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Impact of inlet gas turbulence on the formation,
development and breakup of interfacial waves in
a two-phase mixing layer
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Understanding the development and breakup of interfacial waves in a two-phase mixing
layer between the gas and liquid streams is paramount to atomization. Due to the velocity
difference between the two streams, the shear on the interface triggers a longitudinal
instability, which develops to interfacial waves that propagate downstream. As the
interfacial waves grow spatially, transverse modulations arise, turning the interfacial waves
from quasi-two-dimensional to fully three-dimensional. The inlet gas turbulence intensity
has a strong impact on the interfacial instability. Therefore, parametric direct numerical
simulations are performed in the present study to systematically investigate the effect of
the inlet gas turbulence on the formation, development and breakup of the interfacial
waves. The open-source multiphase flow solver, PARIS, is used for the simulations and
the mass–momentum consistent volume-of-fluid method is used to capture the sharp
gas–liquid interfaces. Two computational domain widths are considered and the wide
domain will allow a detailed study of the transverse development of the interfacial waves.
The dominant frequency and spatial growth rate of the longitudinal instability are found
to increase with the inlet gas turbulence intensity. The dominant transverse wavenumber,
determined by the Rayleigh–Taylor instability, scales with the longitudinal frequency, so
it also increases with the inlet gas turbulence intensity. The holes formed in the liquid
sheet are important to the disintegration of the interfacial waves. The hole formation is
influenced by the inlet gas turbulence. As a result, the sheet breakup dynamics and the
statistics of the droplets formed also change accordingly.

Key words: gas/liquid flow, wind-wave interactions, aerosols/atomization

1. Introduction

When a fast gas stream interacts with a parallel co-flowing liquid stream of lower velocity,
the gas–liquid interface is unstable and interfacial waves will form and develop. As the
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interfacial waves are advected downstream, the waves grow in amplitude, deform and
eventually break into small droplets. The droplets are dispersed by the gas stream, forming
a two-phase mixing layer between the gas and liquid streams. The two-phase mixing
layer is at the heart of numerous twin-fluid atomization processes, such as air-assisted
and air-blast atomizations (Lefebvre 1980, 1988).

The formation and early development of the interfacial waves are mainly controlled
by the longitudinal shear-induced Kelvin–Helmholtz-like instability. The most unstable
mode in the longitudinal instability dictates the frequency and the wavelengths of the
interfacial waves. Linear stability analysis has been carried out to predict the most-unstable
longitudinal wave frequency f and the wavelength λ. While inviscid analysis (Raynal 1997;
Marmottant & Villermaux 2004; Matas, Marty & Cartellier 2011) yielded reasonable
predictions for the frequency but under-predicted the spatial growth rate, viscous temporal
analysis (Boeck & Zaleski 2005) well predicted the growth rate but overestimated
frequency. It was later shown by Otto, Rossi & Boeck (2013) and Fuster et al. (2013) that
viscous spatial-temporal stability analysis is required to well predict both the frequency
and the growth rate. Due to the velocity deficit induced by the wake of the separator
plate, the instability can transfer from convective to absolute instability regimes. When the
instability is absolute, a dominant unstable mode will arise. Matas (2015) further showed
that the confinement effect induced by the stream thickness needs to be taken into account
to yield a good prediction of the most unstable mode. When the longitudinal wavelength λ
is significantly lower than the stream thickness, then it scales with the gas-stream boundary
layer thickness δ at the inlet and the absolute instability is mainly controlled by the
surface-tension mechanism. In contrast, if the most-unstable wavelength is comparable
to or higher than the stream thickness, then the inviscid confinement absolute instability
will become dominant (Matas, Delon & Cartellier 2018). In such a case, the wave
propagation speed was found to agree well with the Dimotakis speed (Dimotakis 1986),
UD = (

√
ρlUl + √

ρgUg)/(
√

ρl + √
ρg), where ρl, Ul and ρg, Ug represent the densities

and velocities for the gas and liquid streams, respectively. The most unstable wavelength
and frequency can thus be related to each other by the Dimotakis speed as λ = UD/f .

Conventionally, the stability analysis and numerical studies of the longitudinal
shear-induced instability assume both the gas and liquid streams are laminar when they
meet (Boeck & Zaleski 2005; Fuster et al. 2013; Otto et al. 2013; Agbaglah, Chiodi &
Desjardins 2017; Ling et al. 2017, 2019). Nevertheless, turbulent fluctuations may exist
in the gas stream in experiments due to the high Reynolds numbers. As indicated by
Matas et al. (2015), this may be a potential reason for the discrepancies between different
experiments. The impact of the gas inlet turbulence on the longitudinal instability has
been recently investigated through experiment by Matas et al. (2015) and later using direct
numerical simulation by Jiang & Ling (2020). Both the frequency and the spatial growth
rate were observed to increase with the inlet gas turbulence intensity I, when I is over a
threshold (Matas et al. 2015; Jiang & Ling 2020). Attempts have been made to incorporate
the effect of inlet gas turbulence in the linear viscous spatial-temporal stability analysis
based on turbulent viscosity models. The modified stability analysis reasonably captures
the trend, i.e. the frequency increases with I, but underestimates the values (Jiang & Ling
2020). An accurate linear stability theory that captures the most unstable modes for a
turbulent gas stream remains to be developed.

Transverse modulations on the longitudinal waves develop when the waves grow
and propagate downstream. The Rayleigh–Taylor (RT) instability has been shown to be
the primary driving mechanism for the transverse instability in a cylindrical coaxial
configuration (Varga, Lasheras & Hopfinger 2003; Marmottant & Villermaux 2004).
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Interfacial waves in a two-phase mixing layer

The azimuthal wavelength was estimated based on inviscid RT instability on a planar
surface with undulations from the longitudinal instability. When the interface accelerates
toward liquid or decelerates toward gas, the interface is unstable and the most-unstable
wavelength is dictated by the surface tension and the interface acceleration. In the work
of Marmottant & Villermaux (2004), the maximum acceleration is estimated based
on experimental correlation and is a function of Weδ , a Weber number based on δ.
Numerical studies by Jarrahbashi & Sirignano (2014) showed that both the RT instability
(baroclinic effects) and strain–vorticity interaction contribute to the transverse instability
development. The latter is more important when the gas-to-liquid density ratio is high. The
sequential development of the transverse variation of the interfacial wave is influenced by
the interaction between the interfacial waves and the gas stream. As the interfacial waves
grow and invade into the gas stream, the accelerated gas flow above the wave crest induces
a Bernoulli depression, which enhances the growth of the wave (Hoepffner, Blumenthal &
Zaleski 2011). Since the transverse instability is closely tied to the longitudinal counterpart
and the latter is in turn influenced by the inlet gas turbulence, it is expected that the
inlet gas turbulence will also play a significant role in the transverse instability and
the subsequent transverse development of the interfacial waves. A detailed analysis of
the effect of inlet gas turbulence on transverse instability features such as the dominant
transverse wavenumber remains absent in the literature.

There exist multiple pathways for the three-dimensional (3-D) interfacial waves to break
into filaments and droplets: the fingering and the hole-in-sheet modes. Visualization of
these two breakup modes have been presented in high-fidelity numerical simulations
(Jarrahbashi et al. 2016; Ling et al. 2017; Zandian, Sirignano & Hussain 2018). The
fingering modes typically occur when the disintegration of the interfacial wave is relatively
mild. In such a case, the Rayleigh–Plateau (RP) instability gets a chance to develop at the
Taylor–Culick rims on the edge of the liquid sheets extended from the waves (Roisman
2010; Agbaglah, Josserand & Zaleski 2013). The RP instability results in liquid fingers
which are approximately aligned with the streamwise direction. The number of fingers
formed is related to the dominant transverse wavenumber (Marmottant & Villermaux
2004). The liquid fingers will continue to break into droplets.

The formation of droplets due to pinching of a filament is by itself a complicated
subject (Eggers 1993; Ambravaneswaran, Wilkes & Basaran 2002; Castrejón-Pita et al.
2015; Zhang et al. 2019). In general, the primary droplets formed are similar to the local
diameter of the filament, while the secondary satellite droplets can be much smaller.
Since the liquid fingers typically exhibit irregular shapes, the breakup dynamics is more
complex than the classic Rayleigh breakup of a liquid cylinder and generally leads to a
distribution of droplets of different sizes (Villermaux, Marmottant & Duplat 2004; Ling
et al. 2017). The size distribution of droplets formed is essential to spray applications
and different distribution models have been proposed, e.g. the log–normal, exponential,
Poisson, Weibull–Rosin–Rammler, Pareto and gamma distributions (Villermaux et al.
2004; Herrmann 2011; Marty 2015; Ling et al. 2017; Kooij et al. 2018; Balachandar et al.
2020). These distribution functions agree with different sets of experimental or simulation
data to some extent. Whether there exists a universal distribution of droplet size remains
an unresolved question.

When long liquid sheets extend from the interfacial wave crest and have a strong
interaction with the gas stream, the disintegration of the interfacial wave is generally more
violent and tends to follow the hole-in-sheet mode (Ling et al. 2017). The hole expansion
speed follows the Taylor–Culick velocity (Opfer et al. 2014; Marston et al. 2016; Ling et al.
2017; Agbaglah 2021). The holes grow and merge, and eventually lead to a violent rupture
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of the sheet, producing separate ligament, droplets of different sizes and orientations and
fingers that remain attached to the liquid sheet. The formation of a hole in a liquid sheet
is due to the pinching of the two surfaces of the liquid sheet, similar to the pinching
of a filament in drop formation. The pinching of surfaces is induced by the disjoining
pressure when the distance between the two surfaces is sufficiently small (O(10 nm)). In
numerical simulations, the cell size is usually much larger, so the disjoining pressure is
typically not included in the physical model. As a result, the minimum cell size serves as
the numerical cutoff length scale to pinch a liquid sheet and to form holes. The absence of
disjoining pressure seems to have little effect on the surface pinching, since the process for
low-viscosity liquids is mainly dictated by the fluid inertia, similar to the droplet formation
due to the pinching of filament (Zhang et al. 2019). Nevertheless, a careful grid-refinement
study is still required to verify the simulation results, in particular for the statistics of the
droplets formed (Ling et al. 2017). Former studies on the interfacial waves breakup assume
that the inlet gas stream is laminar. The effect of the inlet gas turbulence on the sheet
breakup dynamics and the droplets statistics remains unclear.

The goal of the present study is to investigate the fate of the interfacial waves in a
two-phase mixing layer between parallel liquid and gas streams through direct numerical
simulations. As an extension of our former studies (Ling et al. 2017, 2019; Jiang &
Ling 2020), the present study is focused on the transverse interfacial instability and
the impact of inlet gas turbulence on the formation, development and breakup of the
three-dimensional interfacial waves. To allow a detailed investigation of the transverse
features of interfacial waves, we have used a computational domain that is three times as
wide as that in our former studies. The key questions we aim to address include:

(i) What are the physical mechanisms that drive the transverse development of the
interfacial waves? Can one predict the transverse wavenumber based on the stability
theory?

(ii) How will the inlet gas turbulence influence the longitudinal and transverse interfacial
instability and the development of the 3-D interfacial waves?

(iii) What are the pathways for the interfacial waves to disintegrate into filaments and
droplets? What is the effect of the inlet gas turbulence on the interfacial wave
breakup dynamics and the statistics of the droplets formed?

The rest of the paper will be organized as follows. The problem description and the
simulation approaches, including the governing equations, the numerical methods and the
simulation set-up, will be presented in § 2. The simulation results will be shown in § 3.
The longitudinal and transverse instabilities of the interfacial waves, the development and
breakup of the interfacial waves and the droplet statistics will be discussed in sequence.
The key conclusions of the present study will be summarized in § 4.

2. Simulation methods

2.1. Problem description
The two-phase mixing layer to be considered in the present study is illustrated in figure 1.
Two parallel planar gas and liquid streams enter the domain from the left. Two thin solid
plates are placed near the inlet to separate the two streams, mimicking the injector nozzle.
The inclusion of the separator plate has been shown to be important to the interfacial
instability (Otto et al. 2013). The two streams meet at the end of the lower separator plate.
The liquid inflow is laminar, while turbulent velocity fluctuations of different intensity
levels are present at the gas inlet. The mean gas velocity is significantly higher than that
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Figure 1. Simulation set-up for the interfacial waves between parallel liquid and gas streams.

for the liquid. As a result, the gas–liquid interface is unstable, and wavy structures develop
on the interface and propagate downstream. For convenience of discussions, we refer to
the x, y and z directions as the longitudinal, vertical and transverse directions, respectively.
The interfacial waves, when they are just formed, are approximately two-dimensional
and longitudinal. Yet as they grow and propagate downstream, transverse modulations
arise and the waves evolve to be fully three-dimensional. The interfacial waves will
interact with the gas stream as the amplitudes become finite. The eventual breakups of the
interfacial waves produce small ligaments and droplets that are mixed with the gas stream,
forming a two-phase mixing layer. After an initial transition period for the two streams
to progressively enter the domain, the wave formation and the two-phase turbulent flow
reaches a statistically stationary state (Ling et al. 2017, 2019).

2.2. Governing equations
The two-phase interfacial flows are governed by the incompressible Navier–Stokes
equation with surface tension. The one-fluid approach is employed, where the gas and
liquid phases are treated as one fluid with material properties change abruptly across the
interface. The momentum and continuity equations are expressed as

ρ

(
∂ui

∂t
+ ui

∂uj

∂xj

)
= − ∂p

∂xi
+ ∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
+ σκδsni, (2.1)

∂ui

∂xi
= 0, (2.2)

where ρ, ui, p, μ represent density, velocity, pressure and viscosity, respectively. The last
term on the right-hand side of the momentum equation represents the surface tension,
which is a singular force localized on the sharp interface using the Dirac distribution
function δs. The surface-tension coefficient σ is taken to be constant, and κ and ni represent
the curvature and normal vector of the interface.

The gas and liquid phases are distinguished by a characteristic function χ , where χ = 1
and 0 represent the liquid and gas phases, respectively. The interface evolution can be
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captured by solving the advection equation of χ

∂χ

∂t
+ ui

∂χ

∂xi
= 0. (2.3)

The mean value of χ in a computational cell with a volume �Ω is defined as

f = 1
�Ω

∫
�Ω

χ dV, (2.4)

which also represents the volume fraction of liquid (χ = 1) in a cell. Correspondingly,
the gas volume fraction in a cell is f̂ = 1 − f . The fluid properties in interfacial cells with
0 < f < 1 are calculated based on arithmetic mean

ρ = f ρl + f̂ ρg, μ = f μl + f̂ μg, (2.5a,b)

where the subscripts l and g represent variables corresponding to the liquid and gas phases,
respectively.

2.3. Numerical methods
The governing equations are solved by the finite volume method on a staggered
grid. The advection equation (2.3), is solved using a geometric volume-of-fluid (VOF)
method. The interface normal is computed following the mixed Young’s centred method
of Aulisa et al. (2007). The Lagrangian-explicit scheme of Li (1995) is used for the
VOF advection (Scardovelli & Zaleski 2003). The convection term in the momentum
equation (2.1), is discretized consistently with the VOF method (Arrufat et al. 2020), and
this mass–momentum consistence has been shown to be crucial in capturing interfacial
dynamics when large velocity and density contrasts are present at the interface (Rudman
1998; Ling et al. 2017; Vaudor et al. 2017; Arrufat et al. 2020; Zhang, Popinet &
Ling 2020). The incompressibility condition is incorporated using the projection method
(Chorin 1968). The pressure Poisson equation is solved using the PFMG multigrid solver
in the HYPRE library. The viscous term is discretized explicitly using the second-order
centred difference scheme. The interface curvature is calculated using the height-function
method of Popinet (2009) and the balanced continuous-surface-force method is used
to discretize the surface-tension term (Renardy & Renardy 2002; Francois et al. 2006;
Popinet 2009). The time integration is done by a second-order predictor–corrector
method. To capture the dynamics of under-resolved droplets less erroneously than by
just quasi-fragment VOF patches, droplets of size smaller than approximately two cells
are converted into Lagrangian point particles and are traced under the one-way coupling
approximation, following the approach of Ling, Zaleski & Scardovelli (2015).

The aforementioned numerical methods have been implemented in the open-source
solver, PARIS-Simulator. Detailed implementations and validation of the code can be
found in previous studies (Tryggvason, Scardovelli & Zaleski 2011; Ling et al. 2015, 2017,
2019; Arrufat et al. 2020; Aniszewski et al. 2021).

2.4. Simulation set-up
The computational domain is a cuboid. The dimensions in the x and y directions for the
two domains are the same, i.e. Lx = 16H and Ly = 8H, where H is the height of the liquid
stream at the inlet. Periodic boundary conditions are applied to the front and back of the
domain. A free boundary condition is applied at the top, so gas is allowed to freely flow
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ρl ρg μl μg σ Ul Ug H δ

(kg m−3) (kg m−3) (Pa s) (Pa s) (N m−1) (m s−1) (m s−1) (mm) (mm)

1000 50 10−3 5 × 10−5 0.05 0.5 10 0.8 0.1

Table 1. Physical parameters.

through the boundary. The velocity outflow boundary condition is imposed at the right
surface. The bottom surface is treated as a slip wall to avoid the modelling challenge of
moving contact lines on a no-slip surface. The contact angle is specified as 90◦ on the
bottom surface. As a result, the bottom is equivalent to a symmetric boundary and the
present simulation set-up can be viewed as a symmetric model for the airblast atomization
configurations with gas streams on both sides of the liquid stream (Chaussonnet et al.
2020), which could capture the interfacial stability when the symmetric mode is dominant.
A full simulation with both gas streams will be required to resolve the asymmetric
instability mode and breakup dynamics (Delon, Cartellier & Matas 2018).

The length and height of the domain and boundary conditions used have been examined
in previous studies, which are shown to be sufficient to resolve the present problem (Ling
et al. 2019). Two different domain widths, Lz = 2H and 6H, are considered. Some of the
simulation results for the narrow domain have been shown in our previous study (Jiang
& Ling 2020). While the narrow domain is useful in capturing the longitudinal wave
formation, the wide domain (Lz = 6H) is required to investigate the transverse instability
and the transverse development of the interfacial waves.

The gas stream has a similar thickness as the liquid stream, i.e. H − ηy, where ηy is the
thickness of the thin separator plate. The liquid and gas properties are similar to those of
water and pressurized air, following the previous studies (Ling et al. 2017, 2019; Jiang &
Ling 2020), see table 1.

The mean flow at the inlet is horizontal, so the y- and z-components of the mean velocity
are zero, i.e. v̄0 = w̄0 = 0. The x-component of the mean velocity at the inlet is expressed
as

ū0( y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ul erf
[

H − y
δ

]
, 0 ≤ y < H (liquid stream),

0, H ≤ y < H + ηy (separator plate),

Ug erf
[

y − (H + ηy)

δ

]
erf
[

2H − y
δ

]
, H + ηy ≤ y < 2H (gas stream),

0, else (wall).
(2.6)

The velocities in the gas and liquid stream are generally uniform and are equal to Ul
and Ug away from the separator plates, respectively, see figure 2(a). The error function
is used to model velocity profile in the boundary layers near the separator plates. The
parameter δ characterizes the boundary layer thickness, which is taken to be the same for
both the gas and liquid streams, i.e. δ = H/8. The dimensions of the two separator plates
are the same, the thickness and length of which are ηy = H/32 and ηx = H/2, respectively.
The thickness ηy is chosen to be significantly smaller than δ. Based on the former study
of Fuster et al. (2013), the specific value of ηy has negligible effect on the interfacial
instability. The values for the key physical parameters for the present problem are listed in
table 1.
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(b)(a) (c)
1.4
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1.0y∗

〈u–∗〉

0.8

0.6

0 0.2

Liquid Liquid Liquid

Interface Interface Interface

Gas
Gas

Gas

No
N1
N2
N3
N4
W0
W1
W2

0.4 0.6 0.8 1.0

1.4

1.2

1.0

〈u–′u′〉/Ug
2 〈u–′v′〉/Ug

2

0.8

0.6

1.4

1.2

1.0

0.8

0.6

0 0.005 –0.008 –0.006 –0.004 –0.002 0 0.0020.010 0.015 0.020 0.025 0.030

Figure 2. Temporally and spatially (in z-direction) averaged profiles of (a) velocity in the streamwise
direction, (b) normal Reynolds stress and (c) shear Reynolds stress.

Pseudo-turbulent velocity fluctuations are superposed on the gas velocity at the inlet
(i.e. H + ηy ≤ y < 2H) as

u0 = ū0 + u′( y, z, t), v0 = v′( y, z, t), w0 = w′( y, z, t), (2.7a–c)

where the turbulent fluctuations u′, v′, w′ are computed using the digital filter approach
of Klein, Sadiki & Janicka (2003). The filter length is 1/4H. Implementation details and
verification for the approach to generate turbulent velocity fluctuations have been given in
a previous study (Jiang & Ling 2020) and thus are not repeated here.

2.5. Data collection and processing
Time and spatial averaging are performed to process the instantaneous 3-D field of
simulation data. The time averaging operator for a variable a is denoted as

ā = 1
t1 − t0

∫ t1

t0
a(t) dt, (2.8)

where t0 and t1 represent the beginning and the end times of the sampling. Sampling of
data will not start until the simulation reaches the statistically steady state at approximately
t∗ = 200.

The spatial averaging in the transverse z-direction is defined as

〈a〉 = 1
Lz

∫ Lz

0
a(z) dz. (2.9)

The operation of double temporal and spatial averaging is denoted as 〈ā〉.
The height functions, which are computed for the interface curvature, will also be

used to evaluate the interface location. The interfacial height, i.e. the y-coordinate of
the interfacial location, is denoted by h(t, x, z). The root-mean-square of the interfacial
height fluctuations, h′h′, represents the thickness of the two-mixing layer or the amplitude
interfacial wave, where h′ = h − h̄.

2.6. Key dimensionless parameters
With H and Ug as the scaling variables, the dimensionless time, velocity and length are
defined as t∗ = tUg/H, u∗ = u/Ug, x∗ = x/H, respectively. The key parameters listed in
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M r m Reg,δ Weg,δ Reg,H I
ρgU2

g/(ρlU2
l ) ρl/ρg μl/μg ρgUgδ/μg ρgU2

gδ/σ ρgUgHg/μg (
√

u′u′)e/Ug
20 20 20 1000 10 7750 0, 0.06, 0.13

Table 2. Key dimensionless parameters.

Case I Δ (μm) H/Δ No. cells No. cores

W0 0.0 1.6 × 109 3072
W1 0.06 1.6 × 109 3072
W2 0.13 1.6 × 109 3072
N0 0.0 0.5 × 109 1024
N1 0.02 6.25 128 0.5 × 109 1024
N2 0.039 0.5 × 109 1024
N3 0.056 0.5 × 109 1024
N4 0.071 0.5 × 109 1024

Table 3. Summary of simulation runs. Case names starting with W and N represent the wide and narrow
domains, respectively.

table 1 can be converted to the dimensionless form, see table 2. In addition to H, the
boundary layer thickness δ can also be important to the interfacial instability (Otto et al.
2013). As a result, two different Reynolds numbers, i.e. Reg,H and Reg,δ , are defined
correspondingly. Due to the high Reg,H , the gas stream will be turbulent even if the
gas inflow is laminar. The Weber number based on δ characterizes the effect of surface
tension on the interfacial instability development (Otto et al. 2013). The gas-to-liquid
dynamic pressure (M) is important in determining the macro-scale features, such as the
breakup length (Lasheras, Villermaux & Hopfinger 1998), and also the regime for the
shear-induced longitudinal instability (Fuster et al. 2013; Otto et al. 2013). According to
the previous studies (Ling et al. 2019; Jiang & Ling 2020), the selected dimensionless
parameters place the shear longitudinal instability in the absolute regime. There are
two different mechanisms, namely surface tension and confinement, that can drive a
transition from convective to absolute regimes. Based on the results to be shown later, the
absolute longitudinal instability in the present problem seems to belong to the confinement
category.

2.7. Simulation cases
A parametric study is carried out to systematically investigate the inlet gas turbulence
intensity I. The simulation cases are summarized in table 3. For the narrow domain, five
different I are considered (cases N0 to N4), while for the wide domain, only three different
I (cases W0 to W2) are simulated due to the higher computational costs.

Temporally and spatially averaged profiles of the streamwise velocity (〈ū〉/Ug), normal
and shear Reynolds stresses (〈u′u′〉/U2

g and 〈u′v′〉/U2
g) at the end of the separator plate

(x = ηx) for all the cases are shown in figure 2. It can be seen that the mean velocity profiles
for all the cases are almost identical. For the cases N0 and W0, the Reynolds stresses are
negligibly small. Magnitudes of the Reynolds stresses generally increase with the inlet
gas turbulence intensity. The profiles of the normal and shear stresses are consistent with
those for planar turbulent channel flows, indicating the turbulent fluctuation generator
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at the inlet has been implemented properly (Klein et al. 2003). The normal Reynolds
stress (〈u′u′〉/u2

g) increases with y∗ from zero at the separator plate and reaches the
maximum at around the middle of the boundary layer. Then it decreases and approaches a
constant outside of the boundary layer, the square root of the normal Reynolds stress, i.e.
I = (〈u′u′〉y∗=1.5)

1/2/Ug, is used to characterize the inlet gas turbulence intensity.
The computational domains are discretized using a fixed regular cubic grid. The cell

size Δ = 6.25 μm (H/Δ = 128) is used for all the cases. The cell size has been verified
to be adequate for good estimates of high-order two-phase turbulence statistics, such as
turbulence kinetic energy (TKE) dissipation (Ling et al. 2019). The numbers of cells for
the narrow and wide domains are approximately 0.5 and 1.6 billion, see table 3. All cases
are run for a physical time to at least t∗ = 450, which is sufficient to cover the formation
of approximately 12 to 18 waves after the statistically steady state is reached. The present
simulations are performed on the Intel Xeon Platinum 8160 (Skylake) computing nodes
on the TACC Stampede2 machine. For the narrow domain cases (N0 to N4), 22 nodes are
used, while 64 nodes are used for the wide domain cases (W0 to W2). The total computing
time used for all the cases is approximately 280 000 node hours (13 400 000 core hours).

3. Results and discussion

3.1. General behaviour
The temporal evolutions of the interfacial waves and the velocity fields for the cases W0
and W2 are shown in figure 3. The cases W0 and W2 represent the two distinct gas inflow
conditions: laminar (I = 0) and highly turbulent (I = 0.13). Figures 3(a) and 3(b) in the
left column show the interfacial waves from a 3-D view, with the streamwise u-velocity in
the background. Figures 3(c) and 3(d) in the right column are sequential snapshots of the
gas–liquid interfaces coloured by the u-velocity from the top view.

The results for the case W0 shown in figure 3(c) represent a typical process of interfacial
wave formation and development for a planar two-phase mixing layer (Matas et al. 2011;
Agbaglah et al. 2017; Ling et al. 2017; Zandian et al. 2018; Ling et al. 2019). When the
two streams meet at the end of the separator plate, the longitudinal instability is triggered
due to the shear at the interface. The instability develops to a 2-D longitudinal interfacial
wave which propagates downstream, the wave crest of which is approximately a straight
line from the top view. Due to the transverse instability, the height of the wave crest varies
over the transverse direction. When the wave amplitude grows, the wave interacts with the
fast gas stream and develops into a 3-D wave, exhibiting a lobe shape. The liquid lobe later
extends to form a liquid sheet which bends and folds. The thickness of the sheet reduces
rapidly and unevenly due to the complex sheet deformation. Multiple holes are formed
near the edge of the sheet. The expansion and merging of the holes disintegrate the liquid
sheet violently. Multiple breakup events occur (see snapshots between t∗ = 335 and 345
in figure 3c), until the sheet completely breaks into droplets.

By adding small-amplitude turbulent velocity fluctuations at the gas inlet (case W2),
several important differences are observed. First of all, the longitudinal instability grows
faster. As a result, the wave amplitude near the inlet is much higher than that for the
laminar gas inflow. Second, the liquid sheet extending from the wave is much shorter,
and experiences a weaker interaction with the gas stream. Third, the wavenumber of the
transverse modulation of the interfacial wave increases. While there are approximately
one to two transverse waves shown in figure 3(c) (see t∗ = 330), approximately three to
four waves are observed in figure 3(d) (see t∗ = 350). Due to the increase of wavenumber,
the width of the lobes formed is reduced and the shape of the rim formed at the edge
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(c)(a)
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Figure 3. Snapshots for the two-phase mixing layer for (a) the case W0 with a laminar gas inflow and (b) the
case W2 with a turbulent gas inlet. The colour in the background in (a,b) represents the velocity magnitude.
Temporal development of the interfacial waves for the cases W0 and W2 are shown in (c) and (d), respectively,
where the colour at the interfaces represents the streamwise velocity. The frames in (c) and (d) are moving with
the waves to keep the waves located at the centre of the window. Supplementary movies are available online at
https://doi.org/10.1017/jfm.2021.481.

of the liquid sheet is less regular. Fourth, the breakup dynamics of the interfacial waves
also changes significantly. Fewer holes are seen for the case W2. The disintegration of the
wave takes a different path, i.e. forming fingers at the rim. Finally, the different breakup
dynamic impacts the statistics of the droplets generated. Significantly fewer droplets are
formed. Detailed quantitative analysis for these effects will be presented in the following
sections.

3.2. Longitudinal instability and wave formation

3.2.1. Absolute instability
The shear between the gas and liquid streams triggers a Kelvin–Helmholtz (KH)
longitudinal instability, which is the onset of the formation of interfacial waves. The
temporal evolutions of the interfacial heights are measured near the inlet at x∗ = 0.625
and eleven evenly spaced locations along the transverse direction. The temporal evolutions
of the spatially averaged h∗ = h/H are shown in figure 4(a) for different cases of the wide
and narrow domains. At this x location, the wave amplitude is small (less than 4 % of H for
all cases), so the waves remain in the linear regime. Fourier transform is used to cast the
temporal signals to the frequency spectra, see figure 4(b). The spectra obtained at eleven
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Figure 4. (a) Temporal evolution of the transversely averaged interfacial heights at x∗ = 0.625 for different
cases. (b) Frequency spectra that correspond to temporal signal in (a). (c) Variation of the normalized dominant
frequency for the longitudinal instability, ω∗

L/ω∗
L,0 as a function of I for different cases, compared with the

experimental data of Matas et al. (2015).

different transverse locations are averaged. The amplitude at the dominant frequency is
the maximum in the spectra for all cases except W0, for which the dominant frequency
is a local maximum. The maximum amplitude for the case W0 is located at a very low
frequency that corresponds to the total simulation time.

The appearance of the dominant mode affirms that the cases studied are in the absolute
instability regime. The frequency of the longitudinal wave formation is dictated by
the most-unstable mode of the longitudinal instability. As suggested by Matas (2015)
and Matas et al. (2018), there are two different mechanisms that contribute to the
convective-to-absolute instability transition: the surface tension and the confinement. Both
types of absolute instabilities have been identified in the spatial-temporal stability analysis,
as the pinching between the shear branch and the other branch controlled by surface
tension (Otto et al. 2013) or by confinement (Juniper 2006; Healey 2007). For both types
of absolute instability, the imaginary part of the frequency is positive at the pinch point.
The wavenumber at the pinch point for the confinement type is generally low, so that
the most-unstable wavelength is typically larger than the layer thickness H. In contrast,
for the surface-tension type, the wavenumber for the dominant mode is much higher and
the corresponding wavelength is smaller than H. Another fundamental difference between
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the two is that the phase velocity at the pinch point for the confinement-triggered absolute
instability follows the Dimotakis speed UD, while the surface-tension absolute instabilities
typically exhibit much smaller phase velocities.

The simulations for the cases with laminar gas inflows (N0 and W0) yield similar results
for the dominant frequency and wavelength, ω∗

L = 0.31 and λ∗ = 4.5. Stability analysis
without confinement for the same case has been performed in previous studies (Ling
et al. 2019; Jiang & Ling 2020), which represent the absolute instability triggered by
the surface-tension mechanism. The stability analysis slightly overestimates the dominant
frequency ω∗

st = 0.40, while the predicted wavelength λ∗st = 1.6 is significantly lower than
the simulation result, namely the surface-tension absolute instability over-predicted the
wavenumber. Furthermore, it is found in the simulation results that, the wave propagation
speed U∗

w = 0.22, which agrees well with the Dimotakis speed and is much higher
than the wave speed predicted by the surface-tension absolute instability, U∗

w,st = 0.10.
These discrepancies, together with the fact that λ∗ > 1, seem to indicate the absolute
shear instability observed here belongs to the inviscid confinement mechanism, instead
of the surface-tension mechanism. Nevertheless, to fully confirm the nature of absolute
instability, stability analysis similar to Matas (2015) needs to be performed, which will be
relegated to our future work.

3.2.2. Dominant frequency
As shown in figure 4(b), when the gas inlet turbulence intensity I increases, the dominant
frequencies shift to the right for both narrow and wide domains, and the amplitude also
increases correspondingly. The normalized frequencies for different cases, ω∗

L/ω∗
L,0, where

ω∗
L,0 represents the frequency for I = 0, are plotted in figure 4(c). The experimental data

of Matas et al. (2015) are also shown for comparison. The experiments covered a wide
range of injection conditions for different gas and liquid velocities, but the normalized
frequencies approximately collapse. Although the simulation conditions are not identical
to those for the experiments, the simulation results for the normalized frequency agree
reasonably well with the experimental results. In particular, the general variation trend of
ω∗

L/ω∗
L,0 over I is well captured, i.e. ω∗

L/ω∗
L,0 varies little for I � 0.02 and increases with I

for I � 0.02. The discrepancy between the simulation and experiment results may be due
to the different density and viscosity ratios used in the present simulation.

The increase of ω∗
L over I can be explained by the viscous spatial-temporal stability

analysis with eddy viscosity model (O’Naraigh, Spelt & Shaw 2013; Matas et al. 2015;
Jiang & Ling 2020). The effective gas viscosity is the sum of the molecular and eddy
viscosities, which increases with I since the turbulent eddy viscosity increases with I.
Furthermore, the Orr–Sommerfeld system indicated that the dominant frequency increases
with the effective gas viscosity. When I is small, the eddy viscosity is smaller than the
molecular counterpart and that is why ω∗

L varies little for I � 0.02. More discussions on
the stability analysis can be found in our previous study (Jiang & Ling 2020).

For similar I, ω∗
L/ω∗

L,0 for the wide domain is smaller than that for the narrow domain.
For example, the values of I for the cases N3 and W1 are similar, IN3 = 0.056 and
IW1 = 0.06, respectively, but ω∗

L,W1 = 0.38 is approximately 9 % lower than ω∗
L,N3. This

seems to indicate that, the longitudinal instability is more sensitive to domain width when
the gas inflow is turbulent. Since the turbulent gas flow is three-dimensional in nature,
the small domain width may have constrained the development of the turbulence and the
turbulence–interface interaction.
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Figure 5. Spatial growth of the longitudinal wave amplitude (characterized by the mean square of liquid
volume fraction fluctuations 〈c′c′〉, for the cases (a) W0, (b) W1 and (c) W2. The contour line 〈c′c′〉 = 0.02 is
used to measured the wave amplitude ξ∗

L .

3.2.3. Spatial growth
The spatial development of the longitudinal instability determines the longitudinal growth
of the interfacial wave amplitude. Since the interface motion will introduce a fluctuation in
the liquid volume fraction c′ = c − 〈c̄〉, the mean square of which, i.e. 〈c′c′〉, is employed
to measure the spatial longitudinal wave amplitude, see figure 5. For a given x∗, the vertical
distance between the two contour lines of 〈c′c′〉 = 0.02 is defined as the longitudinal wave
amplitude ξ∗

L .
It can be seen that, ξ∗

L grows rapidly with x∗ near the nozzle exit and this growth becomes
more gradual downstream. From the log–linear plot shown in figure 6(a), the spatial
growth of ξ∗

L near the nozzle exit is approximately exponential, see e.g. 0.5 � x∗ � 0.8
for the case W2. Nevertheless, it should be recalled that, since the longitudinal instability
here is absolute, nonlinearity will influence the properties of the most-unstable mode and
the spatial growth does not follow an exponential function as in convective instability (Otto
et al. 2013; Matas 2015).

As the inlet gas turbulence intensity I increases, the spatial growth of ξ∗
L , particularly

near the nozzle exit, becomes faster. To characterize the effect of I, the spatial growth rate,
α∗

L, namely the slope of the curve log ξ∗
L -x∗, is measured at log(ξ∗

L ) ≈ −2 for all cases.
The variation of α∗

L over I is shown in figure 6(b). Similar to the dominant frequency,
α∗

L also increases with I. If a different threshold value for 〈c′c′〉 other than 0.02 is to be
used, the values of ξ∗

L would change, but those for α∗
L will not be affected. For the cases
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Figure 6. (a) The growth of the longitudinal wave amplitude ξ∗
L for different cases. The dotted lines indicate

the spatial growth rate α∗
L for different cases at log(ξ∗

L ) ≈ −2. (b) Variation of the normalized spatial growth
rate αL/αL,0 as a function of I.

W0 and N0, the variation ξ∗
L over x∗ exhibits fluctuations, which makes the measurement

of α∗
L somewhat sensitive. As will be discussed later in § 3.3.4, these fluctuations are

induced by the spatial averaging over the transverse direction. To reduce the influence
of the fluctuations, the measurement of α∗

L for the cases N0 and W0 is made for a wider
range of x∗, as indicated in figure 6(a).

It can be observed from figure 6(a) that the values of ξ∗
L at the end of the separator

plate, x∗ = η∗
x = 0.5, are almost zero for the narrow domain cases, but are finite for the

wide domain cases. A snapshot of the interface near the inlet for the case W0 is shown
in figure 7(a). The contact line where the three phases meet can be seen. A close-up in
figure 7(c) shows that the contact line varies in time and also in the transverse direction.
This indicates that the contact line moves on the separator front wall (facing the streamwise
direction). Accurately capturing the contact-line dynamics is out of the scope of the present
study. The boundary conditions on the solid separator plate are no-slip wall for velocity
and symmetric for the liquid volume fraction c (yielding a 90 degree contact angle). The
small-amplitude spatial variation of the contact line is due to a numerical slip, with half
of the cell size as the slip length (Snoeijer & Andreotti 2013). For the case N0, due to the
constraint of the smaller domain width, the contact line remains a straight line pinned on
the lower edge of the separator front wall, see figure 7(b). Therefore, when we compute the
longitudinal wave amplitude by averaging c′c′ in the transverse direction, the amplitude at
x∗ = η∗

x for the case N0 is identical to zero, while that for the case W0 is finite.
Finally, it is worth mentioning that linear stability analysis has been performed in

previous studies to identify the most unstable mode in the present configuration. Among
the many attempts, the viscous spatial-temporal analysis has been shown to be quite
successful (Otto et al. 2013; Matas 2015). The perturbation is introduced in the form of
a 2-D normal mode. The resulting Orr–Sommerfeld equations are solved to obtain the
most-unstable frequency and growth rate, which have been shown to agree well with
the experimental and direct numerical simulation (DNS) results when the inlet gas is
laminar (Fuster et al. 2013). In order to predict the most-unstable mode when turbulence
is present at the gas inlet, additional modelling efforts are required. Attempts have been
made by Matas et al. (2015) and Jiang & Ling (2020) by incorporating the effect of inlet

921 A15-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.481


D. Jiang and Y. Ling

0.995

1.000

1.035
1.030
1.025
1.020
1.015
1.010
1.005

1.020(a) (b)

(c)

Contact line

y*

y*

1.015
1.010
1.005
1.000

21.51.0

z*

0.50

6543210

Figure 7. (a) A close-up of the interface near the inlet and interfaces at x∗ = η∗
x = 0.5 for different times for

the cases (b) N0 and (c) W0. The interfaces for the case N0 collapse to a straight line.

t

h Gas

Liquid

Unstable Stable

Decelerate

toward gas

Accelerate

toward liquid

Decelerate

toward liquid

Accelerate

toward gas

Figure 8. Schematic for the transverse RT instability due to the vertical motion of interface induced by the
longitudinal instability.

turbulence using the turbulent viscosity model. As the turbulent viscosity increases with I,
the Orr–Sommerfeld equations can reproduce the trends that the frequency increases with
I. However, the modified stability model underestimates the values. The present simulation
results indicate that the interface exhibits 3-D features right at the end of the separator
plate, the assumption of 2-D mode in conventional stability analysis may need to be relaxed
to yield better prediction.

3.3. Transverse instability and wave development

3.3.1. RT instability
Although the interfacial waves near the inlet are approximately longitudinal, transverse
modulations are also observed, see figure 3. The transverse modulations are induced by
the RT instability. As shown in figure 4, the longitudinal instability introduces oscillatory
motion of the interface in the vertical direction. When the interface accelerates toward the
liquid or decelerates toward the gas, the interface is unstable due to the baroclinic effect
and the RT instability is triggered, see figure 8. While the longitudinal instability develops
right at the end of the separator plate, the transverse interfacial modulation may not grow
immediately, see figure 3(a). The reason is that the interface is stable in half time of one
oscillation cycle (when the interface decelerates toward the liquid or accelerates toward
the gas), see figure 8, so the transverse instability may first grow and then decay.

The present results indicate that two conditions need to be satisfied for a transverse
modulation to grow and to transform the 2-D longitudinal wave to fully three-dimensional.
First, the longitudinal wave amplitude must be sufficiently large. Second, the interface is
decelerating toward the gas, so that the growing interfacial wave will interact with the gas
stream. A representative example of the development of the transverse instability is shown
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Figure 9. Transverse development of the RT instability for the case W0. (a) Top view of the interface at
t∗ = 323.75, and the interface is coloured with u-velocity (m s−1). The vertical dashed line in (a) indicates the
wave location, and the interface profile along the dashed line is shown in (b) on the y − z plane to demonstrate
the baroclinic effect.

in figure 9. The later time evolution of this specific wave can be found in figure 3(c).
At this time (t∗ = 323.75) the interfacial wave is well aligned with transverse direction if
viewed from the top, with some small transverse variations in the height of the wave crest.
The interface is rising upward and decelerating toward the gas, the misalignment between
the pressure and density gradients generates a baroclinic torque. The baroclinic torque
in the x direction, Bx = (∇ρ × ∇p)x will cause the transverse interfacial perturbation to
grow, as indicated in figure 9(b), which shows the interface profile on the y–z plane. At
this streamwise location x∗ ≈ 1.6, the amplitude of the longitudinal wave is large enough,
as a result, the wave crest will experience a significant interaction with fast gas stream
above the wave. The local acceleration of the gas flow above the wave crest creates
a Bernoulli depression, which will further pull the interface upward (Hoepffner et al.
2011), amplifying the transverse modulation of the interface, see t∗ = 322.5 to 327.5 in
figure 3(c). More discussions about the interaction between the interfacial wave and the
gas stream will be presented in § 3.4.1.

3.3.2. Dominant mode for transverse instability
Although the transverse modulation growth is assisted by its interaction with the gas
stream, the selection of the dominant transverse wavenumber is mainly controlled by the
RT instability. The inviscid linear temporal RT instability with surface tension for a planar
interface yields the following dispersion relation (Chandrasekhar 1961):

ωI =
(

ak
ρl − ρg

ρl + ρg
− σk3

ρl + ρg

)1/2

, (3.1)

where ωI is temporal growth rate, k is wavenumber and a is magnitude of the
interfacial acceleration. To account for the viscous effect, the dispersion relation becomes
(Chandrasekhar 1961; Joseph, Belanger & Beavers 1999)

ωI = −k2 μl + μg

ρl + ρg
±
(

ak
ρl − ρg

ρl + ρg
− σk3

ρl + ρg
+ k4

(
μl + μg

ρl + ρg

)2
)1/2

. (3.2)
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Due to the low liquid viscosity in the present problem, the viscous effect on the RT
instability is very small. The difference between (3.1) and (3.2) is negligible, so the inviscid
relation (3.1) will be used in the following analysis.

Based on (3.1), the transverse wavenumber for the most unstable mode is

kT =
√

a(ρl − ρg)

3σ
, (3.3)

and the corresponding growth rate is

ωT = 2
33/2

(
a3(ρl − ρg)

σ

)1/4

. (3.4)

The interfacial acceleration a is induced by the longitudinal instability, for which the
characteristic length and time scales are δ and 1/ωL, respectively. Therefore, it can be
approximated that a ∼ δω2

L and the dominant transverse wavenumber

kT ≈ ωL

√
δ(ρl − ρg)

3σ
. (3.5)

As shown in § 3.2, ωL increases with I. According to (3.5), kT will also grow with I.
Using similar scaling relations, the temporal growth rate for the transverse instability

can be estimated as

ωT ≈ 2
33/2

(
δ3ω6

L(ρl − ρg)

σ

)1/4

. (3.6)

Since ωL ∼ UD/δ, it can be shown that

ωT ≈ ωLWe1/4
L , (3.7)

where WeL is the Weber number for the longitudinal wave, expressed as

WeL = (ρl − ρg)U2
Dδ

σ
. (3.8)

If ωT is significantly lower than ωL, then the RT instability will not grow fast enough to
be relevant. For the present problem, WeL = 9.45, and it is estimated that ωT/ωL ∼ O(1).
Therefore, the time scales for the longitudinal KH and the transverse RT instabilities are
comparable. In other words, the transverse RT instability can grow in a time scale that
is comparable to oscillatory interface motion induced by the longitudinal instability. This
affirms that RT instability is responsible to the transverse development of the interfacial
waves for the present problem.

3.3.3. Transverse wavenumber spectra
To investigate the effect of inlet gas turbulence intensity I on the dominant transverse
wavenumber, the wavenumber spectrum of the transverse interfacial modulation is
examined. For a given t∗ and x∗, a Fourier transform is performed for the interfacial height
h along the transverse direction. Then, the wavenumber for the maximum amplitude in the
spectrum, kmax, is measured. The contours of kmax for different I are shown in figure 10.

It is observed that kmax rises to much larger values when longitudinal waves pass by.
This suggests that the development of the transverse modulations is closely associated

921 A15-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.481


Interfacial waves in a two-phase mixing layer

460

(a) (b) (c)

440

420

400

380

t*

x*

360

340

320

300

280

260

460

440

420

400

380

360

340

320

300

280

260

460

440

420

400

380

360

340

320

300

280

260

6000

5000

4000

3000

2000

1000

0
54321 54321 54321

UD
* UD

*

λL
*

τL* UD
*

Figure 10. The dominant transverse wavenumber kmax on the x∗–t∗ diagrams for the cases (a) W0, (b) W1 and
(c) W2. The vertical dashed lines indicate the streamwise locations to estimate the time-averaged transverse
wavenumber k̄T .

with the longitudinal waves, as predicted by the stability analysis (3.5). As a result,
the kmax contours also reveal important features about the formation and propagation in
the longitudinal waves. First of all, the trajectories of the longitudinal waves appear as
inclined straight lines of higher kmax values in the figures. The slopes of the lines represent
the wave propagation speeds in the longitudinal direction. It is observed that the wave
speeds are very similar for all the cases and agree with the Dimotakis speed (Dimotakis
1986), UD. For the present problem, U∗

D = UD/Ug = 0.223. As the longitudinal wave
grows in amplitude and interact with the fast gas stream, the aerodynamic drag will cause
the wave to accelerate. That is why the longitudinal wave trajectories bend downward
slightly further downstream, which is most profound for the case W2 due to the faster
spatial growth for the longitudinal instability, see figure 10(c). The time period τL and the
wavelength λL for the longitudinal waves can also be identified, and they are related by UD
as λL = UDτL. It is also observed that τL decreases with I. Since UD remains unchanged,
λL decreases with I.

It is noted that only kmax on the longitudinal wave location characterizes the transverse
modulations of the interfacial waves. Between two longitudinal waves, kmax represents the
ripples on the interfaces, which are less important. Therefore, we denote the kmax at the
passages of the longitudinal waves as the transverse wavenumber of the interfacial wave,
kT . It is observed that kT for different waves are different due to the chaotic nature of
the turbulent multiphase flows. The temporal evolution of kmax for different I is shown in
figures 11(a)–11(c). For each case, the measurement is made at x∗ locations corresponding
to log(ξ∗

L ) = −1, i.e. x∗ = 2.375, 1.625, 1.25, for the cases W0, W1 and W2, respectively,
which are indicated by dashed lines in figure 10. The RT instability predictions (3.5) are
also shown in figure 11 for comparison. It can be observed that kT generally increases
when I increases, which is consistent with the RT instability theory. The increase of kT
with I is also consistent with the snapshots shown in figure 3.

The time-averaged transverse wavenumber k̄T is plotted as a function of I in figure 11(d).
The measurement times for kT are indicated by the vertical lines in figures 11(a)–11(c),
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Figure 11. Temporal evolution of transverse wavenumber kmax for the cases (a) W0 at 2.375H, (b) W1 at
1.625H and (c) W2 at 1.25H. The vertical lines indicated the passage times of the longitudinal waves, which
are estimated based on the ωL for the corresponding I. (d) Variation of k̄T with turbulent intensity I, compared
with the RT predictions (3.5).

which correspond to the longitudinal wave passage times estimated based on the dominant
longitudinal frequency ω∗

L for the given I. It is shown that k̄T increases from approximately
3330 to 5100 when I increases from 0 to 0.13. The values of k̄T for I = 0 and 0.13
correspond to approximately 2.5 and 3.9 waves in the domain width. The RT instability
model (3.5) well captures the increasing of trend of k̄T over I. The discrepancy between the
model predictions and the simulation results can be up to 17 %, so the model predictions
can only be used as approximations of k̄T .

3.3.4. Transverse modulation amplitude
The wave amplitude for a given (x∗, z∗) location can be characterized by the root mean
square of the interfacial height fluctuations normalized by H, i.e. ξ∗ = (h′h′)1/2/H. The
variations of ξ∗ with x∗ and z∗ for different cases are shown in figure 12. The wave
amplitude generally increases in the longitudinal direction, although small variations
in the transverse direction are also observed. It should be noted that ξ∗ can be used
to characterize the wave amplitude only when the wave amplitude is small. The noise
observed in figure 12(c) is due to the rolling up and breakup of the waves. The transverse
variations are the most profound for the case W0.

If ξ∗ is averaged in the transverse direction, we can obtain the longitudinal wave
amplitude, i.e. ξ̌L = 〈(h′h′)1/2/H〉. The spatial variation of ξ̌L in x∗ direction is shown
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Figure 13. Spatial variation of (a) longitudinal wave amplitude ξ̌L and (b) transverse modulation amplitude ξ̌T
along the x∗ direction for the cases W0, W1 and W2. The results for the longitudinal wave amplitude ξ∗

L , which
are measured based on the liquid volume fraction fluctuations 〈c′c′〉, are also shown in (a) for comparison.

in figure 13(a). The results for the longitudinal wave amplitude ξ∗
L defined based on the

contours of 〈c′c′〉 = 0.02 (see figure 5a) are also shown for comparison. It can be observed
that, although the values for ξ̌L and ξ∗

L are different, the ratio ξ̌L/ξ∗
L is approximately a

constant for all cases. Therefore, the spatial growth rates for the longitudinal instability
α∗

L will remain the same, no matter if ξ̌L or ξ∗
L is used. The curve of ξ̌L for the case

W0 exhibits some fluctuations, which are due to stronger transverse variations of ξ∗. The
results of ξ∗ at different transverse locations are shown in figure 14. It can be observed that
the ξ∗-x∗ curves are very different for the case W0, while the difference among different
profiles is much smaller for the cases W1 and W2. In spite of the different ξ∗-x∗ curves
at different transverse locations for the case W0, the growth rates α∗

L,W0 are quite similar,
see figure 14(a). Therefore, the measurement of α∗

L for the case W0 is not as uncertain as
it may appear in figures 6(a) and 13(a).

For a given x∗, the deviation of wave amplitude ξ∗ from the transverse mean ξ̌L can
be calculated as ξ∗ − ξ̌L = (h′h′)1/2/H − 〈(h′h′)1/2/H〉. Then, the root mean square of
the deviation, ξ̌T = 〈(ξ∗ − ξ̌L)2〉1/2, can be used to characterize the average amplitude
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Figure 14. Spatial variation of wave amplitude ξ∗ at different z locations for the cases (a) W0, (b) W1 and
(c) W2.

of the transverse modulations, which is plotted as a function of x∗ in figure 13(b). Near
the inlet, ξ̌T is at least an order of magnitude smaller than ξ̌L (ξ̌L/ξ̌T � exp(2.5)). As the
longitudinal wave amplitude grows in x∗, the transverse modulation amplitude also grows
correspondingly. The spatial growth rates of ξ̌T near the inlet are similar for different I. Yet
since the spatial growth of ξ̌L is higher for larger I, the wave amplitude exceeds the linear
regime at a smaller x∗. Beyond that point, the interfacial waves start to deform and break,
then ξ̌T is not valid to characterize the transverse modulation amplitude. For the case W0,
since the longitudinal wave grows more slowly, ξ̌T has a wider x∗ range to grow, reaching
a higher value than for the cases W1 and W2.

3.4. Development and disintegration of 3-D interfacial waves

3.4.1. Wave–gas-stream interaction
When the wave amplitude grows beyond the linear regime, such as ξ∗ > 0.1, the nonlinear
interaction between the interfacial wave and the fast gas stream will influence the
subsequent deformation of the wave and the liquid sheet extended from the wave crest.
The temporal evolutions of the interfaces, the pressure and the velocity magnitude for
the case W0 are shown in figure 15. The first snapshots at t∗ = 327.5 correspond to
approximately the end of the linear regime, and the interfacial wave appears like a lobe
of small amplitude. The continuous growth of the wave introduces perpendicular exposure
of the wave crest to the fast gas stream. As a consequence of that, a high pressure is built
up on the upstream side of the wave, see figure 15(b). The gas flow accelerates over the
wave crest, introducing a low pressure above due to the Bernoulli principle. Furthermore,
the gas flow separates on the downstream side (see figure 15c), which also introduces a low
pressure wake region. The pressure difference leads to an aerodynamic drag that pushes
the wave crest upward and also along the streamwise direction, further destabilizing the
interfacial wave. As a consequence of that, a liquid sheet is extended from the wave crest,
see figure 15(a) at t∗ = 332.5. The Taylor–Culick rim is formed on the edge of the liquid
sheet. It can be observed that the rim is not as smooth as that at the earlier time and
exhibits transverse variation with a higher wavenumber. Multiple mechanisms contribute
to the secondary transverse variations of the wave shape. At first, another RT instability is
triggered due to the acceleration of the rim in the longitudinal direction. Furthermore, the
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Figure 15. Temporal evolutions of the (a) interfaces, (b) pressure and (c) velocity magnitudes for the case
W0, to demonstrate the interaction between the interfacial wave and the gas stream. The interfaces in (a) are
coloured by the streamwise velocity. The pressure and velocity shown in (b,c) are on the x–y plane through the
wave. The frame is moving with the wave to keep the wave located at the centre of the window.

RP instability of the rim can also lead to variation in the rim diameter. Finally, the turbulent
wake of the wave and the interaction between the turbulent vortices and the liquid sheet
can also cause irregular deformation of the liquid sheet.

As the interfacial wave continues to grow, the interaction with the gas stream becomes
more intense and complex. The liquid sheet starts to bend and fold. The thickness of the
liquid sheet at the folding region becomes very small and, as a result, holes are formed in
the liquid sheet. In figure 15(a), it can be observed that, at t∗ = 337.5, the folded segment
of the liquid sheet has completely broken, forming droplets and filaments of different sizes.
A new rim will form at the edge of the unbroken sheet that remains attached to the wave,
and another cycle of wave–gas-stream interaction will occur. Yet as the interfacial wave
is now further away from the inlet and the velocity of the gas stream decreases along the
streamwise direction due to turbulent dissipation, the subsequent interaction between the
interfacial wave and the gas stream will be less intense.

3.4.2. Hole formation and sheet disintegration
The formation and development of the holes in the liquid sheet for the cases W0 and
W2 are shown in figure 16. The w-velocity is shown on the interfaces and also on the
cross-section y − z planes at the hole centres. As can be seen in figure 16(a), at t∗ =
246.25, the thickness of the liquid sheet is highly uneven due to the sheet deformation.
Furthermore, it can be observed that the liquid is moving away from location of minimum
thickness (see figure 16a at t∗ = 246.25). Eventually the two surfaces pinch and a hole is
formed. The pinching process observed here is reminiscent of pinching of liquid neck in
drop formation (Castrejón-Pita et al. 2015; Zhang et al. 2019). After the holes are formed,
the Taylor–Culick (TC) rim develops on the edge of the hole. Due to the capillary effect,
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Figure 16. Formation and development of holes in liquid sheets for the cases (a) W0 and (b) W2. The
w-velocity is plotted on the interfaces and also on the cross-section y − z planes at the hole centres (indicated
by the dashed lines). The frame is moving with the hole to keep the hole located at the centre of the window.

the rim retracts radially, making the holes expand. The speed of hole expansion is dictated
by the rim retraction velocity, namely the TC velocity,

UTC =
√

2σ

ρe
, (3.9)

where e is the liquid sheet thickness. The curvature of the rim has little effect on the
retraction velocity (Agbaglah 2021). Since the thickness of the liquid sheet is non-uniform,
e varies from 14.2 to 6.5 μm near the edge of the hole, see figure 16(a) at t∗ = 247.5,
for which the hole expansion velocity predicted by theory (3.9) is 0.84–1.24 m s−1. The
hole expansion velocity measured from the simulation results is approximately 1.35 m
s−1, which is in reasonable agreement with the TC predictions. When the inlet gas is
turbulent, the gas flow around the sheet exhibits more intense fluctuations, which can be
recognized from the footprints on the interfacial velocity (see figure 16b). The surrounding
turbulence seems to have little effect on the hole expansion speed, which is found to be
similar to that for the case W0. This indicates that the capillary effect still dominates the
hole development. Nevertheless, it is observed that the hole is formed closer to the rim.
As a result, the expansion of the hole will interact with the rim and cause the rim to break
(Agbaglah 2021).

3.4.3. Impact of inlet gas turbulence on sheet breakup
Although the inlet gas turbulence does not change the hole dynamics, it does have a strong
impact on the number of holes formed, and the locations where the holes are formed. The
breakups of the liquid sheet for the W0 and W2 cases are shown in figure 17. For the
case W0, the holes are formed at around x∗ = 4.275, which is much further than the hole
formation location x∗ = 3.025 for the turbulent gas inlet. This is due to smaller growth
rate for the case W0, and as a result, the interaction between the wave and the gas stream
occurs further downstream. Nevertheless, the interfacial wave for the case W0 reaches a
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Figure 17. Breakups of the liquid sheet due to hole formation and development for the cases (a) W0 and
(b) W2. The interfaces are coloured with u-velocity.

larger amplitude and experiences a stronger interaction with the gas stream. Furthermore,
the interfacial wave is accelerated by the gas stream to a higher velocity and is stretched
to form a longer liquid sheet. The folding of the liquid sheet enhances the reduction of
sheet thickness (see also figure 15). Multiple holes arise and expand simultaneously and
the merging of the holes leads to a violent breakup of the folding segment of the liquid
sheet (Agbaglah 2021). The rim of the liquid sheet is detached from the wave, forming
a filament aligned with the transverse direction, see t∗ = 238.75 in figure 17(a). The
detached filament interacts with the gas stream and continues to break into droplets. Due
to the irregular shape of the filament, the breakup dynamics is different from the regular
Rayleigh breakup of a perturbed liquid cylinder (Villermaux et al. 2004).

For the case W2, the transverse wavenumber is higher than that for the case W0.
Therefore, the interfacial wave exhibits narrower lobes and more irregular rims. In the
snapshots shown in figure 17(b), only one hole is seen. By examining all the time
snapshots, it is confirmed that the number of holes formed for the case W2 is significantly
lower than that for the case W0. Since only one hole is formed, instead of merging with
other holes as for the case W0, the hole expands and merges with the rim. The rim
eventually breaks and retracts to form two fingers aligned with the longitudinal direction.
The fingers are stretched by the gas stream and will break and form droplets. Since the size
and orientation of the fingers/filaments formed for the case W2 are distinct from those for
the case W0, the resulting droplet statistics will also be different.

3.5. Droplet statistics
To obtain statistics of droplets formed in the interfacial wave breakup, the cells with liquid
(f > 0) that are connected together are tagged with the same identity. Then, the volume
and centroid coordinates of individual liquid structures can be computed. The details of
the tagging approach can be found in a previous study (Ling et al. 2015).
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Figure 18. (a) Droplet size distribution and (b) PDF based on the time-averaged droplet number for the cases
W0, W1 and W2.

3.5.1. Size distribution
The droplet size distribution for different cases are shown in figure 18. Only the droplets
in the region x∗ < 14 are considered, to exclude the effect of the outflow boundary.
Furthermore, sampling is only performed after the droplet statistics have reached the
statistically stationary state (at approximately t∗ = 200). For all cases, droplets are
collected every 50 time steps, so in total approximately Ns = 3000 samples have been
collected. The sampling time has been verified to be sufficiently long to yield statistically
converged results. Since the droplet number generally decreases with the droplet diameter
d, the size interval �d is increased over d with a scaling ratio 1.15, namely �di+1 =
1.15�di, where i is the interval number. The number of droplets falling into the size
interval centred with the diameter d for all samples is denoted as n. The average droplet
number is then defined as n̄ = n/Ns.

The results for n̄ as a function of d for the cases W0, W1 and W2 are shown in
figure 18(a). It is observed that n̄ for all d generally decreases when I increases. This
is consistent with the observation in figure 17, namely, that the interfacial wave breakup
is less violent when I increases, and as a result, fewer droplets are formed. Nevertheless,
the shapes of the distribution profiles for different I are quite similar, which motivates the
examination of the probability density function (PDF). The droplet size PDF based on the
droplet number is defined as

Pn(d) = n̄(d)

�d
∑

n̄(d)
. (3.10)

The droplet size PDFs for different I are shown in figure 18(b). The profile of Pn is quite
complex and cannot be represented by any typical distribution function. The recent study
by Balachandar et al. (2020) indicates that a combined log–normal and Pareto distribution
is required to represent the complex PDF for the respiratory droplets formed in a coughing
event (Duguid 1946). While the small droplets follow the log–normal distribution, the
larger droplets follow the Pareto distribution. The drop size PDFs for the present problem
for different ranges of droplet size also seem to follow different distribution functions, i.e.
the log–normal, Pareto and exponential distribution functions. The expressions for these
three functions are given as

PL(d) = BL

dσ̂
√

2π
exp

[
−(ln d − μ̂)2

2σ̂ 2

]
, (3.11)
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PP(d) = BP

dα
, (3.12)

PE(d) = BE exp(d/λ), (3.13)

where BL, BP and BE are the corresponding normalization constants for the log–normal,
Pareto and exponential functions, respectively. For the log–normal function, μ̂ and σ̂ are
the expected value and the standard deviation of ln d. While α is the power index for
the Pareto distribution, λ is the characteristic length for the exponential distribution. To
compare the simulation results with the distribution functions, we have used the data for
the case W1 to fit these distributions functions. For convenience of discussion, the droplets
for d � 25 μm, 25 � d � 140 μm and d � 140 μm are referred to as small, medium
and large droplets, the data of which are used to fit (3.11), (3.12) and (3.13), respectively.
The boundaries between different ranges vary slightly with I. The values for the fitting
parameters are BL = 1.14, σ̂ = 0.35, μ̂ = 2.24 for the log–normal function, BP = 0.099,
α = 1.04 for the Pareto function and BE = 0.0035, λ = 95.0 for the exponential function.
The units for these parameters can be determined based on the units for Pn and d, i.e.
(μm)−1 and μm, respectively. As shown in figure 18(b), the fitted distribution functions
generally agree well with the simulation results.

For the large droplets (d � 140 μm), the curves of Pn for different I approximately
collapse to the same exponential function. The exponential tail in the drop size
distribution has been observed in numerous experiments and simulations (Simmons
1977a,b; Marmottant & Villermaux 2004; Ling et al. 2015). For droplets of medium size,
25 � d � 140 μm, the PDF exhibits a power-law decay, namely the Pareto distribution.
The width of the Pareto distribution region increases with the the inlet gas turbulence
intensity I. As a result, the power-law decay is the most profound for the case W2. For
the small droplets d � 25 μm, the shape of Pn is significantly different from that for the
medium droplets. The different PDF profiles may be due to the different droplet formation
mechanisms. While the large number of small droplets are probably generated directly in
the breakup of liquid sheets, see figure 17(a), the medium droplets are produced in the
RP breakup of thicker ligaments and fingers, see figure 17(b). It will be interesting for
future study to identify Pn for different breakup events and to further reveal the physical
reasons behind the different Pn for the small and medium droplets. Following former
studies (Marty 2015; Ling et al. 2017; Balachandar et al. 2020), the log–normal function
has been used to fit Pn for the small droplets, although the narrow range of d may have
placed some uncertainty in the fitting process and whether the log–normal function is
indeed the best fit for the small droplets. It should be noted that the droplets smaller than
8 μm are not accounted here, since those droplets are smaller than approximately one
cell and the formation of these droplets is likely under-resolved. To better examine the
distribution function for the small droplets, more data points are required for d < 8 μm,
which would require further refined simulations. Such simulations require computer time
at least an order of magnitude higher than that for the present simulations and will be
relegated to future works.

3.5.2. Spatial distribution
The spatial distributions of droplet number n̄ in the longitudinal and vertical directions for
different droplet size ranges and the cases W0, W1 and W2 are shown in figure 19. In the
longitudinal direction, n̄ is zero until the interfacial waves break. After that, n̄ increases
with x∗, approximately following the hyperbolic tangent function, see figure 19(a). For the
small and medium droplets, n̄ reaches the maximum around 10 � x∗ � 13. The decrease
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Figure 19. Distribution of n̄ in (a) streamwise and (b) vertical directions for the cases W0, W1 and W2.
The droplets are collected every 50 time steps. The three columns are for the small (12.5–100 μm), medium
(100–200 μm) and large (200–300 μm) droplets, respectively.

in n̄ for x∗ � 13 is due to the coalescence of droplets and the merger of droplets back on the
unbroken liquid layer at the bottom (see figure 3c,d). For large droplets, the decrease of n̄ is
less profound, and n̄ reaches a plateau for large x∗. When the inlet gas turbulence intensity
I increases, several changes are induced. First, the onset of the increase of n̄ occurs at
smaller x∗ due to the faster growth of the longitudinal wave and the earlier breakup of the
interfacial waves. Second, the increase of n̄ becomes more gradual and eventually settles
on a lower plateau. As a result, the curves for W0 and W1 cross at a critical longitudinal
location x∗

c . For x∗ < x∗
c , n̄W1 > n̄W0, or vice versa. The values of x∗

c for the small and
medium droplets are similar, at approximately x∗

c = 7, while that for the large droplets is
larger, at approximately x∗

c = 8.2.
The droplet number distributions in the vertical direction for different droplet size ranges

are shown in figures 19(d)–19( f ). For the small droplets, the maxima of n̄ are at the bottom
plane of the domain for all cases. The droplet number then decreases rapidly with y∗
until y∗ ≈ 1, where the interface is located at the inlet and the decrease of n̄ becomes
more gradual. After that, n̄ decreases approximately exponentially to zero, see figure 19(d).
The accumulation of small droplets near the bottom domain is probably due to the fact
that the small droplets have smaller inertia and thus are easier to be carried by the gas
stream toward the bottom downstream. The medium and larger droplets have larger inertia
and tend to maintain the velocity direction when they are formed. As a result, we see
the maxima of n̄ for the medium and the large droplets are near y∗ = 1, instead. The
vertical location corresponding to the maximized n̄ is denoted by y∗

max (see figure 19e).
It is observed that, for the medium and large droplets, y∗

max decreases with the inlet gas
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turbulence intensity I. This is again due to the faster growth of the longitudinal wave for
the cases with larger I, and as a result, the breakups of the interfacial waves occur in a
lower vertical location (see also figure 3).

4. Conclusions

The effect of inlet gas turbulence on the formation, development and breakup of the
interfacial waves in a two-phase mixing layer is investigated through direct numerical
simulation. The gas and liquid properties and the mean injection velocities are chosen
to place the present case in the absolute instability regime. Turbulent velocity fluctuations
are induced at the gas inlet and a parametric study for the inlet gas turbulence intensity I
is performed. The governing equations are solved using the open-source multiphase flow
solver, PARIS, in which the mass–momentum consistent VOF method is used to capture the
sharp gas–liquid interfaces. To allow a detailed investigation of the transverse development
of the interfacial waves, two different domain widths have been used. The wide domain
consists of approximately 1.6 billion cells.

The temporal evolutions and the frequency spectra for the interfacial height in the near
field show a dominant frequency, confirming that the case is in the absolute instability
regime. The dominant frequency varies little when I � 0.02 but then increases over I after
the threshold. A similar increasing trend over I has been observed for the spatial growth
rate of the longitudinal wave amplitude. When the inlet gas is laminar, the dominant
frequencies and spatial growth rates for the narrow and wide domains are similar. When
the turbulence is present at the gas inlet, deviations between the results for the narrow and
wide domains are observed.

The longitudinal instability introduces vertical motion of the interface. When the
interface moves upward and decelerates toward the gas, the RT instability is triggered,
introducing transverse modulations on the interfacial waves. The transverse variation
is amplified as the wave interacts with the fast gas stream. The selection of dominant
transverse wavenumber is dictated by the RT instability and can be determined by inviscid
temporal stability theory with surface tension. The transverse wavenumber scales with
the longitudinal frequency and thus will also increase with I. The simulation results for
the transverse wavenumber agree well with theoretical predictions. The growth rate of
the transverse instability is estimated to be comparable to the dominant frequency of the
longitudinal instability, affirming the RT instability is responsible for the initiation of the
transverse modulations for the present problem.

The subsequent development of the interfacial wave is controlled by the nonlinear
interaction with the gas stream. When the interfacial wave invades the gas stream, an
aerodynamic drag is developed, which further destabilizes the interfacial waves and
stretches the wave crest to form liquid lobes/sheets. For the laminar gas inlet, the liquid
sheet deforms and folds when it interacts with the gas stream, leading to the formation of
multiple holes in the folding area. The expansion and merging of the holes eventually lead
to a violent disintegration of the liquid sheet, detaching filaments that are aligned with the
transverse direction. In contrast, for the turbulent gas inlet, the lobes are narrower and the
rim is less regular. Fewer holes are formed and the expansion of the holes interacts with
the rim, forming fingers aligned with the longitudinal direction. The different breakup
dynamics of the liquid sheet results in different sizes and orientations of the filaments.
The droplets formed due to the subsequent breakup of the filaments thus exhibit different
statistics.

The numbers of droplets for all sizes are reduced when I increases, although the
PDFs appear to be similar. The droplets of different size ranges are found to follow
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different distribution functions, i.e. the log–normal, Pareto and exponential functions
for the small (8 � d � 25 μm), medium (25 � d � 140 μm) and large (d � 140 μm)
droplets, respectively. The spatial distributions of the droplet number for different size
ranges have also been presented. The increase of the droplet number along the longitudinal
direction is similar to the hyperbolic tangent function and the decrease of droplet number
along the vertical distance away from the mixing layer follows the exponential function.
When I increases, more droplets are formed in the near field and near the bottom of the
domain.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.481.
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