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Abstract.—A new species of Hypolophites (Chondrichthyes, Myliobatiformes) is described from an assemblage of
isolated pavement teeth recovered from the Lower Clayton Limestone Unit of the Midway Group (Paleocene) near
Malvern, Arkansas. These teeth were collected from several localized lag deposits containing an abundance of
chondrichthyan and osteichthyan teeth, invertebrate remains, and trace fossils indicative of a marginal-shallow marine
depositional environment. To date, only four additional species of Hypolophites have been reported from Paleocene
deposits that occur along the west coast of central-northern Africa and in central New Jersey, USA. The identification
of Hypolophites beckeri n. sp. in southwestern Arkansas extends the distribution of this biostratigraphically significant
genus ~1,750 km westward into the Mississippi Embayment and Gulf Coastal Plain of the USA. The distribution of
Hypolophites species during the Paleocene attests to the uniformity of shallow marine shelves between western Africa
and the Atlantic and Gulf Coastal Plains of the USA, as well as myliobatiform diversification following the K/Pg mass

extinction event.

UUID: http:/zoobank.org/3a1580d1-a2f4-49b6-8170-69a778c49181

Introduction

In this report, a new species of myliobatiform ray, Hypolophites
beckeri n.sp., is described from isolated pavement
teeth recovered from the Lower Clayton Limestone Unit
(LCLU) of the Midway Group near Malvern, Arkansas (AR),
USA. This particular Hypolophites species is the fifth known
globally and represents the westernmost occurrence and first
report of the genus in the Mississippi Embayment and Gulf
Coastal Plain (GCP) of the USA. Hypolophites species are bios-
tratigraphically significant in regional and global stratigraphic
analyses because they have only been reported from the Paleo-
cene. The occurrence of an additional Hypolophites species in
AR extends the known paleogeographic distribution of Hypolo-
phites ~1,750 km westward and suggests that the genus is more
diverse and widespread than originally recognized. Moreover,
the distribution of Hypolophites during the Paleocene attests to
the migratory abilities and diversification of myliobatiforms
following the K/Pg mass extinction event.

Geologic setting

In southwestern Arkansas, Upper Cretaceous and Paleocene
formations are infrequently exposed due to dense vegetation
overgrowth (Haley et al., 1993, 2009; McFarland, 1998, 2004).
Near the town of Malvern, Arkansas, highway stabilization,
commercial development, and erosion in the QOuachita River
has discontinuously exposed the: (1) Maastrichtian Arkadelphia

Formation that consists of dark, micaceous clays interbedded
with fossiliferous sandy coquina lenses; (2) Arkadelphia
Formation-Midway Group Contact (K/Pg boundary) that occurs
as a coquina lag deposit that includes phosphate pebbles and
distinctly Cretaceous macrofossils, including chondrichthyans,
osteichthyans, plesiosaurs, turtles, and ammonites (see
Becker et al., 2006, 2010, 2013, 2016; Maisch et al., in press);
(3) lower Midway Group (Paleocene) that is composed of
gray clays and sandy limestones; and (4) upper Midway
Group (Paleocene) that occurs mainly as orange/tan clays and
limestones.

Currently, the Paleocene Midway Group in Arkansas has
been informally subdivided into the Clayton Limestone (or
Clayton Formation) and Porters Creek Clay (McFarland, 1998,
2004; Becker et al., 2011; Becker and Chamberlain, 2012).
The Clayton Limestone can be further divided into the Lower
and Upper Clayton Limestone Units (LCLU and UCLU), as
observed in recent excavations along Interstate-30 (I-30) directly
adjacent to the Ouachita River, ~4 km northwest of Malvern,
Arkansas (Fig. 1; Maisch et al., in press). The LCLU exposed
in this outcrop is the source of the Hypolophites teeth featured
in this study and consists of >20 m of massive, dark gray clays
containing invertebrate casts and molds, thin interbedded
sandy limestone units, and three locally phosphatic, sand and
pebble lag deposits containing chondrichthyan and osteichthyan
remains (Fig. 1; Maisch et al., in press). Higher in this section,
tan and yellow clays with thin limestone beds of the UCLU
are exposed and appear identical to those occurring ~2.7 km
to the northeast, as described by Becker et al. (2011) and Becker
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Figure 1. Location of the Lower Clayton Limestone Unit of the Paleocene Midway Group near Malvern, Arkansas, USA. (1) Reconstructed Late Cretaceous—Maas-
trichtian (a) and Paleocene—Danian (b) shorelines across the Atlantic and Gulf Coastal Plains and Western Interior Seaway indicated by arrows (modified from Sco-
tese, 2014; Becker et al., 2016). The location of Hypolophites beckeri n. sp. described in this study near Malvern, AR, is indicated by +and the location of
Hypolophites hutchinsi Case, 1996, in NJ, is indicated by *. (2) Physiographic provinces in Arkansas, with Malvern indicated by X. (3) Outcrop exposure of the

Lower Clayton Limestone Unit (LCLU) of the Midway Group adjacent to I-30 near Malvern, Arkansas.

and Chamberlain (2012). Myliobatiforms occur in the UCLU;
however, Hypolophites teeth have not been recovered (Becker
et al., 2011; Maisch et al., in press).
Although the Midway Group in Arkansas has not been for-
mally sub-divided into formations or correlated to specific
Paleocene stage boundaries as recognized in the eastern
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Mississippi Embayment, preliminary data from dinoflagellates
and otoliths indicate that the lower Midway Group in this section
is Danian in age (Mancini et al., 1989; McFarland, 2004; Man-
cini and Puckett, 2005; Dastas et al., 2010; Stringer and Sloan,
2018). Additionally, many chondrichthyans reported from the
LCLU have also been found in contemporaneous Paleocene
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deposits in the Atlantic Coastal Plain (ACP) of the USA, western
Europe, and northern Africa (e.g., Ward and Wiest, 1990; Case,
1996; Cappetta, 2012; Adolfssen and Ward, 2015).

Materials and methods

Over 500 kg of sediment was bulk sampled from the LCLU for
laboratory analysis. Sediment was thoroughly rinsed through
5.0-0.5 mm sieves and dried under heat lamps. Fossils, includ-
ing the holotype and paratypes featured in this report, were
recovered from dried sediment using forceps and imaged
using an Olympus SZ61 binocular microscope attached to an
Infinity 2 Digital Camera. An Evex Mini SEM SX-3000 operat-
ing in the range of 20kv was also utilized to image several speci-
mens with diagnostic morphological features.

Repositories and institutional abbreviations.—For comparative
purposes, the holotype and paratypes of Hypolophites hutchinsi
Case, 1996, were examined at the American Museum of Natural
History (AMNH), New York, USA (holotype: AMNH:
FF14585; paratypes: AMNH: FF13875-13877; 14583,
14584). Specimens of Hypolophites beckeri n. sp. included in
this study have been reposited in the Academy of Natural
Science (ANSP) of Drexel University, Philadelphia,
Pennsylvania, USA, under the catalog numbers ANSP:
VP25128-25132; 25148-25152.

Systematic paleontology

Class Chondrichthyes Huxley, 1880
Subclass Elasmobranchii Bonaparte, 1838
Cohort Euselachii Hay, 1902
Subcohort Neoselachii Compagno, 1977
Order Myliobatiformes Compagno, 1973
Superfamily Myliobatoidea Compagno, 1973
Family Myliobatoidea insertae familiae
Genus THypolophites Stromer, 1910

Type species.—Hypolophites myliobatoides Stromer, 1910.

THypolophites beckeri new species
Figures 2, 3

Holotype.—ANSP: VP25131; paratypes: ANSP: VP25128—
25130; 25132; 25148-25152.

Diagnosis.—A Hypolophites species with median and lateral
pavement teeth that have hexagonal and rhombus-shaped,
trilobate, and finely pitted occlusal surfaces, heavily wrinkled
crown edges, a “U- or V-shaped” labial uvula, and small lingual
shelf. Occlusal surface pitting forms a vermiculate pattern and
is more frequently preserved on lateral teeth. The occlusal
surfaces of median and lateral teeth have a mesial-distal width
that may exceed 5.0 mm. In general, the length between the
lingual and labial surfaces is half the mesial-distal occlusal
surface width. As seen in profile view, crown and root
thicknesses of median and lateral teeth are nearly equivalent
and teeth may exceed 4.0 mm in total height. The lingual
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tooth surfaces are concave and extensively wrinkled, while the
labial tooth surfaces are flat to slightly convex with
dorso-ventrally oriented furrows. Roots of median and lateral
teeth are generally bilobate, terminate with rounded bases, and
may contain several foramina within the nutritive groove and
on the edges of the root lobes. The roots of some median teeth
may contain two nutritive grooves that asymmetrically divide
the root.

Occurrence.—Lower Clayton Limestone Unit of the Midway
Group (Paleocene), adjacent to Highway 84, Interstate-30, and
the Ouachita River ~4 km NW of Malvern, Arkansas, USA.

Description.—Median and lateral teeth have crowns that
overhang the labial root surface and hexagonal-like,
vermiculated surface-pitting on the occlusal surfaces when
unworn. Edges of the occlusal surface in median and lateral
teeth may be: (1) rounded and form a trilobate shape on the
labial crown edge; or (2) hexagonal with nearly straight,
smooth edges. Median teeth are mesio-distally elongated,
while lateral teeth are more equidimensional. Lateralmost teeth
are labio-lingually elongated and increasingly compressed in
dorsal-ventral and mesial-distal dimensions. Teeth in all jaw
positions have lingual crown surfaces that are concave in
profile view, labial tooth surfaces that are straight to slightly
convex in profile view, and contain well-defined, vertical
wrinkles or furrows that extend from the occlusal surface to
the crown-root interface on all tooth edges. Median and lateral
teeth have an enameloid crown that overhangs the root on the
labial surface in profile view. The lingual surfaces of median
and lateral teeth form a small but distinct “L”-shaped ledge
and contain a “U- or V-shaped” uvula that is directed at the
separation between the underlying root lobes. The roots of
median and lateral teeth are generally bilobate, peg-like to
pentagonal in shape, and have slightly convex, basal surfaces.
Median teeth may contain roots with symmetric or asymmetric
lobes. Lateral tooth roots become progressively more offset
with increasing distance from the symphysis, such that the
root lobes extend to different lengths beyond the lingual
crown surface. A well-defined nutritive groove occurs between
the root lobes in all teeth and frequently contains 1-3,
centrally located foramina. Several small foramina may also
be present on the edge of the root lobes. Although infrequent,
median teeth may have a second, less-developed nutritive
groove.

Etymology.—Named in honor of Dr. Martin Becker for his
pioneering and ongoing field endeavors focusing on the
paleontology of Late Cretaceous—Paleocene marine vertebrates
in the Malvern, Arkansas, region.

Remarks.—Pavement teeth of Hypolophites beckeri n. sp. can
be distinguished from similar teeth of Hypolophus sylvestris
White, 1931, Rhombodus binkhorsti Dames, 1881, Myliobatis
sp., and Rhinoptera sp. previously reported from the Malvern,
Arkansas, region based on the presence of hexagonal to
trilobate occlusal surfaces, well-developed, vertical wrinkles
on all tooth edges in profile view, labial enameloid
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Figure 2. Hypolophites beckeri n. sp. teeth from the Lower Clayton Limestone Unit of the Paleocene Midway Group near Malvern, Arkansas, USA. (1-5) Median
tooth (ANSP: VP25128), (6-10) median tooth (ANSP: VP25148), (11-15) median tooth (ANSP: VP25129), (16-20) lateral tooth (ANSP: VP25149), (21-25) holo-
type: lateral tooth (ANSP: VP25131), (26-30) lateral tooth (ANSP: VP25150), (31-35) lateral tooth (ANSP: VP25130), (36-40) lateral tooth (ANSP: VP25132),
(41-45) lateral-most tooth (ANSP: VP25151), (46-50) lateral-most tooth (ANSP: VP25152). Orientations:(1, 6, 11, 16, 21, 26, 31, 36, 41) = lingual; (2, 7,12, 17, 22,
27,32, 37,42) = labial; (46, 47) = lateral; (3, 8, 13, 18, 23, 28, 33, 38, 43, 48) = profile; (4,9, 14, 19, 24, 29, 34, 39, 44, 49) = occlusal; (5, 10, 15, 20, 25, 30, 35, 40, 45,
50) = basal. Note: Extensively wrinkled lingual and labial surfaces, occlusal surface ornamentation (4, 14, 44, 49), and wear facets (19, 24, 29), hexagonal to trilobed
occlusal surfaces (14, 19, 24, 29), root with two nutritive grooves (10), and well-defined foramina (30, 45). All scale bars =2 mm.
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Figure 3. Comparison of lateral teeth from all presently known Hypolophites species showing diagnostic occlusal and basal tooth surfaces and scanning electron
microscope images of unique features observed on Hypolophites beckeri n. sp. teeth from the Lower Clayton Limestone Unit of the Paleocene Midway Group near
Malvern, Arkansas, USA. For line drawings, the shaded areas seen in basal view correspond to root lobes and the stippled pattern on the root of Hypolophites thaleri
indicates that the root lobes are worn and obscured. (1) Pitted and vermiculate pattern on the occlusal surface of Hypolophites beckeri n. sp. lateralmost tooth (ANSP:
VP25151) indicated by arrow; (2) basal surface view of Hypolophites beckeri n. sp. lateral tooth (ANSP: VP25131) with numerous foramina between and around the
edges of the root lobes indicated by arrow; (3) labial view of Hypolophites beckeri n. sp. median tooth (ANSP: VP25129) with concave and wrinkled surface and
distinct separation of the crown from the root as indicated by arrows; (4) lingual view of Hypolophites beckeri n. sp. median tooth (ANSP: VP25129) with flattened,

slightly furrowed surface indicated by arrow. All scale bars =2 mm.

overhanging the root base, a lingual uvula, and a bilobate root
generally separated by a single nutritive groove containing at
least one central foramen (Becker et al., 2006, 2011; Maisch
et al., in press). Hypolophites beckeri n. sp. teeth are also
distinct from those of Hypsobatis weileri Cappetta, 1992,
Pseudohypolophus mcnultyi (Cappetta and Case, 1975), and
Mpyledaphus specie because they do not have a two-tiered
occlusal surface, a transverse ridge and faint labio-lingual
folds on the occlusal and lateral surfaces, smooth crown
surfaces in occlusal and profile view, well-developed foramina
near the crown-root interface, or occur in the Late Cretaceous
(e.g., Cappetta, 2012). Teeth of Apocopodon sericeus Cope,
1886, appear similar to those of Hypolophites; however, they
have thick crowns with anastomosing ridges on the occlusal
surface, are polyaulachorhizous, and have only been reported
from the Paleocene of Brazil and South Carolina (Ribiero de
Santana et al.,, 2011; Cappetta, 2012). Potobatis semperei
Cappetta and Gayet, 2013, teeth also appear similar to those
of Hypolophites; although, they have a smaller overall size,
noticeable round-conical projections on the occlusal surface,
thin roots that are nearly as wide as the crown, and are only
known from the Paleocene of Bolivia.

Hypolophites beckeri n. sp. teeth have only been found as
isolated specimens; however, they are distinct from those of pre-
viously reported taxa including: (1) Hypolophites myliobatoides
Stromer, 1910; (2) Hypolophites mayombensis Leriche, 1913;
(3) Hypolophites thaleri Cappetta, 1972; (4) Hypolophites sp.
Cappetta, 1972; and (5) Hypolophites hutchinsi Case, 1996.
Hypolophites beckeri n. sp. teeth are distinct due to the presence
of mesio-distally elongated, labio-lingually compressed median
teeth that may contain more than one nutritive groove, lateral
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teeth with hexagonal to tri-lobed occlusal surfaces, lateral-most
teeth that are dorsoventrally flattened and ovular to rhombus-
shaped. Additionally, all teeth lack crowns that are noticeably
thicker than the roots are tall (Fig. 3).

The genus Hypolophites was erected for a fragmentary
lower tooth plate of Hypolophites myliobatoides Stromer,
1910 from the Paleocene of Adabion, Togo, Africa. A second
species, Hypolophites mayombensis Leriche, 1913, was also
identified based on a fragmentary tooth plate from the Paleocene
of the Enclave of Cabinda, Landana, Africa, and was interpreted
to be a partial upper tooth plate due to the presence of median
and lateral teeth with convex, hexagonal, vermiculated occlusal
surfaces. An additional, larger, and more complete partial tooth
plate and isolated teeth of Hypolophites myliobatoides were
reported by White (1934) from Nigeria, Africa. White (1934)
included line drawings of the occlusal and basal surfaces of
the tooth plate and images of isolated teeth and a portion of
the tooth plate’s occlusal surface. This same specimen has
been figured as line drawings in Cappetta (1987, 2012) and
photographed and figured by Claeson et al. (2010). As seen in
these studies, the H. myliobatoides tooth plate contains: (1)
median and lateral teeth that have a hexagonal occlusal surface
with a rounded labial edge; (2) median and lateral teeth with
wrinkled lateral edges; (3) lateral teeth with thinner crowns
than median teeth; and (4) wide, bilobate roots with as many
as five distinct edges and nearly flat basal surfaces in all teeth.
White (1934) interpreted the upper tooth plate of H. mayomben-
sis described by Leriche (1913) to correspond with the lower
teeth of H. myliobatoides and represent a composite dentition
of a single species (i.e., H. myliobatoides). However, Cappetta
(1972) indicated that the specimens identified by White
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(1934) as H. myliobatoides should in fact be identified as H.
mayombensis because the tooth crowns lack a well-developed
separation from the root on the labial surface.

A third species, Hypolophites thaleri Cappetta, 1972, was
identified based on a partial tooth plate from the Paleocene of
Sessao, Niger, Africa. The teeth of H. thaleri can be distin-
guished from those of H. myliobatoides and H. mayombensis
because they have a distinct separation between the crown and
root on the labial surface, thick, hexagonal-shaped crowns,
and nearly straight, wrinkled lateral edges. Isolated teeth of
Hypolophites sp. were also identified in Niger (Cappetta,
1972) and Mali, Africa (Cappetta, 1987). These teeth were dis-
tinguished from those of H. thaleri because the tooth crown rests
directly above the root without any noticeable separation, the lat-
eral tooth edges contain fewer wrinkles, and the lingual uvula is
less developed. Currently, these isolated Hypolophites sp. teeth
are thought to belong to H. myliobatoides or H. mayombensis
(Cappetta, 1972, 2012).

A fourth species, Hypolophites hutchinsi Case, 1996, was
identified from the Paleocene of Monmouth County, New Jer-
sey, USA, and was the first known outside of Africa. All median
and lateral teeth of H. hutchinsi have smooth occlusal surfaces
that may contain irregular grooves or notches along the edge,
thinner crowns, shorter overall heights, thick, wedge-shaped lat-
eral teeth, and labial and lingual indentations near the crown-
root interface that readily distinguishes them from the teeth of
H. myliobatoides, H. mayombensis, and H. thaleri. Among
teeth from the known Hypolophites species described above,
those of H. hutchinsi are the most similar to those of Hypolo-
phites beckeri n. sp. from the LCLU near Malvern, Arkansas.
However, Hypolophites beckeri n. sp. teeth can be distinguished
from those of H. hutchinsi because they have: (1) vermiculated
or pitted, hexagonal to trilobate occlusal surfaces with smooth
edges; (2) thin, rhombus to ovular-shaped lateral teeth; (3)
noticeably wrinkled lingual and labial tooth surfaces; and (4)
roots that are generally shorter and more rounded, rather than
pentagonal, in shape.

Despite having teeth with an intermediate evolutionary
grade between the Dasyatidae and Myliobatidae, Cappetta
(1987, 2012) indicated that Hypolophites should not be consid-
ered a direct ancestor to Myliobatidae and placed the genus
within the Dasyatidae. Conversely, the phylogenetic analysis
of Myliobatidae completed by Claeson et al. (2010), indicated
that Hypolophites is not closely related to other members of
the Dasyatidae and is instead the immediate sister taxon to a
monophyletic Myliobatidae with uncertain family-level
placement.

Discussion

Paleoecology.—All reported Hypolophites species have teeth
that form pavement plates and are diagnostic of crushing/
grinding dentitions ideal for feeding upon a variety of small
invertebrates (Fig. 3; Cappetta, 2012). This interpretation is
supported by the abundance of bivalves and crustaceans (e.g.,
oysters, nut clams, and crustacean elements) that co-occur
with teeth belonging to Hypolophites beckeri n. sp. in the
LCLU as well as wear facets on the occlusal surfaces of some
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teeth (Fig. 2.19, 2.24, 2.29). Additionally, many co-occurring
chondrichthyan taxa in the LCLU are durophagous and
represented by small teeth (~0.5-25 mm) that also form
crushing/grinding dentitions ideal for feeding upon these same
types of prey (Maisch et al., in press). Furthermore, these
chondrichthyans have benthic-epibenthic lifestyles, marginal
to shallow marine affinities, and occur in Paleocene exposures
in New Jersey, northern Africa, and Denmark (Arambourg,
1952; Case, 1996; Noubhani and Cappetta, 1997; Cappetta,
2012; Adolfssen and Ward, 2015).

In the LCLU, locally abundant, isolated chondrichthyan,
osteichthyan, and crocodilian teeth co-occur with invertebrate
remains and trace fossils, including Thalassinoides isp., Gastro-
chaenolites isp., and Entobia isp., within three sand-pebble,
phosphatic lag deposits (Fig. 1; Maisch et al., in press). These
assemblages are known to be time-averaged and form in
response to regressive-transgressive sea-level fluctuations across
shallow marine shelves over thousands to millions of years (e.g.,
Becker et al., 1998, 2008; Shimada et al., 2006). Prior studies
indicate that a minimum of five, 3™ order, eustatic sea-level
cycles have occurred during the early Paleocene, which suggests
that sea-level cyclicity is responsible for the formation of fossil-
iferous lag deposits within the LCLU (Haq et al., 1988; Briskin
and Fluegeman, 1990; Mancini and Puckett, 2005; Haq, 2014).
These transgressive pulses contributed to variations in: (1) shal-
low marine habitat; (2) sea water temperature; and (3) the disper-
sal and diversification of marine vertebrates, including
myliobatiforms (e.g., Brett, 1998; Frisk, 2010; Holland,
2012). In this regard, extant myliobatiforms with tooth morph-
ologies similar to Hypolophites are known to migrate large dis-
tances across shallow marine shelves for feeding and
reproductive purposes (Frisk, 2010; Last et al., 2016; Martins
et al., 2018; Rangel et al., 2018).

Biostratigraphic implications.—All Hypolophites species have
been reported from Paleocene stratigraphic sections containing
associated vertebrate and invertebrate remains indicative of
shallow marine environments within the Northern Atlantic
Ocean Basin (Stromer, 1910; Leriche, 1913; White, 1934,
Cappetta, 1972, 1987; Case, 1996; Maisch et al., in press).
However, the exact chronostratigraphic ages of some of these
Paleocene sections remain uncertain or have been re-evaluated
(Cappetta, 1987, 2012; Sol€ et al., 2018). In particular, Solé
et al. (2018) reassessed the age of Paleocene outcrops,
including the Landana section where Leriche (1913) identified
H. mayombensis in the Congo Basin of west-central Africa.
Their study demonstrated that although many of these
outcrops were originally identified as early Paleocene
(Danian): (1) Danian sediments are almost entirely absent, (2)
the uppermost Danian is only represented in Landana, and (3)
the majority of these exposures are Selandian—-Thanetian in
age. In this regard, H. mayombensis and H. myliobatoides are
more likely late Danian/early Selandian—Thanetian in age
while H. thaleri has been reported from the late Paleocene
(Thanetian) of Niger (Cappetta, 1972, 2012).

The H. hutchinsi specimens originally identified as early
Paleocene, Montian (i.e., upper Danian), from NJ by Case
(1996), have also been reinterpreted as being late Paleocene
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(Thanetian) in age (Cappetta, 2012). However, H. hutchinsi was
reported from the basal Hornerstown Formation, which has been
identified as early Paleocene (upper Danian—Selandian) and
occurs directly above a disconformable contact with the Late
Cretaceous (Maastrichtian) New Egypt (Tinton) Formation
(Sugarman et al., 1995; Case, 1996; Miller et al., 2004, 2010).
The H. hutchinsi specimens, in addition to other
chondrichthyan remains from the Hornerstown Formation
reposited at AMNH by Case (1996), lack evidence for extensive
reworking (e.g., fragmentary, rounded crown and root elements,
polishing, or phosphatization), and reinforce the upper
Danian—Selandian age of H. hutchinsi and the basal
Hornerstown Formation.

Preliminary studies on the Midway Group near Malvern,
Arkansas, have identified Danian sediments in the lowermost
LCLU (Dastas et al., 2010; Stringer and Sloan, 2018). However,
temporal gaps are represented by the disconformity and lag
deposit at the contact between the Arkadelphia Formation and
Midway Group (i.e., K/Pg boundary) and the three additional
lag deposits stratigraphically higher within the LCLU (e.g.,
Becker et al., 2010, 2013, 2016; Maisch et al., in press).
Although, the precise age of the LCLU and Hypolophites
beckeri n. sp. requires further investigation, the regional K/Pg
stratigraphy and taphonomy of LCLU chondrichthyan remains
support an upper Danian—Selandian age assignment
(McFarland, 2004; Becker et al., 2011, 2016; Maisch et al., in
press).

Diversification and paleobiogeographic distribution.—Several
global studies on chondrichthyan faunal turnover across the K/
Pg boundary indicate batoids were disproportionately affected,
where shallow-water, demersal taxa were more susceptible to
extinction, in contrast to those with benthopelagic and
deep-water affinities (Kriwet and Benton, 2004; Guinot et al.,
2012; Aschliman et al., 2012). Despite relatively high rates of
extinction among shallow-water taxa, ancestral myliobatiforms
existed in the Late Cretaceous, survived the K/Pg mass
extinction event, and radiated throughout the Paleocene
(Kriwet and Benton, 2004; Claeson et al., 2010; Aschliman
et al., 2012; Aschliman, 2014; Bertozzi et al., 2016). Many
extinct myliobatiforms have wide geographic distributions
while others appear to be endemic to specific regions and
habitats (refer to taxa mentioned in the systematic
paleontology section above, as well as in Noubhani and
Cappetta, 1997; Cappetta, 2012, and references therein).
Although the isolated occurrences of these extinct taxa may be
the result of preservation and collecting biases, numerous
extant myliobatiforms are also known to exhibit endemism
(Frisk, 2010; Last et al., 2016).

The first reported Hypolophites species in the USA,
H. hutchinsi, extended the known paleobiogeographic range
of the genus ~7,200 km westward from Mali, northern Africa
to Monmouth County, New Jersey (Cappetta, 1987; Case,
1996). Hypolophites beckeri n. sp. described in this study, is
the second North American species of Hypolophites identified
and further extends the range of this genus ~1,750 km westward
into the Mississippi Embayment and Gulf Coastal Plain (GCP)
of the USA. Neither Hypolophites beckerin. sp. nor H. hutchinsi
has been reported in any other Paleocene—early Eocene
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chondrichthyan assemblages across the ACP and GCP of the
USA (e.g., Ward and Wiest, 1990; Case, 1994; Purdy, 1998;
Kent, 1999; Becker et al., 2011; Phillips and Case, 2019), sug-
gesting both of these taxa are endemic and the result of mylio-
batiform diversification after the K/Pg mass extinction event.

Hypolophites beckerin. sp. and H. hutchinsi are more simi-
lar to each other than any of the African species, which suggests
they may have stemmed from a common ancestor. According to
Claeson et al. (2010) and Bertozzi et al. (2016), myliobatiforms
originated in the Late Cretaceous and rapidly diversified across
the K/Pg boundary. Many of these Late Cretaceous and early
Paleocene myliobatiforms are known from only northern or cen-
tral Africa, while others have dispersed globally (Noubhani and
Cappetta, 1997; Cappetta, 2012). As a result of the extensive
myliobatiform diversification across the K/Pg boundary in
Africa, it is likely that Hypolophites originated in Africa and
dispersed through post-Tethyan connections to the Gulf and
Atlantic coastal plains of the USA.
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