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Abstract. A system of equations for modulational interaction of the electromag-
netic branch of drift waves with magnetic cells is constructed. The solution of these
equations describes formation of a set of magnetic cells with oppositely directed
magnetic fields at their boundaries.

Introduction
Magnetic convective cells.

An important property of drift turbulence is its ability for self-organization—
creation of macroconvective cells by the Reynolds stresses imposed on a plasma by
microturbulence. In the pioneering paper [1], generation of the convective cells by
drift turbulence has been considered. The turbulence of the convective cells results
in anomalous high plasma diffusion across the magnetic field. In the present paper
we shall consider generation of magnetic structures by the electromagnetic part of
the drift spectrum.
Such mechanisms of the magnetic field generation are important for the problem

of the magnetic dynamo (see e.g. [2]).
The vector potential in the magnetic cell has a component along the ambient

magnetic field which corresponds to the transverse magnetic structure

by (x) = −∂a

∂x
, (1)

where x is the direction of plasma inhomogeneity.
Plasma velocity components along the ambient magnetic field in the magnetic

cell can be written as

vz i = − ea

mic
, vze =

ea

mec
. (2)

If we assume periodicity of the vector potential a(x) ∼ cos k0x, the described
structure corresponds to plasma motion up and down along the magnetic field in
the form of a convective cell closed by oppositely directed transverse components
of the magnetic field (1).
Now let us consider the electromagnetic drift wave in detail. There are both

electrostatic ϕ(y) and vector Ay (y) potentials in the drift wave. For the plane wave

ϕ(y, z) = ϕ exp i(ky y + ikz z − ωt),
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the electric field can be written as

Ey = −ikyϕ +
iω

c
Ay

and the magnetic field is Bx = −ikzAy .
Plasma velocities across the magnetic field are to be calculated from the following

equations:

−iωvx − ωcivy = 0,

−iωvy + ωcivx =
e

mi
Ey + ωci

Bx

B0
vz .

(3)

On the right-hand side of (3), in addition to the electric force, the nonlinear term
ωc i
B0

Bxvz is also taken into account; that term describes coupling of the drift wave
with the magnetic cell. ωci is the ion gyrofrequency. Solving (3) in the drift approx-
imation (ω�ωci), we have

vx =
c

B0
Ey + vz

Bx

B0
,

vy = −i
ω

ωci

c

B0
Ey − i

ω

ωci

(
1 +

ω2

ω2
ci

)
Bx

B0
vz .

(4)

Using the first of the equations (4), from the continuity equation we have the
following relationship for the perturbation of ion density in the drift wave:

n′
i =

c

B0

dn0

dx

(
−ky

ω
ϕ +

A

c
− kzvz

ω

A

c

)
. (5)

As usual, for the low-frequency waves we can assume that electrons in the drift
wave are Boltzmann distributed:

n′
e = n0

eϕ

Te

and, from the condition of quasineutrality n′
e = n′

i, we have

ϕ

(
1 +

ω∗

ω

)
=

ω∗

cky

(
1 − kzvz

ω

)
Ay , (6)

where the following notation is used.

ω∗ = ky
cTe
eB0

1
n0

dn0

dx

is the drift frequency.
From the Maxwell equation

∂Bx

∂z
=

1
c

∂Ey

∂t
+

4π

c
jy ,

we have the following equation for the vector potential:

∂2A

∂z2 =
iω

c
Ey − 4π

c
jy . (7)

Evaluating the y components of the electron velocities similarly to what was done
in (4) for ions, it is easy to see that the highest in ω/ωci order nonlinear terms in
jy for electrons and ions are cancelled, and therefore the main contribution to the
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Figure 1. Branches of the drift waves in the dispersion equation (10).

nonlinear current is from ions in the next order (∼ω2) over the parameter ω/ωci.
The final expression for the jy current is given by

jy = en0
−iω

ωci

(
cEy

B0
+

ω2

ω2
ci

vz
Bx

B0

)
. (8)

Omitting in the expression for jy the nonlinear term∼vz , we can write the following
equation for the vector potential:(

k2
z − ω2

v2
A

− ω2

c2

)
Ay = −ω

c
kyϕ

(
1 +

c2

v2
A

)
, (9)

where ω is the drift wave frequency determined by the dispersion relationship (10),
see below, and

v2
A =

B2
0

4πn0mi
− square of Alfvén velocity.

Combining this equation with (6), in which we omit the nonlinear term ∼vz , we
obtain a linear dispersion relation for the drift wave:

ω2 = k2
z v

�2
A

(
1 +

ω∗

ω

)
, (10)

where v�
2
A = (c2v2

A)/(c2 + v2
A).

In the limit ω � kzvA electromagnetic effects are not important and (10) reduces
to the dispersion relation of the electrostatic drift wave:

ω = −ω∗; (10a)

in the limit ω � ω∗ electromagnetic effects start to be important and (10) reduces
to the dispersion relationship of the Alfvén wave:

ω2 = k2
z v

�2
A; (10b)

see Fig. 1. Modulational interaction of magnetic cells and electromagnetic drift
waves analysis of the nonlinear equations.
Substituting in (7) the vector potential of the drift wave in the form

A(t)ei(ky y+kz z−ωt) ,

expressing jy from (8) and ϕ from (6) and saving nonlinear terms ∼vzBx coupling
the drift wave with the magnetic cell, we obtain the following final equation for the
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vector potential in the drift wave:

i(2ω + 3ω∗)
dA

dt
+ kzvze

c2

c2 + v2
A

(
ω∗ − ω2

ω2
ci

(ω + ω∗)
)

A = 0. (11)

In order to obtain a closed system of equations describing modulational interaction
of the drift waves and magnetic cells, it is necessary to use an equation for the
generation of magnetic cells by the nonlinear interaction of the drift waves. Since
the main input into the current is from field-aligned electron motion, the equation
for the vector potential in the magnetic cell a(t, x) can be written as

∇2a =
4πen0

c
v‖e . (12)

Evaluating the equation for the magnetic structure, we shall follow the treatment
of [3]. The equation of motion of electrons along the magnetic field can be written
as

me

(
∂

∂t
+

c

B0

∂ϕ

∂x

∂

∂y
− c

B0

∂ϕ

∂y

∂

∂x

)
v‖e = −eE‖, (13)

where we have calculated electron velocities transverse to the magnetic field in the
drift approximation the nonlinear term which serves as the driver for magnetic cells
is created by the drift wave.
The parallel component of electron current in the drift wave −env‖e can be

expressed as ∇2A. The magnetic field aligned component of the electric field can be
written as

E‖ = Ez +
E⊥B⊥
B0

= −1
c

∂a

∂t
− 1

B0

(
∂ϕ

∂x

∂A

∂y
− ∂ϕ

∂y

∂A

∂x

)
. (14)

Here, z is the direction of the ambient magnetic field and B̄⊥ is the perturbation
of the magnetic field created by the drift wave. Combining (13) and (14), we obtain
the following final equation for the vector potential in the magnetic cell:

∂

∂t
(1 − λ2

e∇2)a = − c

B0

(
∂ϕ

∂x
(1 − λ2

e∇2)
∂A

∂y
− ∂ϕ

∂y
(1 − λ2

e∇2)
∂A

∂x

)
,

λe =
c

ωpe
.

(15)

As usual, in modulational interaction we have two satellites of the test drift wave
coupled with the pump wave by the mode of the magnetic cell:

ϕ = ϕ0e
i(k0 y y+k0 z z ) + ϕ+(t)ei(k0 y y+k0 z z )eiκ0 x + ϕ−(t)ei(k0 y y+k0 z z )e−iκ0 x ,

a = 1
2 a(t)eiκ0 x + c.c.

(16)

From (11), we have the following set for the amplitudes of the drift wave satellites:

∂

∂t

(
ϕ+

ϕ−

)
= i

kz e

mec

(
a

a∗

)
f(ω)ϕ0 , (17)

where the following notation is used:

f(ω) =
ω∗

2ω + 3ω∗
v̆2
A

v2
A

− ω2

ω2
ci

ω + ω∗

2ω + 3ω∗ .
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Using (15) for the vector potential of the magnetic cell and the relationship (9)
connecting vector and scalar potentials in the drift wave, we have

∂a

∂t
=

c

B0

(ω + ω∗)2k2
y c2

ω2ω∗2 λ2
e

(
∂ϕ∗

∂y

∂

∂x
∇2ϕ − ∂ϕ∗

∂x

∂

∂y
∇2ϕ

)
. (18)

It follows from (18) that there is no coupling with the magnetic cell in a particular
case of a drift electrostatic wave (ω = −ω∗).
Linearizing the right-hand side of (18) over the amplitude of the probe wave and

using (17), we can write the following equation for the vector potential:

∂2a

∂t2
= ωce

c

2B2
0

(1 + (ω/ω∗))3

ω2ω∗2 v2
A

k2
y c

(1 + 2(ω∗/ω))
kzλ

2
e |ϕ0 |2ky

∂

∂x
∇2a

×
[

ω4

ω2
civ

2
A

+ ωω∗
(

1
c2 +

1
v2
A

)]
. (19)

Now let us consider nonlinear solutions developing as the result of modulational
interaction of magnetic cells and drift waves.
Assuming that the solution has a form of a traveling wave

a = a(x − ut), (20)

we obtain for a the following equation:

u2 da

dx
=

c2

2B2
0

(1 + (ω/ω∗))3

ω2ω∗2 v2
A

k3
y kzλ

2
e |ϕ0 |2

1 + 2(ω∗/ω)

(
ω4

ω2
civ

2
A

+ ωω∗
(

1
c2 +

1
V 2
A

))
d2a

dx2 . (21)

We can rewrite this equation as

β1
da

dx
= β2

d2a

dx2 ,

where the following notation is used:

β1 = 1
u2B2

0 ω2ω∗2

1kz |ϕ0 |2(1 + (ω∗/ω))3

1 + (2ω∗/ω)
v2
Ak2

y kzλ2
e |ϕ0 |2

,

β2 =
ω4

ω2
civ

2
A

+ ωω∗
(

1
c2 +

1
v2
A

)
.

(22)

Substituting the function a as a = w exp(−(β2/2β1)x), we obtain forw the following
equation:

d2w

dx2 +
β2

2

4β2
1
w = 0. (23)

We shall assume that the nonlinear velocity of traveling wave propagation in (20) is
a function of amplitude u = u0 +αa2 , α > 0. Then, if we assume that the condition
(β2/β1)x�1 is fulfilled, we are able to rewrite the last equation as

d2w

dx2 +
(

A − A
αw2

4u2
0

)
w = 0,
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Figure 2. Potential well for quasiparticle oscillations in (23).

with the following notation:

A =
β2

β0
1
,

β0
1 = β1

u2
0

u2 .

The above equation has an integral 1/2(dw/dx)2+V (w) = E, whereE is a constant,
corresponding to the nonlinear oscillations of a quasiparticle in the potential well
V (w) = Aw2 −B(w4/4), B = α/4u2

0 , as shown in Fig. 2. Those oscillations describe
a set of the magnetic cells with magnetic field polarity changing oppositely in every
cell; the valueE = A2/4B corresponds to the quasiparticle oscillations between two
turning points ±A/2B reached at infinity.
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