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Abstract. The Zakharov–Kuznetsov equation describes the propagation of weak ion
acoustic waves in a strongly magnetized plasma. Their dynamics have been studied
in a series of papers, one of which gives growth rates of instabilities found numer-
ically, as well as pictures of soliton collisions [J. Plasma Phys. 64, 397 (2000) –
Part I]. In the present paper, we find good approximate formulas for growth rates
of the dominant instability, vastly improving those of Part I. This is done by pro-
ceeding to higher order in the expansion, combined with an incorporation of exact
values for the boundaries of the unstable region in the formulas. The result is better
than we had any right to expect. We next depart from linear stability analysis and
look at nonlinear dynamics to obtain a pulse in time. The maximum amplitude of
this pulse is seen to be proportional to the linear growth rate, a result that was so
far suspected from numerics but not derived theoretically. (This paper can be read
independently of Part I.)

Dedication
This work is dedicated to John Dougherty on the occasion of his official retirement.
Knowing John, this formality should not limit his versatile activities too much!

1. Introduction
The Zakharov–Kuznetsov equation, describing the propagation of weak ion acous-
tic waves in a strongly magnetized plasma, is (Zakharov and Kuznetsov 1974)

nt + nnx + (∆n)x = 0, ∆ = ∂2
x + ∂2

y + ∂2
z. (1.1)

This equation can be solved in one space dimension, yielding nonlinear travelling
waves, functions of x − vt. In the coordinate system of the wave, n → n − v,
x→ x− vt, the solution is

n0(x,m) = 4(m + 1)− 12m sn2(x|m), 0 6 m 6 1. (1.2)

When m > 1, we find a solution by rescaling so as to obtain −12 sn2(m1/2x|m−1)
as the second term. Here sn is the Jacobi elliptic function. Its period is 4K(m). As
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m approaches one, K → ∞ and the nonlinear wave becomes a soliton train. For
m = 1, we in fact obtain a soliton

n0 = −4 + 12 sech2x, (1.3)

the −4 term being introduced by the motion of the system. We recover the more
familiar form by returning to the original frame, where n0 = 12 sech2(x− 4t).

2. Small-m theory
We now perturb (1.2) and linearize:

n = n0 + δ̃n e(γt+iKxx+iKyy). (2.1)

The strongest instability was shown in Infeld et al. (2000; henceforth referred to
as Part I) to be associated with wavelength doubling, Kx = K0/2, where K0 is the
wavelength of the basic structure (1.2). We begin the expansion in m by taking

δ̃n1 = a cos(ξ + α), ξ = x(1 + 1
4m + 9

64m
2)−1 ' πx

2K(m)
. (2.2)

The expansion inm, taken to one order higher than in Part I, then yields (Appendix)

γ = (1− 1
4m)

√
(3 + 3

2m + 15
32m

2 −K2
y)(K2

y − 3 + 9
2m− 15

32m
2). (2.3)

The unstable region is bounded by

K2
y1 = 3− 9

2m + 15
32m

3, K2
y2 = 3 + 3

2m + 15
32m

2. (2.4)

Obviously, this calculation, though improved, is still only useful for small m, as
K2
y1 becomes negative before m = 1.

3. Exact limits
We have been able to solve (1.1) and (2.1) for γ = 0 at four values of K2

y. The two
that interest us, corresponding to Kx = K0/2, are

K2
y1 ex = −(m + 1) +

√
(m + 1)2 + 15(m− 1)2,

K2
y2 ex = 2m− 1 +

√
(2m− 1)2 + 15,

}
(3.1)

yielding K2
y1 and K2

y2, respectively, for small m, as they should. No contradiction
with the above small-m calculation will therefore be introduced if we replace (2.3)
by

γ = (1− 1
4m)

√
(K2

y2 ex −K2
y)(K2

y −K2
y1 ex). (3.2)

We have therefore been able to improve on the calculation of Part I by combining
two very different results:

(i) following the m expansion to next order;

(ii) incorporating the exact limits of the unstable region.

4. Comparison with numerics
We calculated γ numerically in Part I, by using iterations similar to those described
in Infeld et al. (2002). Comparisons of our formula (3.2) with γ obtained from
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simulations are presented for six values ofm in Fig. 1. (The first three also reproduce
results for the Kx = 0, Benjamin–Feir instability from Part I. Here no progress
has been made.) The agreement is excellent up to m = 0.5, and good even up to
m = 0.99. For the soliton, m = 1, the solid line represents the numerical values
taken from Infeld and Rowlands (2000). Here, since the wavelength is infinite, the
two instabilities merge. Comparison with the results of Part I reveals just how
improved (3.2) is.

5. Nonlinear behaviour of the perturbation
We will now use our result to help us look at nonlinear dynamics. Equation (1.1)
yields, assuming n = n0 + δn,

∂δn

∂t
+
∂3

∂x3 δn +
∂

∂x
{[4(m + 1)− 12m sn2(x|m)]δn + 1

2 (δn)2} +
∂3

∂x∂y2 δn = 0, (5.1)

with the understanding that Kx = K0/2. The above linear analysis follows when
(δn)2 is neglected. However, we now look for solutions in the form (m is still small,
and ξ is defined in (2.2))

δn = a cos(ξ + α1) cos(Kyy) + b cos(2ξ + α2) + c, (5.2)

and search for solutions such that a, b, c and the αs are functions of time and

lim
a→0

at
a

= γ. (5.3)

Here γ is taken to be given by (3.2). We find from straightforward calculations that
no generality is lost by taking α1 = α2 ≡ α, and then

3am sin 2α + at = 0,

[3m(cos 2α− 1)− δK2
y + αt + c + 1

2b]a = 0,

bt + 12mc sin 2α = 0,

b(αt + c) + 1
8 a

2 + 6mc cos 2α = 0,

where

δK2
y = K2

y − 3− 3
2m,

yielding (2.3) to lower order (without the− 1
4m and 15

32m
2 terms) when b = c = αt = 0

((5.1) of Part I). One equation for a can be derived from the four in a, b, c, α, when
condition (5.3) is satisfied: (

da

dt

)2

= γ2a2 − 1
8a

4, (5.4)

where here γ is a constant of integration. The solution is

a = ±
√

8γsech[γ(t− t0)]. (5.5)

where we take γ to be given by (3.2), for reasons explained in Sect. 3. Equation (5.5)
describes a pulse driven by an initially linear instability. Importantly, amax ∝ γ,
a result suggested in Casali et al. (1998) as following from numerics. This is now
confirmed theoretically. More generally, this argues for recognition of a subclass
of Landau-type models in which there is one parameter instead of the usual two
(5.4) (a second parameter usually multiplies the higher-order term – Infeld and
Rowlands 2000).
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Figure 1. Growth rate γ versusK2
y for both the Benjamin–Feir (BF) and wavelength-doubling

instabilities. Numerical results are designated by solid lines, our models by broken lines. The
graphs corresponding to the BF instability are blown up as indicated (by a factor of 50 for
m = 0.1, etc.).
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The appearance of a doubly space-periodic pulse (5.2), (5.5) that disappears after
a while does not tell the whole story. A 2D lump will meanwhile detach itself from
each crest of this time-dependent wave at ξ+α = 2nπ, y = 2mπK−1

y . It will proceed
forward at a greater speed than its parent structure (5.2), (5.5) (Frycz et al. 1992;
Pelinovsky and Stepanyants 1993; Infeld et al. 1995; Senatorski and Infeld 1998;
Infeld and Skorupski 2000). The dynamics of one such lump have been investigated
by Frycz et al. (1992). Collisions of two or more lumps were followed by Feng et al.
(1999), Infeld et al. (2000) and Infeld and Skorupski (2000). A similar treatment
of the Kadomtsev–Petviashvili equation will be presented elsewhere (Infeld et al.
2002). Once again, (5.4) is obtained, pointing at its generic character.

6. Conclusions
Taken jointly with Part I, this work yields a wide panorama of linear instabilities
of wave solutions to the Zakharov–Kuznetsov equation. Models for growth rates
are found. Corresponding numerical values are calculated and compared with these
models. Agreement is surprisingly good for the dominant instability. Nonlinear
development is followed by using a different, extended calculation. A refinement of
Landau saturation is indicated.

Note added in proof
Since amax ∝ γ, see (5.5), δn given by (5.2) is approximately proportional to γ
(since b is of higher order than a). This result rather than amax ∝ γ was suggested
by Casali et al. (1998) for KPI, and is now demonstrated by us for ZK by a simple
theoretical argument.

Appendix
We assume m to be small, and expand in this quantity, essentially the amplitude
of the nonlinear wave. Thus

γ = γ1 + γ2 + . . . , (A 1)

K2
y = 3 +K2

y1 +K2
y2 + . . . , (A 2)

δn = δn1 + δn2 + . . . . (A 3)

From (5.1), using (2.2), we obtain, up to and including third order,

γ(1 + 1
4m)∂−1

ξ δn + (1− 1
2 − 3

32m
2)∂2

ξδn

+ [4(1 +m)− 12m(sin2 ξ + 1
8m sin2 2ξ)]δn−K2

yδn = 0. (A 4)

Here we have expanded sn2(x|m) up to first order.
First order yields

Lδn1 = 0, L = ∂2
ξ + 1, (A 5)

δn1 = cos(ξ + α). (A 6)

At second order, we obtain two conditions for avoidance of secular terms:

3m sin 2α = γ1, avoids sin(ξ + α), (A 7)

3m cos 2α = 3m + [K2
y − (3 + 3

2m)], avoids cos(ξ + α). (A 8)
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Squaring these two equations and adding them yields γ1, equation (5.1) of Part I.
When there are no secular terms, all that is left is

Lδn2 = −3m cos(3ξ + α), (A 9)

δn3 = 3
8m cos(3ξ + α). (A 10)

We use this at third order, (A 4). Removal of secular terms now demands

γ2 + 1
4mγ1 = 0, (A 11)

K2
y2 − 15

32m
2 = 0. (A 12)

When these are added to the left-hand sides of (A 7) and (A 8), we obtain

3m sin 2α = (1 + 1
4m)γ, (A 13)

3m cos 2α = 3m +K2
y − (3 + 3

2m + 15
32m

2), (A 14)

where γ and K2
y are taken up to second order. If we drop the subscripts, square

and add as before, we obtain (2.3). Similar improvement for the Benjamin–Feir
instability would demand a formidable, fourth-order calculation. Furthermore, the
exact value of K2

y2 is not known (a glance at Fig. 1 shows that, without this value,
little progress can be made).
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