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Abstract

This is the second paper in the series on shape decompositions and their use as shape approximations. This time we investigate
hierarchical and topological shape decompositions or hierarchies and topologies. We showed earlier that bounded decomposi-
tions behave the same way as shapes do. The same holds for hierarchies and topologies, which are special kinds of bounded
decompositions. They are distinguished by their algebraic structures, which have many important properties to facilitate their
application as shape approximations. We provide an account of their properties with an emphasis on their application.
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1. INTRODUCTION

This is the second paper in the series on shape decomposi-
tions and their use as shape approximations. Some notions
from the first paper (Krstic, 2004) and its extended version
(Krstic, 2005) will be reiterated here for a good start.

Although shapes come unanalyzed rendering any division
into parts possible, this is not how we usually perceive them.
An attempt to understand or explain a shape leads inevitably
to its decomposition into certain parts. Only the parts that are
consistent with our understanding of the shape are recognized
while all the other parts are neglected. Nevertheless, the
recognized parts do account for the whole shape, which is
their sum. Shape decompositions are therefore sets of shapes
that emphasize certain properties of their sums. Decomposi-
tions are often used in place of the shapes serving as their ap-
proximations. How good are such approximations? This is an
important question given the role shapes play not only in art
and design but also in our everyday lives. We have addressed
the question (Krstic, 2004, 2005) from the point of view of
formal design theory featuring shape grammars and related
shape algebras, where Stiny (2006) is the latest monograph
on the subject.

This is an advantageous approach because shape grammars
and shape algebras are both intuitive and rigorous tools. The
grammars mimic the creative process of design where design-
ers adopt and follow rules to create designs or break the rules
only to create and follow new ones. The algebras support the
rules by providing operations that formalize the designer’s ac-

tions. The operations model what designers traditionally do
when they draw or erase shapes, build, or modify models or
move shapes around producing different spatial relations. In
contrast to their intuitive side, shape grammars and algebras
are rigorous tools grounded in mathematics. The latter in-
forms both practical computations with shapes as well as
the theoretical inquiry into their nature.

We rely on the mathematics of shapes to address the prob-
lem of shapes being represented by their decompositions. The
problem stems from the fact that sets of entities and entities
themselves are different in nature, which becomes even
more evident in computations. Shapes and related shape alge-
bras behave (in general) differently than shape decomposi-
tions and their algebras. This renders decompositions poor
substitutes for shapes. In contrast, shape decompositions of
certain structure do behave like shapes. In particular, bounded
decompositions behave in computations the same way shapes
do. Their algebras and shape algebras are isomorphic.

Bounded decompositions recognize the shape they analyze
and the empty shape and may contain other shape parts
besides the two. At minimum, no other parts are included.
The structure of a bounded decomposition puts its elements
into certain contexts.

A local context, which assures that the shape parts are always
seen in relation to the whole, is established by the fact that a
bounded decomposition always includes the shape it analyzes.

A global context, in which the attention is shifted from
shape parts to shape surroundings, is given by the presence
of the empty shape. The absence of shape parts signified by
the empty shape implies the shape surroundings.

Local and global contexts are both necessary and sufficient
for decompositions to be successful shape approximations.
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As there are no additional requirements, any shape part can
easily be included into a bounded decomposition if needed.
Consequently, bounded decompositions may serve as the ba-
sis for other structured decompositions. They may satisfy ad-
ditional conditions to become lattices, hierarchies, topol-
ogies, and Boolean algebras. All of these structures may be
used as shape approximations for different purposes.

We will explore hierarchical and topological decomposi-
tions and their use in design.

1.1. Background

The symbols Ø, <, >, –, [, �, #, and ‘ will be used in their
standard set-theoretic meaning as the empty set, union, inter-
section, difference, element of, not an element of, subset of,
and power set, respectively. Some standard set-theoretic no-
tions will be assumed, such as the ordered set with related
maximal and minimal elements, bounds, and order-preserv-
ing mappings as well as the direct product and related func-
tions and relations.

We will see topologies and hierarchies for shapes as lat-
tices. These are partially ordered sets turned algebras with two
binary operations: meet and join. The operations are, respec-
tively, denoted by _ and ^, and defined as the greatest lower
bound and the least upper bound of the arguments. Both
bounds have to be defined for every pair of elements of a
set in order for it to be a lattice. If only one of the bounds
is defined then the set is a semilattice and may be a join-
semilattice or a meet-semilattice.

By the duality principle any expression valid for a lattice is
also valid if _ and ^ exchange places. A lattice may have two
distinguished elements 0, which is the smallest element, and
its dual 1, which is the greatest element. If a lattice has 0 then
the meet of any of its elements with 0 is 0. Dually in lattices
with 1 the join of any element with 1 is 1.

When defining hierarchies for shapes we rely on the con-
cept of reducibility in lattices. An element of a lattice is reduc-
ible if when removed it may be reconstructed as a meet or a
join of some of the remaining elements. In particular, an ele-
ment x is meet-reducible if x¼ y ^ z and y, z . x, where y and
z are elements. Dually, x is join-reducible if x ¼ y _ z and
y, z , x.

Special kinds of order-preserving mappings play an impor-
tant role in both hierarchies and topologies for shapes. These
are closures and interiors, which are operators or mappings
of a set to itself. Closure G: A ! A defined on a partially
ordered set A, with x as an element, is idempotent and
extensive or G(G(x)) ¼ G(x) and x � G(x), respectively. In
contrast, interior V: A ! A is idempotent and intensive or
V(x) � x.

If A is a lattice with 0, G may satisfy additional conditions
to become a topological closure. That is, G(x) _ G( y)¼ G(x _

y) and G(0) ¼ 0, where x, y [ A. Dually, if A has 1, V is a
topological interior if V(x) ^ V( y)¼V(x ^ y) and V(1)¼ 1.

The image of G is a set of closed elements of A, whereas the
image of V is the set of open elements of A.

We also make use of shape algebras (Stiny, 1991, 1992,
2006; Krstic, 1999, 2001). These feature Boolean opera-
tions for shapes and are also closed under geometric trans-
formations. Shape algebra Uij computes with i-dimensional
shapes occupying j-dimensional space, where i, j ¼ 0, 1, 2,
3 and i � j. It has a lower bound, which is the empty shape
denoted by 0, but has no upper bound. Shapes from Uij,
together with Boolean operations of sum þ, product .,
and difference 2, form a generalized Boolean algebra, a
relatively complemented distributive lattice with a smallest
element (Birkhoff, 1993). A compound operation of sym-
metric difference � may be defined on Uij, so that x�
y¼ (x 2 y) þ (y 2 x) ¼ (x þ y) 2 (x . y), where x, y [
Uij. It corresponds to exclusive or (XOR) operation in
Boolean logic. Symmetric difference has somewhat con-
flicting nature: it is a sum for discrete shapes and a differ-
ence for comparable ones.

The set of all parts of a shape a or its maximal structure
denoted by B(a) is a proper subalgebra of Uij closed under
the symmetry group of a (Earl, 1997; Krstic, 2004, 2005;
Stiny, 2006).

Finally, shape decomposition algebras provide the frame-
work for hierarchies and topologies for shapes. There are differ-
ent families of such algebras (Krstic, 2004, 2005), but we only
use complex algebras of decompositions. These are extensions
of shape algebras Uij to finite sets of shapes and are denoted by
‘(Uij). Their operations are extensions of shape operations to
direct products of decompositions and are defined as A þ B
¼ þ(A�B), A . B ¼ .(A�B), and A 2 B ¼ 2(A�B), where
A and B are decompositions and *(A�B) ¼ fx * yj x [ A,
y [ Bg, where * stands for a binary operation.

1.2. Structured decompositions

The structure of a decomposition may be seen on two levels:
local and global. On the local level the decomposition is a set
of shapes that puts emphasis on the relations among its ele-
ments. In contrast, on the global level the decomposition is
seen as analyzing a shape, the sum of its elements, so that
the relations between parts of the shape and elements of the
decomposition are exposed. If a decomposition is to be an ap-
proximation of a shape, then its structure on a global level is
of the most importance.

We should, at minimum, require for such a decomposition
to have a representation for each part of the shape it analyzes.
There are infinitely many parts, but only finitely many ele-
ments of the decomposition so that the relation between the
two is many to one.

For shape a, its part x, and its decomposition A this relation
is as follows. If there are elements u and v in A such that u� x
� v, then A approximates x so that x is bottomed by u, topped
by v, and bounded by both u and v. Part x has at least proper-
ties of u and at most properties of v. If neither u nor v exists,
then x is not recognized by A. Elements of A are bounded by
themselves, or if x [ A then u ¼ x ¼ v. If x is bounded by
more than one pair of elements of A and it is impossible to
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pick one of the pairs as the representative of x, then its repre-
sentation is ambiguous.

For example, bounded decompositions satisfy the mini-
mum requirement above because each element of a is repre-
sented (trivially) in A by the pair of shapes 0 and a. However,
if A has more than two elements then the representation of
some parts of a may be ambiguous.

There is no ambiguity in the relation of a shape to its parts,
and there should be no ambiguity in how the parts are repre-
sented by a decomposition that approximates the shape. This
calls for the sharpening of the requirement above by making it
the unique representation requirement, a decomposition that
serves as a shape approximation should have the unique rep-
resentation for each part of the shape it analyzes.

Decompositions of certain structures satisfy the unique repre-
sentation requirement above, chief among which are the decom-
positions that have structures of hierarchies and topologies.

2. HIERARCHIES

Hierarchies are well-known structured decompositions that
are widely used in arts and sciences for categorizing and or-
ganizing large numbers of objects. Taxonomies, such as bio-
logical taxonomies, are hierarchies and so are many databases
and file systems.

Hierarchies are ordered sets with unique paths between their
elements.1 In design, they distinguish parts and show how these
are put together to assemble shapes. A shape may be decom-
posed in a hierarchical fashion with the aid of a simple recursive
procedure, which breaks down shapes into their discrete parts.
It starts by breaking a shape and proceeds by breaking its parts
and then the parts of the parts and so on. The result is a treelike
structure with the original shape at the top and the minimum
elements or atoms at the bottom. Hierarchies describe designs
and their components as sums of atoms.

For example, the hierarchy in Figure 1 shows how a shape,
representing an IKEA coffee table, is progressively broken
down into discrete parts representing the table legs and the board,
which are the atoms of the hierarchy. It also shows how this
shape can be assembled from the atoms. Hierarchies are easy
to use, but they may not be the best solution for everyapplication.

2.1. Definition

The underlying schema (Hasse diagram) in Figure 1 is typical
of hierarchical decompositions of shapes and its inspection
may reveal their structure.

We notice that the hierarchy contains the least upper bound
for every pair of its elements, but lacks the greatest lower
bound. This renders hierarchical decompositions join-semi-

lattices with a greatest element, which is the shape analyzed
by the hierarchy.

Each element of the hierarchy, with the exception of its
atoms, covers at least two elements, which renders such ele-
ments join-reducible. In contrast, each element, with the excep-
tion of the greatest element, is covered by exactly one element,
which means that only comparable elements have meets.

For every nonempty part of the coffee table in Figure 1 there
is an element in the hierarchy that uniquely represents it. This
element is the least upper bound of the part. For example, in
Figure 2 shape (a) is a part of the coffee table while shape (b)
is its least upper bound with respect to the hierarchy in Figure 1.

Although nonempty parts are uniquely represented, the
hierarchy does not satisfy the unique representation require-
ment. It lacks a unique element to top the empty shape, which
is part of every shape. Every atom of the hierarchy is as good
of a representation of the empty shape as any other atom. This
may be rectified by including the empty shape in the hierar-
chy. Now the empty shape represents itself and the hierarchy
satisfies the unique representation requirement.

The inclusion of the empty shape has some interesting con-
sequences on the structure of the hierarchy. Now every pair
of noncomparable elements in the hierarchy has a meet that
is the empty shape. Pairs of comparable elements already
have meets, as noted earlier, so that the hierarchy is closed un-
der the meet operation. The structure of the hierarchy changes
from a semilattice to a lattice. This rather unusual representa-
tion (hierarchies are usually considered trees or join-semilat-
tices) offers several advantages:

1. Because hierarchies contain the shape they analyze
and (now) the empty shape they are bounded decompo-

Fig. 1. The hierarchy of parts of an IKEA coffee table.

Fig. 2. (a) A part of an IKEA coffee table and (b) its representation in the
hierarchy.

1 Hierarchies are viewed as ordered sets rather than tree structures, in a set
theoretic rather then graph theoretic fashion. The latter view may be more
general, but the former has an advantage of exposing (partial) order, which
is central to shape decompositions.
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sitions. The latter are known to behave like shapes and
form an algebra isomorphic with an appropriate shape
algebra (Krstic, 2004, 2005).

2. Hierarchies (now) have the unique representative for the
empty shape and may satisfy the unique representation
requirement to qualify as shape approximations.

3. Hierarchies are (now) lattices and so are topologies,
which we will show later, so that a unique characteriza-
tion of both is possible.

We now give a formal definition of a hierarchy.

DEFINITION 1. A bounded decomposition of shape a is a
hierarchical decomposition of a or a hierarchy on a denoted
by X(a) if it is a lattice with all nonempty elements being
meet-irreducible and nonempty elements other than atoms
being join-reducible. B

The meet-irreducibility condition assures that no non-
empty element of a hierarchy is a part of two disjoint compo-
nents of the design. As a consequence, between any two
(comparable) components of the design there is a unique
path, traversing nonempty elements of the hierarchy, which
means that the design is assembled in a unique way. In con-
trast, the join-reducibility condition is necessary to make
sure that proper parts of any component of the design when
assembled constitute precisely that component. This condi-
tion also prevents chains from being mistaken for hierar-
chies.

Note that inclusion of 0 is formal in nature and we omit 0 in
diagrams in order to maintain the familiar look of hierarchies.
We also omit 0 in element counts.

2.2. Properties of hierarchical decompositions
of shapes

Hierarchies are rich in properties, but we will only examine
those that are relevant to design. Prime among such properties
is the ability to satisfy the unique representation requirement,
which qualifies hierarchies as shape approximations.

We observed that the hierarchy in Figure 1 satisfies the re-
quirement, but not all hierarchies have this property. Many
hierarchies that serve to order descriptions or properties of de-
signs do not have unique representations for design parts.

For example, a hierarchy in Figure 3 describes a small
house consisting of a kitchen, living room, hallway, bedroom,
bathroom, walk-in closet, stairway, and garage. In this hierar-
chy of names, which distinguish spaces, elements combine
disjunctively without a conjunctive possibility. The bedroom
has no common part with the bathroom or walk-in closet, al-
though together they are the private spaces of the house. The
same is true for the living room, hallway, kitchen, stairway,
and garage, which are the public spaces. If we replace the
names with the shapes they represent, the conjunction of ele-
ments become possible, but the hierarchy is oblivious to that.

For example, the hierarchy in Figure 3 may represent the
Ohlenbusch residence in San Antonio, Texas, designed by

Darryl Ohlenbusch Design and completed in 1995 (Ojeda,
1997, p. 128). Its plan in Figure 4a appears as a top element
of the hierarchy, and spaces d–k representing the stairway,
garage, kitchen, bathroom, living room, bedroom, closet,
and hallway, respectively, are the atoms of the hierarchy.
Disjunctive combinations of atoms form the public space
of the house as well as its private space (Fig. 4b and 4c, re-
spectively). This enumerates all of the elements of the hier-
archy as prescribed by the schema (Hasse diagram) in Fig-
ure 3. What is not prescribed by the schema is the
possibility for conjunctive combinations. The kitchen and
living room may combine (conjunctively) to reveal the walls
they share. The same is true for other adjacent spaces like the
kitchen and bathroom or the bathroom and bedroom. For ex-
ample, the shape in Figure 5c is the wall between the kitchen
(b) and bathroom (a). It is topped by these two shapes and
also by some other elements of the hierarchy that include
the two as parts. Because the kitchen and bathroom are
noncomparable shapes, the shape in Figure 5c has two
representatives, which violates the unique representation
requirement.

Only hierarchies of certain structure satisfy the requirement
in accordance with the following result.

PROPOSITION 1. A hierarchy satisfies the unique represen-
tation requirement if and only if its meet operation is the
product from the underlying shape algebra.2 B

Let a be a shape defined in Uij, x its part, and X(a) a hier-
archical decomposition of a. If X(a) satisfies the unique rep-
resentation requirement then there is a shape y [ X(a) which
represents x so that either x � y or y � x. Because X(a) 2 f0g
is a join-semilattice, the former inequality holds and because
y represents x uniquely, y is the least upper bound of x in X(a).
Consequently, X(a) has the least upper bound for every part of
a, which requires for X(a) to be closed under the product from
Uij. The product is, therefore, the meet operation of X(a). In
contrast, if the meet from X(a) is the product from Uij then
X(a) is closed under the product, which defines a closure G

on the set B(a) of all parts of a such that G(B(a)) ¼ X(a).
Part x is uniquely represented by its closure G(x), which is
an element of X(a) so that X(a) satisfies the unique represen-
tation requirement.

Note that G is not a topological closure. Take, for example,
a four-element hierarchy satisfying Proposition 1 and consist-
ing of three atoms x, y, and z and their sum a. The sum of clo-
sures G(x)þ G(y)¼ xþ y, is different from the closure of the
sum G(x þ y) ¼ a ¼ x þ y þ z so that G is not a topological
closure.

Hierarchies that satisfy Proposition 1 have atoms that are
pairwise discrete. This is a corollary of Proposition 1: if x
and y are atoms then x ^ y¼ x . y¼ 0, hence, they are discrete.

2 That is, the algebra in which the elements of the hierarchy are defined.
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The set of atoms of such a hierarchy is a discrete decomposi-
tion of the shape analyzed by the hierarchy. This motivates
the following definition.

DEFINITION 2. Hierarchical decompositions with meets
coinciding with products are discrete hierarchies. B

We may now reformulate Proposition 1.

COROLLARY 1. A hierarchy satisfies the unique represen-
tation requirement if and only if it is discrete. B

Meet operation of a discrete hierarchy is uniquely deter-
mined by the shapes that are its arguments. It equals their
product, which remains the same regardless of the hierarchy
the shapes belong to. This is not the case with the join opera-
tion. The latter is the least upper bound determined by its ar-
guments, but also by all other elements of the hierarchy. For a
discrete hierarchy X(a) with elements x and y meet is given by
x ^ y¼ x . y and join by x _ y¼G(xþ y), whereG is a closure
operator on B(a) such that G(B(a)) ¼ X(a). A discrete hierar-
chy is defined by its join. We can have a kit of parts from
which we assemble an object and we can do it in many differ-
ent ways. Each of the ways defines a discrete hierarchy with a
different join operation. The sizes of such hierarchies range
from k þ 1 to 2k – 1, where k is the number of parts in the
kit. The former is the size of a hierarchy constructed by just
adding the sum of atoms as a top element. This hierarchy
may then be altered by adding a shape that covers (at most)
two of the existing shapes. If this addition is repeated exhaus-
tively, the resulting hierarchy will have the maximum size.

If a hierarchy is used to describe the materialization of a de-
sign then its elements are components of the design. Each
component should be accounted for by smaller components
that are its proper parts. Hierarchies, by definition, support
this because every nonempty element of a hierarchy, with ex-
ception of the atoms, is the join of other elements that are its
proper nonempty parts. Although necessary, this is not a suf-
ficient condition as there are hierarchies with elements that are
not accounted for by their proper parts.

For example, hierarchy in Figure 6 shows an IKEA coffee
table with its two typical parts: a board and leg. The join of the
two parts is the table itself, which leaves the three legs of the
table unaccounted for. In order to avoid this, the components
should be sums of smaller components, which leads to a spe-
cial type of hierarchy in accordance with to the following
definition.

DEFINITION 3. Shape x is a sum-reducible element of a hi-
erarchical decomposition X(a) if there is a subset S # X(a)
such that x is not an element of S and x is the sum of the ele-
ments of S. A hierarchy is summable if all of its join-reducible
elements are sum-reducible. B

It is clear that elements of S are proper parts of x, because x
¼
P

S, x � S, and a sum is greater or equal to any of its argu-
ments, so that sum-reducible elements are also join-reducible.
The converse does not hold, as in hierarchy in Figure 6. The
difference between join-reducibility and sum-reducibility
deserves a closer look.

For example, let shape a be analyzed by a discrete four-
element hierarchy with three atoms x, y, and z such that a is
the sum of the atoms. Shape a is both join-reducible and sum-
reducible, however, where subsets fx, yg, fx, zg, fy, zg, and fx,
y, zg have a as the join only the last subset has it as the sum. If we
change the atoms so that x . y= 0 and z¼ x� y, subset fx, y, zg
still has a as the sum, but so do the remaining three subsets.

Join-reducibility is a general property because it depends
only on the partial order among the elements involved. It is
enough to inspect the Hasse diagram of a hierarchy to decide
if an element is join-reducible. In contrast, sum-reducibility is
an individual property because it also depends on the ele-
ments themselves.

The hierarchy in Figure 1 is summable and this should be
true of any hierarchy describing the materialization of a de-
sign. We start with the smallest components of the design
and build larger components from them and even larger com-
ponents from these components and continue the process un-
til the design is complete. Consequently, every component of
the design consists of the smallest components that we started
with, which leads to the following proposition.

PROPOSITION 2. A nonempty element of a hierarchy is a
join of atoms. It is also a sum of atoms if the hierarchy is sum-
mable. B

The proposition (trivially) works for atoms because a _ a
¼ a and a þ a ¼ a, where a is an atom. In accordance with
Definition 1 a nonempty element of a hierarchy is either an
atom or it covers, and it is a join of at least two and possibly
more elements of the hierarchy. Some of these elements may
be atoms, but the other ones are themselves joins of the ele-
ments they cover. Because join is an associative operation
we may substitute these elements with the related joins of ele-
ments. We may continue with such substitutions until there

Fig. 3. The hierarchy of spaces for a small house.
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Fig. 4. The Ohlenbusch residence: (a) plan, (b) public space, (c) private space, (d) stairway, (e) garage, (f) kitchen, (g) bathroom, (h) living room, (i) bedroom,
( j) closet, and (k) hallway.
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are no more elements that cover other nonempty elements. At
this point all of the elements are atoms and our original ele-
ment is a join of atoms of the hierarchy. According to Defini-
tion 3, in summable hierarchies all of the join-reducible
elements are sum-reducible, and we may use the same proce-
dure with sums instead of joins.

The fact that the top element of a hierarchy is the join of all
of its atoms comes as a corollary of the proposition above. By
the same token, the top element is the sum of the atoms if the
hierarchy is summable.

We conclude this account with an interesting property that
unites the concepts of summability and discreteness.

In summable hierarchies an element is the sum of the ele-
ments it covers and if the hierarchy is also discrete these ele-
ments are pairwise discrete. This creates an opportunity to re-
place the sum of elements with their symmetric difference,
because symmetric difference of discrete shapes is equal to
their sum or if x . y ¼ 0 then x � y ¼ x þ y. Definition 3
may now be reformulated as follows.

DEFINITION 4. Shape x is a symmetric-difference-reduci-
ble or XOR-reducible element of a hierarchy if x is the sym-
metric difference of the elements it covers. A hierarchy is
XOR if all of its join-reducible elements are XOR-reduci-
ble. B

To see how Definition 4 works let us assume that x covers
two elements y and z and that x¼ y� z. If y . z¼ 0 then x¼ y
� z ¼ y þ z and x is XOR-reducible. In contrast, if y . z = 0
then x ¼ y � z ¼ ( y þ z) – ( y . z) so that neither y nor z are
parts of x, which contradicts the original assumption that
x covers y and z. This may be summarized in the following
proposition.

PROPOSITION 3. A hierarchy is summable and discrete if
and only if it is XOR. B

Replacing sum with symmetric difference has a practical
side: it allows for simultaneous calculations with both shapes
and their boundaries, which is discussed in the next section.

2.3. Applications and constructions of hierarchies

Hierarchies that are summable and discrete are well suited for
applications in design. We should explore possibilities of
their use and construction with an eye on their role as shape
approximations.

An XOR hierarchy is an excellent choice for representing
the materialization of a design. It has a useful property of con-
sidering parts disjoint only if they are physically discrete.
Such realism on the part of representation allows for an object
to be really built out of parts that are the atoms of the hierarchy
analyzing the object. In particular, both the object and its
components are sums of atoms of the hierarchy. The atoms
are pairwise discrete which prevents collisions of components
and makes the hierarchy an excellent representation for the
object assembling process. Finally, being discrete guarantees
that the hierarchy satisfies the unique representation require-
ment that makes it a good shape approximation.

An XOR hierarchy has the least upper bound for every part
of the object it analyzes, which renders it an excellent represen-
tation for the purpose of maintaining the object. For example,
consider the hierarchy in Figure 1 as a set of replaceable parts
of the table, which, just in case of a total loss, includes the table
itself. Now suppose that the part in Figure 2a gets damaged by
termites. The smallest among the replaceable parts that contain
part (a) should be replaced in order to offset the damage. That
is the part in Figure 2b that is the closure of part (a) or its least
upper bound with respect to the hierarchy. This representation
may be improved by assigning a set of attributes to each ele-
ment of the hierarchy. Each attribute may describe a function
the element performs. The sets of attributes form a hierarchy
isomorphic to the original one. If the object is not performing
certain functions, the smallest replaceable part capable of per-
forming these functions should be replaced. To find the part
one takes the closure of the malfunctioning attributes in the
hierarchy of attribute sets and then maps it, via isomorphism,
to the hierarchy of replaceable parts.

If an XOR hierarchy is considered a shape approximation,
then its size matters. In hierarchy X(a) a part x of a is repre-
sented by its closure G(x) [ X(a), but this relation is many
to one, there are (infinitely) many parts of a represented by

Fig. 5. The Ohlenbusch residence: (a) bathroom, (b) kitchen, and (c) a par-
titioning wall between the two.

Fig. 6. The typical parts of an IKEA coffee table.
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the same element of X(a). This calls for an equivalence rela-
tion ; on parts of a such that x ; y if G(x) ¼ G(y). This re-
lation partitions the parts of a into equivalence classes corre-
sponding to nonempty elements of X(a). The more elements a
hierarchy has the more equivalence classes there are and the
better it approximates the shape. However, not all of the parts
of a are represented equally well in X(a). Parts that are ele-
ments of X(a) are best represented. In contrast, dense parts,
or parts with closures that equal a, may be poorly represented
by the hierarchy. This is especially true of small dense parts
where their size is in disagreement with the fact that only a
is big enough to account for all of their properties.

For example, a dense part may be constructed by picking
an arbitrarily small part from every atom of X(a) and then
summing these parts. The resulting part can be arbitrarily
small, but its closure is a; thus, when it breaks down the
whole object analyzed by the hierarchy is a total loss. If the
table from our previous example is damaged so that a tiny ter-
mite damage appears on each of the legs and the board, the
total damage is small, but the table is a total loss.

Shapes are approximated by their decompositions but also
by their boundaries. Being one dimension lower than the
shapes they delineate, boundaries are simple and economical
representations. For example, in solid modeling, surface-based
models represent solids indirectly via their bounding surfaces,
which are also used to calculate the engineering properties of
solids (Timmer & Stern 1980; Lee & Requicha, 1982). Like-
wise, in mathematics, many properties of three-dimensional
(3-D) shapes are expressed via volume integrals. The well-
known method of direct integration may then be used to repre-
sent a volume integral over a shape via the sum of simpler sur-
face integrals over its boundary. The closely related divergence
theorem of vector calculus yields a similar result.

Given the importance of shape boundaries it would be ad-
vantageous for any decomposition acting as a shape approx-
imation to take account of the boundaries of its elements.
XOR hierarchies are well suited for that because, in accord-
ance with Definition 4, their reducible elements are symmet-
ric-difference reducible and symmetric difference has an
interesting property that ties shapes and their boundaries.

PROPOSITION 4. The boundary of the symmetric difference
of diagonal shapes is the symmetric difference of their bound-
aries (Earl, 1997; Krstic, 2001). B

Proposition 4 does not apply to all of the shapes but to a
special class of shapes: diagonal shapes. The latter are de-
fined in an algebra Uii where shapes and the space in which
they are manipulated are of the same dimension i ¼ 0, 1, 2,
or 3. Such are the solids in 3-D space or planar segments in
a plane, which are expressive enough for most design (engi-
neering) applications. The former pertain to the models de-
signers build, including 3-D computer-aided design models,
while the latter relate to 2-D drawings, which are traditional
representations in design.

Figure 7 illustrates Proposition 4. XOR hierarchy (a) ana-
lyzes a double square defined in U22 algebra, which manipu-
lates planar segments in a plane. The symmetric difference of
the two squares, which are the atoms of the hierarchy, yields
the double square and so does their sum. In contrast, the sym-
metric difference of the boundaries of the atoms defined in
U12, which manipulates lines in the plane, yields the bound-
ary of the double square (b), but their sum, shape (c), is
greater than the boundary, because it contains a line that
divides the double square.

To account for both shapes and their boundaries a hierar-
chy has to be XOR with elements that are ordered pairs of
shapes paired with their boundaries. The pairs are combined
with a single operation of symmetric difference in the frame-
work of UBi algebra (i ¼ 1, 2, or 3), which is closed under
Euclidean transformations that act on the pairs (Krstic,
2001). Note that because points have no boundaries there is
no UB0 algebra. The operation is applied componentwise in
the following way.

Let b be an operator that takes shape a defined in Uij to its
boundary b(a) in Uij21 and let x and y be diagonal shapes so
that pairs (x, b(x)) and ( y, b( y)) are defined in a UBi algebra.
The symmetric difference of the two pairs is

(x, b(x))� ( y, b( y)) ¼ (x� y, b(x)� b( y)):

Because x and y are diagonal shapes Proposition 4 applies to
yield

(x, b(x))� ( y, b( y)) ¼ (x� y, b(x� y)):

If x and y belong to an XOR hierarchy, and are covered by the
same element, then they are discrete and symmetric differ-
ence has the effect of a sum. The computation above is as

Fig. 7. The sum and symmetric difference hierarchy: (a) with the top element being the sum or the symmetric difference of the atoms, (b) the
symmetric difference, and (c) the sum of the boundaries of the atoms.
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follows:

(x, b(x))þ ( y, b(y)) ¼ (x, b(x))� ( y, b(y))

¼ (x� y, b(x� y)) ¼ (xþ y, b(xþ y)):

The computation starts with a sum, as if modeling an assem-
bling process, which is then recast as the symmetric differ-
ence in order to preserve shape boundaries in computation.
After the computation the two symmetric differences appear-
ing in the result are recast back to sums for their intuitive
appeal.

We will now turn our attention to some of the constructions
available for XOR hierarchies.

Complex hierarchies may be obtained from the simpler
ones. This is especially easy to do with XOR hierarchies.
Let ai, i ¼ 1, 2, . . . , n be a finite family of pairwise discrete
shapes and let X(ai) be a family of XOR hierarchies that ana-
lyze these shapes. The union of family X(ai) augmented by
the sum of family ai is a complex XOR hierarchy that ana-
lyzes the latter sum.

X
�X

i¼1,...,n ai

�
¼
nX

i¼1,...,n ai

o
<
[

i¼1,...,n
X(ai): (1)

Formula (1) may be used recursively to build complex hierar-
chies from the simpler ones. This is similar to what we do
when we construct hierarchical file structures on our compu-
ters by dragging already populated file folders into an empty
file folder.

The construction of hierarchies may also go in the other di-
rection and derive smaller hierarchies from the bigger ones.
The simplest of such constructions is based on the fact that
all the elements that are parts of any reducible element of a
hierarchy form a hierarchy themselves. This hierarchy is a
subhierarchy of the original hierarchy.

If, for example, the process of assembling an object a is
described by hierarchy X(a), then the same process for a
component b � a, b [ X(a) is described by the subhierarchy
X(b) # X(a) generated by b and defined by X(b) ¼ fx � b j
x [ X(a)g. Using this construction the process of manufac-
turing an object may be divided into separate processes of

manufacturing its components that then may be done
concurrently.

The construction above works well for the components of
an object. If, in contrast, the goal is to manufacture a new
object that is a part, but not a component of the original ob-
ject, then subhierarchies do not work. There is another possi-
bility that relies on the relativization of the structure of an ana-
lyzed shape to one of its parts.

DEFINITION 5. If a is a shape, A its decomposition, and b
its part then b is implicitly structured by decomposition fbg .

A¼ fb . x j x [ Ag, which is the relativization of the structure
of a to b or the relativization of A to b denoted by A/b (Krstic,
2005). B

For example, the hierarchy in Figure 8d is a decomposition
of the shape (a) that has shape (b) as a part. Decomposition in
Figure 8e is the relativization of the original hierarchy to
shape (c). Note that the relativization is also a hierarchy,
but this may not always be the case. There are summable or
discrete hierarchies with relativizations that fail to be hierar-
chies. In contrast, XOR hierarchies behave in accordance
with the following result.

PROPOSITION 5. The structure of XOR hierarchies is
preserved under relativization (Krstic, 1996). B

Proposition 5 describes yet another nice property of XOR
hierarchies that may be used to facilitate a transformation of
one hierarchy into another. If some facilities are used to as-
semble an object according to some XOR hierarchical de-
composition of the object, then the same facilities may be
used to assemble a new object, which is a part of the original
object, in accordance with the relativization of the original
hierarchy to this part.

This may be carried a step further to allow for the changing
of components of the original hierarchy. The hierarchy may
be changed to recognize a shape that is not its element, but
is a part of the shape the hierarchy analyzes. Let X(a) be an
XOR hierarchy and shape b � X(a) be a part of shape a.
Relativization X(a)/b is an XOR hierarchy and so is X(a)/
(a 2 b). Because the sum of b and a 2 b is a, identity (1)

Fig. 8. The hierarchy construction: (a) shape and (b, c) its parts and, hierarchy (d) of (a) is changed by combining hierarchy (e), which is the
relativization of (d) to (b), and hierarchy (f), which is the relativization of (d) to (c), to produce hierarchy (g).
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may be used to combine X(a)/b and X(a)/(a 2 b) in a new
hierarchy X 0(a), or

X 0(a) ¼ af g< X(a)/b < X(a)/(a� b): (2)

For example, in Figure 8 hierarchy (d) of shape (a) is changed
by taking hierarchy (e), which is the relativization of hier-
archy (d) to shape (b), and hierarchy (f), which is the relativi-
zation of hierarchy (d) to shape (c), and combining them in
accordance with (1) to get a new hierarchy (g).

Construction (2) allows for the components b and a 2 b to
be assembled via the same facilities that are used to assemble
a according to X(a). In contrast, assembling a from b and
a 2 b according to X 0(a) requires new facilities.

Formula (2) may be used recursively to gradually change a
hierarchy by adding new parts either to the original hierarchy
or to any of its subhierarchies.

3. TOPOLOGIES

Hierarchies are handy when conceiving the materialization of
an already completed design, but may prove inadequate for
the design process itself. Conjunctive combinations of enti-
ties are important in design especially in the early stages of
the process. They yield new entities that have new properties
not necessarily recognized by the original entities. This sup-
ports the discovery, which is an indispensable ingredient of
the creative phases of the design process. Hierarchies do
not support conjunction and a structure different from the hi-
erarchical is to be used in the design process. The properties
of such a structure will be given first informally and then for-
mally in the remainder of the paper.

3.1. Definition

Consider the hierarchy in Figure 4 as a decomposition of
shape (a) defined in U22. The latter is a shape algebra that ma-
nipulates planar segments in a plane. Note that Figure 4 also
contains lines, dashed lines, and labels. Algebras for these
would be needed as well, however, for our argument U22

alone will do.
Shape (a), which is analyzed by the decomposition, is its

member, but also is the sum of the other members, shapes
(b) through (k). Therefore, the decomposition represents a
set of spaces of a house together with their sum, which is
the plan of the house. Some other sums of interest are also in-
cluded, like shapes (b) and (c) that represent the public and
private spaces of the house.

There are reasons for including even more sums. For exam-
ple, one may consider a middle section of the plan, which has
no access to the perimeter walls. The area is bounded by the
grid lines 3, 5, b, and d as shown in Figure 9a. Any space in
need of artificial lighting and ventilation is a part of that
shape. Such are the kitchen, bathroom, and closet. Their
sum in Figure 9b may be included (in the decomposition)
as it conveniently enumerates all the spaces with such a

need. This shape becomes the greatest element that is a part
of the shape in Figure 9a, or the greatest lower bound of
that shape. Any part of the design may become interesting
at some point in the design process. For every such part the
decomposition should contain the greatest lower bound. Con-
sequently, all of the sums have to be included and the decom-
position is closed under the sum of U22. The advantages of
this structure are twofold.

First, it allows for the properties of any part of the design
to be assigned to the appropriate elements of the decompo-
sition. In the above example the properties of shape in
Figure 9a are assigned to the kitchen, bathroom, and closet,
labeling them as spaces in need of artificial ventilation and
lighting.

Second, the structure comes in handy if a part of a design
has to be defined in terms of properties that are recognized by
the decomposition. For example, the shape in Figure 9a con-
tains or has the properties of the kitchen, bathroom, and clo-
set. This can be determined for every part of the design be-
cause there is a greatest lower bound for every such part.

To explore conjunctive combinations of elements of the
decomposition we rely on the product operation from U22 al-
gebra. For example in Figure 10, the product of shapes repre-
senting the kitchen (c) and bathroom (b) yields the shape (e),
which represents the partitioning wall between the two
spaces. Likewise, the product of shapes representing the bath-
room (b) and closet (a) yields the partitioning wall (d). Taking
products of adjacent spaces exhaustively enumerates such walls.
The decomposition becomes a system of spaces together with
partitioning walls between them. Further, products of shapes
representing walls are joints between the walls.

For example, in Figure 10 shape (f) is the product of shapes
(d) and (e). The latter shapes represent walls that makes (f)
the joint between the walls. The decomposition now becomes
a system of spaces, partitioning walls, and joints between the
walls. Its structure is that of an algebra with respect to the
sum, and a partial algebra with respect to the product.
The fact that it has products rules out the possibility of the
structure being a hierarchy.

Further elaboration of the design may require some addi-
tional constrains on the structure of the decomposition.

Suppose that the door between the bedroom and garage is
to be removed and replaced with a wall. The smallest element

Fig. 9. The Ohlenbusch residence: (a) a middle section of the plan with no
access to the perimeter walls and (b) the sum of the kitchen bathroom and
closet.
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of the decomposition altered by this action is the wall between
the two spaces. It includes the door and is the least upper
bound of the door with respect to this decomposition. To al-
low for a change of an arbitrary part of a design its decompo-
sition should have the least upper bound for every such part.
Consequently, the decomposition should be closed under
products, which elevates its structure to an algebra closed un-
der both sums and products.

Every part of the design is represented by the two distin-
guished elements of the decomposition. These are the least up-
per bound of the part and its greatest lower bound. The part is
bounded by the two and has at least the properties of the latter
element and at most the properties of the former one. The unique
representatives are provided regardless of the fact that there are
infinitely many parts while the decomposition is only finite.
However, the decomposition need not be small. In our example,
it has over 2000 elements, and we may include some new ele-
ments like, say, complements of the elements we already have.

Complements deserve a closer look. As discussed else-
where (Krstic, 2004, 2005) we perceive a shape as a whole,
but we break it down into parts to understand or explain it.
We assign properties to the parts and tend to see the properties
of the whole as the sum of the properties of the parts. This
makes finding the complement of a part an easy task: just
take the shape that has all of the properties of the whole but

none of the properties of the part. Unfortunately, shapes
usually do not meet our Boolean expectations.

For example, the complement of the kitchen should, in a
Boolean fashion, consist of all the spaces of the house but
the kitchen. Algebra U22 has a difference operation to support
the creation of complements. The shape in Figure 11a is the
complement of the kitchen obtained by subtracting the latter
from the plan. It contains the bedroom and stairway, which
are the only spaces that have no common walls with the
kitchen. This shape is clearly not the complement we expected.
It lacks the garage, bathroom, corridor, and living room.

In another example, we may try to determine the façade
walls of, say, the living room. These are partitioning the
outside space from the living room and, following the logic
of the construction of partitioning walls, may be determined
as the product of the two spaces. The outside space should
be the complement of the sum of the inside spaces. Unfortu-
nately, this complement is the empty shape here. Our entity is
not a system of inside spaces surrounded by the outside space,
but a system of walls, and only in the decomposition certain
combinations of walls emerge as spaces. Consequently,
complement is of no help in specifying the outside space.
The latter has to be defined in the same fashion as all other
spaces, as a combination of walls (Fig. 11b). The product
of the living room and the outside space is the shape in

Fig. 10. The Ohlenbusch residence: (a) closet, (b) bathroom, and (c) kitchen; partitioning walls between (d) the bathroom and closet and (e)
the kitchen and bathroom; and (f) the joint of walls (d) and (e).
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Figure 11c, which represents the façade walls of the living
room.

Although the two examples show that complements are not
essential in dealing with spatial entities there may be other
compelling reasons for not using them. In an early, explor-
atory, stage of the design process designers may focus on de-
veloping certain parts of their designs while having only a
vague notion of the other parts or the whole. Consequently,
the complements may not be available at this stage. Without
the complements we are left with an algebra which has the
whole (the shape it analyzes) and zero (the empty shape),
and is closed under þ and . of Uij. This is the same structure
as that of the closed (open) sets of a topological space that
motivates introduction of the topologies for shapes.

DEFINITION 6. Let a be a shape from Uij algebra. A
bounded decomposition of a is a topology on a or a topologi-
cal decomposition of a if it is closed under þ and . of Uij.
A topological decomposition of a is denoted by T(a). B

3.2. Properties of topologies

Topologies for shapes were introduced by Stiny (1994) to
study the continuity of shape computations. In contrast, we
examine here how they may be used in place of shapes, as
shape approximations.

A topological decomposition of a shape satisfies the
unique representation requirement by providing for each
part of the shape a pair of elements that bounds it. This is a
far better representation than the one provided by hierarchical
decompositions where elements, at best, top the shape parts.
Topological decompositions of shapes have many interesting
properties, but we will examine only those that pertain to
topologies being used as shape approximations.

Because topology T(a) is closed underþ and . it has the least
upper bound and the greatest lower bound for every part of a.
The two bounds define a topological closure G and a topologi-
cal interior V operators on a set B(a) of all parts of a such that
T(a) is their image, or T(a) ¼ G(B(a)) ¼ V(B(a)).

Stiny (1994) defines topology T(a) as a set of closed ele-
ments of Boolean algebra B(a) that has been elevated to a clo-
sure algebra by the addition of a closure operator G. Stiny al-
lows for topologies to be infinite, but requires for each part x
of a an existence of a smallest element in T(a) that contains x
as a part. This requirement is weaker than the standard re-
quirement for a topology to be closed under all products, fi-
nite and infinite. Because B(a) is not a complete Boolean al-
gebra there is no guarantee that all of its infinite subsets have
products, so the stronger requirement does not hold in infinite
topologies for shapes. A topology that only satisfies the
weaker requirement cannot be generated by a given subbase
in a usual way. Because this construction plays an important
role in applications, we will restrict ourselves to finite topol-
ogies only, in accordance with Definition 6 above.

For example, we constructed the topology of the Ohlen-
busch residence from a subbase consisting of spaces in
Figure 4d–k. We later modified the subbase by adding a
shape representing the outside space (Fig. 11b). This resulted
in a bigger topology that included the original one.

A topology generated by a subbase is the smallest among
the topologies containing the subbase: all of the topologies
containing the subbase contain this topology as well.

There is a simple procedure for generating a topology from
a subbase (see, e.g., Vickers 1989, p. 32), but it may not be
practical to keep all of the elements of a topology at all times.
Even small designs may have big topologies like the topology
in our example, which has over 2000 elements. It should be
sufficient to keep the most important elements and construct

Fig. 11. The Ohlenbusch residence: (a) complement of the kitchen, (b) the outside space, and (c) the living room facade walls.
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the other elements as needed. In our example, the original
spaces, which form the subbase, should be kept and we
may also keep some other shapes like the walls and joints be-
tween the walls. We need to be able to construct the relevant
elements to uniquely represent an arbitrary part of the ana-
lyzed shape. These are the closure and interior of the part,
which could both be constructed directly from the subbase
via the following procedure.

PROCEDURE 1. Let a be a shape, x � a its part and B a sub-
base of a topology T(a) on a. Note that

P
B¼ a, which renders

B a decomposition of a and allows for the relativization of B
to x, or B/x, to be constructed.

1. Construct set B/x ¼ fxg . B, which is a decomposition
of x that recognizes all of the divisions of a imposed
by B.

2. For every yi [ B/x, where i ¼ 1, . . . , n enumerates the
elements of B/x, construct two sets Ci ¼ fz [ B j z . x�
yig and Ii ¼ fz [ B j z . x � yig.

3. Construct a product
Q

Ci for each Ci and a sum
P

Ii for
each Ii. The product is the closure and the sum is the
interior of yi with respect to topology T(a), or G( yi) ¼Q

Ci and V( yi) ¼
P

Ii.
4. Finally, the sum of the closures above is the closure and

the sum of the interiors above is the interior of x with
respect to T(a), or G(x) ¼

P
i¼1;...;nG( yi) and V(x) ¼P

i¼1;...;nV( yi). B

For example, in Figure 12 shape (a), defined in U22 alge-
bra, is analyzed via topology (b) generated by subbase (c).
Shape (d) is a part of (a) and its closure is shape (e). To con-
struct (e) we take the relativization (f) of the subbase to shape
(d) and construct the sets C1, C2, and C3, which are a single-
ton (g), a set (c), and a singleton (i), respectively. Shapes (g),

(h), and (i) are the products
Q

C1,
Q

C2, and
Q

C3, respectively,
and their sum is the closure (e).

Note that Procedure 1 above provides for a direct construc-
tion of both G(x) and V(x). We do not construct one and then
use standard topological identities

VG(x) ¼ a� G(a� x),
GV(x) ¼ a�V(a� x), (3)

to get the other. The identities above define operators that (in
general) differ from V and G. If we consider T(a) as a set of
closed parts of a then it is the image of G. Its complement
T(a) 0 ¼ fag – T(a) is the set of open parts of a and the image
of VG. Dually, T(a) may be seen as the image of V, which
makes it a set of open parts of a. The related set of closed parts
is then the image of GV and the complement of T(a). Opera-
tors G and V define two different topologies on B(a) except
when T(a) has the structure of a Boolean algebra. In that case,
G ¼ GV, V ¼VG, and G and V belong to the same topology.

One of the reasons we dropped the complements was that
they may not be available in the early stages of a design pro-
cess. In contrast, complements may play a role later in the pro-
cess when properties of design(s) are better understood. We
may then use T(a) and its complement T(a) 0 concurrently to
represent/bound the shape parts. This is done by paring any
of the two closures with any of the two interiors so that any
of the four combinations (G, V), (G, VG), (GV, V), or (GV,
VG) may be chosen to best fit a particular part.

Another important use of the complements may arise in the
final phases of the design process when designs are specified
for production. Such a specification usually sports a kit of dis-
crete parts from which to build a design as well as some de-
tails on how this should be done. This means that we need a
discrete decomposition of a shape that can then be extended
to a hierarchical decomposition to show how the original

Fig. 12. Closure construction: (a) shape; (b) its topology with (c) the subbase; (d) a part and (e) its closure; (f) relativization of (c) to (d);
(g, c, i) sets C1, C2, and C3 with (g, h, i) their products, which sum to (e) the closure.
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discrete parts are put together to build the shape. There is no
guarantee for topology T(a) to be atomic so it may not contain
a discrete decomposition of a. To get one we need to extend
T(a) to a Boolean algebra in accordance with the following
definition.

DEFINITION 7. Let T(a) be a topology on a. The smallest
decomposition of a that has the structure of a Boolean algebra
and contains T(a) is the Boolean extension of T(a) denoted by
TBool(a). B

It is also a topological decomposition because it contains 0
and a and is closed under . and þ of Uij. In addition, TBool(a)
is closed under the formation of complements, which is
equivalent to being closed under – of Uij. Because TBool(a)
is finite Boolean algebra, it is atomic and its set of atoms A
is a discrete decomposition of a. Set A is the smallest, in terms
of its cardinality, discrete decomposition of a such that all of
the nonempty elements of T(a) may be constructed as sums of
elements of A. Moreover, all nonempty elements of TBool(a)
are sums of atoms from A and they enumerate such sums. Be-
cause nonempty elements of XOR hierarchies are sums of
their atoms (by Proposition 2 and Proposition 3), an arbitrary
XOR hierarchical decomposition of a, which has A as the set
of atoms, can be embedded in TBool(a). This renders TBool(a)
the least upper bound of all of such hierarchies. Note that, un-
like Boolean algebras, hierarchies are not uniquely deter-
mined by their atoms so that there are many XOR hierarchies
with A as the set of atoms.

As with T(a), it is not practical to keep all of the elements of
TBool(a) when we may only need some important ones and the
ability to construct the set of atoms of TBool(a) as well as the
closure and interior for any part of a. A procedure for con-
structing the set of atoms of TBool(a) is as follows.

PROCEDURE 2. Let a, T(a), TBool(a), and A be as above and
let set B with n elements be a subbase of T(a).

1. Construct ‘(B) 2 Ø the set of all subsets of B with the
exception of the empty set. This set has 2n 2 1 ele-
ments.

2. For every Si [ ‘(B) 2 Ø, where i ¼ 1, . . . , 2n 2 1,
construct a set Di ¼ B – Si.

3. For every i construct a shape xi ¼
Q

Si –
P

Di. This shape
is either an atom of TBool(a) or an empty shape.3

4. Take (<i¼1;...;2n21 fxig) 2 f0g, which is the set A of
atoms of TBool(a). B

For example, topology T(a) in Figure 12b is extended to a
Boolean algebra TBool(a) by including the shapes delineated
by dashed lines. The set of atoms of the extension is given
in Figure 13. Note that in this particular example the union

of T(a) and its complement T(a) 0 is TBool(a). Usually the latter
algebra is greater than this union.

Closure and interior of an arbitrary part x of shape a with
respect to topology TBool(a) may be obtained in accordance
with the following result.

PROPOSITION 6. Let a be a shape, x its part, T(a) a topol-
ogy on a, G and V closure and interior operators from T(a),
and TBool(a) the Boolean extension of T(a). Closure and inte-
rior of x with respect to TBool(a) are

GBool(x) ¼ G(x) � GV(x) ¼ G(x) � (a�V(a� x)),

VBool(x) ¼ V(x)þVG(x) ¼ V(x)þ (a� G(a� x)), (4)

respectively. B

Because x is a part of both G(x) and GV(x) it is a part of
G(x) . GV(x) so that the latter is an upper bound of x in
TBool(a). We need to show that there is no such shape y that
satisfies the following conditions y [ TBool(a), y � x and y
,G(x) .GV(x) (‘) so thatG(x) . GV(x) is indeed the least upper
bound. Because TBool(a) is closed under – and contains T(a) it
also contains T(a)0 so that either y [ T(a) or y [ T(a) 0 or y is a
new element that does not belong to any of the topologies. If y
[ T(a), then y � G(x) and if y [ T(a) 0, then y � GV(x) in any
case y � G(x) . GV(x) so that y is not the least upper bound of
x. If y is a new element then it is a combination of two ele-
ments u � x and v � x, from one or both of the topologies.
The possible combinations are

a. y ¼ u þ v, where u [ T(a), v [ T(a)0,
b. y ¼ u . v, where u [ T(a), v [ T(a)0,
c. y ¼ u 2 v, where u [ T(a), v [ T(a)0, and
d. y ¼ u – v, where u, v [ T(a).

Other possible combinations are either symmetrical to the
ones above or yield elements already in T(a) or T(a)0. First, we
show that there is no y obtained in combinations a to d, such
that y satisfies (0). Combination a gives y � u � G(x) � G(x) .

GV(x). In b case u � G(x) and v � GV(x) so that y ¼ u . v �
G(x) . GV(x). Combination c yields y ¼ u – v ¼ u . (a – v).
Because both u and (a – v) belong to T(a), so does their
product y and y � G(x) . GV(x), as shown earlier. Finally,
case d is the same as b because y¼ u 2 v¼ u . (a 2 v), where
u [ T(a) and (a 2 v) [ T(a) 0. This proves thatGBool(x)¼G(x)
. GV(x), which with (3) results in GBool(x) ¼ G(x) . (a 2 V(a
2 x)). The proof of the second identity of the proposition is a
dual of the proof above.

Both VBool and GBool are expressed, in Proposition 6, in
terms of V and G. Because the latter operators may be con-

Fig. 13. The set of atoms of the Boolean extension of topology in
Figure 12b.

3 It is clearly so, because the product of xi and any shape generated by Si is
xi and the product of xi and any shape generated by Di is 0.
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structed from the subbase B via Procedure 1 construction of
VBool and GBool is feasible.

We conclude this section with some counting to find out
how big our structures may get. The size of any finite Boolean
algebra including TBool(a) is 2k, where k is the number of
atoms of the algebra. The latter number for TBool(a) depends
largely on the subbase B of T(a), in accordance with Proce-
dure 2 above. The size n of B matters, but also do the relations
among its elements. In the maximum case, the only relation
between the elements of B is

P
B ¼ a. Each shape xi, from

Procedure 2, then yields a different atom so that the number
of atoms of TBool(a) is k ¼ 2n 2 1. In the minimum case,
the only elements of TBool(a) are these of B, or TBool(a) ¼
B. Consequently, n ¼ 2k, so that the number of atoms is k
¼ log2n. We mentioned earlier that discrete (and by extension
XOR) hierarchies with k atoms may range in sizes between k
þ 1 and 2k 2 1. This means that the simplest hierarchies em-
bedded in TBool(a) will have between log2nþ 1 and 2 log2n 2

1 elements, whereas the most complicated ones will have be-
tween 2n and 2nþ1 2 3 elements.

For example, in Figure 12 topology (b) generated by a
three-element subbase (c) has the Boolean extension with
four atoms depicted in Figure 13. This is less than the maxi-
mum seven because there are more relations than

P
B ¼ a

among the shapes of the subbase. In particular, products of
different shapes of the subbase are equal. Similarly, the Oh-
lenbusch residence topology has been constructed from a
subbase consisting of eight spaces, as shown in Figure 4d
through 4k. The Boolean extension of such a topology
may yield a maximum of 255 atoms. In contrast, we have
here only about one-tenth of that number because of the nu-
merous relations among the elements of the subbase.

3.3. Parts and elements

Because shape parts are represented via elements of topolo-
gies, the relation between the parts and elements is crucial
to the understanding of how (well) shapes are approximated
with the topologies.

For example, if some part x of shape a is examined so that
the structure imposed on a by topology T(a) is respected, then
it is safe to say that x is V(x). Part x has the properties of V(x)
and there is no other shape like this one in T(a) that is greater
than V(x). The part may have some other properties as well,
but those are not recognized by T(a). If, in contrast, the place
of x in the structure of T(a) has to be determined, then x is
G(x). Closure G(x) accounts for all of the properties of x
and is the least such element of T(a). The closure may have
some properties that x lacks, but T(a) is oblivious to that.

For an arbitrary part x of shape a represented by V(x) and
G(x) in T(a) there may be (infinitely) many parts of a with the
same representation in T(a). This justifies the introduction of
an equivalence relation ; such that x ; y if and only if V(x)
¼V(y) and G(x)¼ G(y), where x, y � a. If x is an element of
T(a), then V(x) ¼ G(x) ¼ x and equivalence class [x]; has
only one element x. In contrast, when x is not an element

of T(a) class [x]; has infinitely many elements provided
that x is not made of points only.

Number n; of equivalence classes modulo ; indicates
how well T(a) approximates a. This number in the case of
the smallest (trivial) topology f0, ag is 3. It appears that
the trivial topology is not a bad shape approximation after
all. It shows that a is nonempty, that it contains 0 and itself,
and has proper parts as well. The following result provides
some insights in the possible sizes of n;.

PROPOSITION 7. Let T(a) be a topology on a. For every
comparable pair x� y of elements of T(a) there is a nonempty
equivalence class of parts of a that are represented by x, as
their interior, and y, as their closure, so that n; equals the
number of such pairs. B

In case x¼ y there is a one-element equivalence class [x];.
To show the same for x , y it is enough to construct a shape z
such that V(z)¼ x and G(z)¼ y. We start with TBool(a), which
is an atomic Boolean algebra with elements that are sums of
atoms. Shape y 2 x is an element of TBool(a) and is the sum of
some set of atoms A. We now construct a set B by taking a
nonempty proper part from each of the elements of A, or B
¼ fp j p , q, p . 0, q [ Ag. Shape z ¼ x þ P

B satisfies
both V(z) ¼ x and G(z) ¼ y. The former because any shape
u [ T(a), such that x , u � y, contains at least one atom
from A so that z � u does not hold, and the latter because
any shape v [ T(a), such that x � v , y, misses at least
one atom from A so that z � v does not hold. Note that there
are infinitely many choices for picking proper parts of atoms
from A, when constructing B, so that there are infinitely many
shapes in [x];, provided that a is not made of points.

In a topology that is a chain every pair of different elements
is comparable so that for an n-element chain n; ¼ n (nþ 1)/2.
This establishes the upper bound for n;. The lower bound is
difficult to establish, but it is clearly greater than 3n 2 3 be-
cause for each x [ T(a) there is at least three classes, a one-
element class [x];, a class defined by x and 0, and one de-
fined by a and x. Judging by the number of equivalence
classes it seems that an n-element topology is much better
shape approximation than an n-element hierarchy which
only has n of such classes.

As with hierarchies, not all parts of a are equally well rep-
resented by topology T(a). The elements of T(a) are the parts
that are best represented. They are represented by themselves.
In contrast, parts that are both boundary, defined by V(x)¼ 0,
and dense are the worst represented ones. Such parts have no
recognizable properties despite the fact that only a is big
enough to account for all of their properties. No matter how
well a topology approximates a shape there will be infinitely
many of such parts in accordance with the following corollary
of Proposition 7.

COROLLARY 2. Let T(a) be a topology on a defined in Uij,
where i . 0: a is not made of points. There are infinitely many
parts of a that are both dense and boundary with respect to
T(a). B
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In accordance with Proposition 7 there is a nonempty
equivalence class defined by shapes 0 and a, which are
comparable. An element x of this class is both dense and
boundary because G(x)¼ a and V(x)¼ 0. There are infinitely
many such parts in accordance with the last note of the proof
of Proposition 7.

Although poorly represented, dense and boundary parts are
well analyzed by the topology.

For example, the shape in Figure 14a is both dense and a
boundary part of the shape in Figure 12a with respect to the
topology in Figure 12b. The shape is, thus, poorly represented
in the topology. In contrast, the topology in Figure 14b is the
relativization of the topology in Figure 12b to the shape in
Figure 14a and the two topologies are isomorphic. Conse-
quently, the shape in Figure 14a and the shape in Figure 12a
are analyzed by the original topology in the same way. Note
that, not unlike XOR hierarchies, the structure of topologies is
preserved under relativization.

We may assume that each part x of a is, de facto, approxi-
mated by the elements of T(a) that represent it. Thus, we may
calculate errors that such an approximation introduces. If x is
approximated by V(x) the error is

1V(x) ¼ x�V(x), (5)

whereas an approximation by G(x) introduces the error

1G(x) ¼ G(x)� x: (6)

Shapes that are elements of topologies are the most closely
approximated ones, if x [ T(a) then 1V(x) ¼ 1G (x) ¼ 0. In

general, if x and y are parts of a and 1V(x) � 1V( y), then x
is approximated by V(x) at least as well or better than y.

An interesting way of examining errors (5) and (6) is from
the viewpoint of the topology itself. Because both 1V(x) and
1G(x) are parts of a we may approximate them using different
closures and interiors. A simple exercise in closure/interior
arithmetic yields some interesting results.

For example, the G closure of 1G (x) is

G(1G(x)) ¼ G (G (x)� x), (7)

which is the smallest element of T(a) that is greater than error
1G(x). The error cannot be greater than (7). Note that both er-
ror (6) and its closure (7) may be defined for XOR hierarchies
because the latter are closed under G.

The V interior of 1G(x) is denoted by s(x) so that

s (x) ¼ V(1G (x)) ¼ G (x) �V (a� x): (8)

The error cannot be smaller than s (x), which is the greatest
element of T(a) with a following property: is a part of G(x)
and has no common parts with x. If T(a) is a set of replaceable
parts of some object and some part x breaks down, G(x) will
be replaced. Then again, because s (x) and x do not share
parts the former shape may be recycled. If a is a car, G(x)
its alternator with a bad coil x, then the repair shop uses
T(a) to pinpoint and replace the alternator. The old alternator
goes to a remanufacturing facility as a “core.” At the facility
s (x) is used to find out which parts could be salvaged when
rebuilding the alternator. Shape s (x) is the core of x with
respect to T(a) or the reusable part of G(x).

As we have shown earlier, XOR hierarchies may be used
the same way topologies are, as sets of replaceable parts for
the maintenance purpose. In contrast, the concept of reusable
part or core is foreign to hierarchies because their lack of the
interior operator. This gives topologies an advantage over
hierarchies in such applications. One can imagine a hierarchy,
embedded in TBool(a), that would recognize the core of the al-
ternator, but such a hierarchy would also recognize its other
components that will make it much bigger than T(a). This
hierarchy will do for assembling the car, but is too compli-
cated for maintaining it.

Because closure GV yields the complement of T(a), we
may take the closure of 1G (x) and then the complement of
the result. This is another interesting shape and we will denote
it by m(x) so that

m(x) ¼ a� GV(1G(x)) ¼ V(a� 1G(x)) ¼ V(x)þV(a� G(x)):

(9)

This is the greatest element of T(a) that does not have com-
mon parts with 1G(x). It has only those parts of G(x) that
are also parts of x. If attention is paid to m(x) and its parts
only, then it does not matter whether x or its approximation
G(x) is used. From the point of view of m(x) we make no error

Fig. 14. (a) A part of the shape in Figure 12a, which is both dense and a
boundary with respect to the topology in Figure 12b, and (b) the relativization
of the topology to shape (a).
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when approximating x is with G(x). This shape becomes a if x
is an element of T(a).

Similarly, the complement of the GV closure of 1V(x) is

a� GV(1V(x)) ¼ V(a� 1V(x)) ¼ V(x)þV(a� x): (10)

This is the greatest element of T(a) that does not have com-
mon parts with 1V(x). From the point of view of this shape,
there is no error if x is approximated with V(x). This shape
becomes a if x is an element of T(a).

Because m(x) is included in shape (10) their product is
m(x). The latter is the greatest element of T(a) for which it
does not matter whether x or any of its approximations is
used. The greater m(x) is, the better the topology approxi-
mates the part. We may use m(x) as a measure of that approx-
imation. Note that m(x) ¼ a, if x is an element of T(a) and
m(x) ¼ 0, if x is both dense and boundary part of a with re-
spect to T(a). This measure cannot be defined for hierarchies,
which makes it is hard to decide if a part is well approximated
by a hierarchy.

The closure G of 1V(x) is

G(1V(x)) ¼ G(x�V(x)): (11)

The error cannot be greater than this element of T(a). In con-
trast, the error cannot be smaller than

V(1V(x)) ¼ 0: (12)

Identity (12) renders 1V(x) a boundary part of a with respect
to T(a). Similarly, VG(1G (x)) ¼ 0 renders this error a bound-
ary part of a, but with respect to a different topology T(a) 0.

The last of the possible combinations of the errors and op-
erators is the complement of VG (1V(x)):

a�VG(1V(x)) ¼ G(a� 1V(x)) ¼ G(a� x)þV(x): (13)

This shape, although an element of T(a), is related to its com-
plement T(a) 0. It is the complement of the core of (a 2 x) with
respect to T(a) 0.

Finally, the two errors are bounded by the elements (12),
(11), (8), and (7) of T(a), so that

0 � 1V(x) � G(x�V(x)),

G(x) �V(a� x) � 1G(x) � G(G(x)� x): (14)

Those elements approximate (represent) errors 1G(x) and
1V(x) in T(a). The second of inequalities (14) may apply to
XOR hierarchies, however, with a trivial lower bound.

0 � 1G(x) � G(G(x)� x): (15)

4. CONCLUSION

It has been shown earlier that bounded decompositions and
their algebras behave the same way as shapes and shape alge-
bras do (Krstic, 2004, 2005). The same holds for hierarchies
and topologies for shapes, which are special kinds of bounded

decompositions. What sets them apart are their respective alge-
braic structures. The latter have many important properties to
facilitate their application as shape approximations.

Both hierarchies and topologies are expressive. Chief
among their properties is their ability to uniquely represent
each of the infinitely many parts of the shape they analyze.

Topologies are supportive. They provide for both conjunc-
tive and disjunctive combinations of shapes. This yields new
shapes to facilitate the discovery, which is important in the
early creative stages of design. Hierarchies lack the disjunc-
tion so their ability to produce new shapes is greatly reduced
rendering them inadequate at this stage of design.

Topologies are imprecise. Another property, beneficial at
this stage, is their relaxed treatment of complements. Unlike
Boolean algebras where each element calls for its comple-
ment, topologies do not mandate them. This is an advantage
when, early in the design process, designers do not know all
the parts of their designs. In contrast, hierarchies are very pre-
cise, requiring for all the design parts to be known, which
renders their application early in the design process difficult.

Both topologies and hierarchies are flexible. Topologies
grow as designers add new shapes to their subbases. Every
time this happens new shapes emerge in combinations with
the existing ones. If new shapes are added by shape rules,
in the framework of shape grammars, topologies assure that
this proceeds in a continuous fashion (Stiny, 1994, 2006).
Hierarchies grow as new components are added and com-
bined with the old ones via constructions (1) and (2).

As mentioned earlier, hierarchies are precise, but topologies
could also be precise. When in the later stages of the design
process definitive answers are required, topologies could be ex-
tended to Boolean algebras to yield kits of parts from which to
build the objects. Boolean extensions of topologies are the least
upper bounds for all the hierarchies constructed with these kits
of parts. The hierarchies describe all of the possible ways the
parts could be put together to make the objects.

Topologies are logical and so are hierarchies. We demon-
strated that one can reason about the shape parts by using in-
terior/closure arithmetic. With topologies, one can take full
advantage of that, whereas with hierarchies, the possibilities
are limited because of the fact that only the closure operator
is available.

Topologies are metaphysical. Their lack of complements
has some philosophical implications for design. Most formal
systems are grounded in Boolean logic where the principal of
the exclusion of the third allows for entities to be replaced by
their complements. One does not have to construct an entity
to know its properties. He/she can infer that from the comple-
ment. Mathematicians have a choice of either constructing the
entity or proving its complement impossible, whichever is
easier. Designers do not have this choice; the complement
of a bridge is the running river. Designers construct, they do
not prove. The logic of design is not Boolean but topological
(Brouwerian). Interestingly enough, at the very basis of mathe-
matics, theorems with constructive proofs are the only ones
valid across different set theories. Designers have it right.
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