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In this work, the fluid dynamics and heat transfer of time-dependent flows with
shear-thinning behaviour over two confined square cylinders in tandem arrangement are
studied numerically. The case studies include two- and three-dimensional flows under a
wide range of power-law indices, 0.25 ≤ n ≤ 1.0, and blockage ratios, β = 0.50, 0.66
and 0.80, for a fixed Reynolds number of Re = 100 and Prandtl number of Pr = 10. The
fluid dynamic analysis includes detailed qualitative and quantitative comparisons between
the different fluids and blockage ratios, where streamlines, viscosity fields, and lift and
drag coefficients are presented. Moreover, a detailed study of the route from laminar
time-dependent to chaotic flows is included. It was determined that the flow exhibits a
transition from laminar to chaotic by decreasing the power-law index (n) and increasing the
blockage ratio (β). With respect to the thermal analysis, isotherms and Nusselt numbers are
compared between the different case studies. This analysis demonstrates that the average
Nusselt numbers increased in chaotic flows. The three-dimensional cases confirmed the
results proposed for the two-dimensional case.

Key words: absolute/convective instability, computational methods

1. Introduction

The flow past an arrangement of cylinders has been intensively studied owing to
the great variety of industrial applications where this geometry appears, such as heat
exchangers (Jang & Chen 1997), electronic cooling (Alfieri et al. 2013) and nuclear
energy (Loganathan & Ganesan 2006). The focus of these studies has been primarily on
understanding the fundamental aspects of the fluid dynamics and heat transfer. The fluid’s
rheological characteristics and interaction with the blockage bodies have been studied less,
which motivated us to perform this work.
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From a geometrical point of view, the blockage ratio (β = D/H) of the enclosure is an
important parameter that modifies the flow dynamics. Indeed, three physical mechanisms
must be considered to understand how the blockage ratio perturbs the flow (Rao, Sahu &
Chhabra 2011). First, the walls increase the velocity gradients in the flow by increasing
the blockage ratio. Second, the flow velocity increases as the blockage ratio increases
owing to the decrease in the gap between the cylinder and enclosure walls. Finally,
depending on the blockage ratio and interaction between the walls, vortex shedding can be
promoted in the flow. Concerning these features, walls can stabilize or destabilize the flow
depending on their configuration (Anagnostopoulos, Iliadis & Richardson 1996; Sahin
& Owens 2004). Sahin & Owens (2004) defined the stability curve of Newtonian flow
past a confined cylinder for a wide range of blockage ratios, 0.1 < β < 0.9. Moreover, it
was demonstrated that the walls provide stability to the flow in the blockage ratio range
0.1 < β < 0.5, whereas the walls tend to destabilize the flow dynamics for 0.5 < β < 0.9,
presenting a variety of flow behaviours depending on the blockage ratio and Reynolds
number considered.

Three-dimensional flows past cylinders have also been addressed in several studies.
Barkley & Henderson (1996) report a critical Reynolds number from which the flow
becomes unstable to three-dimensional perturbations of Re = 188.5. Pralits, Giannetti &
Brandt (2013) extend the instability analysis of non-rotating cylinders to rotating cylinders,
showing that the critical Reynolds numbers decrease for this case. Recently, in Ooi et al.
(2020), the flow of Newtonian fluids was studied using two- and three-dimensional direct
numerical simulations for 0.1 < β < 0.9 and 120 < Re < 500.

The number of cylinders, their configuration and the distance between their centres
are other geometrical parameters that influence the flow dynamics (Zdravkovich 1987;
Mizushima & Suehiro 2005; Mahír & Altaç 2008; Mittal, Kottaram & Kumar 2008; Yen,
San & Chuang 2008; Carmo, Meneghini & Sherwin 2010; Igarashi 2011; Choi, Jang &
Yang 2012). In Zdravkovich (1987), the flow past two circular cylinders in tandem was
studied. In this work, the authors mentioned three different flow regimes related to the
distance between the centres of the cylinders (Lx/D), where Lx is the distance between
the centres of the cylinders, and D is the characteristic length of the cylinders. Thus,
they defined three ranges: the range 1 < Lx/D < 2, where the second cylinder entirely
suppresses the von Kármán street; a reattached regime for 2 < Lx/D < 5, where the
detached vortices from the first cylinder impact the frontal face of the second cylinder; and
a co-shedding regime for Lx/D > 5, where the vortex detachment is independent for both
cylinders. Choi et al. (2012) found the secondary instability of the flow past two square
cylinders in tandem. Here, the critical Reynolds number from the flow that moves from
two-dimensional to three-dimensional was detected. In Yen et al. (2008), the Newtonian
flow of two cylinders with square shapes was studied. In that work, the authors categorized
the flow as single mode, reattached mode and binary mode depending on the Reynolds
number and spacing ratio between the cylinders.

The shape of the cylinders is an important parameter that modifies the flow dynamics.
In this context, a square shape provides larger wake size regions and drag coefficients
than circular and elliptical shapes, under a fixed Reynolds number (Sen, Mittal & Biswas
2011). Thus, the blunt shape of the square cylinder favours the appearance of instabilities
in the flow. Therefore, several studies of the flow past a cylinder problem have analysed the
influence of a square shape on flow patterns. In Saha, Muralidhar & Biswas (2000), the
flow transition and route to chaos for a Newtonian flow past a cylinder with a square shape
was studied numerically. In that work, it can be observed that, as the Reynolds number
increases, there is a flow transition from a time-dependent laminar structure to a chaotic
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structure through a quasi-periodic route to chaos. Patil & Tiwari (2008) determined the
stability curve of the flow past a confined cylinder with a square shape, concluding that
the flow past a square cylinder demonstrates a lower critical Reynolds number than flow
past a circular cylinder (Choi et al. 2012) for blockage ratios in the range 0.1 ≤ β ≤ 0.5.

Geometric parameters are not the only ones that modify the flow dynamics. Fluid
rheology also has an essential role. In this context, non-Newtonian fluids have been
widely studied because they are found in numerous scientific fields, including polymers
(Metzner 1985), the food industry (Tabilo-Munizaga & Barbosa-Cánovas 2005) and
haemodynamics (Hron, Málek & Turek 2000). Concerning the intrinsic nonlinear
behaviour of this kind of fluid, advantageous properties in heat transfer and in the
development of chaotic flows for relatively low Reynolds numbers have been studied
(Bharti, Chhabra & Eswaran 2007a,b; Sahu, Chhabra & Eswaran 2009). In Ruz et al.
(2021), the Hopf bifurcation of non-Newtonian isothermal fluids past one and two
cylinders in tandem under different blockage ratios is determined. In that work, the
authors found that the critical Reynolds number decreases as the power-law index
decreases. Furthermore, they determined that the critical Reynolds number could increase
or decrease as the blockage ratio increases, depending on the power-law index and cylinder
configuration.

In Lashgari et al. (2012), a detailed study of the flow characteristics of isothermal
Carreau fluids is carried out. In that work, the authors look for the Hopf bifurcation
for different power-law indices and material time constants. The authors found that the
shear-thinning fluids tend to destabilize the flow in contrast to the shear-thickening flows.
In Dhiman, Chhabra & Eswaran (2008), the non-Newtonian flow past a confined cylinder
with a square shape was studied in detail. The authors found that the recirculation length
was larger for shear-thinning fluids. In Bharti et al. (2007b), the effect of the blockage
ratio on the heat transfer characteristics of non-Newtonian fluids past a cylinder was
studied numerically. In that work, the authors found that the average Nusselt number
increases by increasing the Reynolds number, blockage ratio and Prandtl number, or
by decreasing the power-law index. In Sahu, Chhabra & Eswaran (2010), the forced
convection of non-Newtonian flows past a confined cylinder with a square shape was
studied. In that work, the influence of the Reynolds number, Prandtl number, blockage
ratio and power-law index on the Nusselt number was addressed, determining that the
Nusselt number increases by increasing the Reynolds number and the blockage ratio, and
by decreasing the power-law index.

The non-Newtonian flows past an arrangement of cylinders have also been addressed.
In Nejat, Abdollahi & Vahidkhah (2011), the isothermal flow of power-law fluids past
two confined cylinders with a circular shape was studied for several distances between
the cylinders. In that work, it was determined that the downstream cylinder does not
influence the upstream cylinder for a distance between centres of Lx/D ≥ 3D. Conversely,
the downstream cylinder is entirely influenced by the upstream cylinder as the Reynolds
number increases for a fixed distance between the centres and power-law index. Bouaziz,
Kessentini & Turki (2010) studied the mixed convection of non-Newtonian flows past a
cylinder with a square shape for β = 1/8. In that work, it was determined that the critical
Reynolds number from the flow moves from stationary to time-dependent depending on
the Reynolds number, Richardson number and power-law index. In Nikfarjam & Sohankar
(2013), the non-Newtonian flow past an arrangement of two cylinders with a square shape
in tandem was performed for a fixed distance between centres of Lx/D = 4D and Prandtl
number of Pr = 0.7. In that work, the authors observed that the Nusselt number increases
by decreasing the power-law index and decreases by increasing the power-law index.
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A literature review indicates that non-isothermal flows over tandem arrangements of
cylinders, circular or square, have not been addressed deeply for shear-thinning fluids,
and, in the same way, the effect of the blockage ratio for this type of fluid has not
been developed in detail for moderate and high values either. Hence, the novelty of this
work is to perform an exhaustive numerical analysis that considers the shear-thinning
characteristics of different power-law fluids and the effect of the blockage ratio on the
heat transfer and fluid dynamics. Numerical simulations are performed using an in-house
code based on the finite element method, which has proven to be robust and accurate in
Newtonian and non-Newtonian problems (Castillo & Codina 2019; Abugattas et al. 2020;
González, Castillo & Cruchaga 2020; Ruz et al. 2021).

This work is organized as follows. In § 2, the governing equations and power-law model
are presented. In § 3, the set-up of the analysed problem is defined; a brief description of
the numerical method used to solve the problem is presented in § 4.1. In §§ 4.3 and 5, the
principal results of this work are presented, including a numerical validation of the code
and method used. The results include a wide range of power-law indices and blockage
ratios. Finally, the main conclusions are summarized in § 7.

2. Governing equations

In this work, the forced convection flow of shear-thinning fluids is studied. The problem is
governed by the momentum, continuity and energy equations, which are stated as follows:

ρ
∂u
∂t

+ ρu · ∇u − ∇ · (2η∇su) + ∇p = f , (2.1)

∇ · u = 0, (2.2)

ρcp
∂T
∂t

+ ρcpu · ∇T − k�T = Q, (2.3)

where u is the velocity, p is the pressure and T is the temperature field. The fluid properties
η, ρ, k and cp represent the apparent viscosity, density, thermal conductivity and heat
capacity of the fluid, respectively. The terms f and Q on the right-hand side represent
the external body force and a heat source, respectively, which are equal to zero for this
work. The above equations are solved sequentially with appropriate initial and boundary
conditions, that is, (2.1) and (2.2) are solved in the first step using a monolithic approach to
obtaining u and p, and then, in a second step, (2.3) is calculated to define the temperature
field.

With respect to the rheological behaviour of the fluid, the power-law constitutive model
is used, which is defined as follows:

η = mγ̇ n−1, (2.4)

where γ̇ = √
(γ̇ : γ̇ )/2 represents the magnitude of the rate-of-deformation tensor

γ̇ = ∇u + (∇u)T, m represents the consistency index and n is the power-law index of
the fluid. The reason to use this model is to get trends that can be useful to understand
more complex models, like Carreau or Herschel–Buckley, which is a combination of the
Bingham model and the power-law one. The inherent problem of the power-law model
is the prediction of zero viscosity values as γ̇ → 0, when n < 1. In this work, a cutoff
parameter is used to prevent the apparent viscosity from being less than m/10 000.
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Figure 1. Schematic representation of the flow phenomenon under study.

The Poiseuille profile of power-law fluids, which reads as

U( y, n) =
(

2n + 1
n + 1

)
Uavg

{
1 −

∣∣∣∣2y
H

∣∣∣∣
(n+1)/n

}
, (2.5)

is used as boundary velocity condition, where y represents the vertical axis (see figure 1),
H is the height of the enclosure and Uavg represents the average velocity. Note that this
profile allows us to compare the different fluids in a developed flow condition for a fixed
Reynolds-number value, ensuring that the results are not perturbed by numerical effects.

The dimensionless numbers for power-law fluids must be redefined in terms of the
constitutive model parameters. The Reynolds number (Re) and Prandtl number (Pr) for
power-law fluids are defined as follows:

Re = ρU2−n
avg Dn

m
, Pr = mCp

k

(
Uavg

D

)n−1

. (2.6a,b)

To determine the rate of heat transfer of the square cylinders, the Nusselt number is
computed. The local and average Nusselt numbers are calculated as follows:

Nu(s) = − ∂T
∂ns

, Nu = 1
L

∫
L

Nu(s) ds, (2.7a,b)

where ns is the unit vector normal to the surface of the cylinder.

3. Problem statement

In this work, the forced convection of power-law flows past two confined square
cylinders in tandem is performed numerically. The problem is solved for the two- and
three-dimensional cases. In figure 1, a problem sketch along with its boundary conditions
is presented for the two-dimensional case. The three-dimensional problem is a direct
extension of the plane problem with a width equal to the height (square section). It is
necessary to define the blockage ratio β = D/H, where D is the length of the cylinder,
taken as unitary (D = 1), and H is the height of the enclosure. To define the total length
of the pipe, we require the upstream distance (Lu = 12D) and downstream distance (Ld =
15D). The values used in this work ensure that the boundary conditions do not perturb the
fluid dynamics (Dhiman et al. 2008; Ruz et al. 2021). Because different blockage ratios
are used, the height of the pipe (and width in the three-dimensional case) are defined
as H = D/β. Concerning the gap between the cylinders, a value of S = 3D is used. The
chosen gap is not arbitrary; it has been derived from several articles that have postulated a
strong fluid dynamics interaction for cylinder arrangements with distances between centres
of 2 ≤ S ≤ 4 (Zdravkovich 1987; Carmo et al. 2010; Nejat et al. 2011). From the physical
point of view, there is a vortex detachment of the fluid in the first cylinder that impacts the
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front surface of the second cylinder, generating complex fluid dynamics in the gap between
the cylinders. In the present work, this geometrical configuration is studied for power-law
fluids, including forced convection.

For the velocity boundary conditions, the power-law Poiseuille profile is defined at the
inlet (x = 0), no-slip conditions are defined at the enclosure walls or cylinder surfaces,
and an open flow condition is set at the outlet (x = 32D). For temperature conditions, a
constant temperature of T∞ = 0 is set at the inlet, an adiabatic condition is imposed at the
enclosure walls, and a constant temperature of TW = 1 is applied at the cylinder surfaces.

4. Numerical parameters and validation

4.1. Numerical method
The governing equations were solved using a recently proposed stabilized variational
multiscale (VMS) finite element formulation (Castillo & Codina 2019), which allows
the approximation of convective dominant cases and even turbulent flows without the
inclusion of an additional turbulent model González et al. (2020). This formulation
modifies the standard discrete Galerkin formulation by adding terms designed to enhance
the stability without upsetting the accuracy and ensuring that the convergence rates of
the method are optimal for velocity and pressure. The method can be understood as an
implicit large-eddy simulation that is derived from the VMS framework and has an optimal
dissipative structure (Castillo & Codina 2019). For P1 elements, the rates of convergence
of velocity and pressure are two and one, respectively (González et al. 2020). The method
used consists of splitting the velocity subscale into two terms, unlike traditional VMS
methods, having a non-residual term-by-term structure that is obtained by neglecting all
cross local inner product terms that do not provide stability. The details of the dissipative
structure of this method, including its mathematical structure, numerical verifications and
the numerical treatment of the nonlinearities, are provided in Castillo & Codina (2019)
and González et al. (2020).

The time derivative is discretized using the second-order backward scheme, for both the
momentum and the energy equations, as follows:

∂ϕ
j+1
h
∂t

= 3ϕ
j+1
h − 4ϕ

j
h + ϕ

j−1
h

2δt
+ O(δt2), (4.1)

where δt corresponds to the size of a uniform partition of the time interval where the
problem is solved, while O(·) represents the order of integration of the scheme. The index
j indicates the time step where the function ϕ is being approximated.

4.2. Numerical parameters
An adequate mesh choice is essential for reproducing any problem. The grid should be
capable of capturing velocity gradients to ensure a correct approximation of the viscosity,
as well as to accurately define the complex unsteady behaviour developed by the flow.
In this work, a non-structured mesh composed of linear triangular (P1) elements was
used. The mesh was refined near the walls and over the square cylinders, as can be
seen in figure 2. To ensure that numerical results are independent of the used mesh, a
convergence study based on the calculation of the drag coefficient and Nusselt numbers of
both cylinders was performed for Pr = 10, considering the most blocked case (β = 0.8)
and the lowest power-law index, n = 0.25, which represents the most demanding case of
our study from the physical and computational points of view.
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Figure 2. Mesh representation at β = 0.8.

Mesh Number of cells δxmin δxmax CD1 Nu1 CD2 Nu2

G1 130 000 0.075 0.25 33.16 41.34 26.12 41.28
G2 94 000 0.010 0.30 32.44 40.63 25.32 40.15
G3 49 000 0.050 0.50 21.43 28.92 17.24 27.29

Table 1. Mesh convergence test evaluating the drag and Nusselt number.

Blockage ratio β Number of cells

0.80 94 000
0.66 132 000
0.50 140 000

Table 2. Mesh details based on blockage ratios.

Three meshes, referred to as Gi, i = 1, . . . , 3, with the details reported in table 1, were
tested for this case. In table 1, G1 represents the most refined mesh and G3 represents
the coarser mesh. From the results, it can be observed that the difference in the results
between grids G1 and G2 is small. For this reason, subsequent simulations were performed
using grid G2, which provides accuracy and moderate computational requirements. As the
domain depends on the blockage ratio, grid G2 is only used as a base to define the other
blockage cases (β = 0.5 and 0.66). The number of elements used for each case is reported
in table 2, where details of the elements used in the regions far from and close to the
cylinders are included.

Because dynamic solutions are analysed, the effect of the time-step value (δt) is also
evaluated. For this reason, the influence of three different time-step sizes δt1 = 0.025,
δt2 = 0.05 and δt3 = 0.075 on the velocity evolution and its corresponding fast Fourier
transform (FFT) were tested for the most critical case of β = 0.8 and n = 0.25, which
are reported in figure 3. In addition, table 3 shows the values of the first three dominant
frequencies obtained using the three time-step values. From these values, we can see that
the differences of using δt1 instead of δt2 is less than 5 %. From the quality of the results
and the computational resources, δt2 was selected.
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Figure 3. (a) Vertical velocity and (b) FFT convergence at β = 0.8 and n = 0.25 evaluated in Z2.

Time step δt f1 f2 f3

0.075 0.287 0.321 0.347
0.050 0.290 0.324 0.342
0.025 0.299 0.334 0.340

Table 3. First three dominant frequencies for each time step

Present work Sharma et al. (2013) Relative errors (%)

n Cd Nu Cd Nu Cd Nu

0.4 3.89 14.16 4.01 14.20 3.08 0.28
0.6 4.65 13.82 4.79 13.75 3.01 0.51
1.0 6.42 12.82 6.25 12.56 2.64 1.98

Table 4. Validation of drag and Nusselt numbers for different power-law indices at β = 0.25, Re = 30,
Ri = 1.0 and Pr = 50.

4.3. Numerical validation
The VMS method used in this work has demonstrated robustness and accuracy in different
numerical scenarios (Castillo & Codina 2019; González et al. 2020; Ruz et al. 2021). In
our case, it is used to solve a new problem that involves the forced convection of power-law
fluids.

Through numerical validation, the flow over a square cylinder with aiding buoyancy is
solved in this subsection by comparing the results obtained in the work with those reported
in Sharma, Dhiman & Kumar (2013). The results of the average drag coefficients and
average Nusselt numbers are presented in table 4 for a wide range of power-law indices
at Re = 30, Pr = 50, Ri = 1.0 and β = 0.25. From the results, it can be observed that
the errors were less than 3.1 % in the drag coefficient value and less than 2 % in the
Nusselt-number value. These results confirm the correct implementation of the power-law
model and the accuracy of the VMS method.
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n = 1.0

n = 0.75

n = 0.5

n = 0.25

(a)

(b)

(c)

(d )

Figure 4. Instantaneous streamlines at arbitrary instants t after the transient initial flow at β = 0.5.

n = 1.0

n = 0.75

n = 0.5

n = 0.25

(a)

(b)

(c)

(d )

Figure 5. Instantaneous streamlines at arbitrary instants t after the transient initial flow at β = 0.66.

The relative errors reported in the above tables were calculated based on
|(valuearticle − valuereference)/valuearticle| %.

5. Numerical results

In this section, the confined flow over two square cylinders in tandem is studied for
power-law fluids. Three blockage ratios of β = 0.50, 0.66 and 0.80 are used to solve
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n = 1.0

n = 0.75

n = 0.5

n = 0.25

(a)

(b)

(c)

(d )

Figure 6. Instantaneous streamlines at arbitrary instants t after the transient initial flow at β = 0.8.
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Figure 7. Averaged velocity profile at control sections: (a) in the middle of the gap between the cylinders, Z1,
and (b) at 1.5D from the centre of the downstream cylinder, Z2.

shear-thinning fluids characterized by a power-law index in the range 0.25 ≤ n ≤ 1.0. The
non-dimensional numbers for all cases are Re = 100 and Pr = 10. The chosen Prandtl
number can describe water-based solutions of non-Newtonian fluids, which are widely
used in the context of electronic refrigeration and microchannel devices (Parvin, Alim &
Hossain 2012; Akbari et al. 2017; Sajadifar, Karimipour & Toghraie 2017).

Since all cases in the study are nonlinear, each problem is solved interactively for each
time step to achieve a convergence error smaller than 10−6 in the discrete L2 norm of the
unknowns. In general, no more than 10 iterations are needed to ensure this convergence.

5.1. Fluid dynamics
Based on several studies (Bharti et al. 2007a,b; Ruz et al. 2021), the flow patterns in
confined flow over bodies depend on the blockage ratio and power-law index, and there is a
strong relationship between these parameters. To further illustrate this fact, the streamlines
and viscosity fields for representative cases are presented in this section.
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Figure 8. Instantaneous viscosity fields at arbitrary instants t after the transient initial flow at β = 0.5
(coloured regions, thinning regions; black regions, thickening regions).

The effects of the blockage ratios and power-law indices on the fluid dynamics of the
problem are illustrated in figures 4, 5 and 6, for β = 0.5, 0.66 and 0.80, respectively.
Figure 4 indicates that, for a fixed blockage ratio, the shear-thinning behaviour drastically
changes the fluid dynamics. For all the cases presented in the figure, a clear time
dependence of the flow can be observed, with a more complex behaviour as the power-law
index decreases. The same tendency is maintained for the other two blockage ratios.
Comparing β = 0.5 and β = 0.80, it can be observed that the recirculation zone behind
the cylinder is shorter in the most blocked case, with a vonKármán street much more
defined in the case of β = 0.8. This is due to the proximity of the walls, which prevents
the flow from moving in the cross direction. In addition, an increase in the horizontal
velocity occurs because of the decrease in the section through which the fluid flows.

The fluid behaviour, given principally by the power-law index value, also changes the
flow patterns. From figures 4, 5 and 6, it can be observed that the flow dynamics is
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Figure 9. Instantaneous viscosity fields at arbitrary instants t after the transient initial flow at β = 0.66
(coloured regions, thinning regions; black regions, thickening regions).

increased by decreasing the power-law index, even for a fixed β value. However, for
β = 0.5 and 0.66, and for n = 0.75, the opposite tendency was found. In the case of
β = 0.66 with n = 0.75, the appearance of an asymmetric stationary solution is evident,
which is framed in the context of the pitchfork bifurcation. Although this phenomenon is
interesting, its analysis is beyond the scope of the present work. Despite these particular
cases, an increase in the fluid dynamics as the power-law index decreases is clear. This
is because the walls increase the shear stresses, with the corresponding increase in the
shear-thinning behaviour of the fluids, which is greater as the power-law index decreases.

The streamlines displayed in figures 4–6 help to visualize how dynamic the flow
is for the different cases studied. Conversely, the mean velocity profiles displayed in
figure 7 are useful for understanding the effect of the power-law index on the mean
flow dynamics. The mean velocity profiles are computed at the two control sections
(Z1 and Z2) indicated in figure 1, considering all power-law indices and β = 0.5 and
0.8. The time-averaged velocity profiles indicate that the maximum velocities increase
by decreasing the power-law index, regardless of the location and blockage ratio
considered. Moreover, the velocity profiles indicate negative values near the enclosure
walls for n = 0.5 and 0.25, which is related to the existence of recirculation regions
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Figure 10. Instantaneous viscosity fields at arbitrary instants t after the transient initial flow at β = 0.8
(coloured regions, thinning regions; black regions, thickening regions).

and vortex shedding zones. Finally, both figures 1 and 7 indicate greater velocity
gradients near the enclosure walls, and become more pronounced as the power-law index
decreases.

Figures 8, 9 and 10 display the viscosity fields for representative instants of the
non-Newtonian flows evaluated in this subsection. The coloured regions indicate the fluid
regions that have suffered a decrease in the value of apparent viscosity with respect to the
viscosity at γ̇ = 1; the black zones represent the regions that have suffered an increase in
η with respect to the viscosity at γ̇ = 1. From these results, it can be observed that the
fluid thinning is greater near the enclosure and cylinder walls. Moreover, in the majority
of cases, the fluid thinning covers the entire domain in the region between the cylinders.
However, the coverage percentage in the downstream cylinder’s wake depends on the
blockage ratio and power-law index. In particular, it can be observed that, with a decrease
in the power-law index or increase in the blockage ratio, the coverage percentage increases.
In the first part, the fluid thinning is greater as the power-law index decreases because of
its nonlinear nature. Conversely, fluid thinning is greater as the blockage ratio increases
because it causes higher velocities and greater fluid shear rates.
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Figure 11. Averaged viscosity profile at control sections: (a) in the middle of the gap between the cylinders,
Z1, and (b) at 1.5D from the centre of the downstream cylinder, Z2.

The viscosity profiles are directly related to the velocity profiles. In figure 11, the mean
viscosity profiles at the wake control zone of each cylinder are presented (Z1 and Z2).
From figure 11, it can be noted that the apparent viscosity decreases as the power-law
index decreases, and it is similar at both locations. For example, if we use the average of
the mean apparent viscosity profiles at Z1, we obtain a value of 0.005164 and 0.001403 for
n = 0.75 and n = 0.25, respectively. The same tendency is maintained at Z2, with values
of 0.005081 and 0.001282 for the same power-law indices.

5.2. Route to chaos
In the above section, the effects of the blockage ratio and shear-thinning behaviour of
the fluids were discussed using streamlines and apparent viscosity fields. The aim of this
section is to analyse in more detail the change from laminar to chaotic solutions using
dynamic systems analysis tools.

The route to chaos of the cases discussed herein is studied qualitatively by their
frequency spectrum, phase diagrams and Poincaré sections. In addition, the largest
Lyapunov exponent is calculated to evaluate the chaos quantitatively. The described tools
are evaluated at a control point situated in the midplane at a distance of 3D from the centre
of the last cylinder. For specific tools (Poincaré section and Lyapunov exponent), it is
necessary to reconstruct the system attractor. For this purpose, the attractor reconstruction
is performed by the Takens embedding theorem (Takens 1981; Noakes 1991). All the
analyses are performed using the vertical velocity evolution of the corresponding graphs
(cross-flow component). The optimal delay and dimension are calculated according to the
methods of mutual information (Fraser & Swinney 1986) and false neighbours (Kennel,
Brown & Abarbanel 1992), respectively.

To avoid overloading this section with the results, the extreme cases of blocking (β =
0.5 and β = 0.8) are analysed.

5.2.1. Velocity evolution and frequency spectrum
The vertical velocity evolution graphs for β = 0.5 and β = 0.8 are displayed in figures 12
and 13, respectively. From the results, it can be observed that the flow is time-dependent in
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Figure 12. Evolution of vertical velocity at β = 0.5 for (a) n = 1.0, (b) n = 0.75, (c) n = 0.5 and
(d) n = 0.25.

all cases. However, there is a transition from a periodic evolution to an aperiodic evolution
by decreasing the power-law index, regardless of the blockage ratio considered. In addition,
it can be observed that the blockage ratio promotes the appearance of more frequencies
(qualitatively), which suggests that the large blockage ratios favour the appearance of flow
instabilities.

One of the most commonly used tools for analysing dynamic signals is the FFT. In
figures 14 and 15, the frequency spectra of the velocity graphs (figures 12 and 13) are
presented. In general, it can be observed that the number of active frequencies increases
as the power-law index decreases or the blockage ratio increases. The Newtonian cases
have a single dominant frequency for all blockage ratios. Conversely, the flows with
shear-thinning behaviour are more chaotic, demonstrating dense spectra for n = 0.5 and
n = 0.25. In the middle, the flow with a power-law index of n = 0.75 and β = 0.5 has
two dominant frequencies along with other frequencies, which are a linear combination
of them (a1 f1 + a2 f2) and a dense spectrum for β = 0.8. The increase in the number
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Figure 13. Evolution of vertical velocity at β = 0.8 for (a) n = 1.0, (b) n = 0.75, (c) n = 0.5 and
(d) n = 0.25.

of active frequencies from a single frequency (n = 1.0) to two dominant frequencies
(n = 0.75) for β = 0.5 suggests a quasi-periodicity route to chaos, which is consistent
with the results reported in the literature for the flow past a single square cylinder (Saha
et al. 2000). Moreover, the jump between a single frequency (n = 1.0) to a broadened
spectrum of frequencies (n = 0.75) for β = 0.8 indicates that there is a greater power-law
index n > 0.75 for which the flow has two dominant frequencies. In the case of n = 0.5, it
can be appreciated that the flow has a broadened spectrum of frequencies regardless of the
blockage ratio. Finally, the results for n = 0.25 have a broadened spectrum of frequencies
for all blockage ratios, greater than those reported for the other power-law indices.

5.2.2. Phase diagram
According to the shape of the phase diagram, the nature of the system attractor can be
evaluated, which can be periodic with single or multiple frequencies or chaotic. Figures 16
and 17 display the phase diagrams for the different power-law indices under study and for
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Figure 14. Fourier transform at β = 0.5 for (a) n = 1.0, (b) n = 0.75, (c) n = 0.5 and (d) n = 0.25.

β = 0.5 and β = 0.8, respectively. The Newtonian cases demonstrate an organized closed
trajectory, which means a periodic nature. However, it must be noted that the trajectory
is deformed by increasing the blockage ratio. The case for n = 0.75 indicates marked
differences based on the blockage ratio under study. The phase diagram for β = 0.5
indicates the flow’s quasi-periodic nature at this power-law index and blockage ratio. For
β = 0.8, chaotic flows are obtained for all shear-thinning fluids. This indicates that it is
possible to obtain chaotic states at low Reynolds numbers using high blockage ratios and
low power-law indices.

5.2.3. Poincaré section
The Poincaré section represents a mapping of a reconstructed attractor with the same
topological properties as the original system attractor (Berge, Pomeau & Vidal 1984;
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Figure 15. Fourier transform at β = 0.8 for (a) n = 1.0, (b) n = 0.75, (c) n = 0.5 and (d) n = 0.25.

Manneville 2010). This dynamic system tool allows us to understand the behaviour of
systems with more than three degrees of freedom. The Poincaré section based on the
power-law indices and for blockage ratios of β = 0.5 and 0.8 are presented in figures 18
and 19, respectively. In particular, the results displayed correspond to a time delay
of τ = 0.4. For all Newtonian cases, where the flow is periodic, the Poincaré section
is orderly and has a closed trajectory, which represents the laminar nature of the
flow. The case of n = 0.75 indicates a deformed organized Poincaré section at β = 0.5
corresponding to the quasi-periodic regime; for β = 0.8, the Poincaré section indicates
a disorganized behaviour, suggesting that the flow is in a chaotic regime. Finally, the
Poincaré sections for power-law indices n ≤ 0.5 have disorganized patterns, regardless
of the blockage ratio considered.

5.2.4. Lyapunov exponents
In this section, a quantitative analysis of the chaos is performed by computing the largest
Lyapunov exponents of the specific cases under study. The Lyapunov exponent is the time
average of the local divergence rate of the close trajectories. Indeed, the flow is chaotic
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Figure 16. Phase diagram of vertical velocity versus pressure at β = 0.5 for (a) n = 1.0, (b) n = 0.75,
(c) n = 0.5 and (d) n = 0.25.

if the largest Lyapunov exponent is positive, which means that the trajectories diverge
from each other (Manneville 2010; Strogatz 2018). The largest Lyapunov exponents are
calculated using the algorithm proposed in Wolf et al. (1985). Figure 20 displays the largest
Lyapunov exponent in the critical cases of n = 0.25 and n = 0.5 for all blockage ratios.
The results demonstrate positive values for all cases, and that the increase in the largest
Lyapunov exponent increases by increasing the blockage ratio.

An analysis based on Lyapunov exponents allows the characterization of the flow
regimes concerning the power-law indices and blockage ratios, as presented in table 5.
In this table, letter L indicates a laminar time-dependent regime with a single frequency,
Q is a laminar time-dependent regime with two dominant frequencies, SA is an asymmetric
stationary regime and C is a chaotic regime. The results indicate that the flow goes from
laminar to chaotic by decreasing the power-law index, regardless of the blockage ratio
considered. Furthermore, the power-law index for those where the flow begins to be chaotic
increases as the blockage ratio increases. Notwithstanding the above, the differences in
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Figure 17. Phase diagram of vertical velocity versus pressure at β = 0.5 for (a) n = 1.0, (b) n = 0.75,
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the Lyapunov exponents were small between the critical blockage ratios and power-law
indices. This result suggests that the flow dynamics is similar at low power-law indices
and high blockage ratios.

5.3. Heat transfer
In this section, the dependence of the average Nusselt numbers and mean temperature
profiles concerning n and β are discussed.

Temperature profiles allow quantification of the influence of the flow dynamics on the
heat transfer enhancement. In addition, they are related to the average Nusselt number. To
illustrate these characteristics, figure 21 displays the mean temperature profiles at Z1 and
Z2, considering all power-law indices and β = 0.8. From the results, one can observe that
the temperature profile increases as the power-law index decreases because of the increase
in the heat convection by decreasing the power-law index. Furthermore, the temperature
profile is higher in the wake of the second cylinder, which is logical because of the
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Figure 18. Poincaré section at β = 0.5 for (a) n = 1.0, (b) n = 0.75, (c) n = 0.5 and (d) n = 0.25.

additional heat contribution of the second square cylinder. Moreover, as can be observed
below, these increases are consistent with the increase in the average Nusselt number as
the power-law index decreases. Thus, if we consider the average of the mean temperature
profiles at Z1, we obtain a value of 0.106 and 0.148 for n = 1.0 and n = 0.25, respectively,
which means an increase of 39.62 %. The same tendency is maintained at Z2, with values
of 0.241 and 0.292, for the same power-law indices, which means an increase of 21.16 %.

The variation of the average Nusselt number with respect to n and β is displayed in
figure 22 for the first (upstream) and second (downstream) square cylinders at Pr = 10.
The illustration of the Prandtl-number influence in figure 23 displays an additional study
case for Pr = 100. The average Nusselt-number dependences based on the flow parameters
are described below.

From §§ 5.2 and 5.3, the strong influences of the blockage ratio (β) and power-law index
(n) on the fluid dynamics were demonstrated. Here, the influence of these parameters
on the average Nusselt numbers is discussed. From figures 22 and 23, it can be noted
that Nusselt number increases as blockage ratio increases or power-law index decreases.
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Furthermore, from figures 22 and 23, it can be observed that all Nusselt-number curves
exhibit nonlinear behaviour. The slope changes in the curves are directly related to the flow
regime, which changes from laminar to chaotic, decreasing the power-law index. Finally,
it can be observed that the differences in the Nusselt numbers for the different blockage
ratios are decreased as the power-law index decreases for both cylinders. This is because
the flow dynamics is similar at low power-law indices for the different blockage ratios
under study.

Regarding the values of the Nusselt number obtained for the first and second cylinder,
it can be noted that the upstream cylinder influences the average Nusselt number of the
downstream cylinder. On the one hand, the first cylinder perturbs the fluid dynamics of
the flow, generating a vortex detachment that favours fluid mixing. On the other hand,
the preheating produced by the first cylinder on the flow reduces the temperature gradient
between the hot cylinder and the flow. The overlay effect of the increase of mixing capacity
and the decrease in the temperature gradient determines the heat transfer coefficient. The
increase of mixing capacity is dominant for high blockage ratios regarding the decrease in
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Figure 20. Largest Lyapunov exponent based on blockage ratio and power-law index: (a) n = 0.5 and
(b) n = 0.25.

β

n 0.8 0.66 0.5

0.25 C C C
0.50 C C C
0.75 C SA Q
1.00 L L L

Table 5. Classification of flow regimes: unsteady state with a single frequency (L), steady asymmetric state
(SA), unsteady state with two dominant frequencies (Q) and chaotic flow (C).
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cylinders, Z1, and (b) at 1.5D from the centre of the downstream cylinder, Z2.
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Figure 22. Variation of averaged Nusselt number at Pr = 10 for (a) upstream square cylinder and
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Figure 23. Variation of averaged Nusselt number at Pr = 100 for (a) upstream square cylinder and
(b) downstream square cylinder.

the temperature gradient. The same occurs for the lowest values of n. This behaviour could
be helpful in the frame of microchannel devices where the blockage ratio is important, and
the use of shear-thinning nanofluids could be recommendable.

Finally, the influence of the Prandtl number on the average Nusselt number is displayed
in figures 22 and 23. From these results, it can be observed that, for a fixed blockage
ratio, Reynolds number and power-law index, the Nusselt number increases when the
Prandtl number increases. This is because there is a decrease in the thermal boundary
layer with an increase in the Prandtl number. In addition, from a non-Newtonian point
of view, shear-thinning fluids are characterized by a decrease in the boundary layers
as the power-law index decreases, producing narrower boundary layer profiles (similar
to turbulent profiles), which also influences the heat transfer process and increases the
Nusselt numbers.
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Figure 25. Evolution of velocity components over time at β = 0.8 for (a) n = 0.5 and (b) n = 0.25.

6. Three-dimensional flow

In this section, we extend the study to three dimensions. Because the three-dimensional
cases require large computational times, we only solve the case of β = 0.8 for all
power-law indices.

Figure 24 displays the streamlines for the three-dimensional cases. From these results,
it can be observed that the flow goes from a steady (n = 1.0 and n = 0.75) to a
time-dependent (n = 0.5 and n = 0.25) behaviour when the power-law index is decreased.
Although these results are consistent with the results reported for the two-dimensional
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cases, the presence of the new walls suppresses vortex shedding. Despite the above, it
can be observed that the flow has a highly dynamic structure for n = 0.25, which verifies
the strong influence of the power-law index on the flow dynamics and the capability of
shear-thinning fluids to promote chaotic flows.

The tracking of the velocity components for the time-dependent cases (n = 0.5 and n =
0.25) evaluated at the wake of the second cylinder (in the centre of plane Z2) is presented
in figure 25. From this figure, it is clear how the flow becomes more dynamic for the lower
power-law index, considering that the cases n = 0.75 and n = 1.0 were stationary.

Finally, a comparison is performed between the average Nusselt numbers. Thus, the
average Nusselt number for the first cylinder is equal to 86.57 and 92.67 for n = 1.0 and
n = 0.25, respectively, which indicates a Nusselt-number increase of 7.04 %. In the same
manner, this trend is maintained in the second cylinder, having Nusselt-number values of
63.51 for n = 1.0 and 74.90 for n = 0.25, which means an increase of 17.91 %. This last
result confirms the capability of shear-thinning fluids to enhance heat transfer.

7. Conclusions

In this study, the forced convection of shear-thinning power-law fluids in tandem with two
square confined cylinders was studied numerically. The effects of the blockage ratio of the
enclosure and the power-law index of the fluid on the dynamics of the flow and on the heat
transfer were investigated in detail for a fluid characterized by a Prandtl number equal to
10. The following points can be highlighted:

(i) Shear-thinning behaviour of the fluid promotes chaotic flows at low Reynolds
numbers, increasing the heat transfer coefficients with respect to Newtonian fluids.

(ii) Higher blockage ratios promote the generation of chaotic flows in shear-thinning
power-law fluids, increasing the heat transfer coefficients with respect to Newtonian
fluids.

(iii) The effects of the blockage ratio and the shear-thinning behaviour of the fluid are
complementary, and enhance flow mixing and heat transfer.

(iv) The studied cases have a quasi-periodic route to chaos as the power-law
index decreases for the blockage ratios, Reynolds numbers and Prandtl numbers
considered.
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