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STRONG JUMP-TRACEABILITY

NOAMGREENBERGANDDAN TURETSKY

Abstract. We review the current knowledge concerning strong jump-traceability.We cover
the known results relating strong jump-traceability to randomness, and those relating it to
degree theory. We also discuss the techniques used in working with strongly jump-traceable
sets. We end with a section of open questions.

§1. Traces. An insight arising from the study of algorithmic randomness
is that anti-random-ness is a notion of computational weakness. While the
major question driving the development of effective randomness was “what
does it mean for an infinite binary sequence to be random?”, fairly early
on Solovay [52] defined the notion of K-trivial sets, which are the opposite
of Martin-Löf random sequences in that the prefix-free Kolmogorov com-
plexity of their initial segments is as low as possible. While Chaitin [9, 10]
showed that each K-trivial set must be Δ02, a proper understanding of these
sets has only come recently through work of Nies and his collaborators
(see for example [23, 30, 47, 48]). This work has revealed that K-triviality
is equivalent to a variety of other notions, such as lowness for Martin-Löf
randomness, lowness for K , and being a base for 1-randomness (for the
latter see [39]). These other notions express computational weakness as an
oracle: they say that a set is too weak to compute better-than-computable
compressions, patterns in randoms, or null sets covering the reals
computing it.
The computational weakness of K-trivial sets is reflected in more tra-
ditional measures of weakness studied in pure computability theory. For
example, every K-trivial set has a low Turing degree. Recent developments
in both pure computability and in its application to the study of randomness
have devised other notions of computational weakness, and even hierarchies
of weakness, and attempted to calibrateK-triviality with these notions. One
such attempt uses the hierarchy of jump-traceability.
Traceability has its roots in set theory, where traces are referred to as
slaloms. Bartoszyński [5] first introduced them for studying cardinal char-
acteristics of the continuum. For example, he used the method of slaloms to
prove that cofinpN q “ dpP˚q. The study of traceability in a computability
context was initiated by Terwijn and Zambella [54].
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Definition 1.1. A trace for a partial function � : � Ñ � is a sequence
T “ xT pzqyză� of finite sets such that for all z P dom�, �pzq P T pzq.
Thus, a trace for a partial function � indirectly specifies the values of �
by providing finitely many possibilities for each value; it provides a way of
“guessing” the values of the function �. Such a trace is useful if it is easier
to compute than the function � itself; and traces consisting of smaller sets
do a better job of guessing the value of the function, and thus give more
information about the function. In some sense the notion of a trace is quite
old in computability theory. W. Miller and Martin [42] characterised the
hyperimmune-free degrees as those Turing degrees a such that every (total)
function h P a has a computable trace (the more familiar, but equivalent,
formulation, is in terms of domination). In the same spirit, Terwijn and
Zambella [54] and Kjos-Hanssen, Nies and Stephan [37] used a uniform
version of hyperimmune-freeness to characterise lowness for Schnorr ran-
domness, thereby giving a “combinatorial” characterisation of this lowness
notion; Kihara later observed the close resemblence between their proof and
Bartoszyński’s.
The characterisations of hyperimmune-freeness and of lowness for
Schnorr randomness demonstrate how traces can be used to capture the
notion that a set is easy to approximate. Traces can also be used in a dual
method by fixing the functions to be traced and varying the oracles used to
perform the tracing. This can capture the notion that a set is powerful as an
oracle. For example, a degree a is high (in the sense that a1 “ 02) if and only
if every partial 01-computable function has an a-c.e. trace.
Note that traces are defined for partial functions, rather than only total
functions. This is in contrast to the set-theoretic treatment of slaloms, where
it is sufficient to only consider total functions; any partial function can
be extended to a total function of the same set-theoretic complexity (e.g.,
constructible), while this fails for various computability theoretic notions of
complexity.
As in the characterisation of the high degrees, often we are concerned
not with how hard it is to compute a trace, but rather, how hard it is to
enumerate it.

Definition 1.2. A trace T “ xT pzqy is computably enumerable if the set
of pairs tpx, zq : x P T pzqu is c.e.
In other words, if uniformly in z, we can enumerate the elements of T pzq.
It is guaranteed that each set T pzq is finite, and yet if T is merely c.e., we do
not expect to know when the enumeration of T pzq ends. Thus, rather than
using the exact size of each element of the trace, we use effective bounds on
this size to indicate how strong a trace is: the fewer options for the value
of a function, the closer we are to knowing what that value is. The bounds
are known as order functions (following terminology of Schnorr’s); they
calibrate rates of growth of computable functions.

Definition 1.3. An order function is a nondecreasing, computable and
unbounded function h such that hp0q ą 0. If h is an order function and
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T “ xT pzqy is a trace, then we say that T is an h-trace (or that T is bounded
by h) if for all z, |T pzq| ď hpzq.
In addition to measuring the sizes of c.e. traces, order functions are used
to define uniform versions of traceability notions. For example, a degree is
computably traceable if there is an order h such that every total function in the
degree has a computable h-trace. Asmentioned above, A setA is computably
traceable if and only if every Schnorr random sequence isA-Schnorr random
[37, 54]. There is also a connection between computable traceability and
strong reducibilities: the truth-table degree of a set is computably traceable
if and only if it is Schnorr trivial.
Replaced by its computably-enumerable variant, c.e. traceability was dis-
covered to have strong links to traditional degree theory. For example,
Ishmukhametov [32] showed that a c.e. traceable Turing degree has a
strong minimal cover; and in the context of the c.e. degrees, c.e. traceabil-
ity is equivalent to the notion of array computability [22, 24]. Further, a
weak truth-table degree is computably traceable if and only if it is
anti-complex [26].
As these only consider total functions, the choice of order function
turns out not to matter; if there is an order function h such that every
a-computable function is traced by a computable (resp. c.e.) h-trace, then
every a-computable function is computably (resp. c.e.) traced by a g-trace
for every order function g. An analogous fact is used in the treatment of
slaloms, which are typically taken to be bounded by n2.
Zambella (see [53]) observed that if A is low for Martin-Löf randomness
then there is an order function h such that every function computable from
A has a c.e. h-trace. This was improved by Nies [47], who showed that one
can replace total by partial functions. In some sense it is natural to expect a
connection between uniform traceability and K-triviality; if every function
� computable (or partial computable) from A has a c.e. h-trace, for some
slow-growing order function h, then the value �pnq of any such function
can be described (in the sense of Kolmogorov complexity) by approximately
log n ` log hpnq many bits.
Following this, it was a natural goal to characteriseK-triviality by tracing,
probably with respect to a family of order functions. While partial results
have been obtained [3,31] this problem still remains open. The point is that
while K-triviality has been found to have multiple equivalent definitions,
all of these definitions use analytic notions such as Lebesgue measure or
prefix-free Kolmogorov complexity in a fundamental way, and the aim is to
find a purely combinatorial characterisation for this class.

§2. Strong jump-traceability. An attempt toward a solution of this prob-
lem lead to the introductionofwhat seems nowa fairly fundamental concept,
which is not only interesting in its own right, but now has been shown to
have deep connections with randomness.

Definition 2.1 (Figueira,Nies, Stephan [25]). Let h be anorder function.
An oracleA P 2� is h-jump-traceable if every partialA-computable function
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has a c.e. h-trace. An oracle is strongly jump-traceable if it is h-jump-traceable
for every order function h.1

Figueira, Nies, and Stephan characterised the strongly jump-traceable
sets as those that are “lowly” for plain Kolmogorov complexity C in that
C pnq ď` CApnq`hpCApnqq for any order function h. They gave a construc-
tion of a noncomputable strongly jump-traceable c.e. set. Their construction
bore a strong resemblance to the construction of aK-trivial c.e. set. J. Miller
and Nies [41] asked if strong jump-traceability and K-triviality coincided.
Cholak, Downey and Greenberg answered this question in the negative.
They showed [11, 20] that every strongly jump-traceable set is K-trivial
but that the containment is proper. In fact they constructed an order
function h such that every h-jump-traceable set is K-trivial. Nonethe-
less, further research revealed remarkable similarities between the strongly
jump-traceable Turing degrees and the ideal of K-trivial degrees.

2.1. Structural results. Nies showed [47] that every K-trivial set is com-
putable from a c.e. one. This says that the class is “inherently” enumerable.
Because it is closed downward under Turing reducibility, it cannot be the
case that everyK-trivial set is c.e. However bounding by c.e. sets shows that
as far as constructions go, we may restrict ourselves to c.e. sets. The same
holds for strongly jump-traceable sets:

Theorem 2.2 (Diamondstone, Greenberg, Turetsky [19]). Every strongly
jump-traceable set is computable from a c.e. one.

In particular, unlike all other classes defined by a traceability concept,
there are only countably many strongly jump-traceable sets.

The K-trivial degrees form an ideal in the Turing degrees.

Theorem 2.3 (Cholak, Downey, Greenberg [11]; [19]). The class of
strongly jump-traceable sets is closed under join. Hence the strongly jump-
traceable degrees form an ideal in the Turing degrees.

The presentation here deviates from the historical order. First, in [11]
the authors showed that the join of two c.e. strongly jump-traceable sets is
strongly jump-traceable. In other words, they showed that the computably
enumerable, strongly jump-traceable degrees form an ideal in the c.e. Turing
degrees. Theorem 2.2 (which was proved later) is then used to extend the
result to all strongly jump-traceable sets and degrees.

A similar process shows the coincidence of the class of strongly jump-
traceable sets with another class defined by a lowness property. Recall that a
set A P 2� is superlow if its Turing jump A1 is weak truth-table reducible to
the halting problemH1: the use of the reduction is bounded by a computable
1The definition we have given is not quite that originally presented by Figueira, Nies,

and Stephan; rather than tracing all partial A-computable functions, they defined h-jump-
traceability only in terms of tracing the universal partial A-computable function JApeq “
ΦAe peq. While this does not change the notion of strong jump-traceability, it causes h-jump-
traceability to depend on one’s choice of Gödel numbering. Hence the above definition has
become the standard.

https://doi.org/10.1017/bsl.2017.38 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.38


STRONG JUMP-TRACEABILITY 151

function. Equivalently, A1 has a computable approximation for which the
number of mind-changes on each input is bounded by a computable func-
tion. In analogy with the definition of strong jump-traceablility, Figueira,
Nies and Stephan [25] defined a setA to be strongly superlow if for any order
function h there is a computable approximation of A1 with mind-changes
bounded by h. On the other hand, a set A is strongly jump-traceable if,
bounded by any given computable growth-rate, one can enumerate finitely
many possible values of the jump function JApeq “ ΦAe peq.
Note the distinction between the jump function and the jump set A1 “
dom JA. For strong superlowness we give an approximation, which is
stronger than listing values; but we only approximate the jump set rather
than the jump function. That is, we approximate whether a given n is in the
domain of JA, while strong jump-traceability provides a list of values, one
of which is JApnq if n is in the domain.
Figueira, Nies and Stephan showed that every strongly superlow set is
strongly jump-traceable, and that the two notions are equivalent on the c.e.
sets. Hence, Theorem 2.2 implies:

Corollary 2.4 ([19]). A set is strongly jump-traceable if and only if it is
strongly superlow.

As mentioned above, Cholak, Downey and Greenberg [11] showed that
every c.e. strongly jump-traceable set is K-trivial; this was extended by
Downey and Greenberg [20] to all sets. In hindsight, as above, the full
result also follows from Theorem 2.2. Later research [3,31,55] further stud-
ied the connection between K-triviality and rates of growth of bounds of
traces.
The fact that strong jump-traceability is defined for partial functions
means that unlike the treatment of total functions, or slaloms, we cannot
replace all order functions with a single order function. The ultimate result
along these lines is by Ng [43], who significantly extended the techniques
used to separate K-triviality from strong jump-traceability to show that the
hierarchy of rates of growth on traces does not collapse in the Turing degrees.
In turn he utilised this to calculate the complexity of the notion.

Theorem 2.5 (Ng).

(1) For every order function h there is a (much slower) order function g
such that there is a degree which is h-jump-traceable but not g-jump-
traceable. Thus for no order function h do the strongly jump-traceable
degrees coincide with the h-jump-traceable degrees.

(2) The index set of c.e., strongly jump-traceable sets is Π04 complete.

In contrast, the c.e.K-trivial sets have a Σ03 index set. In further work [46],
Ng defined a yet more restricted class (which he called hyper jump-traceable)
which in contrast with strong jump-traceability does not contain a promptly
simple set.

2.2. Connections to randomness. A surprising aspect of the study of the
K-trivial sets is their strong connection to randomness: after all, under
the yardstick of prefix-free complexity, the K-trivial sets are the least
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random possible. Hirschfeldt, Nies and Stephan [30] showed that a c.e.
set computable from an incomplete random set must be K-trivial.2 The
converse—that every K-trivial set is computable from an incomplete ML-
random set—remained an open problem for almost a decade; it was recently
resolved in the affirmative [6].
The strongly jump-traceable degrees have an even closer relationship with
randomness (using Turing reducibility). A full analogue of the “covering
problem” has been found, using a notion of randomness introduced by
Demuth in his studies of randomness and analysis [15, 16].
Theorem 2.6 (Kučera, Nies [40]; Greenberg, Turetsky [29]3). A c.e. set is
strongly jump-traceable if and only if it is computable from a Demuth random
set.
Related to this is the classification of lowness for Demuth randomness [7]
and notions of bases for randomness. We first remark that lowness for
Demuth randomness can be charaterised in terms of traceability. AnoracleA
is low for Demuth randomness if and only if it is both hyperimmune-free
and “BLR traceable”: for every order function h, every function f ďT A
has an �-computably approximable h-trace T—we can change our mind
about the set of values T pxq but the number of changes is bounded by some
computable function.
A set A is called a base for ML-randomness if it is computable from an
A-random sequence. These sets coincide with theK-trivial sets [30]. Using a
partial relativisation ofDemuth randomness (the bounds on changes in tests
remain computable), the same result holds for strong jump-traceability [29,
50]. Below we also discuss a connection between strong jump-traceability
and a weak form of Demuth randomness.

The investigations into covering by random sets passes through under-
standing which random sets compute all elements of some class. Relevant
here is an unpublished result byHirschfeldt and J.Miller, extendingKučera’s
result [38] showing that Δ02 random sets compute noncomputable c.e. sets.
Hirschfeldt and Miller showed that if V is a null Σ03 subset of Cantor space,
then all random elements of V compute a fixed noncomputable c.e. set (in
fact the set can be promptly simple). The solution of the covering problem
is a kind of converse to Kučera’s result. A converse to two instances of the
Hirschfeldt-Miller result is the following:
Theorem 2.7 (Greenberg, Hirschfeldt, Nies [27, 28]). The following are
equivalent for a set A:
(1) A is computable from all superlow random sets.
(2) A is computable from all superhigh random sets.
(3) A is strongly jump-traceable.
We remark that the implication (2)ùñ (3) for all sets A (rather than only
c.e. sets) uses a recent result of Day andMiller’s [14]. In [27] it is shown that

2This showed that Kučera’s priority-free solution to Post’s problem is K-trivial.
3Each pair proved one direction of the biconditional: the former, the right-to-left

implication.
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the implication holds for all sets which are superlow and jump-traceable, in
particular, for allK-trivial sets. Day andMiller show that ifA is computable
from all LR-hard random sequences then it isK-trivial (to do that, they use
an effective form of the Lebesgue density theorem). Simpson [51] showed
that every LR-hard sequence is superhigh.
A recent result allows us to use Theorem 2.7 to create a new proof of
Theorem 2.2. The following is proved using Nies’s “golden run” technology:
Lemma 2.8 (Greenberg, Turetsky). For every K-trivial set A, there is a
c.e. K-trivial set B such that A ďT B and the randoms which compute B are
precisely those which compute A.
IfA is strongly jump-traceable, then by Theorem 2.7 it is computable from
all superhigh random sets. As argued in the previous paragraph,Amust then
be K-trivial. Taking B as in the lemma, B must also be computable from
all superhigh random sets, and so by Theorem 2.7 again, B is strongly
jump-traceable.

2.3. Applications to degree theory. The study of strong jump-traceability,
originally motivated by questions in algorithmic randomness, has unex-
pected applications in degree theory.

2.3.1. Superlow preservation. Cholak, Groszek and Slaman [12] con-
structed a low c.e. degree whose join with any low c.e. degree is low. Ng [45]
constructed an analogous degree for superlowness. Related is the question
about superlow cupping. In [1], Ambos-Spies, Jockusch, Shore and Soare
showed that the low-cuppable c.e. degrees were precisely the promptly simple
ones. Diamondstone [17] showed that some degree is low-cuppable but not
superlow-cuppable.
Theorem 2.9 (Greenberg,Nies [28]). Every strongly jump-traceable degree
is superlow preserving: if a is strongly jump-traceable and b is superlow (not
necessarily c.e.) then a_ b is superlow as well.
Theorem 2.9 implies the results of Ng’s and Diamondstone’s: the latter,
since the construction from [25] produces a promptly simple, strongly jump-
traceable c.e. set.

2.3.2. Pseudojump inversion. A pseudojump operator is an operator which
takes a set X to a setWX ěT X which is c.e. in X . Psuedojump operators
are usually assumed to have the form WX “ domΦXe ‘ X for some e.
These have been studied extensively, for example they were used in Jockusch
and Shore’s definition of the arithmetic degrees [33, 34]. In particular, they
introduced the technique of pseudojump inversion, showing for example
that ifW is a strictly increasing pseudojump operator then 01 containsWX

for some incomplete c.e. set X . Coles, Downey, Jockusch and LaForte [13]
first put in print a question which dates back to the 80s: can any strictly
increasing pseudojump operator be inverted to a minimal pair? Or merely
avoiding upper cones?
The question was answered by Downey and Greenberg. Let WSJT be the
operator obtained by relativising the construction from [25]: for any set X
it returns a setWX

SJT ąT X which is strongly jump-traceable relative to X .
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Theorem 2.10 (Downey, Greenberg [21]). WSJT cannot be inverted while
avoiding upper cones.

The result is related to so-called weak reducibilities (see [2]). The best-
known example of such is ďLR, low-for-random reducibility, where A ďLR B
if every B-random set is alsoA-random [47]. The analogue for strong jump-
traceability is ďSJT, where A ďSJT B if A is strongly jump-traceable relative
to B but via a partial relativisation which is necessary to make the relation
transitive. Namely, traceability is required only with respect to computable
rather than B-computable bounds.
A set B is ďSJT-hard ifH1 ďSJT B . Every inversion ofWSJT is ďSJT-hard. In
the proof of Theorem 2.10,Downey andGreenberg in fact showed that there
is a noncomputable c.e. set which is computable from all ďSJT-hard c.e. sets.
This gives rise to a new ideal in the c.e. degrees, namely those computable
from all ďSJT-hard c.e. degrees. Diamondstone, Downey, Greenberg and
Turetsky [18] showed that this ideal contains a high degree; this is in contrast
with the fact that it cannot contain promptly simple degrees (as there are
SJT-hard, cappable c.e. degrees [44, 45]).

§3. Techniques. We discuss some technical aspects of working with
strongly jump-traceable sets.

3.1. Box promotion. The major technique introduced in [11] became
known as the “box promotion” method. The basic idea is: (a) to use a trace
to gain certification that certain initial segments of a c.e. set are correct; and
(b) to amplify progress by considering many inputs at once.
SayA is strongly jump-traceable and c.e.; let xAsy be an enumeration ofA.
Fix an order function g. During a construction we observe A’s behaviour
and at some stage s we wonder if a certain initial segment � of As is correct
in that � ă A. To do that we define an auxiliary partial A-computable
function �. Let T be a g-bounded trace for �. To test whether � ă A, we
pick a “testing location” z (a number) and define �pzq “ � with use �. Now
at least one of two things must happen: either � P T pzq; or � is later revealed
to be incorrect. In our construction we can wait for one of these events to
happen; we believe that � is correct if the former event happens first.
Of course sinceA is likely not computable, often wewill believe incorrectly.
This happens when we first see that � P T pzq but only later observe that �
is incorrect. While this erroneous belief will incur some cost for us, progress
is made. Once we see that � is incorrect, the testing location z becomes free
in that �pzq becomes undefined, and we can redefine it later. On the other
hand, once enumerated into T pzq, � always remains an element of T pzq.
Since |T pzq| ď gpzq, our opponent has wasted one of their gpzq many
“slots” in the “box” T pzq. The situation is as if gpzq is now smaller (by 1)
compared to its original value. The “best” value is gpzq “ 1: in this case we
know that any answer must be right.
We can amplify this progress by considering aggregates of boxes. Instead
of using one testing location z, we use a large finite setZ of testing locations.
We test as above by letting �pzq “ � with use � for all z P Z. If � is correct
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then we know that � P T pzq for all z P Z, and so we only believe that � is
correct if we see this happen. If we later see that � is incorrect then all of
the boxes T pzq for z P Z will have been promoted, usually with the same
price to us as the promotion of a single box. We can then break up Z into
smaller parts and work independently with each one. The benefit from the
price paid for a task for one requirement is spread among many.
For example, we consider the argument showing that a c.e. strongly jump-
traceable set is K-trivial. Here we must construct a prefix-free machine M
and a constant b such that for every n there is a � with M p�q “ A æn and
|�| ď Kpnq`b. Aswe enumerateAwe follow the right-c.e. approximationKs
of prefix-free complexity K . At stage s we see a new version of � “ As æn.
Before we believe � we test it on a large set of locations Z. Only if the test
is successful do we choose a � with |�| “ Ks ´ b and define M p�q “ �.
The “cost” of this definition is 2´Kspnq´b . If � is later found to be incorrect,
this cost is not “refunded” by our machine; the definition remains. By a
standard argument, so long as the total cost paid is less than 1, we can
arrange that there is always an available � to select. We organise our testing
locations according to the potential costs (rather than say the lengths of the
strings described). That is, if Kspnq “ k then the testing for � is made on
inputs from a collection Zk satisfying gpzq “ k for all z P Zk . If we knew in
advance that there is only one length n withKpnq “ k, then we could let Zk
be a singleton tzku. We would then repeatedly test As æn on the location zk
and know that at most k “ gpzkq many values would be believed. That is,
for all k we would waste a quantity of 2´k´b at most k times, and so the
total waste would be bounded by

ř
k2´k´b, which we can arrange to be

small by appropriate choice of b.
However, there can be many lengths n withKpnq “ k, and we need to test
strings for each length. We do have a bound on the number of such lengths
(for example 2k). If we make k mistakes on each length the sum would be
only bounded by

ř
k2´k´b2k which of course is not finite.We need to ensure

that the total number of mistakes made for all of these lengths is say k, so
that the sum of our costs remains

ř
k2´k´b. For this reason we start by

testing each length n with Kpnq “ k on a set Zk,n of size exponential in k.
Once one of them Zk,n is promoted (and the amount 2´k spent is wasted),
we ignore all the other sets Zk,m for m ‰ n; we break Zk,n up into 2k many
parts, each taking on itself the role of some Zk,m . This can happen at most k
times, so we can bound in advance the total number of inputs required (in
this example 2k

2
, but this can be slightly improved). Achieving such a bound

is necessary since we need g to be computable.

3.2. Inverted box promotion. A technique related to box promotion was
used for the proof of Theorem 2.10. For simplicity, let us consider the weaker
result that there is no minimal pair of SJT-hard c.e. sets. Given SJT-hard
c.e. sets A and B we enumerate a noncomputable c.e. set E below both of
them. Roughly, box promotion is used to generate simultaneous changes
in A and B that would allow us to change E for the sake of making it
noncomputable. Both sets A and B are enumerating h-traces for a partial
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Σ02 function � that we approximate; again we define the computable order
function h to be sufficiently slow growing so as to make the combinatorics
of the construction work.
Consider a number x which acts as a follower for a Friedberg-Muchnik
requirement for E. When it is appointed, we need to choose A- and B-uses
for computingEpxq.We define a value for�pnq for a carefully chosen n, wait
for the value to appear in the provided A- and B- traces, and appropriate
the uses of these enumerations. Once x is realised and we want to enumerate
it into E, we change �pnq to some new value. If hpnq “ 1 (we have a 1-
box), then A and B need to remove the old value of �pnq from their boxes,
meaning that they have to change below the uses. Such simultaneous change
would allow us to enumerate x.
Of course the situation gets complicated because we cannot always have
1-boxes. If hpnq ą 1 then it may be that neither A nor B changes. This
is actually good: the boxes tracing �pnq have been promoted, and we can
appoint a new follower x1 for the same Friedberg-Muchnik requirement and
start again. Sometimes, however, only one of the sets will change and provide
permission; so only one of the traces promotes the box. Say only A changes.
In this case we cannot enumerate x, as we do not have a B-permission. But
we also need to ensure that Epxq is reducible to A—we cannot keep the A-
permission open indefinitely; we need to find a new use for this reduction. In
this case we choose somem ă n, wait for �pmq to appear in the appropriate
A-trace and take that use. If we later get aB-permission then we use�pmq to
give us a new B-use. Well-foundedness ensures that eventually we succeed.
The complexity of the construction is in the combinatorics involved in the
interaction of followers from different requirements. These can sometimes
share boxes. The construction designs the movement of the followers so that
m-boxes are available when needed. This of course depends on choosing h
appropriately. Another complexity is introduced by the fact that wemay not
have 1-boxes available (this is because of the use of the recursion theorem to
obtain the traces). This is dealtwith by letting somepermissions remain open
indefinitely. We ensure this happens for only finitely many followers. Thus,
the reductions can be fixed nonuniformly. The fact that this nonuniformity
is benign (only finitely many inputs need to be fixed) is important when we
generalise to give the construction proving the full theorem (when we have
to deal with infinitely many SJT-hard sets).

3.3. A golden run of unbounded depth. A reversal of the techniques used
to expolit strong jump-traceability, is a technique to prove that a given set is
strongly jump-traceable. As an example, we discuss the proof of the impli-
cation (1)ùñ (3) of Theorem 2.7: if A is computable from all superlow
ML-random sequences, then it is strongly jump-traceable. In fact, an ampli-
fication of jump-traceability does not use randomness per-se; it applies to
all nonempty Π01-classes.

Theorem 3.1 ([27]). If A is a jump-traceable set computable from
all superlow elements of some nonempty Π01-class, then A is strongly
jump-traceable.
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The implication (1)ùñ (3) then follows from using a Π01-class of ML-
random sequences. We obtain the assumption that A is jump-traceable by
showing that A isK-trivial, as it is computable from both halves of some Δ02
(in fact, superlow)ML-randomsequence.Wealso remark that such a general
result is not proved for the direction (2)ùñ (3); in that more complicated
argument, some coding is needed in the Π01-class. This coding is available
for Π01-classes of positive measure, but also for Medvedev-complete classes.
A result, for example, is that a c.e. set is strongly jump-traceable if and only
if it is computable from all superhigh PA-degrees.
The proof of Theorem 3.1 is very much nonuniform. Resembling the
decanter and golden run machinery of Nies’s, it uses a nested tree of proce-
dures attempting to build an h-trace for JA, where h is a prescribed order
function. Unlike the golden run argument, there is no a-priori bound on the
depth of the nesting required.
Let P be a nonempty Π01-class as in the assumption of the theorem. Fix
an order function h. We show that JA has a 2h-bounded c.e. trace, which
of course suffices. Paradoxically, what we do is attempt to build a superlow
element Z P P and try to show that A ęT Z. If our assumptions hold
then this process will fail. The location at which it fails will give us a proce-
dure for certifying initial segments of A and thus of potential computations
of JA.
The first procedure tries to diagonalise against the first Turing reduc-
tion Φ0. Since we are aiming to build a superlow element of P , we start
following the proof of the Jockusch-Soare superlow basis theorem [35],
which is approximated dynamically. We let P00 ,P01 ,P02 , . . . be the sequence
of classes which is obtained: P00 “ P ; P0n`1 “ P0n if n P X 1 for all X P P0n ;
otherwise P0n`1 is the class of X P P0n for which n R X 1. Our guess for
what P0n is changes during the construction at most 2n times. To believe a
computation JApxqÓ rss, with some use � ă As , we will want � ď Φ0pX q for
allX P P0

hpxq. Thus, to certify two different values, we will need two different
versions of P0

hpxq; so at most 2
hpxq values will be certified by this procedure,

as required.
Of course it is possible that this first attempt at building a trace for JA

does not succeed. This happens because some correct coputation JApxq
(with use � ă A) is never certified, as not every X P P0

hpxq is mapped
to � by Φ0. But what this means is that we have succeeded in ensuring that
Φ0pZq ‰ A for the hypothetical Z that we are building. We start again with

P10 “
!
X P P0hpxq : � ę Φ0pX q

)

which by assumption is nonempty. We then repeat the process, define
P11 ,P12 , . . . following the superlow basis theorem construction, and certify
computations JApxq if all oracles in P1hpxq map to the use of the computa-
tion using the functional Φ1. Of course, during the construction, we do not
know whether the first attempt (using the sequence P0n and Φ0) is actually
successful or not. We see a computation JApxq, and wait for it to be certified
on P0

hpxq. While we wait we need to start the second attempt as described
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above. That second attempt in turn may spawn a third, fourth, etc. When
the computation is certified on P0

hpxq, we cancel all the other attempts and
return to the first one.
In the end, we need to argue that if the assumption of the the theorem
holds, then some attempt at tracing JA succeeds: it is never cancelled and
every correct computation is eventually certified. We assume not. We then
show that for each k, eventually an attempt using Φk is started and is
never cancelled; and we argue that the intersection of the classes P0k is a
singleton tZu, and we ensured that A ęT Z. The main technical difficulty is
in ensuring that Z is in fact superlow: after all, it is not actually produced
by a single attempt

@Pkn
D
n
at the superlow basis theorem. Showing that Z is

superlow requires an analysis not only of the eventually stable attempts but
also the cancelled ones. Here we use the assumption thatA is jump-traceable.

3.4. Cost functions. Nies introduced cost functions [49] as a means of
analytically quantifying the number of changes of a computable approxi-
mation of a Δ02 set. The motivation is the implicit cost function construction
of a K-trivial set given for example in [23]. A cost function is a computable
function c : �2 Ñ R

`. The rational number cpx, sq is the cost of changing
our approximation on x at stage s . An approximation xAsy of a set A obeys
the cost function c if the total cost

ř
să� cpxs , sq, where xs is least such that

Aspxq ‰ As´1pxq, is finite. A set obeys c if it has a computable approxima-
tion obeying c. The standard example is the cost function for K-triviality,
isolating an aspect of the construction from [23]. The cost of changing As
on x is cK px, sq “ ř

yąx 2´Kspyq. This is because changing Aspxq, while
trying to make it K-trivial, forces us to issue requests for new descriptions
of As æy for all y ą x, and the cost of each such request is 2´Kspyq. The con-
struction in [23] can then be presented in a modular fashion. First, defining
of the cost function, and showing that any set that obeys the cost function cK
isK-trivial. And separately, a general lemma that says that under reasonable
assumptions on a cost function c (which cK manifestly satisfies), there is a
noncomputable c.e. set which obeys c.
Similarly, several theorems regarding strongly jump-traceable sets can
be understood via cost functions. For example, the proof above can be
modified to show that every strongly jump-traceable set obeys the cost func-
tion cK . Another example is computability from random sets (Theorem 2.7).
As mentioned above, Kučera showed that any Δ02 random set computes a
noncomputable c.e. set. His argument too can be factored through cost
functions. Given a Δ02 random set Y one can produce a cost function cY ,
any set satisfying which is computable from Y . One then shows using a box-
promotionargument that ifY is superlow then every strongly jump-traceable
c.e. set obeys cY .
This in fact leads to a characterisation of strong jump-traceability using
cost functions, much like the fact thatK-trivial c.e. sets are characterised by
obeying the cost function cK . Since the set te :We is strong jump-traceableu
is Π04-complete [43], while the set te : We obeys cu can be easily seen to be
Σ03 for any cost function c, one cost function will not suffice. Greenberg
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and Nies [28] isolated a property of cost functions necessary to characterise
strong jump traceability.

Definition 3.2. A cost function c is benign if there is a computable func-
tion g : � Ñ � such that any sequence x0 ă x1 ă x2 ă ¨ ¨ ¨ satisfying
cpxi , xi`1q ą 2´k for all i has length at most gpkq.
The intuition is the following: suppose one is performing a dynamic con-
struction of a c.e. set, and this construction includes a strategy which selects
a witness x, waits for some event to possibly occur, and then enumerates
x into the set if it happens. However, suppose further that this strategy is
forbidden from enumerating an element if the cost of doing so is greater than
2´k ; in this case, it must discard its witness and select a new large witness to
try again with. Then the number of times the strategy might need to select a
new witness is bounded by gpkq.
The general form of the box-promotion argument given above shows that
a c.e. set is strongly jump-traceable if and only if it obeys all benign cost
functions. One then shows that the cost functions cK and cY discussed
above (when Y is �-c.e.) are benign.
Finally, the original proof of Theorem 2.2 makes essential use of benign
cost functions. In [19] the authors first show that every strongly jump-
traceable set, whether c.e. or not, obeys all benign cost functions. Then they
show that there is a special benign cost function c˚ with the property: if A
is a set that obeys c˚, then there is a c.e. set C ěT A which obeys all cost
functions obeyed by A.

3.4.1. Cost functions and tests. An alternative use of cost functions, intro-
duced in [8], is as a bound on the rate at which the measure of the elements
of a weak 2 test shrinks to zero.

Definition 3.3. For a cost function c, a c-test is a uniformly Σ01 sequence
of sets xUnynP� such that �pUn,sq ă b ¨ cpn, sq for some constant b.
A real is captured by a c-test if it is in the intersection of the sequence of
sets.

The following result, which is basically a restatement of the Hirschfeldt-
Miller result, connects the two uses of cost functions.
Lemma 3.4 ([8]). If A obeys some cost function c, then every random
captured by a c-test computes A.
Restricting our attention to benign cost functions, we obtain precisely the
weak Demuth tests. Here we recall that a weak Demuth test is a nested
sequence xUny of effectively open sets with �pUnq ď 2´n but whose index
is not given effectively, but rather is computably approximated, with a com-
putable bound on the number of mind-changes. That is, Un “Wfpnq where
xWey is an effective enumeration of all Σ01 classes, andf is�-c.a. In contrast,
(nonweak) Demuth test are not required to be nested, and so are used with
a solovay capturing condition.
Lemma 3.5. For every weak Demuth test xUnynP� there is a benign cost
function c and a c-test xVnynP� such that

Ş
n Un Ď Ş

n Vn. Conversely, for
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every benign cost function c and every c-test xVnynP�, there is a weak Demuth
test xUnynP� with

Ş
n Vn Ď Ş

n Un.

By combining these results with the cost function characterization of
strongly jump-traceable sets, the following is obtained.

Theorem 3.6. Every randomwhich is not weaklyDemuth random computes
every strongly jump-traceable set.

Proof. Suppose A is strongly jump-traceable and X is random but not
weakly Demuth random. Then X is captured by some weak Demuth test,
and thus by some c-test for some benign cost function c. A obeys c, and
thus X computes A. %
3.5. Strong jump-traceability and K-triviality. We summarise some anal-
ogous properties of these two notions.

K-trivial SJT

Structure c.e.-generated ideal c.e.-generated ideal

Index set Σ03 Π04

Cost functions Additive Benign

Random covering Incomplete Demuth

Base for randomness Martin-Löf DemuthBLR

§4. Open problems. We end this paper by describing some open problems.
4.1. Computing with randoms. As mentioned above, the work used for
solving the covering problem forK-trivial sets gives a characterisation of the
ML-random sets which compute all K-trivial sets. An analogue for strong
jump-traceability is not known. The converse of Theorem 3.6 is consistent
with current knowledge.
This question appears to be more difficult than the one for K-triviality.
This is again because of the complexity of the ideals. The work in [8] shows
that there is a “smartest” K-trivial: a K-trivial set A with the property that
any random set computing A must compute all K-trivial sets. We strongly
suspect the analogue does not hold from strong jump-traceability. This is
also indicated by Theorem 2.6.

4.2. Superlow preservation. The converse to Theorem 2.9 is not known.
That is, it is consistent with current knowledge that a set is strongly jump
traceable if and only if it is superlow-preserving.4

4.3. SJT-hard sets. The ideal I of c.e. degrees which lie below all ďSJT-
hard c.e. degrees remains poorly understood. Significantly, we do not know
how to show that it is not principal. One possible approach is to consider

4Michael McInerney and Keng Meng Ng have recently announced a positive solution to
this problem.
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superhighness. While I contains a high degree, it is not known if it con-
tains a superhigh degree. If it contains an h-superhigh degree for all order
functions h then I is not principal.
Related is a question aboutďLR-hardness andminimal pairs. The notion of

ďLR-hardness first gained interest since it is equivalent to almost everywhere
domination [36]. Barmpalias and Montalbán showed that there is an ďLR-
hard c.e. degree which is half of a minimal pair [4]. Several researchers asked
if there is aminimal pair ofďLR-hard c.e. degrees. This is related to the ideal I
via the connection between K-triviality and tracing. In [21] it is shown that
there is an order function h such that there is nominimal pair of h-superhigh
sets. Further work by Turetsky showed that h can be taken to be a constant
multiple of the logarithm function. Results from [3] show that if this could
be improved to h “ 1

10 logpnq, the question about minimal pairs ofďLR-hard
degrees would be answered in the negative.

4.4. Strong reducibilities. While every strongly jump-traceable set is K-
trivial, it is unknown if the binary relation ďSJT implies ďLR. This is known
to hold with the additional assumption of Turing reducibility: if A ďSJT B
and B ďT A, then A ďLR B , simply by relativizing the proof that strongly
jump-traceable sets areK-trivial. However, this proof seems to be inherently
dynamic: a construction is performed relative to B , and the proof relies on
the fact that A can compute the stages of the construction, which allows
A to use the trace (relative to B) to define the function to be traced. An
affirmative answer to the general question would likely amount to a “static”
proof of the unrelativised result: an argument which does not use the trace
for defining the partial function being traced.
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