
J. Fluid Mech. (2019), vol. 859, pp. 566–585. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.839

566

A comprehensive model for predicting droplet
freezing features on a cold substrate
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Water droplet freezing affects many aspects of our daily lives, although there is no
comprehensive model which retrieves all of the experimentally observed features
when a liquid water droplet deposited on a cold substrate turns to ice. In this paper,
we present general governing equations to describe water droplet freezing on a solid
substrate by accounting for the physical properties of each phase present, namely the
liquid and ice, in addition to the solid substrate. The approach, which takes advantage
of the full mean curvature expression of both the droplet–air and liquid–ice interfaces,
disjoining pressure, the Gibbs–Thomson effect, natural convection and the substrate
thermal and physico-chemical properties, enables us to model a more realistic frozen
droplet shape, without a prior assumption for the freezing growth angle. In addition to
correctly predicting the freezing time, we capture both qualitatively and quantitatively
the key experimentally observed features during water droplet freezing such as volume
expansion, concave ice front and the cusp singularity. Furthermore, the proposed
equation for the tip angle seems to explain its experimentally observed variability.

Key words: drops, multiphase flow, icing

1. Introduction

Water droplet freezing is well known to significantly affect many practical situations
of our daily lives, especially in cold weather regions. In the aerospace industry, icing
is a central economic and safety issue, as ice formation on an aircraft wing increases
the drag while the ability of the airfoil to create lift is decreased. Conditions to
prevent ice formation and a better understanding of the physics governing the icing
phenomenon are highly intertwined, and are the focus of much current research
(Jung et al. 2012; Potapczuk 2013; Hao, Lv & Zhang 2014; Mohammadi, Tembely
& Dolatabadi 2017; Tembely, Attarzadeh & Dolatabadi 2018). In spite of the wide
range of applications, the numerical or theoretical modelling and validation of a
single water droplet freezing with all the features experimentally observed (Enríquez
et al. 2012), ranging from the curved freezing front to the cusp formation, are yet to
be fully addressed.

† Email addresses for correspondence: moussa.tembely@concordia.ca,
ali.dolatabadi@concordia.ca
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A comprehensive model for predicting droplet freezing 567

The challenge and the modelling complexity, under the continuum hypothesis, are
to capture the sharp moving solid–liquid interface across which the material properties
change. The first icing code model was developed by Messinger (1953); more recently
an extended Messinger model has been developed by Özgen & Canıbek (2008). The
early work on droplet spreading and solidification was carried out by Madejski
(1976). His analytical development provides an estimation of the spreading diameter
(or the degree of flattening) during solidification by combining the Stefan problem
(Carslaw & Jaeger 1959) and a simple radial flow assumption. His model, based on
an axisymmetric flow assumption of the velocity field, was improved in Delplanque
& Rangel (1997) using a more suitable approximation for both the velocity field and
the dissipation. These models applied to metals usually do not account for density
difference between the liquid and solid state. Actually, there are very few publications
addressing theoretically and/or numerically water droplet freezing apart from the
pioneering works by Anderson, Worster & Davis (1996) based on a geometrical
analysis which describes the cusp formation with a generalization relaxing the flat
solid–liquid interface condition in Schultz, Worster & Anderson (2001), and the
subsequent use of the thin film approach (Myers, Charpin & Chapman 2002; Myers
& Charpin 2004; Zadraz̆il, Stepanek & Matar 2006), and the boundary integral
technique (Ajaev & Davis 2003, 2004). Ajaev & Davis (2004) even showed, by
accounting for the Gibbs–Thomson effect, that a consistent solution of the governing
equation can be recovered using an arbitrary value for the contact angles at the
tri-junction point. However, in their model, the interactions of the droplet with a
substrate or the surrounding gas are neglected. In addition no comparison is provided
with respect to experiments. It is worth noting that extensive work has been performed
on defining the interface, based on the Stefan problem or crystallization kinematics
(Zhang et al. 2004), however the geometric approach inferring the shape of the
droplet is not considered.

The approach in Anderson et al. (1996) has been recently used by Snoeijer &
Brunet (2012) for analysing the singularity at the tip of a freezing water droplet,
yet the more challenging curved freezing front, the liquid (water) and solid (ice)
interface, is not considered nor is the interaction with the substrate as well as the
surrounding gas. However, recently, an interesting model by Marín et al. (2014) has
been proposed to address the tip formation by assuming the droplet to be thermally
isolated, and the local analysis of the tip formation suggests a universal behaviour
in terms of the tip cone angle and the angle between the freezing front and the
liquid–air interface. However, these models account neither for the heat transfer nor
for the droplet interaction with the substrate and the surroundings. In addition, more
importantly, no quantitative results and validations against experiment have been
provided regarding the transient evolution of a freezing droplet shape. Numerically,
droplet solidification is tackled by using the enthalpy formulation (Voller & Cross
1983; Voller & Prakash 1987; Pasandideh-Fard, Chandra & Mostaghimi 2002) and
the numerical artefact of penalization to discriminate between the liquid and ice
phases; the freezing growth angle is also another adjusting parameter considered in
order to approximate experimental droplet shapes (Virozub, Rasin & Brandon 2008).
Finally, it is worth noting the ongoing works on understanding supercooled water
droplet impact and freezing with the effect of the surroundings or impact on an
ice surface (Mohammadi et al. 2017; Schremb, Roisman & Tropea 2018; Tembely
et al. 2018), the freezing and transient evolution of the droplet exhibiting a density
contrast between ice and liquid is still to be fully addressed. However, our current
approach on equilibrium solidification may pave the way for a better understanding
and modelling of a supercooled droplet.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

83
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.839


568 M. Tembely and A. Dolatabadi

z
r

dw

Tw

Substrate

h

s

(®l CPl kl)
(®s CPs ks)

FIGURE 1. (Colour online) Geometry of the physical system of a freezing droplet on a
cold substrate.

The present paper aims to develop a theoretical and numerical approach based on a
one-dimensional approximation to model water droplet freezing on a cold solid surface.
The formulation, in addition to shedding light on the mechanism of droplet freezing,
extends the use of thin film model, used in many icing codes in the aerospace industry,
beyond its conventional domain of applicability. The paper is organized as follows.
In § 2 governing equations based on mass, momentum and energy conservation are
derived by incorporating effects such as the disjoining pressure, full mean curvature,
the contrast in physical properties between the (liquid) water and ice along with the
Gibbs–Thomson effect, as well as the substrate properties. In § 3, the results and
validation of the approach are detailed along with a sensitivity study of the model.
Finally, conclusions are drawn in § 4.

2. Governing equations
We consider the freezing of a sessile droplet on a uniformly cooled substrate

(figure 1). The liquid/gas interface is described by the profile h(r, t), whereas the
freezing front evolution is given by s(r, t). The droplet is deposited on a substrate
with an equilibrium angle θE, which may be reached when the droplet spreads towards
its equilibrium state. The substrate on which the droplet is seated is maintained at
a constant temperature, TW , from the bottom side. The substrate has a thickness
of dW , and thermal conductivity of kW . Since this work is concerned with phase
change, the model accounts for the physical properties for each phase present,
namely, the density (ρl, ρs), thermal conductivity (kl, ks) and heat capacity (CPl,
CPs), which are different for the (liquid) water and (solid) ice phases. The previous
assumptions make the simulation more challenging and require accounting for the
physics governing the phase change in order to capture the details of droplet freezing.
In addition, the model should be able to capture both the droplet shape as well as the
freezing front evolution. To be general the governing equations will be derived in a
three-dimensional configuration before focusing on the two-dimensional axisymmetric
case for application. The liquid/gas interface is described by the profile h(x, y, t),
whereas the freezing front evolution is given by the s(x, y, t). The model will be
based on the long range approximation, derived from the Navier–Stokes equations,
and the maintaining of the droplet at equilibrium is dealt with using a precursor film
approach along with an adequate disjoining pressure.

2.1. Navier–Stokes equations
The liquid, assumed incompressible of density (ρl), surface tension (γl) and viscosity
(µl), evolves following the mass and momentum conservation equations, which are
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A comprehensive model for predicting droplet freezing 569

given by the Navier–Stokes equations as follows:

∇ · v = 0, (2.1)

ρl

(
∂v

∂t
+ (v · ∇)v

)
=−∇p+µl∇

2v + ρlg sin αi− ρlg cos αk, (2.2)

where v is the velocity, g is the gravitational acceleration; for generality the substrate
may be tilted by an angle α.

In addition to the fluid flow equations, the energy conservation equation has to be
solved through both the solid substrate and the droplet. The phase change is accounted
for by the coupling at the (water) liquid/ice interface which makes it possible to
describe the freezing front evolution.

2.2. Energy conservation equation
The heat transfer equations within the droplet for both liquid and solid phases, as
depicted in figure 1, can be written as

ρJCPJ

(
∂T
∂t
+ (v · ∇)T

)
= kJ∇

2T J = l, s, (2.3)

where the subscripts l, s stand for liquid and solid phases, respectively.
Under the long range approximation, these equations result in the Laplace equation,

where thermal conduction is the main driving heat transfer mechanism. Regarding the
heat transfer under phase change, this can be further justified by the fact that, based
on the characteristic temperature difference 1T , for example between the droplet and
the substrate, the number 1TCPl/Lf � 1, where CPl, Lf are the specific and latent
heat of fusion, respectively. In other words, the transient heat conduction is negligible
compared to the freezing front advance, as pointed out in Ajaev & Davis (2003).
Finally, for both liquid and ice, and neglecting the transient contribution, the energy
equation can be simplified as follows: for the solid (ice) phase,

∇
2Ts = 0, (2.4)

and for the liquid phase,

ρlCPl(v · ∇)T = kl∇
2T. (2.5)

The advection term kept in the liquid heat transfer equation will be detailed later
on when accounting for the effect of the density contrast between the liquid and solid
(ice) phases.

The coupling between (2.1), (2.2) and (2.4), (2.5) will be performed under the
lubrication approximation. Hence, the momentum equations (2.2) can be simplified
assuming that the inertial effect is negligible, and can be rewritten by taking
v = (u,w), with the velocity horizontal components u= (u, v) on the substrate plane
and a perpendicular component w. In the case of a droplet under the lubrication
approximation, the contact angle should be relatively low (<65◦); therefore, our
model is mainly valid for the hydrophilic configuration, even though an extension
proposed in the present work makes it possible to handle droplet aspect ratios (H0/R0)
close to 1 (≈90◦). Under these hypotheses, the lubrication approximation, also known
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as the long range or thin film approximation, can be applied (Oron, Davis & Bankoff
1997; Alleborn & Raszillier 2004) and the Navier–Stokes equations (2.1), (2.2) can
be simplified as follows:

∇̃ · u+
∂w
∂z
= 0, (2.6)

0=−∇̃p+µl
∂2u
∂z2
+ ρlg sin αi, (2.7)

0=−
∂p
∂z
− g cos α, (2.8)

where ∇̃• = (∂ • /∂x, ∂ • /∂y) stands for the planar gradient.
Integrating the pressure (2.8) with respect to z leads to p=−g cos αz+ const. and,

on the other hand, applying the Young–Laplace boundary condition at the liquid–air
interface and accounting for the disjoining pressure Π , one can express the pressure
as follows:

p(h+ s)=−γ κ + P0 −Π, (2.9)

where κ corresponds to the curvature at the droplet surface, P0 is the atmospheric
pressure, and Π corresponds to the disjoining pressure. The disjoining pressure is
present owing to the precursor film, therefore (i) avoiding the singularity at the triple
line and (ii) maintaining the droplet at equilibrium on the precursor film with a well-
defined contact angle. At the molecular level, this disjoining pressure arises from the
molecular interaction between the two interfaces, namely solid–liquid and liquid–gas.
Finally, one can find the expression for the pressure within the droplet as

p=−g cos α(h+ s− z)− γ κ −Π + P0. (2.10)

By inserting the pressure equation in (2.7) and integrating twice with respect to z
between [s, h+ s], we retrieve the quadratic velocity profile:

µu=−∇̃P+ ρlg sin αi(z− s)
[

z− s
2
− h
]
, (2.11)

where P = −g cos β(h + s) − γ κ − Π . This equation is derived under the no-slip
condition at the liquid–ice interface z = s, u = 0, and the vanishing shear stress at
z= h+ s, µl∂u/∂z= 0. Finally, one can deduce the average velocity over the liquid
thickness defined as

U=
1
h

∫ h+s

s
u dz=−[−∇̃P+ ρlg sin αi]

h2

3µ
. (2.12)

Knowing the velocity field in the liquid phase, we can now turn to the continuity
equation of the freezing droplet. Integrating equation (2.6) with respect to z between
[s, s+ h], we find ∫ s+h

s
∇̃ · u dz+w|z=h+s −w|z=s = 0. (2.13)

Using the Leibniz integral rule,∫ s+h

s
∇̃ · u dz= ∇̃.

∫ s+h

s
u dz− [u∇̃(h+ s)|h+s − u∇̃s|s], (2.14)
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and using the definition of U from (2.12) and the no-slip condition at the liquid–ice
interface u|s ≡ 0, equation (2.14) can be simplified as∫ s+h

s
∇̃ · u dz= ∇̃.(hU)− u∇̃(h+ s)|h+s, (2.15)

and finally noting that the kinematic boundary condition at the top of the droplet can
be expressed as

w|z=h+s =
d
dt
(h+ s)=

∂

∂t
(h+ s)+ u∇̃(h+ s), (2.16)

then by combining (2.13) and (2.15) into (2.16), the continuity equation can be
rewritten as follows:

∂

∂t
(h+ s)+ ∇̃ · (hU)=w|z=s. (2.17)

The right-hand side in (2.17) to be determined is the freezing front vertical speed
w|z=s, which will be expressed by exploiting the mass and energy conservation at the
interface between ice and liquid, as detailed below.

2.3. Mass conservation at the freezing front
The conservation of mass between the liquid and solid phases leads to

ρl(vl − vi) · n= ρs(vs − vi) · n, (2.18)

where the velocity of the solid (ice) phase is assumed to be zero, vs≡ 0. The normal
unit vector at the interface n= (−∂xs,−∂ys, 1), and the interface velocity is given by
vi = (0, 0, ∂ts), hence (2.18) can be rewritten as

ρl(−u∂xs− v∂xs+w− ∂ts)=−ρs∂ts, (2.19)

which can be further simplified by using the no-slip condition at the interface u≡ v
≡ 0:

w|z=s =

(
1−

ρs

ρl

)
∂s
∂t
. (2.20)

We can see that when ρs/ρl < 1, there would be an expansion, and the induced
velocity to the liquid phase due to expansion is positive.

Finally, inserting (2.20) in (2.17), one obtains the lubrication equation accounting
for the phase change as follows:

∂h
∂t
+ ∇̃ · (hU)=−

ρs

ρl

∂s
∂t
. (2.21)

The source term on the right-hand side describes the conversion between ice and
liquid phases during the freezing process: an increase of the ice front leads to a
decrease of the liquid, and that conversion rate is controlled by the ratio of the ice
and liquid density.
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2.4. Energy conservation at the freezing front
In addition to the mass conservation, energy conservation at the interface has to be
applied to close the problem. At the interface, the energy balance through conduction
and phase change is written as

ρlHl(vl − vi) · n− kl∇T · n= ρsHs(vs − vi) · n− ks∇T · n. (2.22)

Accounting for the properties of both ice and solid, the enthalpy jump at the
interface corresponds to 1H = Hl − Hs, with the enthalpies Hl = CPlTm + Lf and
Hs = CPsTm of the liquid and solid, respectively, with phase change occurring at a
definite temperature (Tm). Assuming the heat transfer is dominant in the z-direction
with the following condition satisfied, ∂xT∂sx ∝ ∂yT∂sy� ∂zT , equation (2.22) can be
expressed as

[ρsLf + (ρlCPl − ρsCPs)Tm]
∂s
∂t
= ks

∂Ts

∂z
− kl

∂Tl

∂z
. (2.23)

Equation (2.23) requires solving the heat transfer equation for both the liquid and
ice phase. As previously indicated in § 2.2, these equations reduce to the Laplace
equation, quasi-steady approximation, which will be solved in the z-direction. The
quasi-static temperature distribution provides a reasonable approximation as long as
CPl1T < Lf .

2.5. Equilibrium temperature at freezing front: Gibbs–Thomson relation
Interfacial surface tension and the curvature affect the equilibrium temperature at the
interface between the ice and liquid following the Gibbs–Thomson relation with the
correction below for the melting temperature:

Teq = Tm

(
1−

γSLκs

ρsLf

)
, (2.24)

where γSL is the interfacial energy between ice–liquid, κs the curvature at the freezing
front s. Therefore the boundary condition for the temperature is expressed as

Tl = Ts = Teq at z= s. (2.25)

It is worth noting that in (2.23), the prefactor on the left-hand side term has been
approximated as (ρlCpl − ρsCps)Tm(1 − Γ κ) ≈ (ρlCpl − ρsCps)Tm, since Γ = γSL/ρSL
and ρlCpl − ρsCps are usually small for water.

Knowing the melting temperature at the liquid/solid interface, the heat flux can be
evaluated considering the thermal resistance of the substrate, dW/kW , and the solid
(ice), s/ks, along with the thermal contact resistance, rc, assumed between the liquid
and the substrate figure 2. This contact resistance imposes a flux of q= (TW − T)/rc
at z= 0, on the substrate. From these considerations, one can deduce the flux at the
liquid–ice interface, z= s, as follows:

qs =−ks
∂Ts

∂z
=−ks

Teq − TW

s+ dWks/kW + ksrc
, (2.26)

where TW is the temperature imposed at the bottom of the substrate located at
z=−dW .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

83
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.839


A comprehensive model for predicting droplet freezing 573

h

s

dw

Tm

Gas (air)

Liquid

Solid (ice)

Substrate

rc

FIGURE 2. (Colour online) Schematic of the heat transfer model.

In order to find the heat flux from the liquid ql=−kl∂zT , we have to solve the heat
transfer equation in the liquid phase:

ρlCPlws
∂T
∂z
= kl

∂2T
∂z2

. (2.27)

Under the quasi-static approximation, neglecting ρlCPl∂tT as previously explained, and
taking the value for the moving interface given by (2.20), ws = (1− ρs/ρl)ṡ, we can
deduce the equation to be verified by the temperature field within the liquid phase as

∂2T
∂z2
−
ρl − ρs

ρlαl
ṡ
∂T
∂z
= 0, (2.28)

where the liquid thermal diffusivity is αl= kl/ρCPl. This equation is slightly different
from Laplace’s equation due to the contribution of the density difference. A similar
contribution accounting for the density contrast between the solid and liquid phases
can be found in Carslaw & Jaeger (1959) regarding the change of volume of the
Stefan problem.

In addition to (2.25), the second boundary condition, neglecting the evaporation, is
the heat transfer at the liquid interface between the droplet and the surrounding air,
which is assumed to follow Newton’s law of cooling as follows:

− kl
∂T
∂z
= hTc(T − T̃a). (2.29)

T̃a is the surrounding temperature at the top of the static droplet, and hTc is the heat
transfer coefficient, which may account for the cooling of the initial (relatively hot)
deposited droplet on the substrate before freezing. Since before depositing the droplet
there is a thermal equilibrium between the substrate at TW and the atmosphere at
Ta, the temperature of the surroundings relevant for heat transfer between the droplet
and the air that we consider is the one situated at a distance from the substrate
corresponding to the height (H0) of the droplet, which we denote by T̃a. It is worth
noting that this configuration is different from the convection resulting from plunging
a solid sphere into a fluid at a given temperature; the deposited droplet case is
different due to the presence of the substrate on which the temperature field depends.
The difficulty in estimating the correct value of hTc is well known and discussed in
the literature. The correlations provided in the literature, for instance in the case of a
sphere, do not apply to our configuration of a deposited droplet on a cold substrate.
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In order to compare our results with the experiment, one numerically determines hTc

along with T̃a (see appendix A for details). It is worth noting that the determination
of this coefficient may affect the usability of the present model.

After solving (2.28), via the boundary conditions (2.25) and (2.29), one finds that
the liquid heat flux in (2.23) is expressed as

ql =−kl
∂Tl

∂z
=

−ψklhT(Ta − Teq)

hT(exp(ψh)− 1)+ψkl exp(ψh)
, (2.30)

where we set for simplicity ψ = ((ρl − ρs)/ρlαl)ṡ, with ṡ= ∂s/∂t.
Combining (2.26) and (2.30) into (2.23) leads to

ρsL̃f
∂s
∂t
= ks

Teq − TW

s+ dWks/kW + ksrc
−

ψklhT(Ta − Teq)

hT(exp(ψh)− 1)+ψkl exp(ψh)
, (2.31)

where we denote the effective latent heat L̃f = Lf + Tm(ρlCpl − ρsCps)/ρs. The
solidification models in the literature do not account for this effect, which should
not be neglected since it corrects the latent heat by approximately a factor of 3.
Furthermore, that correction could become important when investigating the droplet
freezing time, as sought in the present work. Besides, we can simplify (2.31), noting
that ψh� 1, i.e. the contribution to the advection due the density contrast is low.

2.6. Dimensionless general equations for droplet freezing
In order to apply the model to the investigation of water droplet freezing, the
governing equations will be expressed in cylindrical coordinates (r, z) and in
dimensionless form for convenience. Therefore from (2.21), we deduce

∂h
∂t
+

1
r
∂

∂r
(rhU)=−ρ

∂s
∂t
, (2.32)

U=−h2Bp
∂P̃
∂r
, (2.33)

where Bp = γH0
3tc/3µR0

4 and the density ratio ρ = ρs/ρl. The coordinate r is scaled
by the droplet initial radius R0, and the heights h and s are scaled by the droplet initial
height H0, while the temperature is scaled by 1T = Tm − TW , with Tm the melting
temperature of water. It is worth noting that, even if the basal radius of the droplet is
constant, the droplet–air interface is subject to change during the freezing process; and
the description of the droplet evolution equation, equation (2.32), is essential for the
numerical model to track the droplet–air interface from the onset of freezing to the tip
formation. Regarding the modelling of droplet freezing, two time scales are involved:
the first one (tS) is related to droplet deformation while the freezing is concerned with
the second one (tF). These two time scales are given by

tS =
3µR4

0

γH3
0

and tF =
ρsL̃H2

0

ks1T
. (2.34a,b)

The two characteristic times are relevant since the modelling is concerned with the
freezing of a (deformable) droplet, as opposed to a static object. Only tF would have
been relevant if the freezing had to be performed on a static configuration such as
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in the case of the Stefan problem. Therefore, we introduce tc, which combines the
two time scales for the modelling of the freezing droplet and defines it as the product
between the two characteristic times as

t2
c =

3µR4
0

γH3
0

ρsL̃H2
0

ks1T
=

3µρsL̃R4
0

γ ksH01T
. (2.35)

The time scale tc = (3µρsL̃f R0
4/(γ ksH01T))

1/2
combines both the visco-capillary

time scale tS = 3µR0
4/γH0

3 and the time scale of the freezing process tF =

ρsL̃H0
2/ks1T . This is the time scale that accounts for the physics of our problem

and is the one adopted throughout our modelling for droplet freezing. It is worth
noting that the constant Bp, which overall represents the visco-capillary contribution
during the freezing process, is quite dependent on our choice of the characteristic
time scale. For example, by choosing tc = tS, i.e. the time is measured in the unit
of the spreading time scale, then Bp = 1, and one retrieves the classical form for
modelling droplet spreading under the lubrication approximation (Schwartz & Eley
1998).

In order to have a similar droplet shape to the experiment, the expression of the
full mean curvature in the capillary and disjointing pressure contribution is adopted,
which enables our model to extend the one-dimensional approximation beyond the
leading-order asymptotics. By doing so, the equilibrium shape of the droplet can be
retrieved as a spherical cap. The use of the full mean curvature in the one-dimensional
analysis is a powerful tool to capture the nonlinear dynamics of interfacial flows, as
demonstrated in Eggers (1993), Eggers & Dupont (1994) and Tembely et al. (2012).
It is worth noting that, traditionally, the thin film model for modelling droplet
spreading does not make use of the full mean curvature expression, as applied
in the present work (2.36). For a partially wetted surface, a disjoining pressure
accounting for the intermolecular force is added to the static pressure inside the
droplet (O’Brien & Schwartz 2002; Bonn et al. 2009). Here the two-term disjoining
pressure, corresponding to a Lennard–Jones interaction potential (n = 9, m = 3), in
agreement with the Frumkin–Derjaguin model (Schwartz & Eley 1998) relating the
static contact angle to interfacial energies, is used for the substrate wettability. The
disjoining pressure prevents the thin film from thinning below the prescribed thickness
h∗. Taking the full mean curvature yields the pressure contribution term as follows:

P̃=−
1
r
∂

∂r
r(∂rh+ ∂rs)

[1+ ε2(∂rh+ ∂rs)2]
1/2 −Π, (2.36)

with ε = H0/R0, and Π = A[(h∗/h)n − (h∗/h)m] with A = (1 − cos θE)(n − 1)(m −
1)R0

2/h∗(n−m)H0
2.

The disjoining pressure serves to maintain the droplet at the equilibrium position
while the freezing front advances. It has little effect on the tip singularity as long as
h∗ is small. At isothermal conditions, a higher value of h∗ causes the droplet to spread
more (Schwartz & Eley 1998).

Finally, accounting for the properties of the liquid water, ice and substrate, the
enthalpy jump at the interface, equation (2.31), leads to the following evolution
equation for the freezing front in dimensionless form:

∂s
∂t
= Ste

[
1−GT

s+W + ksRc/H0
− λ

Bi(ϑa +GT)
Bih+ 1+ψh

]
, (2.37)
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ρ = ρs/ρl Density ratio
λ= kl/ks Thermal conductivity ratio
W = dWks/H0kW Dimensionless parameter for the substrate thermal resistance
Ste= tcks1T/ρsL̃f H0

2 Dimensionless Stefan number
1T = Tm − TW Temperature scale
Bi= hTcH0/kl Biot number
ϑa = (Ta − Tm)/(Tm − TW) Temperature ratio

TABLE 1. Main dimensionless numbers used in the model.

with ϑa = Ta − Tm/(Tm − TW) and λ = kl/ks, while the Stefan number is defined as
Ste = tcks1T/ρsL̃f H0

2, and the Biot number Bi = hTcH0/kl. A summary of the main
dimensionless parameters of the model is given in table 1. It is worth noting that a
modified latent heat L̃f = Lf + Tm(ρlCPl − ρsCPs)/ρs is used in Ste, which is often not
considered in the literature of solidification models. Neglecting the density and heat
capacity contrast in L̃f results in underestimating its value by almost a factor of three.
Consequently, this effect is essential in order to accurately predict the water droplet
features and freezing time, as considered below. In addition to the ratio of thermal
conduction resistances of the substrate and the droplet W=dWks/H0kW , equation (2.37)
includes the effect of the velocity induced during phase change, ψ = (ρl − ρs)ṡ/ρlαl,
as a result of the density contrast between the liquid and ice.

Finally, the Gibbs–Thomson effect, termed GT in (2.37), yields

GT =
(γLS/ρsL̃)TmH0

R0
21T

1
r
∂

∂r

(
r∂rs

[1+ ε2(∂rs)2]
1/2

)
. (2.38)

The GT contribution mainly serves to ensure the convergence and stability of the
numerical solution, while its actual effect on the freezing seems to be marginal.

The previous nonlinear PDEs, equations (31)–(34), are implemented and solved
using the method of lines suitable for stiff initial value and nonlinear problems. The
UMFPACK linear solver and a maximum backward differentiation formula (BDF)
order of 5 are used since these methods have been shown to be efficient to solve such
initial value stiff nonlinear partial differential equations (Sellier & Panda 2010). On
the boundary of the domain, the following conditions are imposed: ∇P · n=U · n= 0.
In one dimension, the mesh line between 0 and 2.5 is meshed with 1920 elements,
and the precursor film thickness is taken as h∗ = 0.006, which is found to be a good
compromise between numerical accuracy and computational cost, while a Heaviside
function is used to prevent precursor film freezing. When the droplet is assumed to
be a spherical cap, the equation for the initial profile in dimensionless form h0(r) is
expressed as follows:

h0(r)=

√
R̃

H2
0
−

(
R0

H0

)2

r2 −
R̃−H0

H0
, (2.39)

where R̃ = (H2
0 + R2

0)/2H0, and the initial contact angle is given by tan θ0 =

2H0R0/(R2
0 −H2

0). Note that the spherical cap approximation is fully valid as long as
the Bond number Bo= ρgH2

0/γ < 1, or the droplet initial height (H0) is less than the
capillary length.
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Value SI

CPl 4220 J kg−1 K−1

CPs 1020 J kg−1 K−1

dW 1.5× 10−3 m−1

γ 70× 10−3 N m−1

γLS 20× 10−3 N m−1

hC 462 W m−2 K−1

kl 0.57 W m−1 K−1

ks 2.18 W m−1 K−1

kW 109 W m−1 K−1

Lf 3.34× 105 J kg−1

rc 10−6 W−1 m2 K
Ta 293.5 K
Tm 273 K
µl 10−3 Pa s
ρl 1000 kg m−3

ρs 900 kg m−3

θE 70◦ —

TABLE 2. Parameters of the simulations.

3. Results and discussion
3.1. Droplet freezing modelling

We investigated water droplet freezing at equilibrium on a cold solid substrate by
solving the coupled PDEs (2.32)–(2.38). The model predictions are compared with
one of the most detailed experimental results (to the best of our knowledge) of water
droplet freezing, that reported in Hu & Jin (2010). A 500 µm diameter droplet is
deposited on a brass substrate of 1.5 mm thickness maintained at −2 ◦C by circulating
nitrogen gas. The use of the molecular tagging thermometry techniques (TAG) enabled
the authors to quantify the water droplet freezing phenomena, including the freezing
front shape along with the volume expansion. The parameters used in the model are
given in table 2.

In figure 3, the initial and final shapes of the frozen droplet are depicted both
numerically and experimentally. The prediction of our model captures the main
features of droplet freezing, such as the volume expansion and the pointy tip
formation, with the tip angle at approximately 128◦, close to the 130◦ found by Marín
et al. (2014). However, this angle is subject to variability, which is rationalized below.
It is worth noting that, initially, under our one-dimensional approximation the droplet
is taken as a spherical cap, which is a good approximation due to the millimetre size
of the droplet (less than the capillary length); by this choice, the governing equations
(i.e. (2.32)–(2.38)) are also satisfied as a result of taking the full mean curvature (see
(2.36)).

The evolution of the concave freezing front with time during the freezing is also
evidenced, as highlighted in figure 4. This concave ice front is one of the features
of water droplet freezing on a hydrophilic surface and is well captured by our model.
Importantly, the pointy ice tip is also well retrieved.

The tip singularity, which our model retrieves, has remained a challenge in
modelling solidification of water droplets. Towards the end of the solidification
time (Ts), the interface shape changes and the cusp singularity appears once the
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FIGURE 3. (Colour online) Experimental results (symbols) and theoretical prediction (solid
line) of the initial and final, cusp-like, shape of a freezing water droplet on a solid
substrate. The experimental results are from Hu & Jin (2010) who used the molecular
tagging thermometry techniques (TAG) for water droplet freezing. In addition, the tip
angle, of approximately 128◦, is found to be in agreement with the recent finding in Marín
et al. (2014).
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FIGURE 4. (Colour online) Evolution of predicted transient profile of a freezing droplet on
a cold substrate at different times 0.2Ts, 0.4Ts, 0.6Ts and Ts, where Ts is the solidification
time of the droplet.

entire droplet has turned to ice. This singularity is the result of the upward liquid
expansion during the freezing process, which ultimately focuses on the tip of the
droplet, leading to the pointy ice shape. In addition, it is worth noting that the
unfrozen liquid part within the droplet keeps its spherical cap shape thanks to the
surface tension along with the adopted full mean curvature expression.

One of the interesting parameters in droplet freezing is the solidification time,
which could determine the type of ice formation, glaze or rime ice. We tested the
predictive capability of our approach regarding the effect of substrate temperature on
the freezing time following the same range as in Hu & Jin (2010). Using the physical
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FIGURE 5. (Colour online) Effect of the substrate temperature on the freezing time.

and geometrical parameters in table 2, the comparisons between the proposed model
and the experiments are very satisfactory over the range of temperatures from −2 ◦C
to −5 ◦C as shown in figure 5. The analysis indicates that the substrate temperature is
the main parameter which controls the droplet freezing time. A correlation shows that
the evolution of the freezing time versus the substrate temperature follows a trend
in line with the finding in Hu & Jin (2010). Interestingly, from (2.35), the choice
of the freezing time Ts ∝ 1/1T yields the freezing front evolution to be precisely
an inverse function of the substrate temperature, in line with the experimental data
(Ts = 60.421T−0.94). It is worth noting that the accuracy in predicting the freezing
time is highly related, as previously explained in § 2, to the fact that a modified latent
heat (L̃f ) is used in the model. In addition to the operating parameter TW , the Stefan
number (Ste), based on the physical properties of the droplet, is another influencing
parameter which can control water droplet freezing. In fact, the rate of phase change
during the solidification phenomenon can be represented by the Stefan number, i.e.
the ratio of sensible to latent heats; and we obtain in figure 6 a linear correlation
between the freezing time and 1/Ste.

Finally, in contrast to the substrate temperature, which has little effect on the
freezing droplet features except the freezing time (see figure 7a), the interaction
between the solidifying droplet and the surrounding medium is influenced by both
the Biot number (Bi) and the temperature of the surroundings. The typical effect
of Bi on the freezing front shape is illustrated in figure 7(b). The right-hand side
corresponds to a Biot number 20 times higher than the one on the left-hand side. The
higher the Biot number or the heat transfer rate between droplet and surroundings,
the more concave upwards is the freezing front. At lower Biot number, the outer
droplet surface can be considered as adiabatic and there is no heat flux entering
through it, therefore the temperature gradients inside the droplet are small. However
at high Bi number, the heat is evacuated at a higher rate through the droplet–air
interface, which becomes cooler than the centre of the droplet; the freezing front then
follows a curved isotherm freezing line. In addition, the simulation shows that the
global shape of the droplet can be very much affected by the droplet heat transfer to
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FIGURE 6. (Colour online) Numerical simulation of the freezing time with respect to
the inverse Stefan number 1/Ste. The inset corresponds to the freezing front evolution
at different Stefan numbers.
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FIGURE 7. (Colour online) Comparative simulations of the effect of (a) temperature on a
freezing droplet of aspect ratio H0/R0= 0.5 and (b) the impact of the interaction between
the droplet and atmosphere, as observed through the Biot number (Bi), on the freezing
front shape at different stages of droplet freezing (H0/R0 = 0.71). The reference case
corresponds to Bi0 = 0.4. The temporal sequence, Tf /20, is similar in each comparative
case.

the surrounding atmosphere; the frozen droplet shape at lower Bi shows an inflection
while this feature seems absent from the case of higher Bi number. Furthermore, due
to heat exchange between the droplet and the surroundings, the freezing front is no
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longer perpendicular to the interface. This finding suggests that the tip formation
universality (Marín et al. 2014) may not hold when accounting for the interaction
with the surroundings, and this may explain the variability observed experimentally
in the value of the frozen droplet tip angle in Marín et al. (2014).

3.2. Rationalizing the tip angle variability
Finally, based on our model, we propose to address and rationalize the variability
observed in the tip angle of the frozen liquid water droplet (Marín et al. 2014). We
provide below the derivation of the tip angle evolution, from (2.32):

∂h
∂t
≈−ρ

∂s
∂t
, (3.1)

which leads after integration, to h=−ρs+ const. Initially the droplet shape is h0(r)
while s= 0, so there is no ice formation yet, therefore h(r, t)=−ρs(r, t)+ h0(r). On
the other hand, since the interface angle is given by ∂r[h+ s]=−tan θ , one can deduce

h′0 + (1− ρ)s
′
=−tan θ. (3.2)

In order to describe the evolution of the tip angle at the final stage, one makes use
of the freezing front evolution equation (2.37), neglecting however the GT effect and
the induced velocity due the freezing, deriving with respect to r:

∂s′

∂t
= Ste

[
−

s′

(s+$)2
+ λ

B2
i ϑah′

(Bih+ 1)2

]
. (3.3)

For simplicity, we set $ = dwks/h0kw + ksrc/h0.
Close to the final stage of freezing, r→ 0, h→ 0, s→ 1/ρ, since h0(r→ 0) = 1

and h′0(r→ 0)= 0:

∂s′

∂t
= Ste

[
−

s′

(1/ρ +$)2
+ λB2

i ϑah′
]
. (3.4)

Finally the equation satisfied by s′ is expressed as follows:

∂s′

∂t
=−Ste

[
1

(1/ρ +$)2
+ ρλB2

i ϑa

]
s′. (3.5)

Noticing that close to the tip, (1−ρ)s′=−tan θ , and by setting ξ = tan θ , the following
equation can be written:

∂ξ

∂t
=−Ste

[
1

(1/ρ +$)2
+ ρλB2

i ϑa

]
ξ, (3.6)

which can be readily solved as

ξ =C exp
[
−Ste

(
1

(1/ρ +$)2
+ ρλB2

i ϑa

)
t
]
. (3.7)
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Furthermore, close to the final stage r→0, t− ts→0, the tip angle can be expressed
by αtip =π− 2ξ , while ξ = tan θ verifies the following equation:

ξ = ξ0

[
1+ Ste

(
1

(1/ρ +$)2
+ ρλB2

i ϑa

)
(ts − t)

]
, (3.8)

where ξ0 corresponds to the tip angle at the final freezing time Ts, while for simplicity
we set $ = dWks/h0kW + ksRc/h0.

Interestingly, equation (3.8) may rationalize as well the seemingly uncorrelated
result of figure 2(b) in Marín et al. (2014), where an increase of the contact
angle or height-to-radius aspect ratio seems to induce a higher tip angle. In
fact, by combining both the aspect ratio and the substrate temperature effects,
the prefactor in (3.8) seems to predict qualitatively the correct change in the
tip angle. In fact, based on the operating conditions, aspect ratio and substrate
temperature in figure 2(b) from Marín et al. (2014), the prefactor calculation leads to
ξH/R=0.46,1T=20.8C = 2.6 > ξH/R=1.16,1T=44.1C = 1.1 > ξH/R=4.96,1T=34.4C = 1.0, equivalently
the tip angle αH/R=0.46,1T=20.8C < αH/R=1.16,1T=44.1C < αH/R=1.16,1T=44.1C. As can be
inferred by (3.8), the interplay between all the physical parameters may rationalize
the reason for the variability observed experimentally. It is worth noting that our
approach, based on a scaling argument, can only provide qualitative results regarding
the tip angle variability.

4. Conclusions

To conclude, we developed a comprehensive approach to the modelling of water
droplet freezing on a cold solid substrate. The model is based on a one-dimensional
approximation which accounts for the droplet interaction with both the substrate
and the surrounding air. The governing equations are based on mass, momentum
and energy conservation; and the droplet freezing is accurately modelled – without
any prior assumption on the freezing growth angle – by incorporating effects such
as the disjoining pressure, modified latent heat, full mean curvature expression, the
Gibbs–Thomson effect, natural convection and substrate thermal and physico-chemical
properties. In contrast, the physical properties of both ice and (liquid) water are used
and this enables us to retrieve the main features of a freezing droplet. In addition
to the freezing time, the model predicts water droplet expansion during freezing as
well as the cusp singularity. The characteristic concave ice front for a freezing water
droplet is also retrieved. In addition, the solidification time, which controls the type
of ice, is found to evolve exponentially with the temperature. Finally, an explicit
equation rationalizing the tip angle is derived and seems to explain its experimentally
observed variability. The findings will have an impact on both academic and industrial
approaches for accurately modelling icing phenomena.
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Appendix A. Numerical determination of the heat transfer coefficient

The continuity, momentum and heat transfer equations to be numerically solved in
the volume of fluid (VOF) formulation are

∇ ·V = 0, (A 1)
∂(ρV)
∂t
+∇ · (ρVV)=−∇p+ γ κ∇α +∇ · (µ∇V), (A 2)

∂(ρCpT)
∂t

+∇ · (ρCpTV)=∇ · [∇(kT)]. (A 3)

In (A 2), the continuum surface force (CSF) method of Brackbill, Kothe & Zemach
(1992) is used to model the surface tension as a body force acting only on interfacial
cells, and the mean curvature at the interface is given by

κ =−∇ ·

(
∇α

|∇α|

)
. (A 4)

The phase fraction transport equation using the interface compression method
proposed in Rusche (2003) is expressed as follows:

∂α

∂t
+V∇α +∇ · [Vcα(1− α)] = 0. (A 5)

The governing equations are implemented in C++/OpenFOAM, and the simulations
(in axisymmetric geometry) are performed in parallel. The pressure implicit with
splitting of operators (PISO) algorithm is used to calculate the pressure and velocity
fields while the energy conservation equation is solved using a preconditioned
bi-conjugate gradient technique; further details can be found in Tembely et al. (2018).
The total heat transfer at the initial stage is deduced from a type of Newtonian
cooling law,

T(t)= Ta +1T0 exp(−t/τ), (A 6)

where the initial temperature difference between the droplet and the surroundings is
1T0=Tdi− T̃a, while the time constant τ = ρlVdCPl/hTiAd, with Vd and Ad the volume
and surface area of the droplet, respectively. Finally, one can deduce the temperature
T̃a and the total heat transfer coefficient hTi at the initial stage, making use of τ
from the slope of the graph in figure 8. While from the heat flux through the droplet
interface, the local heat transfer coefficient is computed as

h̃CONV(l)= kl
∂T
∂n

(
1

T − T̃a

)
, (A 7)

and the average value expressed over the interface length ld as

hC =
1
ld

∫ ld

0
h̃CONV(l) dl. (A 8)

Finally, one finds the heat transfer coefficient hC ≈ 462 Wm−2 K−1.
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FIGURE 8. (Colour online) Numerical simulation for determining the heat transfer
coefficient from a 500 µm diameter droplet at Tdi = 20 ◦C initially deposited on a cooler
substrate at a fixed temperature of TW =−2 ◦C.
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