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We study the spreading of characteristics for a class of one-dimensional scalar
conservation laws for which the ° ux function has one point of in° ection. It is well
known that in the convex case the characteristic speed satis¯es a one-sided Lipschitz
estimate. Using Dafermos’ theory of generalized characteristics, we show that the
characteristic speed in the non-convex case satis¯es an H�older estimate. In addition,
we give a one-sided Lipschitz estimate with an error term given by the decrease of
the total variation of the solution.

1. Introduction

We consider scalar conservation laws of the form

@tu(x; t) + @xf (u(x; t)) = 0; u(x; 0) = u0(x); (x; t) 2 R £ R + : (1.1)

The ®ux function f is assumed to be of class C2 and the initial value u0 is taken
in BV (R). It is well known that this problem is well-posed in the class of the so-
called entropy solutions, which are distributional weak solutions satisfying a suitable
admissibility condition. While the theory of existence and uniqueness is more or less
complete for a general f , the qualitative properties of the entropy solutions are not
correspondingly well understood, except for the case when f is convex.

In this paper we investigate a possible generalization to the non-convex case of
the classical one-sided Lipschitz estimate due to Oleinik [12], which holds in the
convex case. Assuming that f 00(u) > c > 0 for all u, with juj 6 supx 2 Rju0(x)j, the
Oleinik estimate says that

u(y; t) ¡ u(x; t) 6 y ¡ x

ct
; x 6 y; t > 0: (1.2)

We recall that in the case of Burgers’ equation (i.e. when f (u) = 1
2u2) this estimate

was obtained by Hopf [10]. Estimate (1.2) is interesting for several reasons. In [12], it
was used to obtain a uniqueness theorem for entropy solutions based on Holmgren’s
method. It has provided a powerful tool to study the large-time decay of solutions
(see, for example, [8]). It has been applied by Tadmor [14] to obtain local error esti-
mates for approximation schemes. Finally, generalizations of the Oleinik estimate
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to conservation laws with a source term [13] or to genuinely nonlinear systems [2]
have been used to study some stability properties of the entropy solutions.

A more accurate analysis (see, for example, [5,9]) shows that the Oleinik estimate
can be regarded as a consequence of the following sharper one, valid when f 00(u) is
non-negative and not identically zero on any interval:

f 0(u(y; t)) ¡ f 0(u(x; t)) 6 y ¡ x

t
; x 6 y; t > 0: (1.3)

This form of the inequality has a natural geometric interpretation, since f 0(u) is
the characteristic speed associated with the solution. The inequality bounds the
growth of the characteristic speed and thus states that the characteristics cannot
spread out arbitrarily fast.

A natural question is whether the form (1.3) of the Oleinik inequality can also
hold in the non-convex case. Additionally, one could study the validity of the ana-
logue of (1.3) for multidimensional scalar conservation laws. A negative answer to
both issues has been given by Ho¬ [9], who has shown that, apart from the convex
one-dimensional case, estimate (1.3) can fail, and in addition it does not ensure
uniqueness (i.e. it is also satis­ ed by certain weak solutions that are not entropic).

To show that (1.3) does not hold in general, Ho¬ simply observed that if f has
at least two in®ection points, then u can have centred rarefaction waves for positive
times, and this behaviour is incompatible with the Oleinik estimate. He left open
the question of whether (1.3) holds when f has a single in®ection point. As we show
here, however, the Oleinik estimate is also violated in this case. In fact, when f is
non-convex, the solution exhibits, in general, contact discontinuities, and one ­ nds
that the ratio [f 0(u(y; t)) ¡ f 0(u(x; t))]=[y ¡ x] tends to in­ nity as x, y approach a
contact discontinuity.

The aim of this paper is to provide suitable weakened forms of (1.3) that are
also valid in the non-convex case. Although we conjecture that our results can
be extended to more general choices of f , our analysis here is restricted to the
case where f has one in®ection point. For de­ niteness, we assume the following
normalization:

f (0) = f 0(0) = f 00(0) = 0; uf 00(u) < 0 for u 6= 0: (1.4)

A class of model equations is given by the conservation laws

@tu(x; t) ¡ @x[ju(x; t)jmu(x; t)] = 0; (1.5)

where m > 1. The assumption that f has a single in®ection point guarantees that no
centred rarefaction waves are generated for t > 0. However, the solution contains,
in general, left contact discontinuities along which characteristics are emitted. The
­ ne regularity properties of solutions have been analysed in detail by Dafermos [6],
using the theory of generalized characteristics. Even in the case of one in®ection
point, such an analysis is considerably harder than in the convex case, since the
presence of contact discontinuities makes the structure of the solutions more intri-
cate. Nevertheless, Dafermos proved that for a generic class of initial data, the
solution is piecewise smooth and therefore has a relatively simple structure. We
recall the results of [6] in x 2, since they provide the starting point of our analysis.
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In x 3 we give a ­ rst extension of the Oleinik estimate consisting of a one-sided
H�older estimate for f 0(u(x; t)). More precisely, we consider a piecewise smooth solu-
tion of (1.1). We show that f 0(u(x; t)) still satis­ es a one-sided Lipschitz estimate
away from contact discontinuities, while near such a discontinuity it satis­ es, for
all but ­ nitely many values of t, an estimate like (1.3), with the right-hand side
replaced by C

p
y ¡ x for some constant C .

In x 4 we give another generalization by adding a suitable remainder term to the
right-hand side in (1.3). Namely, we prove that the solution to (1.1) satis­ es

f 0(u(y; t)) ¡ f 0(u(x; t)) 6 y ¡ x

t
+ C [T V u0 ¡ T V u(¢; t)]; x 6 y; t > 0; (1.6)

for some constant C . Here, T V denotes the total variation; we recall that the total
variation of u(¢; t) is non-increasing in time. This result is ­ rst proved for piecewise
smooth solutions but, unlike the result of x 3, can be extended by density to general
BV solutions. Estimate (1.6) shows that, intuitively speaking, when the Oleinik
estimate is violated, there is at the same time some cancellation e¬ect that decreases
the variation of the solution. Since the total variation of the solution necessarily
tends to some non-negative constant as t ! 1, we can easily deduce that u satis­ es
an `asymptotic’ Oleinik estimate (see corollary 4.4). Let us observe that an estimate
similar to (1.6) was proved by Bressan and Colombo [1] for genuinely nonlinear
systems of conservation laws; in their estimate the total variation is replaced by the
Glimm interaction functional.

Let us ­ nally mention that estimates of a di¬erent type on the total variation of
f 0(u(x; t)) or of other nonlinear functions of u have been obtained by Dafermos [6],
Cheng [3], Zumbrun [16], Tegnander [15] and Cheverry [4].

2. Preliminaries

We de­ ne an entropy BV solution of (1.1) to be a bounded measurable function
de­ ned on R £ R + , with distributional derivatives @tu, @xu, which are locally ­ nite
Borel measures, satisfying the entropy inequality

@t ² (u(x; t)) + @xq(u(x; t)) 6 0; (2.1)

for every pair ² ; q 2 C2(R) such that ² is convex and q0 = ² 0f 0. For initial data
u0 in L 1 \ BVloc, it is well known that (1.1) has a unique entropy BV solution
(see [11]). Moreover, if u0 has ­ nite total variation, then the total variation of u(¢; t)
is also ­ nite and is non-increasing in t. We normalize the solution to be continuous
from the left.

The structure of the solutions to (1.1) under assumptions (1.4) has been studied
by Dafermos [6], whose results will be the starting point for our analysis. In the
remainder of this section, we recall some de­ nitions and theorems from that paper
and prove some more results needed for our later analysis.

The key ingredient of the analysis of [6] is the notion of generalized characteristic.
We recall that a (generalized) characteristic associated with an entropy BV solution
u(x; t) of (1.1) is a Lipschitz curve ¹ : [t0; t1] ! R, 0 6 t0 < t1 < 1, which satis­ es
the di¬erential inclusion

_¹ (t) 2 [f 0(u( ¹ (t)+; t)); f 0(u( ¹ (t); t))] (2.2)
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for almost all t 2 [t0; t1]. From the theory of di¬erential equations with discontinu-
ous right-hand side [7], it follows that, given any point (·x; ·t) 2 R£ (0; 1), there is a
funnel of generalized characteristics passing through (·x; ·t), lying between a minimal
and a maximal one.

Examples of characteristics are classical characteristics and shock curves. We
recall that a characteristic ¹ is called classical if there exists ·u 2 R such that, for
all t 2 [t0; t1],

¹ (t) = ¹ (t0) + f 0(·u)(t ¡ t0); u( ¹ (t); t) = u( ¹ (t)+; t) = ·u:

A characteristic À is called a shock if u( À (t); t) 6= u( À (t)+; t) for a.e. t 2 [t0; t1]. It is
well known that the speed of a shock satis­ es a.e. the so-called Rankine{Hugoniot
relation

_À (t) =
f 0(u( À (t); t)) ¡ f 0(u( À (t)+; t))

u( À (t); t) ¡ u( À (t)+; t)
: (2.3)

In addition, the values of the solution on the two sides of the shock must satisfy the
Oleinik (E)-condition. Setting u¡ = u( À (t); t) and u + = u( À (t)+; t), this condition
says that the segment joining the points (u¡; f (u¡)) and (u + ; f (u + )) of the graph
of f must lie above (respectively, below) the graph of f if u¡ > u + (respectively,
u + > u¡). To see how the Rankine{Hugoniot and the Oleinik (E)-condition can be
derived from the entropy inequality (2.1), see, for example, [6, lemmas 2.2, 2.9]. A
consequence of the Oleinik (E)-condition is that, along a shock curve À ,

f 0(u( À (t)+; t)) 6 _À (t) 6 f 0(u( À (t); t): (2.4)

By a genuine shock we mean a curve of discontinuity x = À (t), t 2 [a; b], for which
the two inequalities above are strict for almost all t 2 [a; b]. Recalling (2.3), one
sees that, for a strictly convex ®ux function f , the two inequalities are necessarily
strict, while for a general ®ux, one or both of them can be equalities. For the
®uxes we consider in this paper, which have one in®ection point and satisfy the
normalization (1.4), it is easy to see that the ­ rst inequality in (2.4) is necessarily
strict, while the second one can be an equality. If a curve of discontinuity x = À (t),
t 2 [a; b], satis­ es _À (t) = f 0(u( À (t); t)) for almost all t 2 [a; b], we call it a left
contact discontinuity. From the de­ nition, it follows that on both sides of a genuine
shock the characteristics go inside the shock. On the other hand, characteristics
can be emanated tangentially from the left side of a contact discontinuity, and this
feature makes the structure of the solution in the non-convex case more di¯ cult to
study. However, for a generic set of initial data, the solution is piecewise smooth
and thus has a simpler structure. Here, the property `generic’ is meant with respect
to the standard C 1 topology.

Theorem 2.1 (cf. theorem 3.1 of [6]). Assume that f , u0 are C 1 smooth and that
assumptions (1.4) are satis¯ed. Then, for a generic set of initial data, the domain
R £ [0; 1) of the entropy solution of (1.1) consists of four disjoint subsets D, S,
W , I, with the following properties.

(a) D is a dense set on which u(x; t) is C 1 .

(b) S is a ¯nite union of C 1 arcs that are genuine shocks or left contact discon-
tinuities.
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(c) W is a ¯nite union of characteristics that are weak waves, i.e. lines along
which the solution is continuous but one of its derivatives has a jump discon-
tinuity.

(d) I is the ¯nite set of shock generation points, shock interaction points and
points of interaction between shocks and weak waves.

The extremal backward characteristics have some special properties, which are
described in [6]. We state here these properties in the case of a piecewise smooth
solution, which is enough for our purposes.

Theorem 2.2 (cf. theorems 2.1, 2.2 of [6]). Let u be a piecewise smooth solution
of (1.1), as in theorem 2.1. Given (·x; ·t) 2 R £ (0; 1), let ¹ and ± be the maximal
and minimal backward characteristic through (·x; ·t). If u(·x; ·t) = u(·x+; ·t) = 0, then
¹ and ± are classical and satisfy ¹ (t) ² ± (t) ² ·x. If u(·x; ·t) 6= 0 or u(·x+; ·t) 6= 0,
then the following properties hold.

(i) There is a ¯nite mesh 0 = t0 < t1 < ¢ ¢ ¢ < tn + 1 = ·t such that ¹ is a convex
polygonal with vertices at the points ( ¹ (tj); tj), j = 0; : : : ; n + 1. Furthermore,
¹ is classical in every interval (tj¡1; tj) and crosses a contact discontinuity at
each vertex ( ¹ (tj); tj).

(ii) u( ± (t); t) is a continuous function with constant sign on [0; ·t], which is non-
decreasing when u(·x; ·t) < 0 and non-increasing when u(·x; ·t) > 0. For each
t 2 (0; ·t),

_± (t) = f 0(u( ± (t); t));

so that ± is a convex C1 curve. In addition, there is a ¯nite mesh 0 = s0 <
s1 < ¢ ¢ ¢ < sm+ 1 = ·t such that, on the intervals (si¡1; si), the curve ± is
alternately a classical characteristic and a contact discontinuity.

The following result for maximal forward characteristics shows that once a dis-
continuity has developed, it propagates for all later times.

Theorem 2.3 (cf. theorem 2.3 of [6]). Let (·x; ·t) 2 R£(0; 1) be a point of disconti-
nuity of an entropy solution u and let À denote the maximal forward characteristic
starting from (·x; ·t). Then À is a shock on [·t; 1). Also, the functions u( À (t); t),
u( À (t)+; t) are continuous from the right on [·t; 1).

One of the assumptions required on the generic set of initial data of theorem 2.1
is that u0 changes sign across a ­ nite number of points ¡ 1 < y1 < ¢ ¢ ¢ < yl < 1.
We assume that this property holds and denote by ¿ i the maximal forward char-
acteristic starting at (yi; 0). If ¿ i¡1 and ¿ i collide, we let s ¤

i > 0 denote the time of
collision. In that case, we have ¿ i¡1(t) = ¿ i(t) for all t 2 [s¤

i ; 1). The characteristics
¿ i partition the upper half-plane in l + 1 regions R1; : : : ; Rl+ 1 given by

Ri = f(x; t) j 0 6 t < s¤
i ; ¿ i¡1(t) < x < ¿ i(t)g; i = 1; : : : ; l + 1;

where we let ¿ 0 ² ¡ 1, ¿ l+ 1 ² 1 and s¤
i = 1 whenever ¿ i¡1(t) < ¿ i(t) for all

t 2 [0; 1). It follows that any minimal backward characteristic from a point in Ri

remains within Ri and so, by theorem 2.2 (ii), the sign of u(x; t) is constant on Ri.
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Each curve ¿ i starts out at time t = 0 as a classical characteristic with zero speed.
It can either remain constant for all times or it can collide with a shock at some
later time t = t ¤

i ; then it remains a shock for all t 2 (t ¤
i ; s¤

i ), by theorem 2.3. Gener-
ically, the interval (t ¤

i ; s ¤
i ) can be partitioned in a ­ nite number of non-degenerate

subintervals, where ¿ i is alternately a genuine shock and a left contact discontinu-
ity. Since the solution changes sign across a left contact discontinuity, these parts
of the curves ¿ i are the only left contacts present in the solution.

It is convenient to further divide each region Ri into two subregions. The idea
is to identify where the solution behaves as in the case of a convex ®ux and where
the behaviour is in®uenced by the presence of the in®ection point of f . For any
t < s ¤

i , we let ¼ i(t) be the point of [¿ i¡1(t); ¿ i(t)] such that the maximal back-
ward characteristic through a point (x; t) lies strictly to the left of ¿ i on [0; t] if
x 2 [¿ i¡1(t); ¼ i(t)), whereas it meets ¿ i at some positive time if x 2 [ ¼ i(t); ¿ i(t)).
We now de­ ne the following subregions,

G i = f(x; t) 2 R £ R + j ¿ i¡1(t) < x < ¼ i(t)g; (2.5)

Hi = f(x; t) 2 R £ R + j ¼ i(t) < x < ¿ i(t)g; (2.6)

where ¿ l + 1 ² 1. We refer to G i, Hi, i = 1; : : : ; l + 1, as the convex and non-convex
regions of the solution, respectively. This terminology is not related to the shape of
the regions, but to the behaviour of the solution. In fact, the domain of dependence
of G i is the interval (yi¡1; yi), where u0 does not cross the in®ection point of f (u).
It follows that the behaviour of u(x; t) on G i is governed by the same mechanism as
in the case of convex equations. We thus have that the Oleinik estimate (1.3) holds
for points in a convex region.

Proposition 2.4. For (x; t); (y; t) 2 G i with x 6 y, the solution u(x; t) satis¯es
the one-sided Lipschitz estimate

f 0(u(y; t)) ¡ f 0(u(x; t)) 6 y ¡ x

t
: (2.7)

Proof. We consider the case when u(¢; t) is continuous at x and y, since the general
case follows by approximation. Let us denote by ± 1 and ± 2 the maximal back-
ward characteristics from (x; t) and (y; t), respectively. These characteristics can-
not cross any contact discontinuity, by the de­ nition of G i, and so in both cases
the mesh of theorem 2.2 (i) is the trivial one t0 = 0, t1 = t. Thus we have
± 1(s) = x ¡ f 0(u(x; t))(t ¡ s), ± 2(s) = y ¡ f 0(u(y; t))(t ¡ s). Since ± 1 and ± 2 can-
not cross, we have ± 1(0) 6 ± 2(0), that is,

t[f 0(u(y; t)) ¡ f 0(u(x; t))] 6 y ¡ x:

We cannot use the same argument for the non-convex regions Hi, since these
regions are spanned by characteristics emanating from contact discontinuities. To
investigate the validity of Oleinik-type estimates in these regions, we must therefore
analyse how the spreading of characteristics is a¬ected by the presence of contact
discontinuities. We collect in the rest of this section some preliminary properties of
the curves ¿ i, which will be used in the analysis of the next sections.
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Let us introduce some more notation and terminology. We denote by Ji the set
of times t 2 (t ¤

i ; s¤
i ) at which ¿ i is a left contact discontinuity, i.e. such that

f 0(u( ¿ i(t); t)) =
f (u( ¿ i(t)+; t)) ¡ f (u( ¿ i(t); t))

u( ¿ i(t)+; t) ¡ u( ¿ i(t); t)
: (2.8)

The interior of Ji is denoted by Jo
i . It was proved in [6] that ¿ i is generically of

class C 1 on Jo
i , except at a ­ nite number of points across which some derivative

¿
(m)
i , m > 1, experiences a jump discontinuity. Moreover, we say that a classical

characteristic is grazing upon ¿ i at time t = ½ if it is de­ ned in an interval [t0; t1]
with t0 < ½ < t1 and is tangent to ¿ i at ( ¿ i( ½ ); ½ ).

Proposition 2.5. Let t0, t1 be such that [t0; t1] » Jo
i . Then, generically, the fol-

lowing properties hold.

(i) Setting ¡ = f(x; t) : t 2 [t0; t1]; x = ¿ i(t)g, there exists a neighbourhood N
of ¡ such that u is continuous at the points of N not lying on the curve ¿ i.

(ii) There exists " > 0 with the following property: for all t 2 [t0; t1], the line
¹ (s) = ¿ i(t) + (s ¡ t) _¿ i(t) is a classical characteristic at least in the interval
s 2 [t; t + "].

(iii) Setting u§(t) := u( ¿ i(t)§; t) for t 2 [t0; t1], both u¡(t) and u + (t) have con-
stant sign, one opposite to the other, and both ju¡(t)j and ju + (t)j are strictly
decreasing.

(iv) Call ½ 0 the in¯mum of the times t such that [t; t1] » Ji. Then [½ 0; t1] » Ji and
there is a grazing ray upon ¿ i at time ½ 0.

Proof. We recall that, by [6, corollary 2.2], no shock can collide with ¿ i at any t 2 Ji.
The number of shocks is generically ­ nite, and so we can ­ nd a neighbourhood N
of the set ¡ where the solution has no other points of discontinuity except those
on ¿ i. This proves (i).

Let us now set N 0 = f(x; t) 2 N : x < ¿ i(t)g. Since u is continuous in N 0,
such a set is covered univalently by classical characteristics. Characteristics can, in
principle, either be absorbed or be emanated by ¿ i; however, by [6, lemma 3.6],
there is generically only a ­ nite number of characteristics that are absorbed by ¿ i.
But then there are no absorbed characteristics at all, since otherwise they would
cross the emanated ones and N 0 would not be covered univalently. Thus we can
­ nd " as in (ii).

The functions u¡(t) and u + (t) have constant sign because u has constant sign
in each region Ri. In addition, f 0(u¡(t)) = ¿ 0

i(t) is strictly increasing in [t0; t1]
by [6, lemma 3.4]. Recalling that f satis­ es (1.4) and that u¡(t) and u + (t) are
related by (2.8), we deduce that ju¡(t)j and ju+ (t)j are strictly decreasing.

It remains to prove (iv). We have that ] ½ 0; t1] » Ji by de­ nition of ½ 0. Since u +

and u¡ are continuous from the right, ½ 0 also belongs to Ji. By [6, corollary 2.2], ¿ i

is di¬erentiable at ½ 0 and _¿ i( ½ 0) = f 0(u¡( ½ 0)). Let us set, for simplicity, x0 = ¿ i( ½ 0).
We have to show that the line ¹ 0(s) := x0 +(s ¡ ½ 0) _¿ i( ½ 0) is a classical characteristic
for s in a neighbourhood of ½ 0. By part (ii), this is certainly true for s 2 [½ 0; ½ 0 + "].
To take into account times smaller than t, let us consider the minimal backward
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Figure 1. The characteristics bounding non-convex regions.

characteristic from (x0; ½ 0). By theorem 2.2 (ii), there exists an interval [ ½ 0 ¡ ¯ ; ½ 0]
where such a characteristic is either classical or a contact discontinuity. The latter
possibility is excluded, since it would imply that [ ½ 0 ¡ ¯ ; ½ 0] » Ji, contradicting
the de­ nition of ½ 0. We deduce that the backward characteristic is classical and
coincides with ¹ 0, which is therefore a grazing ray upon ¿ i at t0.

Thus the curve ¿ i is alternately a genuine shock, with characteristics impinging
upon it from both sides, and a left contact discontinuity, with characteristics emitted
to the left. At the left endpoint of a time-interval where ¿ i is a left contact, there
is a grazing ray upon ¿ i. Figure 1 shows a typical situation.

3. HÄolder estimate for f 0(u)

We now start our analysis of the behaviour of the characteristic speed f 0(u) in the
non-convex regions Hi. In this section we show that f 0(u) satis­ es no one-sided
Lipschitz estimate of the form (1.3), but rather a H�older estimate with exponent 1

2
.

We assume throughout that the solution behaves as in the generic case described
by theorem 2.1.

Let us choose one of the non-convex regions Hi and simplify notation by dropping
the subscript i. Thus

¼ (t) ² ¼ i(t); ¿ (t) ² ¿ i(t); J ² Ji; etc.

We ­ x a time t for which ¼ (t) < x < ¿ (t), and de­ ne

³ (x) = f 0(u(x; t)); ¼ (t) < x < ¿ (t):
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From [6, lemma 3.5], we deduce that the function ³ is increasing and continuous; in
addition, it is C 1 smooth, except at the points lying on weak waves, whose number
is ­ nite by theorem 2.1 (c).

Let us consider a point (x; t) with x 2 ( ¼ (t); ¿ (t)). By the de­ nition of the
non-convex regions, the minimal backward characteristic through (x; t) is emitted
tangentially from ¿ at some previous time, which we denote by ½ (x). The function
½ is increasing in x and satis­ es

f 0(u(x; t)) = f 0(u( ¿ ( ½ (x)); ½ (x))) = _¿ ( ½ (x)); (3.1)

x = ¿ ( ½ (x)) + _¿ ( ½ (x))(t ¡ ½ (x)): (3.2)

At the points where ½ is di¬erentiable, we obtain

�¿ ( ½ (x)) ½ 0(x) =
1

t ¡ ½ (x)
: (3.3)

Recall that ³ (x) = f 0(u(x; t)) = _¿ ( ½ (x)), so that

³ 0(x) =
1

t ¡ ½ (x)
: (3.4)

By continuity, this equality holds at all points of di¬erentiability of ³ , and thus
yields information about the Lipschitz continuity of ³ . We can ­ rst observe that,
since ½ (x) is strictly positive, the one-sided estimate (1.3) does not hold in the non-
convex regions, at least not with a Lipschitz constant 1=t. On the other hand, we
see that ³ is Lipschitz continuous if ½ (x) is bounded away from t. This is the case if
x is bounded away from ¿ (t), that is, if we are far from the contact discontinuities,
but does not hold in general as we approach such curves. More precisely, let us set

J ¤ := ft : (t ¡ "; t) » J for some " > 0g; (3.5)

where J = Ji is the set introduced before proposition 2.5. Using proposition 2.5 (ii),
we obtain that

lim
x" ¿ (t)

½ (x) = t , t 2 J ¤ :

Therefore, if t 2 J ¤ , no one-sided Lipschitz estimate from above holds for ³ (x) in a
left neighbourhood of ( ¿ (t); t).

We now proceed to estimate the rate at which ³ 0(x) " +1 as x " ¿ (t) with t 2 J ¤ .
We choose " > 0 such that (t ¡ "; t) » J and that ¿ is C 1 smooth in (t ¡ "; t);
then we take ² > 0 such that, for all x 2 ( ¿ (t) ¡ ² ; ¿ (t)), we have ½ (x) 2 (t ¡ "; t).
Then there are no weak waves crossing the interval ( ¿ (t) ¡ ² ; ¿ (t)) at time t and
³ is C 1 smooth in this interval. Di¬erentiating (3.4) once more with respect to x
and using (3.3), we obtain

³ 00(x)

( ³ 0(x))3
=

1
�¿ ( ½ (x))

: (3.6)

Assuming further that there exists C 0 such that �¿ ( ½ ) 6 C 0 for t ¡ " < ½ < t, we
obtain the di¬erential inequality

³ 00(x)

( ³ 0(x))3
> 1

C0
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for all x su¯ ciently close to ¿ (t). Integrating from x to ¿ (t) gives

1

( ³ 0(x))2
> 2

C 0 ( ¿ (t) ¡ x);

where we have used the fact that ³ 0( ¿ (t)) = +1. Solving for ³ 0(x) and integrating
once more gives the estimate

C
p

¿ (t) ¡ x > ³ ( ¿ (t)) ¡ ³ (x) = f 0(u( ¿ (t); t)) ¡ f 0(u(x; t)) (3.7)

for x < ¿ (t) close to ¿ (t) and where C =
p

2C 0. Let us summarize the results
obtained so far.

Theorem 3.1. Assume that the ° ux f 2 C 1 satis¯es conditions (1.4). Assume
also that the solution to (1.1) is piecewise smooth, as in the generic case described
in theorem 2.1. Given a point (x; t) 2 R £ R + , the following two properties are
equivalent.

(i) There exists no neighbourhood N of x such that the ratio [f 0(u(x2; t)) ¡
f 0(u(x1; t))]=[x2 ¡ x1] is bounded from above for all x1; x2 in N with x2 > x1.

(ii) There exists a contact discontinuity curve ¿ such that t 2 J ¤ and x = ¿ (t).

In addition, if (ii) holds and if lim sup ½ "t
�¿ i( ½ ) < +1, then f 0(u(¢; t)) satis¯es a

H�older estimate with exponent 1
2 of the form (3.7) in a left neighbourhood of x.

In the previous computations, we have seen that the validity of a H�older estimate
near a point on the curve ¿ is related to the curvature of ¿ at that point. To better
understand the behaviour of the curvature of a left contact discontinuity, we now
proceed with a more detailed analysis, which in turn yields a more precise H�older
estimate. For our further analysis we need to assume that the graph of the ®ux
is not too ®at at the point of in®ection, in the sense that we describe now. From
assumptions (1.4), it follows that for each u 6= 0 there exists a unique u ¤ 6= u with
the property that

f 0(u) =
f (u ¤ ) ¡ f(u)

u ¤ ¡ u
: (3.8)

This is the relation satis­ ed across a left contact discontinuity with left state u and
right state u ¤ . For u 6= 0, let us de­ ne

» (u) =
f 0(u)

f 0(u ¤ )
: (3.9)

Then 0 < » (u) < 1 for every u; our assumption is that » satis­ es, in addition,

sgn(u) » 0(u) 6 0 for u 6= 0: (3.10)

As an example, consider the model equation (1.5). In this case, » is constant and
equal to the unique positive root of the algebraic equation

m» 1+ 1=m + (m + 1)» ¡ 1 = 0: (3.11)

Under the above assumption, and with the same notation used for proving theo-
rem 3.1, we let ¹ and ± denote the maximal backward characteristics through (x; t)
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Figure 2. Case A.
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Figure 3. Case B.

and ( ¿ (t); t), respectively. According to theorem 2.2, these are convex polygonal
lines with vertices at the points where they cross left contact discontinuities. By
choosing x < ¿ (t) su¯ ciently close to ¿ (t), we can assume that one of the following
two cases occurs.

(A) Both ¹ and ± are emitted from the same left contact discontinuity, denoted
by Á, at some earlier times ·t and ·½ , respectively. Here, ·t depends on t and ·½
depends on ½ = ½ (x) (see ­ gure 2).

(B) Both ¹ and ± are straight line characteristics starting at time zero (see ­ g-
ure 3).

Case A. Recalling that u is normalized to be continuous from the left, we set

v( ½ ) = u( ¿ ( ½ ); ½ ):

Referring to ­ gure 2, we have

¿ ( ½ ) = _Á(·½ )( ½ ¡ ·½ ) + Á(·½ ) =
_¿ ( ½ )

» (v( ½ ))
( ½ ¡ ·½ ) + Á(·½ ):
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Di¬erentiating with respect to ½ and using (3.10) and the fact that jv( ½ )j is
non-increasing, we conclude that

( » (v( ½ )) ¡ 1) _¿ ( ½ ) > �¿ ( ½ )( ½ ¡ ·½ ): (3.12)

Provided that ¿ is not intersected by Á at time t, we have ·t < t. Letting ½ " t
in (3.12) shows that �¿ is uniformly bounded on a backward interval (t ¡ "; t), " > 0,
so that an estimate of the form (3.7) holds.

On the other hand, if » is constant, then (3.12) holds with equality. In this case,
if ¿ is intersected by Á at time t, then ½ ¡ ·½ ! 0 and (3.12) implies that �¿ ( ½ ) " 1
as ½ " t. Thus the curvature of a left contact discontinuity may be in­ nite, but only
at times where it is intersected from the right by another left contact discontinuity.
Since all contact discontinuities are contained in the curves ¿ i, there are only ­ nitely
many such intersections.

To proceed, we assume that t is not a time of intersection between ¿ and Á. De­ n-
ing » 0 = inff » (v) : jvj 6 ku0k 1 g > 0 and observing that ½ (x) ¡ ·½ > ½ (x) ¡ ·t > 0
for x close enough to ¿ (t), we conclude that

1
�¿ ( ½ (x))

>
³

1

» 0 ¡ 1

´
½ (x) ¡ ·t
_¿ ( ½ (x))

:

Substituting this into (3.6), we have the di¬erential inequality

d

dx

³
³ (x)

³ 0(x)

´
> » 0

» 0 ¡ 1
¡ ³ 0(x)(t ¡ ·t)

» 0 ¡ 1
: (3.13)

Case B. In this case, we have

¿ ( ½ ) =
_¿ ( ½ )

» (v( ½ ))
½ + z( ½ ); (3.14)

where z( ½ ) is the intersection of the characteristic ¹ with the x-axis (see ­ gure 3).
Di¬erentiating with respect to ½ , using the properties of » and the fact that z 0( ½ ) > 0
gives

_¿ ( ½ ) >
�¿ ( ½ )

» (v( ½ ))
½ +

_¿ ( ½ )

» (v( ½ ))
:

We conclude that

�¿ ( ½ ) 6 (1 ¡ » 0)
j _¿ ( ½ )j

½
:

Substituting this into (3.6), we obtain

d

dx

³
³ (x)

³ 0(x)

´
> » 0

» 0 ¡ 1
¡ ³ 0(x)t

» 0 ¡ 1
; (3.15)

which is the same as (3.13) when ·t = 0. We can thus treat the two cases by the
same analysis.

Integrating (3.13) from x to ¿ (t) yields the following di¬erential inequality
for ³ (x):

³ 0(x) 6 (1 ¡ » 0) ³ (x)

» 0( ¿ (t) ¡ x) ¡ (t ¡ ·t)( _¿ (t) ¡ ³ (x))
:
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(x)q

-m(x) q (x)

x = f (t)

Figure 4. Pro¯le of ³ (x) and ¡ · (x).

Letting · (x) be the solution of the problem

· 0(x) =
(1 ¡ » 0) · (x)

» 0( ¿ (t) ¡ x) ¡ (t ¡ ·t)( _¿ (t) + · (x))
; · ( ¿ (t)) = ¡ _¿ (t); (3.16)

we conclude that ³ (x) > ¡ · (x) for x close to ¿ (t) (see ­ gure 4). It is readily
veri­ ed that the solution of (3.16) is implicitly given as the solution of the algebraic
equation

(x ¡ A) · (x)¡a + (t ¡ ·t) · (x)1¡a = C; (3.17)

where

A = ¿ (t) ¡ (t ¡ ·t)

» 0

_¿ (t);

a =
» 0

» 0 ¡ 1
;

C =
(t ¡ ·t)

a
( ¡ _¿ (t))1¡a:

Let ~· (z) = · (z + ¿ (t)) for small z < 0 and consider the inverse function ¸ = ~· ¡1.
From (3.17), we see that ¸ satis­ es the equation

¸ (y) = ¡ (t ¡ ·t)

» 0

_¿ (t) ¡ (t ¡ ·t)y + Cya; y > ¡ _¿ (t):

A straightforward computation shows that

¸ ( ¡ _¿ (t)) = 0; ¸ 0( ¡ _¿ (t)) = 0; ¸ 00( ¡ _¿ (t)) =

³
1

1 ¡ » 0

´
t ¡ ·t
_¿ (t)

< 0:

It follows that, for any ¬ < 0 with j¬ j < 1
2
j ¸ 00( ¡ ¿ (t))j, there is an " > 0 such that

the characteristic speed f 0(u(¢; t)) satis­ es the estimate

0 > f 0(u(x; t)) > f 0(u( ¿ (t); t)) ¡

s
¿ (t) ¡ x

j¬ j for x 2 ( ¿ (t) ¡ "; ¿ (t)):

In particular, choosing ¬ = (t ¡ ·t)=[4(1 ¡ » 0) _¿ (t)], we obtain
s

4(1 ¡ » 0)j _¿ (t)j
t ¡ ·t

p
¿ (t) ¡ x > f 0(u( ¿ (t); t)) ¡ f 0(u(x; t)) (3.18)
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for all x < ¿ (t) su¯ ciently close to ¿ (t). We summarize the results in the following
theorem.

Theorem 3.2. Let the assumptions of theorem 3.1 hold and suppose, in addition,
that the function » de¯ned in (3.9) satis¯es property (3.10). Then, at any point
( ¿ (t); t) on a left contact discontinuity which is not the point of intersection with
another left contact discontinuity, the H�older estimate (3.18) holds. The time ·t that
appears in (3.18) is the time at which the maximal backward characteristic through
( ¿ (t); t) was emitted from a contact discontinuity or, if no such exists, is zero.

We see that the coe¯ cient in the H�older estimate is bounded by C=
p

t ¡ ·t. This
should be compared to the Lipschitz constant C=t in the convex case (1.3), where
the time ·t does not appear, since all characteristics can be traced back to time zero
in this case. Note, however, that, also in the non-convex case, there are situations
where ·t = 0, e.g. when ¿ = ¿ l is the right-most of the curves ¿ i, or when the data
cross the in®ection point of f only once. In these cases, we have t¡1=2-decay of the
H�older coe¯ cient.

4. A generalized Oleinik estimate

In this section we give a di¬erent generalization of the Oleinik estimate, where we
have the same term of the original estimate (1.3), plus an additional one to keep
into account the e¬ect of the contact discontinuities.

Theorem 4.1. Assume that the ° ux f is C 1 smooth and satis¯es conditions (1.4)
and (3.10). Then, for any t > 0 and x, y with y > x, the solution u to (1.1) satis¯es

f 0(u(y; t)) ¡ f 0(u(x; t)) 6 y ¡ x

t
+ C[T V u0 ¡ T V u(¢; t)]; (4.1)

where C only depends on f and ku0k 1 .

Roughly speaking, the above result is based on the following idea. As we have
seen, the standard Oleinik estimate fails in the non-convex case because of the pres-
ence of contact discontinuities. On the other hand, contact discontinuities decrease
the total variation of the solution, as shown by the next lemma.

Lemma 4.2. Assume the hypotheses of the previous theorem, and suppose in addi-
tion that the solution u is piecewise smooth. Let

® 1 : [ ¼ 1; ½ 1] ! R; : : : ; ® n : [ ¼ n; ½ n] ! R

be curves of a left contact discontinuity for u. Then we have

2

nX

i= 1

(ju( ® i( ¼ i)+; ¼ i)j ¡ ju( ® i( ½ i)+; ½ i)j) 6 T V u(¢; S) ¡ T V u(¢; T );

where S = min ¼ i, T = max ½ i.

Proof. It su¯ ces to consider the case of a single contact discontinuity curve
® : [¼ ; ½ ] ! R, since the proof is extended to the general case in a straightforward
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way. Let us set u§(t) = u( ® (t)§; t) for t 2 [¼ ; ½ ]. We shall use the properties given
by proposition 2.5. We know that u¡(t) and u + (t) have constant signs in [¼ ; ½ ],
one opposite to the other. Let us suppose, for instance, that u + (t) > 0 (the other
case is analogous). Then u + (t) is a decreasing function of t in [¼ ; ½ ], while u¡(t)
is increasing. Recalling that characteristics are emanated from ® on the left side
and go inside ® on the right side, we deduce that, for any t 2 ( ¼ ; ½ ), the function
x ! u(x; t) is negative and increasing in a left neighbourhood of ® (t), jumps from
u¡(t) < 0 to u + (t) > 0 across ® (t) and it is positive and decreasing in a right
neighbourhood of ® (t). Therefore, its total variation decreases in time by two times
the amount u + (t) decreases. This proves the lemma.

Given t > 0 and a < b, we denote by PV (a; b; t) the positive variation of
x ! f 0(u(x; t)) over the interval [a; b], de­ ned as the supremum of

nX

i = 1

[f 0(u(xi; t)) ¡ f 0(u(xi¡1; t))] +

over all partitions a = x0 < x1 < x2 < ¢ ¢ ¢ < xn = b of the interval [a; b]. In the
next lemma we estimate the positive variation of f 0(u) in the non-convex regions.

Lemma 4.3. Under the hypotheses of the previous lemma, we have

lX

i = 1

PV ( ¼ i(t); ¿ i(t); t) 6 C[T V u0 ¡ T V u(¢; t)]; (4.2)

where C only depends on f and ku0k 1 .

Proof. For simplicity of notation, we suppose that l = 1 and we drop the sub-
script i. We consider an arbitrary partition of our interval, which we denote by
¼ (t) = x0 < x1 < ¢ ¢ ¢ < xn = ¿ (t). By possibly re­ ning the partition, we can assume
that all points of [¼ (t); ¿ (t)] lying on grazing rays are also points of the partition.

For all k = 0; : : : ; n, let us denote by ± k the minimal backward characteristic
from (xk; t). By de­ nition of ¼ (t), this characteristic intersects the curve ¿ at some
time; if it is a grazing ray, it can intersect ¿ more than one time. We de­ ne t0

k to be
the smallest time such that ± k = ¿ and by t00

k the largest one. Each characteristic ± k

is classical in the interval [t0
k; t]; since classical characteristics cannot intersect each

other, we have t0
k¡1 6 t00

k¡1 < t0
k for all k.

We now proceed to estimate f 0(u(xk; t)) ¡ f 0(u(xk¡1; t) for a given k. Since the
characteristics ± k¡1 and ± k are emanated from ¿ at time t00

k¡1 and t0
k, respectively,

¿ is a left contact discontinuity at these two times. We claim that ¿ is a left contact
in the whole interval [t00

k¡1; t0
k]. To see this, let us call ½ 0 the smallest time such

that ¿ is a left contact in [½ 0; t0
k]. Then, by proposition 2.5 (iv), there is a grazing

ray upon ¿ at time ½ 0. We argue by contradiction and suppose that either ½ 0 = t0
k

or that t00
k¡1 < ½ 0 < t0

k. If ½ 0 = t0
k, we ­ nd that ± k grazes upon ¿ at time t0

k and
this contradicts the minimality of t0

k. If we assume instead that t00
k¡1 < ½ 0 < t0

k,
then there exists a grazing ray lying between ± k¡1 and ± k. Since by [6, lemma 3.5]
there are no shocks in the region between ¼ and ¿ , this grazing ray is de­ ned up
to time t. This contradicts the assumption that our partition contains all points on
grazing rays. Thus we have proved our claim that ¿ is a left contact in [t00

k¡1; t0
k].
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For simplicity, let us now set u§(t) = u( ¿ (t)§; t)). Then, recalling that ju + (t)j
and ju¡(t)j are both decreasing by proposition 2.5 (ii), and using properties (3.9)
and (3.10), we obtain

f 0(u(xk; t)) ¡ f 0(u(xk¡1; t)) = f 0(u¡(t0
k)) ¡ f 0(u¡(t00

k¡1))

= » (u¡(t0
k))f 0(u + (t0

k)) ¡ » (u¡(t00
k¡1))f 0(u + (t00

k¡1))

6 » (u¡(t0
k))[f 0(u+ (t0

k)) ¡ f 0(u + (t00
k¡1))]

6 M [ju + (t00
k¡1)j ¡ ju + (t0

k)j];

where we have set

M = maxfjf 00(v)j : jvj 6 ku0k 1 g ¢ maxf » (v) : jvj 6 ku0k1 g:

Summing over k, using lemma 4.2 and recalling that the partition was arbitrary,
we obtain

PV ( ¼ (t); ¿ (t); t) 6 1
2M [T V u0 ¡ T V u(¢; t)]:

Proof of theorem 4.1. Let us ­ rst consider the case when the solution is piecewise
smooth. Then we can estimate PV (a; b; t) using proposition 2.4 in the convex
regions and lemma 4.3 in the non-convex ones. More precisely, we choose points
a = x0 < x1 < ¢ ¢ ¢ < xm = b in such a way that each subinterval [xj¡1; xj ] is
either contained in some [¿ i¡1(t); ¼ i(t)] or in some [ ¼ i(t); ¿ i(t)]. In the ­ rst case, we
deduce from proposition 2.4 that PV (xj¡1; xj; t) 6 (xj ¡ xj¡1)=t, while the total
contribution of the intervals of the latter type is bounded by C[T V u0 ¡ T V u(¢; t)]
by virtue of lemma 4.3. Summing over j, we obtain

P V (a; b; t) 6 b ¡ a

t
+ C [T V u0 ¡ T V u(¢; t)]: (4.3)

Since f 0(u(b; t)) ¡ f 0(u(a; t)) 6 P V (a; b; t), this proves the assertion in the case when
u is piecewise smooth. The general case can be recovered by a standard approx-
imation procedure, using the property that the solutions to (1.1) are generically
piecewise smooth by theorem 2.1.

Corollary 4.4. Let the assumptions of the previous theorem be satis¯ed. Then,
for every " > 0, the positive variation over R of the function

x ! f 0(u(x; t)) ¡ (1 + ")
x

t

tends to zero as t ! +1.

Proof. Let us take t0, t with t > t0 > 0. By taking u(¢; t0) as initial data, we can
generalize (4.3) as follows:

PV (a; b; t) 6 b ¡ a

t ¡ t0
+ M [T V u(¢; t0) ¡ T V u(¢; t)]: (4.4)

Since T V u(¢; t) is positive and decreasing in t, the term T V u(¢; t0) ¡ T V u(¢; t) can
be made arbitrarily small by taking t0 su¯ ciently large. Also, for ­ xed t0, we have
(b ¡ a)=(t ¡ t0) < (1 + ")(b ¡ a)=t if t is large enough. The assertion follows.
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Let us remark that the standard Oleinik estimate (1.3) is equivalent to the prop-
erty that the function

x ! f 0(u(x; t)) ¡ x

t

has zero positive variation. Therefore, the above corollary says, roughly speaking,
that the Oleinik inequality is asymptotically valid also in the non-convex case con-
sidered in this paper.
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