layer increase. In their experiment, the y = 0
plane corresponds to the top of the posts. Thus, as the slip length corresponds to
the distance below the actual surface at which the velocity is equal to zero, they
interpreted the reduced thickness as the development of the boundary layer from a
plane below the y= 0 plane; see below.
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FIGURE 7. Dependence of the boundary-layer thickness (a) and slip velocity (b) on the
slip parameter at different positions (0.1 6 x/Re 6 1). It should be noted that δ(S; x= 0)
= 0 and u(y= 0, S; x= 0)= 1.

The asymptotic behaviour depicted in figure 6 for large S becomes more apparent
from figure 7, where the boundary-layer height and slip velocity are plotted against S
at different streamwise distances in figures 7(a) and 7(b) respectively. This behaviour
was also reported by Dressaire et al. (2010) for any leakage flow rate, as shown in
their figure 7(b). Interestingly, the large-S behaviour appears to be insensitive to the
leakage flow rate, as the curves converge together for large slip length. For a planar
jet with large slip length, (3.27) suggests an asymptotic height δ(ξ)∼√6ξ , signalling
a 55 % drop from the

√
30ξ level for an adhering jet. Comparatively, for a circular
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jet, figure 7(b) of Dressaire et al. (2010) indicates a 77 % drop, suggesting that drag
is easier to reduce for a circular jet than a liquid sheet. The linear behaviour against
S for small slip length, discussed earlier, is evident from the current figures 7(a)
and 7(b).

3.4. Transition location
As the boundary layer grows with distance, it eventually invades the entire jet width,
merging with the jet free surface at x= x0. For x< x0 and above the boundary-layer
outer edge, at some y=h(x)>δ(x), lies the free surface. The height of the free surface
is determined from volume conservation inside and outside the boundary layer, namely∫ δ(ξ)

0
u(ξ , y) dy+ h(ξ)− δ(ξ)= 1. (3.26)

Upon using (3.22), we deduce that

h(ξ < ξ0)= 1+ 1
3

δ2(ξ)

δ(ξ)+ 2S
. (3.27)

For an adhering jet, h(ξ < ξ0) = 1 + 1/3
√

30ξ . More generally, for small S, we
recall that δ(ξ) ∼ √30ξ − 2S, so that h(ξ < ξ0) ∼ 1 + 1/3(

√
30ξ − 2S)2/

√
30ξ '

1 + 1/3
√

30ξ(1− 4S/
√

30ξ). Hence, both the boundary-layer and the film thickness
in region (ii) tend to decrease linearly with the slip length. On the other hand, for
large S, δ(ξ)∼√6ξ , so that h(ξ < ξ0)∼ 1+ 2(ξ/

√
6ξ + 2S).

The transverse velocity component at the outer edge of the boundary layer is
obtained upon using (2.5) and (3.27), namely

ReV(ξ < ξ0)= 5
δ(ξ)+ 2S

δ2(ξ)+ 6Sδ(ξ)+ 20S2
. (3.28)

This expression illustrates clearly the character of the flow at the leading edge of the
boundary layer. For an adhering jet, V is infinite at x= 0 as it behaves like 1/

√
x. For

a slipping jet, the jump is finite with V(ξ = 0)= 1/2S. The flow structure is further
discussed once the solution in the fully viscous layer is determined in the next section.

The transition point is reached when the boundary layer absorbs all of the flow.
Consequently, ξ0 and the corresponding jet thickness are determined upon setting
h(ξ0)= δ(ξ0) in (3.27) and using (3.25), yielding

δ(ξ0)= h(ξ0)= 3(1− 2S)+√36S2 + 12S+ 9
4

, (3.29)

ξ0 = 1
15

[
24S3

δ(ξ0)+ 2S
+ 8S2 ln

(
δ(ξ0)+ 2S

2S

)
+ δ(ξ0)

2
(δ(ξ0)+ 4S)− 12S2

]
. (3.30)

Figure 8 displays the influence of slip on the transition location and corresponding
jet thickness. Overall, the transition location increases with slip length, and the jet
becomes thinner. In the limit of an adhering jet, one recovers h(ξ0) ∼ 3/2 and ξ0 ∼
3/40. For an infinitely slipping jet, (3.29) and (3.30) suggest that h(ξ0)∼ 1+ 3/16S
and ξ0 ∼ 1/6(1+ 3/8S). The asymptote for the height is also shown in the figure.
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FIGURE 8. Influence of slip on the transition location and free-surface height,
h(x0)= δ(x0), at the transition point. The large-S asymptote is also shown for δ.

4. Flow in the fully viscous layer region

The flow in region (iii), for x> x0, is determined by seeking a solution of equations
(2.1) subject to boundary conditions (2.5) and (2.6), and matching the flow at the
transition location. In this case, let

ξ(x, y)= x
Re
, ζ (x, y)= y

h(ξ)
, (4.1a,b)

and set
u(ξ , ζ )=U(ξ)g(ξ , ζ ), (4.2)

where U(ξ) is the streamwise velocity component at the surface and g(ξ , ζ ) is to be
determined. Upon substituting (4.2) into the continuity equation (2.1a) and integrating,
we have

Rev(ξ, ζ )=−(hU)′
∫ ζ

0
g(ξ , z) dz+ h′Uζg− hU

∫ ζ

0
gξ (ξ , z) dz. (4.3)

In this case, (2.1b) reduces to the desired equation for g(ξ , ζ ), namely

gζ ζ = h[hg(Ug)ξ − (hUG)ξgζ ], (4.4)

where G(ξ , η)≡ ∫ ζ0 g(ξ , z) dz. The boundary conditions become

g(ξ , ζ = 0)h(ξ)= Sgζ (ξ , ζ = 0), g(ξ , ζ = 1)= 1, gζ (ξ , ζ = 1)= 0. (4.5a−c)
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Additionally, the flow must match at the transition point according to (2.7). Thus,
by equating (4.2) to (3.22) at ξ = ξ0, and noting that U(ξ = ξ0)= 1, we have

g(ξ = ξ0, ζ )=− h(ξ0)

h(ξ0)+ 2S

[
ζ 2 − 2

(
ζ + S

h(ξ0)

)]
, (4.6)

where h(ξ0) and ξ0 are given by (3.29) and (3.30) respectively. Conservation of mass
dictates that

h(ξ)U(ξ)G(ξ , ζ = 1)= 1. (4.7)

The problem (4.4)–(4.7) consists of determining h(ξ), U(ξ) and g(ξ , ζ ) for ξ > ξ0,
0 6 ζ 6 1. It is of the integrodifferential type and, unlike the case of an adhering jet
(Watson 1964), does not admit a similarity solution. A numerical approach would be
dauntingly challenging. Fortunately, an accurate series solution is possible as we can
take advantage of the small range 0 6 ζ 6 1.

4.1. Series expansion in powers of ζ
Before seeking a series solution, it is helpful to eliminate the integral from
equation (4.4) by differentiating equation (4.4) with respect to ζ and reusing (4.4) to
obtain

gζgζ ζ ζ = hgζ [hgζ (Ug)ξ + hg(Ugζ )ξ + (hUg)ξgζ ] + gζ ζ
[
gζ ζ − h2g(Ug)ξ

]
. (4.8)

It is also convenient to make the transformation ζ→ 1− ζ . In this case, equation (4.8)
remains of the same form, subject to the following conditions, recast from (4.5)–(4.7)
as

g(ξ , ζ = 1)h(ξ)=−Sgζ (ξ , ζ = 1), g(ξ , ζ = 0)= 1, gζ (ξ , ζ = 0)= 0, (4.9a−c)

g(ξ = ξ0, ζ )= 1− h(ξ0)

h(ξ0)+ 2S
ζ 2, h(ξ)U(ξ)

∫ 1

0
g(ξ , ζ ) dζ = 1. (4.10a,b)

The solution of (4.8) is symmetric with respect to ζ = 0; that is, g(ξ , ζ )= g(ξ ,−ζ ).
Therefore, we let

g(ξ , ζ )= 1+
∑
m=1

Gm(ξ)ζ
2m, u(ξ , ζ )=U(ξ)

[
1+

∑
m=1

Gm(ξ)ζ
2m

]
, (4.11a,b)

which satisfy the latter two conditions in (4.9). Upon substituting (4.11) into (4.8),
one arrives at the following relations for the first two coefficients:

G1(ξ)= 1
2 h2U′, (4.12)

G2(ξ)= h
12
[hUG′1 + 2(2hU′ +Uh′)G1], (4.13)

and the recurrence relation for the remaining Gm>3 coefficients:

2(m+ 1)(2m+ 1)Gm+1 = h2UG′m + 2h[(m+ 1)hU′ +mUh′]Gm

+ h
m−1∑
n=1

[
2m− 2n+ 3
2m− 2n+ 1

hUG′m−n +
(2m+ 1)hU′ + 2nh′U

2m− 2n+ 1
Gm−n

]
Gn. (4.14)
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Additionally, the slip condition in (4.9) and the conservation of mass relation in (4.10)
lead respectively to∑

m=1

(h+ 2mS)Gm =−h,
∑
m=1

Gm

2m+ 1
= 1

hU
− 1. (4.15a,b)

Finally, the following initial conditions ensue from the matching of the flow at the
transition point:

U(ξ0)= 1, h(ξ0)= δ(ξ0), (4.16a,b)

G1(ξ0)=− h(ξ0)

h(ξ0)+ 2S
, Gm>1(ξ0)= 0. (4.16c,d)

This completes the set of equations needed to determine the unknown variables U(ξ),
h(ξ) and Gm>1(ξ). It should be noted that, despite the apparent decoupling process, the
problem (4.12)–(4.16) remains highly nonlinear and constitutes a coupled algebraic–
differential system. The results discussed next are obtained with an error of the order
of 10−5.

4.2. Slip and transition flow
The influence of slip on the flow through the transition region is discussed now that
the solutions have been established in the developing and fully viscous boundary
layers. Figure 9 illustrates the influence of slip on the film free-surface height
(figure 9a), streamwise velocity component at the free surface (figure 9b) and slip
velocity at the plate (figure 9c). Both regions (ii) and (iii) are covered for coherence
and completeness. Figure 9(a) depicts a relatively sharp increase in jet thickness
above the boundary layer near the leading edge (x< x0) in region (ii) and a milder
essentially linear growth beyond the transition point (x> x0) in region (iii). The
linear growth was also predicted by Watson (1964) for an adhering jet. For a more
slipping jet, the film is thinner and the growth remains practically linear throughout.
The velocity at the surface in figure 9(b) exhibits essentially a linear decrease with
distance, at a rate diminishing with slip.

Figure 9(c) should be contrasted to figure 6(b) where the slip velocity was only
shown over the developing boundary-layer region (ii). The rather sharp drop in region
(ii), as a result of the sharp increase in boundary-layer height (see figures 6a and 9(a)),
is tempered significantly in the viscous boundary-layer region (iii) as a result of the
slower growth of film thickness (figure 9a) compared with the boundary-layer height
(figure 6a).

This difference in growth rate between the boundary-layer height and the film
thickness is evident from figure 10, where the boundary-layer profiles are shown near
the leading edge. The locus of the transition points is also shown in figures 9(a) and
9(c), which indicates that the transition becomes relatively insensitive to slip for large
S. This saturation is also reflected in the profiles of figure 9(b) and 10, and, to a
lesser extent, in the slip velocity profiles of figure 9(c). Finally, despite the difference
in solution methodologies and levels of accuracy in the fully developed and viscous
boundary-layer regions, the free-surface slope in figure 9(a) as well as the slopes
of the slip velocity in figure 9(c) remain reasonably smooth at the transition point,
x= x0.
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FIGURE 9. Influence of slip on the jet free-surface height (a), surface velocity (b) and
slip velocity (c) across the developing and transition regions (ii) and (iii). The locus of
transition points is also shown in (a) and (c). The limit of an adhering jet is shown in
bold solid lines in all three panels.
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FIGURE 10. Influence of slip on the jet and boundary-layer thicknesses.

5. Influence of slip on hydraulic jump
In this section, we consider the planar flow in region (iv), the hydraulic-jump region.

The cases of inviscid and viscous fluids will be discussed separately. In general, we
denote the position of the hydraulic jump by x = xJ . We also let hJ = h(x= xJ)
be the depth just upstream of the jump (see figure 1). Downstream of the jump,
the height is generally denoted by H(x), and, at the jump, we let HJ = H(x= xJ).
The surface-tension effect is neglected, and the flow beyond the jump is assumed
to be predominantly unidirectional as the film remains thin. Consequently, flow
separation and the associated recirculation eddy are not considered. The present
planar formulation and results can be regarded as an adequate representation for
large-radius circular jumps, even with the surface-tension effect neglected.

5.1. The case of an inviscid fluid
This case mimics the flow of a film of low viscosity, draining at a relatively high rate.
Hence, the influence of slip originates from the upstream side of the jump. Following
Watson (1964), the position of the hydraulic jump, x= xJ , is determined by equating
the rate of change of momentum to the force associated with the difference in pressure
that arises from the elevation change. This assumption is legitimate provided that the
width (measured in the streamwise direction) of the jump is small so that skin friction
can be ignored. In this case, the height remains constant, with H(x > xJ) = HJ and
u(x> xJ, y)= 1/H. In this case, the integral form for the condition of momentum (2.1)
is expressed as ∫ hJ

0
u2(xJ, y) dy−

∫ H

0
u2(x> xJ, y) dy= 1

2Fr2
(H2 − h2

J). (5.1)

The momentum outside the wave, which is O(h/H) compared with that inside, will be
included only approximately since it is assumed that the speed of flow immediately
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outside the jump is uniform. In this case, (5.1) becomes

H3 −Hh2
J + 2Fr2

2Fr2H
= H3 + 2Fr2

2Fr2H
− h2

J

2Fr2
=
∫ hJ

0
u2(xJ, y) dy. (5.2)

The integral on the right-hand side of (5.2) must be evaluated separately for xJ > x0

and xJ < x0, since the jump may occur at any point in the development of the boundary
layer.

When xJ 6 x0, the flow upstream of the jump consists of the developing boundary
layer and external inviscid flow. In this case,∫ hJ

0
u2(xJ < x0, y) dy=

∫ δJ

0
u2(xJ, y) dy+ hJ − δJ = δJ

∫ 1

0
u2(ξJ, η) dη+ hJ − δJ, (5.3)

where δJ = δ(x= xJ) and ξJ = xJ/Re. Although an accurate expression such as (3.9)
can be used to evaluate the integral in (5.3), the approximate profile (3.22) is perhaps
more physically revealing, and certainly much more convenient to use. In this case,

H3 + 2Fr2

2Fr2H
− h2

J

2Fr2
= 1− 2

15
δJ + 5S
(δJ + 2S)2

δ2
J . (5.4)

It should be noted that the upstream film height is determined from (3.27).
When xJ > xo, the substitution of the velocity profile from (4.11) leads to∫ hJ

0
u2(xJ > x0, y) dy=U2

J hJ

∫ 1

0
g2(ξJ, ζ ) dζ

=U2
J hJ

[
1+ 2

∑
m=1

Gm(ξJ)

2m+ 1
+
∑
m=1

∑
n=1

Gm(ξJ)Gn(ξJ)

2m+ 2n+ 1

]
, (5.5)

where UJ =U(x= xJ) is the velocity at the surface just upstream of the jump. Since,
from (4.15a,b),

∑
m=1 Gm/2m+ 1= 1/hU − 1, (5.2) becomes, for ξJ > ξo,

H3 + 2Fr2

2Fr2H
− h2

J

2Fr2
=U2

J hJ

[
2

hJUJ
− 1+

∑
m=1

∑
n=1

Gm(ξJ)Gn(ξJ)

2m+ 2n+ 1

]
. (5.6)

In this case, hJ and UJ are obtained from (4.15a,b).
Figure 11 shows the influence of slip on the variation of the hydraulic-jump height

with the position of the jump, incorporating the influence of the Froude number. The
term h2

J/2Fr2, which is the pressure thrust on the inward side of the wave jump, is
only O(h2/H2) compared with the thrust on the outward side, and is assumed to be
negligible. The locus of the transition locations is also included. It is shown that, as
for an adhering jet, the hydraulic jump occurs earlier when the film depth downstream
of the jump is larger. The figure illustrates that greater slip leads to farther location
of the jump, as a result of reduced friction at the plate. In this case, the jet spreads
more easily. These observations are in agreement with those of Prince et al. (2012)
for a circular jet (see their figure 10). The influence of slip is very much like the
effect of shear thinning (see figure 19(a) of Zhao & Khayat (2008)), where the level
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FIGURE 11. Influence of slip on the dependence of the hydraulic-jump height on the jump
position for an inviscid film. The locus of transition locations is also shown.
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FIGURE 12. Influence of slip on the jump position for Fr= 2.75. The jump height is kept
the same at H = 2.7 for all slip lengths. The locus of transition locations is also shown.

of viscosity, and not necessarily the degree of shear thinning, dictates the position of
the hydraulic jump.

Finally, figure 12 displays the influence of slip on the location of the hydraulic jump
while the jump height is kept the same (H= 2.7) for any slip length. This corresponds
to a value of (H3 + 2Fr2)/2Fr2H = 0.85 in figure 11, with Fr = 2.75. The locus of
the transition locations is also shown, which indicates that the jump occurs in the
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fully developed boundary layer for S< 0.5 and in the fully viscous layer for the more
slipping fluid.

5.2. The case of a viscous fluid
Following Duchesne et al. (2014), we determine the thickness distribution by adopting
a thin-film approach downstream of the jump. The formulation is valid at large
distance x compared with the jump height. As for the ideal case, the jump height
and position cannot be determined uniquely. However, the measurements of Duchesne
et al. for a circular jet provide an additional relation for the unique determination of
HJ and xJ . The local Reynolds number and the local slope are both assumed to be
small; they are of the order of 10−2 in the experiment of Duchesne et al. (2014).

Since experimental data are typically reported in terms of the flow rate Q (Dressaire
et al. 2009, 2010; Duchesne et al. 2014), we shall discuss our results in terms of Fr
and G≡ Re/Fr (rather than Fr and Re) given that G is independent of the flow rate.
Neglecting inertia, the balance between hydrostatic pressure and viscous friction in
(2.1), and the conditions of slip at the substrate (2.2) and free slip at the free surface
(2.5) yield the following expressions for the velocity components and the pressure:

u(x> xJ, y)= G
2Fr

dH
dx
(y2 − 2Hy− 2SH), p(x> xJ, y)= Fr−2(H − y), (5.7a,b)

v(x> xJ, y)=− G
2Fr

y
[

d2H
dx2

(
y2

3
−Hy− 2SH

)
−H

dH
dx
(y+ 2S)

]
. (5.7c)

In addition, conservation of mass leads to

dH
dx
=−Fr

G

(
H3

3
+ SH2

)−1

. (5.8)

Integration between the positions of the jump xJ and the trailing edge of the plate x∞
gives

H4
J

4
+ SH3

J −
H4
∞

4
− SH3

∞ =−3
Fr
G
(xJ − x∞). (5.9)

The measurements of Duchesne et al. (2014) for an adhering circular jet indicate
that their experimental Froude number, FrJ =Q/2πR̄J

√
gH̄3/2

J , defined in terms of the
(dimensional) jump height H̄J and radius R̄J , remains constant when the flow rate Q
is varied. Equivalently, for the current planar jet, and in terms of our (dimensionless)
notations, we may then assume that FrJ = Fr/xJH3/2

J remains constant (independent
of the Froude number, Fr). This assumption is not unreasonable since planar flow
is the limit of circular flow with infinite radius of curvature, and also since there
does not seem to be any restriction on the jump radius in the experiment. Moreover,
the insensitivity of the experimental Froude number, FrJ , to variation of the flow rate
was verified for both low- and high-viscosity liquids. It should be noted that FrJ is
independent of the viscosity. In this case, it is plausible to assume that the constancy
of FrJ would also hold for a slipping jet. Consequently, we assume that the value of
FrJ is the same for any S. This yields the following additional relations:

xJ = Fr

FrJH3/2
J

or HJ =
(

Fr
FrJxJ

)2/3

, (5.10a,b)

which, together with (5.9), determine the jump height and position uniquely.
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FIGURE 13. Jump height (a) and position (b) behaviour with the Froude number (flow
rate) for various slip lengths. Here, G= 0.2, FrJ = 1 and x∞ = 2.

Admittedly, the assumptions we make here are speculative, awaiting experimental
verification for an impinging liquid sheet. However, they seem to yield a realistic
physical picture of the flow in the jump region. For instance, the first relation in
(5.11), suggesting a decrease in the jump position with the jump height for a fixed
Froude number, agrees well with the measurements and scaling arguments of Bohr
et al. (1993) for the jump radius versus height at a fixed flow rate, as reported in
their figure 5. Finally, the flow structure is expected to change as the jump location
decreases with increasing depth (Bush & Aristoff 2003). Such a change, however,
cannot be captured by the current thin-film formulation.

Figure 13 illustrates the dependence of the jump height and the position on Fr (flow
rate) for various S values. Here, G= 0.2, FrJ = 1 and x∞ = 2. Both the jump height
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(figure 13a) and the position (figure 13b) increase with the Froude number, reflecting
the tendency of the film to accumulate further downstream at higher flow rate. While
the jump height decreases with slip, its position increases. This behaviour is typical
of jets with lower viscosity, where, as in the case of slipping jets, the reduced friction
enables the liquid to flow farther with diminished accumulation. The jump height
becomes increasingly less sensitive to the variation of Fr with slip (figure 13a); the
film behaves increasingly like an inviscid fluid, adopting a thickness closer to the film
at the trailing edge. This insensitivity is contrasted by the sharper growth of the jump
location with Fr. In fact, in the limit of infinite slip, (5.9) and (5.11) indicate that

HJ ∼H∞, xJ ∼ Fr

FrJH3/2
∞
, as S→∞, (5.11a,b)

suggesting a linear growth of jump position with flow rate, and no change in height.
The trend in figure 13(b) against Fr agrees with the measurements of Dressaire

et al. (2010) which indicate that the (average) jump radius for a circular jet also
increases with the (total) flow rate. See the data reported in their figure 16(a). This
observation holds for both smooth and rough substrates. The influence of slip reported
in figure 13(b) is also in qualitative agreement with existing predictions, such as the
K–P approach of Prince et al. (2012) and the similarity approach of Dressaire et al.
(2010). The latter assumed a slip length inversely proportional to the film thickness
to secure a similarity solution. However, in contrast to the trend in figure 13(b),
the measurements of Dressaire et al. (2009, 2010), when conducted to examine the
influence of topographical parameters of textured substrates on the jump radius and
its dependence on flow rate, indicate that the jump radius actually decreases when
roughness is added, regardless of the microtexture examined. Four square lattices
were considered, with fixed post radius and different lattice spacings and post heights.
In particular, they found that the jump radius decreases with increasing post height.
Since the slip length is directly related to the post height, the experimental findings
contradict existing theoretical predictions, including the behaviour reported in our
figure 13(b) above. Dressaire et al. (2009, 2010) attributed the systematic reduction
in jump radius to a reduced flow rate. They regarded the (total) flow rate as divided
into a leakage flow rate through the microtexture and the flow rate of a film above
the posts.

The predictions in figure 13 corroborate well observations and findings of existing
studies for an adhering jet. Bohr et al. (1993) and Rojas et al. (2013) found the
(dimensional) jump radius to scale roughly as R̄J ∼ Q5/8ν−3/8g−1/8 for a circular jet.
More recently, Duchesne et al. (2014) derived a more accurate estimate involving a
logarithmic correction based on the thin-film approach. In the current problem, the
same scaling holds for an adhering planar jet. When cast in dimensionless form,
we find that the jump location behaves like xJ ∼ Fr−1

J Fr5/8G−3/8. This behaviour
corresponds to the S= 0 curve in figure 13(b).

The film shape and flow downstream of the jump are now examined by first
integrating (5.8) to yield the following equation for H(x):

H4

4
+ SH3 − H4

∞
4
− SH3

∞ '−3
Fr
G
(x− x∞). (5.12)

The velocity at the surface is determined from (5.7). In particular,

u(x, y=H)= 3
2

H + 2S
H(H + 3S)

. (5.13)
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FIGURE 14. Film thickness (a) and surface velocity (b) evolution with position
downstream of the jump for the range xJ 6 x 6 x∞, for different slip parameters. Here,
x∞ = 2 and G= 0.2. The jump position for each S value is also indicated by a vertical
line.

For an adhering jet, one has

H(x; S= 0)=
[

H4
∞ − 12

Fr
G
(x− x∞)

]1/4

, u(x, y=H; S= 0)= 3
2

H−1, (5.14a,b)

which is equivalent to equation (3) of Duchesne et al. (2014) for a circular jump.
Figure 14 depicts the evolution of the film height (figure 14a) and the surface

velocity (figure 14b) with position downstream of the jump. Vertical lines indicate
the jump position for each slip level. The decrease in jump height with position is
obviously accompanied by an increase in surface velocity that is particularly steep
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near the plate trailing edge. The height profile is similar to the one measured by
Duchesne et al. (2014) for axisymmetric flow (see their figure 2a). While the jump
height decreases gradually with slip, the velocity remains relatively insensitive to the
variation of S, except near the trailing edge of the plate. This may be surprising
at first, but upon closer examination of figure 14, we observe the relatively large
values of the jump height, which make the effect of slip relatively uninfluential at the
surface, except near the edge where the film thickness narrows considerably. Finally,
figure 14 shows the tendency of the film to become increasingly uniform with slip.
In the limit of infinite slip, (5.7) and (5.8) yield H(x)∼H∞ and u(x> xJ, y)∼ 1/H∞,
in correlation with (5.11a,b).

6. Concluding remarks

In this study, the flow of a planar jet impinging onto a solid flat plate with slip is
examined theoretically. Navier’s slip condition is used, which mimics the flow slippage
on hydrophobic surfaces. The jet is assumed to spread out in a thin layer bounded by
a hydraulic jump, draining at the edge of the plate to maintain steady conditions (see
figure 1). In addition to the stagnation flow region (i), the flow domain is divided into
three main regions: a developing boundary-layer region (ii), a fully viscous boundary-
layer region (iii) and a hydraulic-jump region (iv). In contrast to an adhering jet, a
slipping jet is inherently non-similar in character. Some emphasis is placed on the
flow structure in region (ii), given its fundamental relevance to boundary layers on
hydrophobic surfaces in general. We show how the different scaling in each region
can be used to develop separate asymptotic series expansions to obtain the flow in
regions (ii) and (iii). The flow must satisfy the initial uniform flow at the leading
edge of the boundary layer, and match at the transition point.

The ratio of slip length to jet width, S, can be large or small. In the developing
boundary-layer region (ii), we show that ReS2 is the only similarity group needed
in the problem. For the flow in this region, for relatively large S or small distance
x, the solution expansion is sought in fractional powers of x/ReS2. On the other
hand, for small S or large x, the expansion is sought in fractional powers of ReS2/x.
The solution shows good agreement against the K–P approach (figure 4). We find
that a slipping film exhibits a singularity in normal stress at the leading edge of
the boundary layer, as opposed to the singularity in velocity and shear stress for an
adhering film. The nature of the singularity is confirmed when using a K–P approach.
We also implement a numerical finite-difference scheme along x, which, as expected,
does not capture the singularity at the origin, but gives reasonable results further
from the leading edge (see figure 4 again).

At the leading edge, there is full slip in velocity, which decreases with downstream
distance. At large distance, viscous drag causes the (slip) velocity to vanish; at that
point, the Blasius similarity profile is recovered. The boundary-layer and film heights
are both found to decrease with slip relative to a smooth substrate (figure 6), roughly
like
√

30x/Re− 2S, whereas the slip velocity intensifies like S
√

Re/30x with slip. The
large-S limit indicates that the boundary layer of a planar jet experiences a 55 % drop
from the

√
30x/Re level for an adhering jet (figure 7a). Comparatively, for a circular

jet, figure 7(b) of Dressaire et al. (2010) indicates a 77 % drop, suggesting that drag
is easier to reduce for a circular jet than a liquid sheet.

The transition is delayed by slip, and the jet becomes thinner. In the limit of an
adhering jet, one recovers h(ξ0)∼ 3/2 and ξ0∼ 3/40 for the film height and transition
location. For an infinitely slipping jet, h(ξ0) ∼ 1 + 3/16S and ξ0 ∼ 1/6(1+ 3/8S).
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Beyond the transition, the flow problem in the fully viscous region (iii) is of the
integro-differential type in the (ξ = x/Re, ζ = y/h(x)) plane. A series solution is
sought here in powers of ζ . The film height is found to decrease with slip, whereas
the free-surface velocity intensifies. The slip velocity decreases at a slower rate than
it would for pure boundary-layer flow (compare figures 6b and 9c).

Finally, ideal and viscous liquids were examined for the flow downstream of the
jump, taking into account the drainage at the trailing edge of the plate. Guided by
the measurements of Duchesne et al. (2014), and the scaling arguments of Bohr et al.
(1993) and Rojas et al. (2013), for a circular adhering jet, the hydraulic jump height
and location are determined for a planar jet, and are found to increase with the Froude
number (flow rate) like Fr1/4 (figure 13a) and Fr5/8 (figure 13b) respectively. This
behaviour appears to hold independently of the slip length. While the jump height
decreases with slip, its location increases (figure 13). This response is in agreement
with existing predictions. However, the measurements of Dressaire et al. (2009, 2010)
show that the jump radius actually decreases with slip. Dressaire et al. attributed this
anomalous trend to a ‘leakage’ flow through the microposts of their textured (rough)
substrate.
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Appendix A. Numerical solution
The numerical approach consists of an implicit finite-difference scheme in ξ ,

coupled with integration of the resulting discretized equations in η. Equation (3.3) is
discretized in the streamwise direction by using a fixed mesh interval, 1ξ , and letting
fξ (ξi, η) = fi+1(η)− fi(η)/1ξ , where i runs over the number of nodes. The resulting
problem for fi(η) at ξ = ξi for i> 0 reads

f ′′′i =
ξi

1ξ
[f ′i (f ′i − f ′i−1)− f ′′i (fi − fi−1)] − fi

2
f ′′i , (A 1)

f ′i (η= 0)= S√
ξi

f ′′i (η= 0), fi(η= 0)= 0, f ′i (η� 1)= 1. (A 2a−c)

Additionally, the initial conditions (3.5a,b) lead to

f ′0(η)= 1, f0(η)= η. (A 3a,b)

The problem (3.6)–(3.7) is of the two-point boundary-value type, and is solved using
a variable-order variable-step-size finite-difference method with deferred corrections
(IMSL-DBVPFD routine). Although, in principle, this method is robust and relatively
easy to implement, it can be tedious and impractical. The two-point boundary-value
problem must be solved at a high number of ξ positions. The problem is nonlinear,
therefore requiring an accurate initial guess for the solution to converge at successive
ξi positions. It should be noted that, although available at discrete η points, the
solution fi−1(η) at the previous position ξi−1 cannot be readily used to solve (3.6).
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A smooth profile must be generated out of the discrete data, which introduces
errors that become significant, especially when estimating the derivative. The method
becomes particularly inconvenient when calculating the boundary-layer thickness and
matching the flow at x= x0, at the interface between the developing and viscous fully
developed boundary layer regions (ii) and (iii), and at the hydraulic jump. Admittedly,
these numerical issues may conceivably be overcome or controlled. However, there
remains one serious issue that plagues the numerical approach, namely the presence
of the normal stress singularity at the leading edge of the boundary layer (see § 3.1).
Nevertheless, we use the method as reference despite its limited range of validity
compared with the alternative semi-analytical asymptotic techniques proposed in § 3.
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