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SUMMARY
In human–robot cooperative industrial manipulators, safety issues are crucial. To control force safely,
contact force information is necessary. Since force/torque sensors are expensive and hard to integrate
into the robot design, estimation methods are used to estimate external forces. In this paper, the
goal is to estimate external forces acting on the end-effector of the robot. The forces at the task
space affect the joint space torques. Therefore, by employing an observer to estimate the torques,
the task space forces can be obtained. To accomplish this, loadcells are employed to compute the
net torques at the joints. The considered observers are extended Kalman filter (EKF) and nonlinear
disturbance observer (NDOB). Utilizing the computed torque obtained based on the loadcells mea-
surements and the observer, the estimates of external torques applied on the robot end-effector can be
achieved. Moreover, to improve the degree of safety, an algorithm is proposed to distinguish between
intentional contact force from an operator and accidental collisions. The proposed algorithms are
demonstrated on a robot, namely WallMoBot, which is designed to help the operator to install heavy
glass panels. Simulation results and preliminary experimental results are presented to demonstrate the
effectiveness of the proposed methods in estimating the joint space torques generated by the external
forces applied to the WallMoBot end-effector and to distinguish between the user-input force and
accidental collisions.

KEYWORDS: External force estimation; Collision detection; Cooperative robot; Extended Kalman
filter (EKF); Nonlinear Disturbance Observer (NDOB).

1. Introduction
Traditional industrial manipulators have caging around them or are deployed in structured envi-
ronments to ensure safety. However, many new robotic applications involve a close cooperation
between humans and robots.1 Cooperative tasks may entail ergonomic benefits for operators, such
as reduced working load, improved body posture, or fewer repetitive movements.1 Additionally,
combining human dexterity with the strength of the robot may improve productivity and effi-
ciency.2 Furthermore, considering safety issues in human–robot cooperation is of great importance.
Safety requirements for collaborative operations are provided in the technical specification ISO/TS
15066.

The conventional way of controlling industrial robots is to program them to follow the desired tra-
jectories.3 This approach is named pure position control; pure position control is inadequate or even
unstable for tasks that involve motions in uncertain environments.4, 5 Since accidental collisions are
probable when a robot is intended to work alongside an operator, force control is needed. Force con-
trol demands supervision of external forces exerted on the manipulator,6 which can be accomplished
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with external sensors such as capacitive skin7 or force sensors. Since these sensors can be very
expensive,8 force estimation has attracted attention in the research communities. A rather intuitive
force estimation scheme is subtracting the nominal model command, that is, the expected torque
in the absence of external forces, from the commanded torque. Even assuming the robot dynamics
is completely known, this method uses inverse dynamics computation, which requires acceleration
estimation. In such acceleration-based methods, computing the derivatives from the empirical mea-
surements may degrade the estimation process.9, 10 Another approach for force estimation is to use
an observer. Two main kind of observers are stochastic and deterministic observers. One kind of
deterministic observers is the disturbance observer (DO), in which the contact force is treated as
an unknown disturbance force. Then, the equivalent disturbance is estimated by modifying the dif-
ference between the estimated output and the output of the nominal response model.11, 12 DOBs
guarantee converging state estimations to the vicinity of actual states.13 However, the performance
of the DOs can be degraded in the presence of measurement noises.14–16 Moreover, since the esti-
mated disturbance in DOs lumps the effects of external disturbances and model uncertainties, a good
dynamic model of the system is required to ensure a good external disturbance estimation.17 Even
though stochastic estimators, such as Kalman filtering (KF) and its derivatives, are developed to be
tolerant to process and measurement noises, there is no guarantee that state estimates converge to
actual ones. KF is an algorithm to reduce noise effects in the state estimation of linear discrete-
time systems.18 EKF is an extension of the Kalman filter to estimate the states of nonlinear dynamic
systems,19 by linearizing the nonlinear process at each time step.18 In general, robots have highly
nonlinear and coupled dynamics. However, the nonlinearities are based on sines and cosines, which
points out that linearization and thus ultimately, the EKF should perform well.20

Several researchers have attempted to estimate the external forces without using force sensors. In
ref. [21], a NDOB is proposed for estimating the contact force between an ear surgical device and the
subject body. However, due to sensor noise, some spikes are appeared in the force estimation. Chan
et al.12 have employed a variation of Kalman filter, namely extended active observer, to estimate
external forces. The approach is applied to a 2DOF robotic manipulator through computer simulation
but it lacks experimental results. In ref. [22], neural networks are used to estimate the contact force
in a haptic device. Even though this method does not require knowledge of the dynamical model of
the robot, it has a high computational burden. Moreover, its performance depends on the accuracy of
the sensed forces during the training phase.

The WallMoBot is a construction robot. Construction robots must be able to move and adjust
movements within a changing environment and handle large components.23 The WallMoBot is sup-
posed to assist the operator to lift, transport and install glass panels of up to 150 kg with an accuracy
of 1.5 mm. Generally, the glass panel installation is done by a joystick-controlled robot2 or manually.
Manual installation of glass panels involves heavy lifting and might cause injury and fatigue to the
operator.24 Additionally, installation with a joystick-controlled robot is not intuitive for the opera-
tor,25 and installation takes a too long time. The proposed solution is a robot that is first controlled by
a joystick for large movements, and then when the glass is close to the installation place, the robot is
controlled by the operator force exerted to the glass panel attached to the end-effector of the robot.
By using this solution, the glass panel installation can be done faster and more precise.

In this paper, we focus on the interaction of the human operator with the robot, when the human
operator applies forces directly to the glass panel. Instead of using expensive force/torque sensors,
cost-effective loadcells are used to estimate the torques acting at the joints, which are introduced by
the external forces applied to the end-effector. Also, an EKF and a NDOB are developed to estimate
the aforementioned torques, by utilizing the loadcells information, as well as position and velocity
measurements. The estimated torques can then be converted into task space forces. Also, in order to
take into account the safety, an algorithm has been proposed to differentiate accidental collisions and
the intentional contact force from the operator. The main contributions and advantages of this paper
can be summarized as follows:

(1) To make the WallMoBot a more economical product, instead of using expensive force/torque
sensors, cost-effective loadcells are utilized at the WallMoBot joints for force estimation.

(2) To make the WallMoBot operation intuitive for the human operator, we have developed an
EKF and a NDOB to estimate the external forces acting on the robot end-effector by using the
information of non-ideal cost-effective loadcells. In the proposed approaches, there is no need

https://doi.org/10.1017/S0263574719001681 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001681


Force estimation and collision detection 1667

Table I. Parameters for kinematics, where γ = 0.3458 rad.

i ai-1 (m) di (m) θ i = qi + offset (rad) αi−1 (rad)

1 0 0 q1 + 0 0
2 a1 = 0.06 0 q2 − π/2 −π/2
3 a2 = 0.5 0 −q2 + γ 0
4 a3 = 0.195 0 q3 + π/2 − γ 0
5 a4 = 0.85 0 q4 + π/2 0
6 a5 = 0.93 d6 = 0.109 q5 + π/2 π/2
7 0 0 q6 − π/2 −π/2

to compute the angular acceleration from the angular velocity. Also, depending on the desired
performance criteria, both proposed techniques are reliable and economical in practice.

(3) To make the WallMoBot operation safe, a simple collision detection is proposed. It takes the
estimated torque from the EKF or the NDOB algorithm as the input and, when a collision occurs,
gives a fiducial mark as the output. This fiducial mark can be used to stop the robot movement.

The validity of the proposed force estimation scheme and collision detection algorithm is veri-
fied by simulations and experimentation. The outline of this paper is as follows. The modeling of
the WallMoBot is provided in Section 2. In Section 3, EKF and NDOB algorithms are adapted,
developed, and proposed for force estimation. Section 4 presents the proposed collision detection
algorithms. The illustrative simulation results and the preliminary experimental results are presented
in Sections 5 and 6, respectively. Discussion of reliability and effectiveness of the estimation methods
on the WallMoBot is presented in Section 7. Finally, Section 8 concludes the paper.

2. Modeling
WallMoBot is a robot arm with six degrees of freedom on the top of a mobile platform which is shown
in Fig. 1. The coordinate frames oixiyizi, ∀ ∈ {0, . . . , 6, 7, e}, are assigned to the robot by complying
with the Denavit–Hartenberg (DH) convention, and they are visualized in Fig. 1. Coordinate frames
0 and e denote the base frame and the end-effector frame, respectively, and coordinate frame 3 is
associated with the parallelogram link which keeps the same orientation as the base frame. In this
paper, we consider the simple case by assuming the robot is planar. It means that the generalized
coordinates q1, q5, q6 are assumed to be zero and only the coordinates q2, q3, q4, as shown in Fig. 1,
are used. In other words, three degrees of freedom of the robot are considered. The DH parameters
required to obtain the kinematics of the robot are found in Table I.

The dynamic model of the robot is computed using Lagrange formulation. The Lagrange equations
are expressed as

d

dt

(
∂L
∂ q̇

)T

−
(

∂L
∂q

)T

= ζ (1)

where q is a vector of generalized coordinates, ζ is a vector of generalized torques/forces, and L is
the Lagrangian of the mechanical system defined as

L(q, q̇) := T(q, q̇) − U(q) (2)

where L(q, q̇) is the kinetic energy and U(q) is the potential energy of the system.
Deriving the Lagrange equations, the dynamic model of the robot can be obtained as

B(q)q̈ + C(q, q̇)q̇ + F(q̇) + g(q) + τext = τ (3)

where B(q) is the symmetric inertia matrix, C(q, q̇) is the matrix of centrifugal, and Coriolis terms,
g(q) contains the gravity terms, F(q̇) represents viscous and coulomb friction torques at the joints,
τext is the unknown joint space torque vector caused by the external forces acting on the robot end-
effector, and τ is the joint space actuation torque vector. Mathematically, the joint space torques
generated by the external forces acting on the robot end-effector could be estimated by
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(a) (b)

Fig. 1. (a) Illustration of the considered WallMoBot.2 (b) Illustration of the generalized coordinates on the
WallMoBot. Frame 0 coincides with frame 1 when q1 is zero; where γ is the offset angle between frame 2 and
3, δz = 1.5 m is the height of the glass panel from the attachment point to the top and δx = 0.2025 m is the
distance of the glass panel from the final joint of the robot.

τ̂ext = τ − B(q)q̈ − C(q, q̇)q̇ − F(q̇) − g(q) (4)

As it can be seen from (4), τ̂ext calculation needs the value of q̈ which must be measured by an
acceleration sensor or empirically computed from the q̇. However, installing a new sensor increases
the cost, and empirical derivative computation produces error and amplifies the noise. Therefore, in
the following, an EKF algorithm is developed to avoid using any extra sensor and amplifying noise
and enhance the noise mitigation.

3. Force Estimation
The purpose of this section is to present the development of the EKF and NDOB, which are used to
estimate the joint space torques caused by the applied forces to the robot end-effector.

3.1. Extended Kalman filter
The state-space model for the equations of motion can be written as

ż =
[

q̇

q̈

]
=

[
q̇

B(q)−1(τ − C(q, q̇)q̇ − F(q̇) − g(q) − τext)

]
(5)

where τ is measured by the loadcells. To estimate joint space torques produced by the external forces
acting on the robot end-effector, they should be included in the states of the EKF.26 To do this, we
define the extended state vector x, including τext vector, as

x =
⎡
⎢⎣

q

q̇

τext

⎤
⎥⎦ (6)
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The τext dynamic is unknown and it can be produced by intentional human forces or accidental forces.
Therefore, it is assumed that τ̇ext = 0. The new augmented state-space model is

ẋ =
⎡
⎢⎣

q̇

B(q)−1(τ − C(q, q̇)q̇ − F(q̇) − g(q) − τext)

0

⎤
⎥⎦ = f (x, τ ) (7)

Considering (6), the measured outputs of the system are described in the equation

y =
[

I 0 0

0 I 0

] ⎡
⎣ q

q̇
τext

⎤
⎦ (8)

Putting (7) and (8) together and considering system noise, w, and measurement noise, v, with
covariance matrices Q and R, respectively, yields to{

ẋ = f (x, τ ) + w
y = Hx + v

(9)

Considering Ts as the sampling time, the continuous augmented state-space model equation can be
discretized using the forward Euler method as{

xk+1 = xk + Ts f (xk, τk) + wk

yk = Hxk + vk,
(10)

where

f (xk, τk) =
⎡
⎢⎣

f1
f2
f3

⎤
⎥⎦ =

⎡
⎢⎣

q̇k

B(qk)
−1

(
τk − C(qk, q̇k) q̇k − F(q̇k) − g(qk) − τextk

)
0

⎤
⎥⎦ (11)

Therefore, the goal is to estimate the state vector xk by the following iterative EKF procedure:
Due to the nonlinear nature of the process, f cannot be used directly. Rather the Jacobian of f is

used. It is defined as

Fk = ∂f

∂x
|(x̂k,τk,k) (12)

Then, the EKF algorithm is as follows:

• Time Update

x̂−
k = x̂k−1 + Ts f (x̂k−1, τk)

P−
k = Fk−1Pk−1FT

k−1 + Qk−1
(13)

• Measurement Update

Kk = P−
k HT(HP−

k HT + Rk)
−1

x̂k = x̂−
k + Kk(yk − Hx̂−

k )

Pk = (I − KkH)P−
k ,

(14)

where

• x̂−
k , P−

k are the predicted states and the predicted covariance of the states, respectively, on time step
k, before considering the measurement.

• x̂k, Pk are the estimated states and the estimated covariance of the states, respectively, on time step
k, after considering the measurement.

• Kk is the filter gain, which tells how much the predictions should be corrected on time step k.
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Finally, the linearized system can be obtained as

Fk = I + Ts
∂f (xk, τk)

∂x
, (15)

where

∂f (xk, τk)

∂x
=

[
∂f
q

∂f
∂ q̇

∂f
∂τext

]
(16)

By means of the EKF, and only measuring q, q̇, and τ , the estimation of τext is achieved by being
extracted from the state vector xk.

Remark: Usually, the initial value of the matrix P, that is the covariance of the states error, is
diagonal whose diagonal elements are related to the expected variance of the corresponding state. A
good guess of the initial values of the states, that is, x̂0, needs a small initial value of the covariance
of the states, that is, P0. Therefore, since the position and velocity of the WallMoBot are measurable,
one can choose small corresponding covariance values. On the other hand, the artificial states τext are
unknown and low information of them is available. Consequently, their corresponding elements of P
should have larger values.

The process noise covariance matrix, that is, Q, on one hand, corresponds to system noise
covariance and on the other hand corresponds to the uncertainty that is expected in the state-space
equations. This could include modeling errors or other uncertainties in the equations themselves.
Additionally, the larger (smaller) value of the Q corresponds to faster (slower) convergence by
the expense of larger (smaller) steady-state error.27 Since the last three elements correspond to the
external torques, in which their dynamics are completely unknown, larger values of system noise
covariance are required.

Also, based on the sensor noise and iterative testing, the covariance matrix of the measurement
noise, that is, R, is chosen as below to make the EKF more tolerant to noise.

3.2. Nonlinear disturbance observer
Inspired from ref. [17], the NDOB dynamic equations considered for the system model (3) is in the
form

ż = Ld(.){−z + Cq̇ + F + g − τ − s(.)}
τ̂ext = z + s(.)

(17)

where C(q, q̇), F(q̇) , g(q) are written as C, F, g for brevity, z ∈ Rl is the internal state vector of
the NDOB, Ld(.) ∈ R(l×l) and s(.) ∈ Rl are the gain matrix and the auxiliary vector of the NDOB,
respectively, and τ̂ext ∈ Rl is the estimated external torque vector at the joint space.

The following theorem is presented to find Ld(.) and s(.) in order to minimize the estimation
error of the unknown external torque and to prove the stability of the estimation error in the sense
of Lyapunov. In this theorem, the asymptotic stability of the estimation error for constant joint space
external torques and the boundedness of the error in the case of time varying joint space external
torques are guaranteed.

Theorem 1. The unknown external force in (3) can be estimated by the NDOB (17) with the
following parameters:28

s = Xq̇

Ld = XB−1(q)
(18)

where X is a diagonal positive definite matrix.

Proof. Defining the joint space external torque tracking error as �τe = τ̂ext − τext, its dynamics
can be obtained using (3) and (17) as

�τ̇e = Ld{−z + Cq̇ + F + g − τ − s} + ṡ − τ̇ext (19)
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Since Cq̇ + F + g − τ = −Bq̈ + τext, one has

�τ̇e = −Ld�τe − LdBq̈ + ṡ − τ̇ext (20)

To make the tracking error of the joint space external torque be independent from q̈, the constraint
ṡ = LdBq̈ should be satisfied. Based on the chain-derivative rule, one has ṡ = ∂s

∂q q̇ + ∂s
∂ q̇ q̈, which yields

to

∂s

∂q
q̇ + ∂s

∂ q̇
q̈ = LdBq̈ (21)

which necessitates that ∂s
∂q = 0 and ∂s

∂ q̇ = LdB. Based on the fact that B is invertible, we have

Ld = ∂s

∂ q̇
B−1 (22)

A trivial selection of (22) is as (18). Consequently, (20) is continued as

�τ̇e = −Ld�τe − τ̇ext (23)

To analyze the stability of the joint space external torque error dynamics, the following Lyapunov
function is considered:

V = 1

2
�τe

TB�τe (24)

The time derivative of (24) along the trajectory (23) provides

V̇ = �τe
TB�τ̇e = −�τe

TBXB−1�τe − �τe
TBτ̇ext (25)

which using the following inequalities

σmin(X) ‖�τe‖2 ≤ �τe
TB�τ̇e ≤ σmax(X) ‖�τe‖2 ,

�τe
TBτ̇ext ≤ ‖�τe‖ ‖B‖ ‖τ̇ext‖

(26)

results in

V̇ ≤ −σmin(X) ‖�τe‖2 + ‖�τe‖ ‖B‖ ‖τ̇ext‖ (27)

where σmin(X) and σmax(X) stand for the minimum eigenvalue and the maximum eigenvalue of the
matrix X, respectively. The constraint (27) indicates that the time-derivative of the Lyapunov function
(24) is negative in the region

D =
{
�τe| ‖�τe‖ >

‖B‖ ‖τ̇ext‖
σmin(X)

}
(28)

Assuming the time derivatives of τext and q̇ are bounded, respectively, by unknown limits q̄ and τ̄ ,
that is, |τ̇ext| ≤ τ̄ and |q̇| ≤ q̄ , since for the region D, V is positive definite and V̇ is negative definite,
the tracking error is bounded by

‖�τe‖ = ‖B‖ ‖τ̇ext‖
σmin(X)

(29)

Thereby, the proof is completed.

Remark. The selection of the matrix X affects the convergence speed and oscillation of the esti-
mations. To illustrate the effect of the X on the convergence speed, (25) should be further analyzed.
The solution of (25) with respect to time can be obtained of the form ref. [29]

�τe(t) < e−σmin(X)t�τe(0) + 
 (30)

where 
 is a constant value dependent to the X, τ̄ , ‖B‖, and ‖�τe‖.
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Differentiation Squaring Delay Fiducial Mark
Estimated torque

from the EKF

Fig. 2. Block diagram of the collision detection algorithm.

τext

τext^
EKF

Collision
Detection

Fiducial Mark

Robot

Loadcell Measurements (τ)
Position (q), Velocity (q),

Fig. 3. Overall block diagram of the proposed approaches.

It is evident from (30) that increasing X results to increasing the convergence speed. On the other
hand, from (3), (17), and (18), one has:

ż = −Xq̈ + XB−1(τext − τ̂ext), (31)

where τext − τ̂ext denotes the correction term. It can be seen that by increasing X, the effect of the
correction term on the ż is increased which based on (17), results in higher oscillations in τ̂ext.
Therefore, there is a trade off between the convergence speed and the oscillation of the estimations.
In other words, the larger (smaller) value of the X corresponds to faster (slower) convergence by the
expense of larger (smaller) oscillation.

The estimated τext using EKF and NDOB can be converted into the task space force, using a
Jacobian matrix or geometrical calculations.

4. Collision Detection
The other goal of this paper is to discriminate between human forces and accidental collisions, which
is a necessity for safe operation of cooperative robots. Since the WallMoBot is designed to carry
glass panels with different weights, using a threshold for collision detection is not suitable in this
case. Instead, a method is required to detect collisions regardless of the glass panel’s weight. Flash
and Hogan30 found that human arm performs minimum jerk movements. Based on this, a collision
detection algorithm has been developed as the block diagram shown in Fig 2. The proposed algorithm
is inspired by the Pan–Tompkins Method,31 which proposes an algorithm to detect peaks in the
electrocardiography signal. The steps of the algorithm are described below.32

• Differentiation: The derivative operator suppresses the low-frequency components and enlarges
the high-frequency components from the high slopes.

• Squaring: The squaring operation makes the results positive and emphasizes large differences and
makes the small differences being suppressed.

• Delay: The delay makes to keep the previous value for a time which makes it easier to catch up
with fast changes.

• Fiducial Mark: Fiducial point is defined as the location of the peak which is detected by defining
a threshold.

The output of the fiducial block indicates if the robot collides an obstacle and then is used to stop the
robot. The overall block diagram of the proposed approaches is shown in Fig. 3.

5. Simulation
In this section, we demonstrate the proposed EKF, NDOB, and collision detection methods.
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Table II. Robot parameters, where COMi and Izzi are the relative position vector of the center of mass to the ith
joint, and the moment of inertia about the z-axis of the elements between frame i and i + 1 relative to the

coordinate frame i, respectively, and mi is the mass of these elements.

i COMi (m) mi (kg) Izzi (kg·m2)

2 [0.260; 0; 0.041]T 3.31 0.309
3 [0.683; −0.008; 0.041]T 10.42 −
4 [0.440; −0.008; 0.028]T 6.21 1.624
5 [0.089; −0.317; 0.027]T 177 69.79

Table III. Estimators’ performance when τext is step

External torque
Performance EKF NDOB

τ ext,2 τ ext,3 τ ext,4 τ ext,2 τ ext,3 τ ext,4

Settling time 0.61 0.52 0.35 0.06 0.22 0.19
(2%) (sec)

Rise time 0.18 0.49 0.44 0.145 0.925 0.619
(sec)

Simulation time 189.11 187
(30,000 samples) (sec)

5.1. Simulation setup
The simulation is done in Simulink/MATLAB 2017 and performed on the WallMoBot described
in (3), and shown in Fig. 1. The robot parameters used in the simulation are obtained from the
SolidWorks drawing and listed in Table II. Since the considered robot is planar and all its joints
rotate only around y0, just the moment of inertia of the elements between frame i and i + 1 about the
z-axis, that is, Izzi , which coincides with y0, is needed. Moreover, since the elements between frames
3 and 4 only have translational motion and not rotational motion, Izz3 is not needed.

All simulations started with the robot in the initial position as shown in Fig. 1, where q and q̇ are
zero; thus, the initial value of the states, x̂0, is chosen to be a zero matrix.

5.2. Simulation results
To employ the EKF, P0, Q, and R are chosen as

P0 = diag(1, 1, 1, 1, 1, 1, 10, 10, 10)10−3

Q = diag(10−3, 10−3, 10−3, 10−6, 10−6, 10−6, 4, 2.5, 4)

R = diag(8, 0.01, 0.01, 0.3, 0.01, 0.01)10−10

(32)

Also, the chosen X for NDOB is X = 2000 × diag(0.3, 0.5, 0.3). Figure 4 shows the joint posi-
tions, joint velocities, and the joint space torques caused by the applied forces on the WallMoBot
end-effector, alongside their estimations, calculated by the proposed estimators when the τext is a
step, which simulates the fast changing of the external forces. The performance of the estimators is
evaluated, and the results are shown in Table III. It should be noted that by changing the estimators’
parameters, these values can also change.

As can be seen in Table III, the NDOB has a smaller settling time than EKF. The simulation time
in both cases is almost the same.

Figure 5 shows the same signals when the τext is a ramp which simulates the slow changing of
the external forces. Also, to further challenge the proposed estimator, a more complicated signal as
τ = 10 sin(t) + 5 cos(2t + π/2) − 5 is considered as the τext. The results of the EKF in this case are
shown in Fig. 6.
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Fig. 4. The augmented states of the WallMoBot when the τext is 98.2 N·m and qref = 0.1 sin(t).

Fig. 5. The augmented states of the WallMoBot when the τext is a ramp and qref = 0.1 sin(t).
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Fig. 6. The augmented states of the WallMoBot when τext = 10 sin(t) + 5 cos(2t + π/2) − 5 [N·m] and qref =
0.1 sin(t).

Fig. 7. Simulation result of the collision detection algorithm: (a) without any collision and (b) collision has
occurred at t = 5 s.

5.3. Collision detection results
The simulation results of the proposed algorithm for collision detection are shown in Fig. 7. The joint
space external torque is changing slowly which means no collision has occurred, while Fig. 7 shows
a collision occurrence at t = 5 s which the proposed algorithm can detect it correctly.

6. Experimental Validation
The purpose of this section is to test the proposed approach on the testbed of the WallMoBot.

6.1. Experimental setup
The testbed, as shown in Fig. 8, has one degree of freedom. The relative position and velocity of the
rotor are directly obtained from the integrated encoder in the installed actuator. Moreover, Compact
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g

(a) (b)

Fig. 8. (a) Illustration of the testbed of WallMoBot and the loadcell. (b) Illustration of the generalized coordi-
nates of the testbed of WallMoBot. Frame 0 coincides with frame 1 when q is zero, and b is the length of the
linear screw.

Reconfigurable Input/Output (cRIO) is used as the embedded controller. The cRIO, which is shown
in Fig. 9, is made by National Instruments (NI) for industrial control systems. It is a combination
of a real-time controller with real-time processor and reconfigurable FPGA, and reconfigurable IO
Modules. Programming language of cRIO is LabVIEW, and it communicates with the actuator using
EtherCAT. Since loadcells are substantially cheaper than force/torque sensors, a loadcell is connected
to the end of the linear screw to measure the net of the exerted linear screw forces and the external
forces, that is, F. Considering Fig. 8, the torque acting at the joint, that is, τ , can be obtained using
(33) and (34).

τ = Fa sin �, (33)

where

� = arccos

(
a2 + b2 − c2

2ab

)
, (34)

where τ is used in the EKF and NDOB algorithms to obtain τ̂ext. Also, the actual value of the torque
exerted by the external force, Fext, at the joint equals to

τext = Fextr cos q (35)

The testbed dynamical model is as

τ = θ1q̈ + θ2g cos(q) + θ3g sin(q) + θ4 sign(q̇), (36)
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cRIO

Linear screw

Actuator

Up, down buttons
Manual bu�on

Linear screw: 
SKF CASM-63-BN,

300 mm stroke
 
 

Actuator: 
Dunkermotoren BG75x50EC

cRIO 9074

(a) (b)

Fig. 9. (a) Illustration of the linear screw, actuator, and cRIO in the testbed. (b) Testbed movements modes.

Time (s)

Fig. 10. Examining the testbed dynamical model.

where its parameters are obtained using linear least-square estimation as

θ =
⎡
⎢⎣

θ1

θ2

θ3

θ4

⎤
⎥⎦ =

⎡
⎢⎣

0.41937
11.668
−0.74
2.163

⎤
⎥⎦ (37)

The correctness of the obtained model is examined by moving the robot end-effector down and
up. As can be seen in Fig. 10, the model can follow the changes in the loadcell torque effectively. The
discrepancy between measured and model torques can be attributed to the mechanical construction
of the testbed and loadcell, such as loadcell nonlinearity, backlash effects, and other unmodeled
dynamics.

The testbed moves in two different modes:
1. Manual mode: the robot end-effector moves by the human force, which is the aim of the
WallMoBot. This mode is activated by the manual button shown in Fig. 9. In this case, the arm
moves smoothly between the lower and upper limits of the robot.
2. Button mode: the robot end-effector moves up and down by the up and down buttons shown in
Fig. 9. This mode is used for more testing of the robot and algorithms. In this case, when we press
the up button, the robot end-effector moves upward until it reaches the upper limit position and stops.
Similarly, when we press the down button, the robot end-effector moves downward until the robot
reaches the lowest limit position and stops.
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Fig. 11. The augmented states of the testbed when τext is caused by the human force exerted on the testbed
end-effector.

6.2. Experimental results
In order to implement the EKF, the initial value of the states, x̂0, is chosen to be a zero matrix. Also,
P0, Q, R are as

P0 = diag(10−20, 10−20, 10−2)

Q = diag(10−14, 10−14, 10−2)

R = diag(10−20, 10−17)

(38)

To show the effectiveness of the proposed EKF and NDOB, different experimental results are
provided. First, the efficiency when the human operator moves the end-effector of the testbed up
and down is investigated. Figure 11 shows that the estimated position and velocity are very accu-
rate; however, the measurement of the actual human force is not available. Therefore, in the next
experiment, a constant weight is hanged to the robot end-effector as the external force.

In order to examine the accuracy of the τext estimation, a 3.3 kg load at t = 25 s is attached to the
robot end-effector, while the position of the end-effector is kept constant at q = 0.5 rad. Based on
this position and using (35), the actual value of the torque produced by the external load, which acts
as an external force applied to the WallMoBot end-effector, is 19.9 N·m. Figure 12 shows that the
estimated torque, τ̂ext, converges fast and accurately to its actual value 19.9 N·m.

Additionally, in order to test the sensitivity and precision of the proposed estimators in estimating
small changes of τext, the added load on the end-effector in the previous experiment is randomly
swung within small range of angles with the starting time t = 13 s, and then at t = 32 s, the load is
dropped. Figure 13 shows the τ̂ext illustrates that both EKF and NDOB are able to estimate small
changes in the τext.

In order to examine the efficiency of the estimators while the robot end-effector is moving, a 1.2 kg
load at t = 8 s is attached to the robot end-effector, while the end-effector is moving up and down.
Figure 14 shows the τ̂ext in this case. As can be seen, at the start point of moving the robot down
and up, a peak in τext estimation occurs, which is caused by the mechanical constraints of the testbed
while switching between up, down, and stop functions in the button mode. Meanwhile, the estimators
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Fig. 12. Experimental result when the τext is 19.9 N·m and the robot position is constant.

Fig. 13. Experimental results when the load on the end-effector is randomly swung.

Fig. 14. Experimental results when the robot end-effector and the added load to it move vertically up and down.

are able to estimate the τext effectively with a small error. However, since the human operator moves
the robot end-effector smoothly, the proposed estimators are able to estimate the human operator
force accurately.

6.3. Collision detection results
The final experiment is testing the collision detection algorithm. To this aim, a sudden collision is
exerted to the robot end-effector which causes a sudden change in the τ̂ext as can be seen in Fig. 15.
This signal, as explained in Fig. 2, is used to make a fiducial mark. It is shown in Fig. 15, which is
used to stop the motor when a collision happens.
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Fig. 15. Experimental result of the collision detection algorithm.

7. Discussion
As been explained, the NDOB in general is sensitive to sensor noise and system uncertainty. As can
be seen in the estimation and experimental results, the NDOB estimations are more noisy. However,
since the used sensors in our experiments are not very noisy and the system uncertainty is not much,
both estimators provide acceptable estimations of the external torques. However, in practice, since
the glass panel weight is heavy and there could be some uncertainty in its weight, the EKF can be
more reliable.

Moreover, the estimation time of the NDOB in general is less than the EKF. However, since only
3 degrees of freedom of the WallMoBot are considered in our simulations, the simulation time for
both NDOB and EKF is almost the same, as can be seen in Table III.

All in all, in our case, the estimation results of the EKF are more reliable.

8. Conclusion
In this paper, instead of employing torque/force sensors, two alternative approaches to estimate exter-
nal forces acting on the end-effector of a robot were proposed. The presented methods were based
on the extended Kalman filter (EKF) and nonlinear disturbance observer (NDOB). In the suggested
techniques, first, the net forces arise from the environment and the linear screws are directly mea-
sured by loadcell units. Then, the measured forces were converted into torques and utilized in the
EKF and NDOB algorithms to achieve the estimations of slow-varying external torques applied on
the robot end-effector. Additionally, to enhance the safety of the robot operation, an algorithm was
proposed to differentiate the user input force from accidental collisions. The proposed algorithms
were applied to the WallMoBot and experimental validations were carried out. It can be concluded
that even though both the proposed approaches can effectively estimate the exerted external forces
on the end-effector of the robot, the results of the EKF can be more reliable in practice.
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