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Abstract

We consider the Lp-regularity of the Szegö projection on the symmetrised polydisc Gn. In the setting of
the Hardy space corresponding to the distinguished boundary of the symmetrised polydisc, it is shown
that this operator is Lp-bounded for p ∈ (2 − 1/n, 2 + 1/(n − 1)).
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1. Introduction

1.1. Szegö projection. LetΩ be a domain in Cn and ∂Ω be the topological boundary
of Ω. We denote by dσ the Euclidean surface measure induced on ∂Ω. Let ρ be a
defining function for Ω, that is, Ω = {z ∈ Cn : ρ(z) < 0},∇ρ � 0 on ∂Ω. Consider a
family of approximating subdomains Ωε (ε > 0) as follows: Ωε = {z ∈ Cn : ρ(z) < −ε}.
For 1 ≤ p < ∞, there is a standard way to define the Hardy spaceH p(Ω, dσ). Namely,

H p(Ω, dσ) :=
{

f ∈ O(Ω) : ‖ f ‖pH p(Ω,dσ) = sup
ε>0

∫
∂Ωε

| f (ζ)|p dσε < ∞
}
,

where O(Ω) is the set of all holomorphic functions on Ω and dσε is the Euclidean
surface measure induced on the topological boundary ∂Ωε.

Standard basic facts of Hardy space theory show that every function f inH p(Ω, dσ)
admits a boundary value function f ∗ almost everywhere on ∂Ω with respect to the
measure dσ. We denote by H p(∂Ω, dσ) the linear space of all these boundary value
functions. It is a closed subspace of Lp(∂Ω, dσ). The map f → f ∗ is an isomorphism
ofH p(Ω, dσ) ontoH p(∂Ω, dσ). We shall not make any distinction between these two
spaces, including the corresponding projections and reproducing kernels. In particular,
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for p = 2,H2(Ω, dσ) is a Hilbert space under the inner product

〈 f , g〉H2(Ω,dσ) :=
∫
∂Ω

f ∗g∗ dσ.

Sometimes we simply write 〈 f , g〉H2(Ω,dσ) :=
∫
∂Ω

f g dσ. The Szegö projection is the
orthogonal projection,

SΩ : L2(∂Ω, dσ)→ H2(Ω, dσ) � H2(∂Ω, dσ).

It follows from the Riesz representation theorem that SΩ is an integral operator given
by

SΩ f (z) = 〈 f , Sz〉H2(Ω,dσ) :=
∫
∂Ω

f (ζ)Sz(ζ) dσ(ζ), z ∈ Ω,

where the reproducing kernel SΩ(z, ζ) := Sz(ζ) on Ω × ∂Ω is called the Szegö kernel.
For any orthonormal basis {en(z)}∞n=0 forH2(Ω, dσ),

SΩ(z, ζ) =
∞∑

n=0

en(z)en(ζ).

We refer to Stein [20] for more information about the Hardy theory.
In the Hardy space setting, it is natural to study the Lp-regularity problem of the

Szegö projection.

QUESTION 1.1. For what p ∈ (1,∞) is the Szegö projection SΩ bounded on
Lp(∂Ω, dσ)?

If the projection SΩ is unbounded for all p � 2, we call it Lp-irregular. By analogy
with the Lp-regularity of the Bergman projection, the Lp-regularity of the Szegö
projection is also strongly dependent on the geometric properties of the domain Ω.
For example, if Ω is a unit disc, a bidisc, a strongly pseudoconvex domain or some
convex domains or pseudoconvex domains of finite type with locally diagonalisable
Levi form, then the Szegö projection SΩ from Lp(∂Ω, dσ) to itself is bounded for
all p ∈ (1,∞) (see Charpentier–Dupain [4], Grellier–Peloso [9], McNeal–Stein [13],
Phong–Stein [17]). In [16], Munasinghe and Zeytuncu constructed a class of bounded
pseudoconvex domains in C2 on which the Szegö projection is Lp-irregular. There
are domains, under different boundary conditions, on which the Szegö projection is
bounded for different restricted ranges of p (see Lanzani–Stein [11]).

However, instead of the topological boundary, one may consider the Hardy space
on the distinguished boundary. Békollé–Bonami [2] proved that, in the Hardy space
setting defined on the distinguished boundary, the Szegö projection is Lp-irregular on
the tube over an irreducible self-dual cone of rank greater than 1. Monguzzi–Peloso
[15] obtained a sharp estimate for the Szegö projection on the distinguished bound-
ary of model worm domains. One may also consider other measures on ∂Ω (or
on the distinguished boundary) in addition to the Euclidean surface measure, for
example, Fefferman surface measure (see Barrett [1]) and surface measure of the
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form ωdσ, where ω is a continuous and positive function on the boundary (see
Lanzani–Stein [12]).

More recently, Chen et al. [5] discussed the Lp-regularity of the Bergman pro-
jection on the symmetrised polydisc. In fact, they dealt with more general bounded
domains covered by the polydisc through a rational proper holomorphic mapping.
Inspired by their work, it is of interest, as a model of a nonsmoothly bounded
pseudoconvex domain without any strongly pseudoconvex boundary point, to consider
the Lp-regularity problem of the Szegö projection on the symmetrised polydisc. The
Szegö projection is very different to the Bergman projection because, in general, there
is no transform formula for the Szegö projection under biholomorphic mappings in
higher dimensions. Therefore, some methods in [5] for the Bergman projection cannot
be applied to the Szegö projection directly, which makes it trickier to deal with this
problem in the Hardy space setting.

In this paper, we focus on the Lp-regularity behaviour of the Szegö projection on
the symmetrised polydisc with respect to the distinguished boundary.

1.2. Symmetrised polydisc. The symmetrised polydisc Gn is defined as follows.
Let D be the unit disc in the complex plane C and λ = (λ1, . . . , λn) ∈ Cn and let
πn = (πn,1, . . . , πn,n) : Cn −→ Cn be the symmetrisation map defined by

πn,k(λ) =
∑

1≤j1<···<jk≤n

λj1 · · · λjk , 1 ≤ k ≤ n.

The image Gn := πn(Dn) is known as the symmetrised polydisc. In particular,
G1 = D and G2 is the so-called symmetrised bidisc. It is easy to verify that Gn is a
bounded (1, 2, . . . , n)-circular domain. Let ∂0Gn be the distinguished boundary of the
symmetrised polydisc Gn. Then ∂0Gn = {πn(λ) : λ ∈ Tn}, where Tn is the n-torus and
T = {z ∈ C : |z| = 1} (see Edigarian–Zwonek [7]). The restriction map πn|Dn : Dn → Gn
is a proper holomorphic map (see Rudin [19]). Thus, the symmetrised polydisc Gn is
a proper image of the bounded symmetric domain Dn. For a general reference on the
symmetrised polydisc, see the book by Jarnicki and Pflug [10, Ch. 7].

The symmetrised polydisc Gn (n ≥ 2) is a bounded inhomogeneous pseudoconvex
domain without smooth boundary. In particular, it does not have any strongly pseu-
doconvex boundary point. It is important because the symmetrised bidisc is the first
known example of a bounded pseudoconvex domain for which the Lempert function,
the Kobayashi distance and the Carathéodory distance coincide, but which cannot be
exhausted by domains biholomorphic to convex ones (see Costara [6]).

1.3. Hardy space on Gn. Next, we give a detailed description of the Hardy space
corresponding to the distinguished boundary of the symmetrised polydisc.

Let dΘ := dθ1 · · · dθn be the normalised Lebesgue measure on Tn. We first recall the
definition of the Hardy spaceH p(Dn, dΘ) and Lp(Tn, dΘ) with respect to the measure
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dΘ on the distinguished boundary Tn of the polydisc Dn:

H p(Dn, dΘ) :=
{

f ∈ O(Dn) : ‖ f ‖pH p(Dn,dΘ) = sup
0<r<1

∫
Tn

f (reiΘ) dΘ < ∞
}
,

and

Lp(Tn, dΘ) :=
{

f : Tn → C is complex measurable, ‖ f ‖pLp(Tn,dΘ) =

∫
Tn

f (eiΘ) dΘ < ∞
}
,

where eiΘ = (eiθ1 , . . . , eiθn ) ∈ Tn (see Rudin [18]).
Following the definition of the Hardy spaceH2 on the symmetric polydisc in Misra

et al. [14], we give the definition of the Hardy space H p on Gn for 1 ≤ p < ∞. It is
natural that the symmetrisation map πn induces a boundary measure dΘπn on ∂0Gn
given by ∫

∂0Gn

f dΘπn :=
∫
Tn

( f ◦ πn)|Jπn |2 dΘ,

where ∂0Gn is defined as above and Jπn := det π′n is the complex Jacobian of the
symmetrisation map πn. Let O(Gn) be the set of holomorphic functions on Gn. For
1 ≤ p < ∞, the Hardy space on the symmetrised polydisc Gn is defined as

H p(Gn, dΘπn ) := { f ∈ O(Gn) : ‖ f ‖H p(Gn,dΘπn ) < ∞},

where

‖ f ‖pH p(Gn,dΘπn ) : = ‖Jπn‖−p sup
0<r<1

∫
∂0Gn

| f (rz1, r2z2, . . . , rnzn)|p dΘπn

= ‖Jπn‖−p sup
0<r<1

∫
Tn
| f ◦ πn(reiΘ)|p|Jπn (reiΘ)|2 dΘ (1.1)

and ‖Jπn‖ = (
∫
Tn |Jπn (eiΘ)|2 dΘ)1/2. The factor ‖Jπn‖−p is used to match the definition in

Misra et al. [14] in the case p = 2, which ensures that ‖1‖2H2(Gn,dΘπn ) = 1.
The Lp space of the distinguished boundary ∂0Gn with respect to the boundary

measure dΘπn is defined by

Lp(∂0Gn, dΘπn ) := { f : ∂0Gn → C is complex measurable, ‖ f ‖Lp(∂0Gn,dΘπn ) < ∞},

where

‖ f ‖pLp(∂0Gn,dΘπn ) : = ‖Jπn‖−p
∫
∂0Gn

| f (z1, z2, . . . , zn)|p dΘπn

= ‖Jπn‖−p
∫
Tn
| f ◦ πn(eiΘ)|p|Jπn (eiΘ)|2 dΘ.

In particular, for p = 2, (H2(Gn, dΘπn ), ‖ · ‖H2(Gn,dΘπn )) is a Banach space and
H2(Gn, dΘπn ) can be isometrically embedded into L2(∂0Gn, dΘπn ) (see
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Misra et al. [14]). Hence the Szegö projection

SGn : L2(∂0Gn, dΘπn )→ H2(Gn, dΘπn )

exists. By constructing a complete orthonormal basis in H2(Gn, dΘπn ), Misra et al.
[14] defined the Szegö kernel SGn (· , ·):

SGn (πn(λ), πn(μ)) =
n∏

j,k=1

(1 − λjμ̄k)−1, (λ, μ) ∈ Dn × Tn. (1.2)

The explicit formula (1.2) for the Szegö kernel SGn (· , ·) plays an important role
in the study of the Lp-boundedness of the corresponding Szegö projection on the
symmetrised polydisc.

In the Hardy space setting corresponding to the distinguished boundary of the
symmetrised polydisc, we show that the restricted range of p for the Szegö projection
on the symmetrised polydisc is larger than {2}. This gives an example of a nonsmoothly
bounded pseudoconvex domain without any strongly pseudoconvex boundary point
whose Szegö projection operator is not Lp-irregular.

1.4. Main results. More precisely, we obtain the following results.

THEOREM 1.2. The Szegö projection SGn : Lp(∂0Gn, dΘπn )→ H p(Gn, dΘπn ) is
bounded for p ∈ (2 − 1/n, 2 + 1/(n − 1)).

As an immediate consequence, when n = 2, we have the following regularity
behaviour for the symmetric bidisc G2.

COROLLARY 1.3. The Szegö projection SG2 : Lp(∂0G2, dΘπ2 )→ H p(G2, dΘπ2 ) is
bounded for p ∈ ( 3

2 , 3).

Our starting point is the idea used in Lanzani–Stein [11] to study the Lp-regularity
of the Bergman and Szegö projections on nonsmooth planar domains, adapted by
Chen et al. [5] for the Bergman projection in higher dimensions. Their approach is
to carry the problem back to a domain on which good analysis can be developed. More
precisely, they pull back the Bergman projection on the base domain to the polydiscDn

and then to the product of upper half planes Un. Here, we apply this technique to the
Szegö projection in several complex variables. In [5], the proof is largely dependent
on the Bergman projection transform which was used to derive the behaviour of
the Bergman kernel under proper holomorphic mapping (see Bell [3]). However, in
general, there is no similar transform for the Szegö projection. This makes it difficult
to pull back the Lp regularity of the Szegö projection on Gn to the polydisc Dn. To
remove this obstacle, we shall instead make use of the formula for the Szegö kernel
SGn given by (1.2) to derive a Szegö projection transform (see Lemma 2.7). By means
of this transform, the Szegö projection on Gn can be carried back to the polydisc Dn.
Moreover, we need not transfer it again to Un as Chen et al. did in [5].
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2. Preliminaries

We first review some properties of the Szegö projection SD on the unit disc D and
the Ap(T) weights on the unit circle T, which will be used in the subsequent section.

DEFINITION 2.1 (Garnett [8, page 247]). Let p ∈ (1,∞). A weight ω on the unit circle
T is said to be in Ap(T) if

sup
I⊆T

( 1
|I|

∫
I
ω(θ) dθ

)( 1
|I|

∫
I
ω(θ)1/(1−p) dθ

)p−1
< ∞,

where I denotes intervals in T and |I| denotes arc-length.

LEMMA 2.2. Assume that p ∈ (1,∞), α ∈ [0, 1] and ωk ∈ Ap(T) for k = 1, 2. Then
ωα1ω

1−α
2 ∈ Ap(T).

REMARK 2.3. This result was already stated in Chen et al. [5] for the class A+p(U) on
the upper plane. We will adapt the proof from [5] to the class Ap(T).

PROOF. Note that α + (1 − α) = 1. For any interval I ⊆ T, by the Hölder inequality,

1
|I|

∫
I
ωα1 (θ)ω1−α

2 (θ) dθ ≤
( 1
|I|

∫
I
ω1(θ) dθ

)α( 1
|I|

∫
I
ω2(θ) dθ

)1−α

and ( 1
|I|

∫
I
ω
α/(1−p)
1 (θ)ω(1−α)/(1−p)

2 (θ) dθ
)p−1

≤
( 1
|I|

∫
I
ω

1/(1−p)
1 (θ) dθ

)α(p−1)( 1
|I|

∫
I
ω

1/(1−p)
2 (θ) dθ

)(1−α)(p−1)
.

Since this inequality holds for any I ⊆ T, we obtain the desired result. �

LEMMA 2.4 (Munasinghe–Zeytuncu [16, Theorem 3]). Let p ∈ (1,∞). The ordinary
Szegö projection SD is bounded from Lp(T,ω) to Lp(T,ω) if and only if ω ∈ Ap(T).

Let f be a complex measurable function on Cn. Misra et al. [14] define an operator
Γ by

Γ f := ‖Jπn‖−1Jπn · ( f ◦ πn),

and prove that Γ : H2(Gn, dΘπn )→ H2(Dn, dΘ) is an isometry. Similarly, Γ is an
isometry of the H p and Lp spaces for all p ∈ (1,∞). More precisely, we have the
following result.

LEMMA 2.5. For 1 < p < ∞, the operator Γ : Lp(∂0Gn, dΘπn )→ Lp(Tn, |Jπn |2−pdΘ)
(or Γ : H p(Gn, dΘπn )→ H p(Dn, |Jπn |2−pdΘ) is an isometry, but not an isomorphism.

REMARK 2.6. The function space Lp(Tn, |Jπn |2−pdΘ) (or H p(Dn, |Jπn |2−pdΘ)) is the
weighted Lp (orH p) space with weight |Jπn |2−p. As p varies, the Lp (orH p) space and
also the weight change. If p = 2, this weight degenerates to the identity.
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PROOF. We give the proof for one of the spaces; the other follows in an analogous
manner.

For any f ∈ H p(Gn, dΘπn ), according to (1.1),

‖ f ‖pH p(Gn,dΘπn ) = ‖Jπn‖−p sup
0<r<1

∫
Tn
| f ◦ πn(reiΘ)|p|Jπn (reiΘ)|2 dΘ

= sup
0<r<1

∫
Tn
| ‖Jπn‖−1Jπn (reiΘ) · ( f ◦ πn)(reiΘ)|p|Jπn (reiΘ)|2−p dΘ

= sup
0<r<1

∫
Tn
|(Γ f )(reiΘ)|p|Jπn (reiΘ)|2−p dΘ = ‖Γ f ‖pH p(Dn,|Jπn |2−p dΘ).

This proves that Γ is an isometry fromH p(Gn, dΘπn ) toH p(Dn, |Jπn |2−pdΘ).
If 1 < p ≤ 2, then H p(Dn, |Jπn |2−pdΘ) contains the constant functions but

Γ(H p(Gn, dΘπn )) does not, so Γ is not an isomorphism. For 2 < p < ∞, set g := J2k
πn

,
where k is a positive integer. It is easy to verify that g ∈ H p(Dn, |Jπn |2−pdΘ), but g has
no inverse image in Γ(H p(Gn, dΘπn )). We conclude that Γ is not an isomorphism for
p ∈ (1,∞). The lemma is proved. �

In the Hardy space setting, in general, there is no Szegö projection transform under
a biholomorphic mapping, let alone a proper holomorphic map. However, for the
domains we considered here, we are able to obtain a transfer relationship between
the Szegö projection SGn and SDn .

LEMMA 2.7. Let SDn : L2(Tn, dΘ)→ H2(Dn, dΘ) be the Szegö projection. Then

Γ ◦ SGn = n! SDn ◦ Γ, (2.1)

where SGn is the Szegö projection from L2(∂0Gn, dΘπn ) toH2(Gn, dΘπn ).

PROOF. It is well known (see Zhu [21, page 163]) that the Szegö kernel with respect
to the normalised arc-length measure on the unit circle T is given by

SD(z, w) =
1

1 − zw̄
, (z, w) ∈ D × T.

It follows easily that on the polydisc Dn, the Szegö kernel on the Hardy spaces
corresponding to the distinguished boundary Tn is

SDn (λ, μ) =
n∏

k=1

1
1 − λkμ̄k

, (λ, μ) ∈ Dn × Tn.

However, (1.2) may be rewritten as

Jπn (λ)Jπn (μ)SGn (πn(λ), πn(μ)) = det
[ 1
1 − λjμ̄k

]
1≤j,k≤n

, (λ, μ) ∈ Dn × Tn. (2.2)

For the proper holomorphic mapping πn : Dn → Gn (n ≥ 2), define

∂0Σn := {λ ∈ Tn : Jπn (λ) = 0},
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where Jπn (λ) = det π′n(λ) =
∏

1≤i<j≤n(λi − λj). Let Pn be the set of all permutations
of {1, . . . , n}. Set λσ = (λσ(1), . . . , λσ(n)) for σ ∈ Pn. It is obvious that Jπn (λσ) =
(−1)τ(σ)Jπn (λσ), where τ(σ) is the inverse order of the permutation σ. The form of
(2.2) is similar to the expression of the Bergman kernel on the symmetric polydisc
(see Edigarian–Zwonek [7]). So, for any μ ∈ Tn\∂0Σn, by elementary calculations,

Jπn (λ)SGn (πn(λ), πn(μ)) =
1

Jπn (μ)
det
[ 1
1 − λjμ̄k

]
1≤j,k≤n

=
∑
σ∈Pn

1

Jπn (μσ)

( n∏
k=1

1
1 − λjμ̄σ(k)

)

=
∑
σ∈Pn

1

Jπn (μσ)
SDn (λ, μσ). (2.3)

Therefore, for any f ∈ L2(∂0Gn, dΘπn ),

Γ ◦ (SGn f )(λ) = ‖Jπn‖−1Jπn (λ)
∫
∂0Gn

SGn (πn(λ), ζ) f (ζ) dΘπn

= ‖Jπn‖−1Jπn (λ)
∫
Tn

SGn (πn(λ), π(μ))( f ◦ π)(μ)|Jπn (μ)|2 dΘ

= ‖Jπn‖−1
∑
σ∈Pn

∫
Tn\∂0Σn

Jπn (μσ)SDn (λ, μσ)( f ◦ π)(μσ) dΘ

= n! SDn ◦ (Γ f )(λ).

For the third line, we apply (2.3) and the symmetrisation of the map πn. This
proves (2.1). �

3. Proof of the main result

By Lemmas 2.5 and 2.7, we obtain the commutative diagram:

Lp(∂0Gn, dΘπn ) Γ ��

SGn

��

Lp(Tn, |Jπn |2−pdΘ)

n! SDn

��
H p(Gn, dΘπn ) Γ �� H p(Dn, |Jπn |2−pdΘ)

(3.1)

For 1 < p ≤ 2, it is obvious that Lp(Tn, |Jπn |2−pdΘ) ∩ L2(Tn, dΘ) = L2(Tn, dΘ) � ∅.
If 2 < p < ∞, we also have Lp(Tn, |Jπn |2−pdΘ) ∩ L2(Tn, dΘ) � ∅, since |Jπn |(p−2)/p is
their common element. The preceding argument shows that (3.1) is well defined.
Consequently,

‖SGn‖ ≤ n! ‖SDn‖.
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Indeed, for any f ∈ Lp(∂0Gn, dΘπn ) ∩ L2(∂0Gn, dΘπn ),

‖SGn f ‖H p(Gn,dΘπn ) = ‖Γ(SGn f )‖H p(Dn,|Jπn |2−pdΘ)

= n! ‖SDn (Γ f )‖H p(Dn,|Jπn |2−pdΘ)

≤ n! ‖SDn‖ ‖Γ f ‖Lp(Tn,|Jπn |2−pdΘ)

≤ n! ‖SDn‖ ‖ f ‖Lp(∂0Gn,dΘπn ).

Since the operator Γ is not an isomorphism, these two Szegö projections, in general,
are not equivalent.

To complete the proof, we only need to consider the Lp-regularity of the Szegö
projection SDn : Lp(Tn, |Jπn |2−pdΘ)→ H p(Dn, |Jπn |2−pdΘ). It should be pointed out that
SDn is fixed, while the weighted function space changes as p changes.

For the polydisc in the Hardy space setting, we proceed in a similar manner to the
proof in [5] for the product of the upper half planes in the Bergman space setting.
Since we are working on the Hardy space with respect to the distinguished boundary
T

n, then SDn =
⊗n

i=1 SD. This equality, in general, does not hold on the topological
boundary of Dn. Using Lemma 2.4, we only need to verify that, for all i = 1, . . . , n,
|Jπn (λ1, . . . , λn)|2−p as a weight in one variable λi is in Ap(T) with a uniform bound
independent of the other variables.

By the symmetry, we may assume that i = 1. Since

|Jπn (λ)|2−p =
∏

1≤i<j≤n

(λi − λj)2−p =

n∏
k=2

(λ1 − λk)2−p
∏

2≤i<j≤n

(λi − λj)2−p,

by Lemma 2.2, it is sufficient to check that

|λ1 − λk|(2−p)/αk ∈ Ap(T), k = 2, . . . , n,

with a uniform bound independent of λ2, . . . , λn, where αk ∈ [0, 1] and
∑n

k=2 αk = 1.
According to the proof of [16, Theorem 5], for α ≥ 0, the weight |z − 1|α(2−p) on T is in
Ap(T) with a uniform upper bound if and only if p ∈ ((2α + 1)/(α + 1), (2α + 1)/α).
Since λi ∈ T, it follows that |λ1 − λk|(2−p)/αk ∈ Ap(T) with a uniform bound
independent of λk if and only if p ∈ ((2 + αk)/(1 + αk), 2 + αk). Thus the Szegö
projection SDn is bounded from Lp(Tn, |Jπn |2−pdΘ) to H p(Dn, |Jπn |2−pdΘ) for p ∈⋂n

k=2((2 + αk)/(1 + αk), 2 + αk). As αk is arbitrary in [0, 1], the largest possible
intersection occurs in the case αk = 1/(n − 1) for all k = 2, . . . , n. Thus, we obtain
the desired result.
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