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We call a tree parameter additive if it can be determined recursively as the sum of the

parameter values of all branches, plus a certain toll function. In this paper, we prove

central limit theorems for very general toll functions, provided that they are bounded and

small on average. Simply generated families of trees are considered as well as Pólya trees,

recursive trees and binary search trees, and the results are illustrated by several examples

of parameters for which we prove normal or log-normal limit laws.
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1. Introduction

By an additive tree parameter, we mean a parameter F which satisfies a recursion of the

form

F(T ) =

k∑
i=1

F(Ti) + f(T ),

where T1, T2, . . . , Tk are the branches of the rooted tree T and f is a so-called toll function.

It is consistent with this recursion to set f(•) = F(•), where • denotes a tree consisting of

only a single vertex. A priori, every tree parameter is additive if no further assumptions on

the toll function are made. In the literature, the following special cases have been treated
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most extensively:

• the toll function only depends on the order (number of vertices) of T ,

• the toll function only depends on the root degree of T .

See also the following examples.

• The number of leaves [4, 5, 8, 14, 33] is an additive parameter with toll function

f(T ) =

{
1 T = •,
0 otherwise.

• More generally, the number of vertices of outdegree k [8, 22, 33], with toll function

f(T ) =

{
1 if the root degree of T is k,

0 otherwise.

• The number of full subtrees (i.e., subtrees consisting of a vertex and all its successors)

of size k [1, 4, 5, 10, 14, 16]. Here, the toll function is

f(T ) =

{
1 |T | = k,

0 otherwise.

• The path length [6, 25, 34, 35], with toll function

f(T ) = |T | − 1.

• The log-product of the subtree sizes, also called the shape parameter [11, 13, 28], whose

toll function is

f(T ) = log |T |.

• The number of subtrees [2, 23, 27, 31], i.e., all connected induced subgraphs. To turn it

into an additive parameter, we have to take the logarithm, and the toll function is

somewhat more complicated than in the previous examples.

Note how we distinguish between subtrees (all subgraphs that are themselves trees)

and full subtrees (subtrees consisting of a vertex and all its descendants). The number of

subtrees will be one of our toy examples throughout the paper to demonstrate our results,

and more examples will follow later in the text as well. In this paper, we are considering

rather general toll functions, but we make an assumption on the average growth of f

that allows us to prove central limit theorems for the associated tree parameters F under

various different random tree models: it is assumed that the average of |f|, taken over

all trees of order n, goes to 0 at an exponential rate. As we will see, this assumption is

satisfied for many natural examples.

There are many existing results about additive parameters of various kinds. However,

as mentioned before, the toll functions are often assumed to depend either only on the

tree order or only on the root degree. We allow very general toll functions here, but the

higher degree of generality has a price in that we need to make rather strong assumptions

on their size – we will have to assume exponential decay on average.
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In the conference article [37], the author proved a central limit theorem for additive

parameters under the same assumptions as in the present paper, but only for the class

of labelled trees. This approach, which makes use of the method of moments, seems too

complicated to be applied to more general families of trees, so a different method is used

here. We will consider the following families of (random) trees.

Simply generated families of trees. Simply generated families of trees – introduced by

Meir and Moon [26] more than 30 years ago – are of central interest in this paper. A

simply generated family F of trees is defined by a sequence φ0, φ1, . . . of non-negative

weights, with the additional assumption that φ0 > 0 (typically, φ0 = 1) and φj > 0 for

some j > 1. Let T be a rooted ordered tree (i.e., the order of the children of a vertex

matters). We write Dj(T ) for the number of vertices whose outdegree is j, and we define

the weight of T by

w(T ) =
∏
j�0

φ
Dj (T )
j .

The weights define a natural probability distribution on trees of given order, where the

probability of any tree is proportional to its weight. Amongst others, random plane

trees (φj = 1 for all j), random rooted labelled trees (φj = 1/j!), random d-ary trees

(φ0 = φd = 1 and φj = 0 otherwise), random pruned d-ary trees (φj =
(
d
j

)
) and random

unary–binary trees (φ0 = φ1 = φ2 = 1, φj = 0 otherwise) can be generated in this way.

It is well known that the (weight) generating function of a simply generated family of

trees, namely

T (x) =
∑
T

w(T )x|T |,

where the sum is taken over all rooted ordered trees, satisfies the functional equation

T (x) = xΦ(T (x)),

with

Φ(t) =

∞∑
j=0

φjt
j .

Under certain technical conditions, the asymptotic behaviour of the coefficients of T (x)

follows directly from this functional equation. The following theorem, due to Meir and

Moon, is classical.

Theorem 1.1 ([7, Theorem 3.6]). Let R be the radius of convergence of

Φ(t) =

∞∑
j=0

φjt
j ,

and suppose that there exists some τ ∈ (0, R) with τΦ′(τ) = Φ(τ). Finally, let d be the gcd of

all indices j with φj > 0. Then T (x) has a dominant square-root singularity at ρ = τ/Φ(τ) =
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Φ′(τ)−1 whose asymptotic expansion starts

T (x) = τ −

√
2Φ(τ)

Φ′′(τ)
·
√

1 − x/ρ + O(|1 − x/ρ|). (1.1)

The following asymptotic formula for the coefficients of T (x) holds:

tn = [xn]T (x) = d

√
Φ(τ)

2πΦ′′(τ)
· ρ

−n

n3/2
(1 + O(n−1))

if n ≡ 1 mod d (and tn = 0 otherwise).

Pólya trees and related families. Pólya trees are rooted unordered (and unlabelled) trees,

i.e., the order of the branches is irrelevant. One can also regard them as isomorphism

classes of plane trees. It is a classical result (see [17, eq. (3.1.4)] or [7, Theorem 3.8]) that

their generating function R(x) satisfies

R(x) = x exp

( ∞∑
k=1

1

k
R(xk)

)
,

which can be seen easily from the fact that a Pólya tree consists of the root and an

unordered collection of branches that are themselves Pólya trees.

Just like the generating function of simply generated trees, R(x) has a square-root

singularity at ρ ≈ 0.33832185, from which we obtain the asymptotic number of Pólya

trees of order n:

rn ≈ 0.43992401 · n−3/2 · 2.95576528n.

Pólya trees are also an important step in the enumeration of unrooted unlabelled (‘free’)

trees that is due to Otter [32]. Their generating function is given by

T (x) = R(x) − 1

2
(R(x)2 − R(x2)),

and it follows that the number of unlabelled trees of order n is asymptotically

tn ≈ 0.53494961 · n−5/2 · 2.95576528n.

It is well known that Pólya trees behave like simply generated trees in many ways,

although they do not technically belong to the class of simply generated trees (see [9]).

As it turns out, this also applies to our problems. We also study the related family of

homeomorphically irreducible trees, which do not have vertices of degree 2, motivated by

a graph-theoretical question due to Vince and Wang [36].

Recursive trees. Recursive trees [7, Section 1.3] can be generated by a simple probabilistic

model. At each step, vertex n is (randomly) attached to one of the previous n − 1 vertices.

This means that there are precisely (n − 1)! recursive trees of order n. Recursive trees

belong to the wider class of increasing trees [3]: starting at the root, the labels along

any path are increasing. Instead of a functional equation, the exponential generating

function for increasing trees satisfies a differential equation of the form T ′(x) = Φ(T (x)).
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For recursive trees, it is given by

T ′(x) = exp(T (x)),

with explicit solution T (x) = − log(1 − x).

Binary search trees. A binary search tree of order n is obtained from a (random)

permutation π of {1, 2, . . . , n}: π(1) becomes the root, and π(2), π(3), . . . are inserted

step by step in such a way that labels that are smaller than the root label are stored in

the left subtree, while labels greater than the root label are stored in the right subtree.

Random binary search trees are equivalent to random binary increasing trees (trees

with increasing labels such that each vertex has either no child, or one left child, or one

right child, or two children) under the uniform model, and they can also be regarded as an

analytic model for the famous Quicksort algorithm. Our final section deals with additive

parameters of binary search trees. Their exponential generating function also satisfies a

differential equation, namely

T ′(x) = (1 + T (x))2,

whose explicit solution is T (x) = x/(1 − x).

Before we start with our analysis, let us review some results on additive parameters

from the literature. Parameters that only depend on vertex (out-)degrees are classical;

see [7, Sections 3.2 and 6.2.4] for a thorough treatment. Their distribution is Gaussian

under very general conditions. In particular, the number of vertices of a certain degree d

is normally distributed in all of the aforementioned cases (simply generated trees, Pólya

trees, recursive trees, binary search trees). The same is true for the number of occurrences

of certain patterns in random simply generated trees and Pólya trees [7, Section 3.3].

However, not all additive parameters follow a Gaussian distribution in the limit: the

typical counterexample is the internal path length, which was shown by Takács to follow

an Airy distribution [34, 35] for simply generated families of trees. This is also important

in the analysis of the Wiener index (the sum of all distances between pairs of vertices) [21]

that can also be seen as an additive parameter.

The distributional behaviour of additive tree parameters depends very much on the

growth of the associated toll functions. This becomes particularly clear in the paper of

Fill and Kapur [13] in which the special toll functions f(T ) = |T |α and f(T ) = log |T | are

studied for pruned binary trees (Catalan trees). Fill, Flajolet and Kapur [12] show how

to make use of Hadamard products to find the mean behaviour of additive parameters if

the toll function only depends on the tree order.

Hwang and Neininger [19] study the phase transitions that occur as the toll function

varies. They consider binary search trees (in disguise, by looking at the Quicksort recursion)

with toll functions that only depend on the order, but may otherwise be random.

2. Simply generated families of trees

We start with our analysis of simply generated trees. The aim of this section is the proof

of the following theorem.
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Theorem 2.1. Consider a simply generated family F of trees that satisfies the conditions of

Theorem 1.1, and assume that the toll function f is bounded and satisfies∑
|T |=n w(T )|f(T )|∑

|T |=n w(T )
= O(cn)

for a constant c ∈ (0, 1).

Let Tn denote a random tree of order n in F . The mean μn = E(F(Tn)) of the parameter

F is asymptotically

μn = μn + O(1),

where the constant μ is given by

μ =
1

τ

∑
T

w(T )f(T )ρ|T |.

The variance σ2
n = V(F(Tn)) of F is asymptotically

σ2
n = σ2n + O(1),

where

σ2 = μ2

(
1 − Φ(τ)

τ2Φ′′(τ)

)
+

1

τ

∑
T

w(T )f(T )(2F(T ) − f(T ))ρ|T | − 2μ

τ

∑
T

w(T )f(T )|T |ρ|T |.

Moreover, if σ2 �= 0, the renormalized random variable

F(Tn) − μn

σn

converges weakly to a standard normal distribution.

Remark 1. There are instances of tree parameters where σ2 is indeed zero, e.g., the

number of leaves in binary trees.

Remark 2. This and all results for other tree classes remain true if the toll function f(T )

is replaced by f(T ) + C for some constant C , for the simple reason that this only changes

F(T ) by a deterministic quantity, namely C|T |.

Our proof is based on an analysis of the bivariate generating function

Y (x, u) =
∑
T

w(T )x|T |uF(T ),

which satisfies

xΦ(Y (x, u)) = x
∑
j�0

φj

∑
T1 ,T2 ,...,Tj

j∏
i=1

w(Ti)x
|Ti|uF(Ti)

=
∑
T

w(T )x|T |uF(T )−f(T ). (2.1)
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The right-hand side of this equation is ‘almost’ equal to Y (x, u), except for the additional

term −f(T ) in the exponent. Of course, for u = 1, the equation reduces to

Y (x, 1) = xΦ(Y (x, 1)).

Since the toll function f can be rather arbitrary, the right-hand side cannot usually

be expressed algebraically in terms of Y (x, u) and elementary functions. However, our

assumption on the toll function allows us to obtain analytic information as we will see

later. We start with a brief discussion of the moments, although this is technically not

necessary since the general theorem that we are going to apply actually covers mean and

variance as well. Throughout the proof we assume, without too much loss of generality,

that the parameter d in Theorem 1.1 is 1.

2.1. Moments

In order to determine the asymptotic behaviour of the moments (with precise error terms,

as stated in the theorem), we need to consider the partial derivatives with respect to u.

Differentiating (2.1) with respect to u and setting u = 1, we get

xΦ′(Y (x, 1))Yu(x, 1) =
∑
T

w(T )(F(T ) − f(T ))x|T | = Yu(x, 1) −
∑
T

w(T )f(T )x|T |.

On the other hand, differentiating with respect to x yields

Φ(Y (x, 1)) + xΦ′(Y (x, 1))Yx(x, 1) = Yx(x, 1).

Comparing the two, we find that

Yu(x, 1) =
xYx(x, 1)

Y (x, 1)

∑
T

w(T )f(T )x|T |.

The same can be done with the second derivative: differentiating (2.1) with respect to u

twice and setting u = 1 yields

xΦ′′(Y (x, 1))Yu(x, 1)2 + xΦ′(Y (x, 1))Yuu(x, 1)

=
∑
T

w(T )(F(T ) − f(T ))(F(T ) − f(T ) − 1)x|T |

= Yuu(x, 1) −
∑
T

w(T )f(T )(2F(T ) − f(T ) − 1)x|T |.

Set

H1(x) =
∑
T

w(T )f(T )x|T | and H2(x) =
∑
T

w(T )f(T )(2F(T ) − f(T ) − 1)x|T |.

By the assumptions on the toll function, H1 has a larger radius of convergence than

Y (x, 1), and so it is analytic at the dominating singularity ρ of Y (x, 1). The same is true

for H2(x), since |F(T )| = O(|T |) by the boundedness of f. Now the asymptotic expansion

of Y (x, 1) around the dominating singularity (Y (x, 1) = T (x) in the notation of (1.1))

gives us the asymptotic behaviour of Yu(x, 1) as well: since H1(x) is analytic at ρ, we have

Yu(x, 1) ∼ H1(ρ)

τ
xYx(x, 1) ∼ 1

2τ

√
2Φ(τ)

Φ′′(τ)
H1(ρ)

(
1 − x

ρ

)−1/2

.
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It now follows by means of singularity analysis [15, Chapter VI] that the mean is

asymptotically equal to τ−1H1(ρ)n + O(1). The variance can be treated similarly.

2.2. Limiting distribution

To prove convergence to a Gaussian limit distribution, we make use of the following

general result (see [7, Theorem 2.23]).

Lemma 2.2. Suppose that

F(x, y, u) =

∞∑
n,m=0

Fn,m(u)xnym

is an analytic function in x, y and u around (0, 0, 1) such that F(0, y, u) ≡ 0, F(x, 0, u) �≡ 0

and all coefficients Fn,m(1) of F(x, y, 1) are real and non-negative. Moreover, let y = y(x, u)

be the unique solution of the functional equation

y = F(x, y, u)

with y(0, u) = 0. Assume further that there exist positive solutions x = x0 and y = y0 of the

system of equations

y = F(x, y, 1),

1 = Fy(x, y, 1),

with Fx(x0, y0, 1) �= 0 and Fyy(x0, y0, 1) �= 0. Let the sequence of random variables X1, X2, . . .

be defined by their probability generating functions

E(uXn ) =
[xn]y(x, u)

[xn]y(x, 1)
.

Then there are constants μ � 0 and σ2 � 0 such that

E(Xn) = μn + O(1) and V(Xn) = σ2n + O(1).

Here, μ = Fu(x0, y0, 1)/(x0Fx(x0, y0, 1)), and σ2 can also be represented in terms of partial

derivatives of F at (x0, y0, 1). Moreover, if σ2 �= 0, then Xn (suitably renormalized ) converges

weakly to a normal distribution:

Xn − E(Xn)√
V(Xn)

d→ N(0, 1).

Going back to the functional equation (2.1), let us rewrite it as

xΦ(Y (x, u)) =
∑
T

w(T )x|T |uF(T )−f(T ) = Y (x, u) −
∑
T

w(T )x|T |uF(T )(1 − u−f(T )).

By the boundedness of f, we have

|1 − u−f(T )| = O(|f(T )|)

https://doi.org/10.1017/S0963548314000443 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000443


Central Limit Theorems for Additive Tree Parameters with Small Toll Functions 337

Table 1. Values of μ and σ2 for the distribution of the number of leaves in different families of trees

Tree family μ σ2

Labelled trees, Φ(t) = et
1

e

e − 2

e2

Plane trees, Φ(t) = (1 − t)−1 1

2

1

8

Pruned d-ary trees, Φ(t) = (1 + t)d
(
d − 1

d

)d (
d − 1

d

)d

− 2d − 1

d − 1

(
d − 1

d

)2d

Unary–binary trees, Φ(t) = 1 + t + t2
1

3

1

18

if u is restricted to a fixed disk around 1. It follows (once again by the exponential decay

of the average of |f(T )|) that the function∑
T

w(T )x|T |uF(T )(1 − u−f(T ))

is analytic in x in a circle of radius R(δ) > ρ around the origin if |u − 1| < δ for a suitable

δ > 0, which makes Lemma 2.2 applicable. The function F(x, y, u) is given by

F(x, y, u) = xΦ(y) +
∑
T

w(T )x|T |uF(T )(1 − u−f(T ))

in this specific case, and all technical conditions are easily verified.

2.3. Examples

Let us now consider a couple of examples that show how our main theorem is applied. As

a first example, we study the case of the number of leaves (and generalizations thereof),

which is quite simple and also well known. The other examples are new and do not seem

to be covered by other results in the literature.

2.3.1. The number of leaves and generalizations. The number of leaves is perhaps the

simplest and most classical example of an additive tree parameter. Recall that the

corresponding toll function is given by

f(T ) =

{
1 T = •,
0 otherwise.

Obviously, all conditions are satisfied, which means that we obtain the well-known central

limit theorem for the number of leaves (see [7, Theorem 3.13]) as a special case of

Theorem 2.1. Explicit values of mean and variance are given in Table 1.

This example can be generalized in many different ways, for instance to the number of

full subtrees of order k or at most k (equivalently, the number of vertices with exactly

k − 1 or at most k − 1 descendants). The associated toll functions are

f(T ) =

{
1 |T | = k,

0 otherwise
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and

f(T ) =

{
1 |T | � k,

0 otherwise,

respectively. Even more generally, if S is a set of trees (sufficiently ‘sparse’; otherwise, no

conditions on S need to be made), then the toll function

f(T ) =

{
1 T ∈ S ,
0 otherwise

gives rise to a tree parameter F that counts the number of all full subtrees in S . For

instance, if S is the set of all stars (rooted at their centres), then F counts the number of

vertices whose children are all leaves. For plane trees, the constants μ and σ2 associated

with this parameter are

μ = 2

∞∑
n=2

4−n =
1

6

and

σ2 =
11

216
.

For labelled trees, the values

μ = e−1(e1/e − 1) and σ2 = e−3(e1/e − 1)(e2 + 2e − 2(e + 1)e1/e)

have already been determined in [37]. Generalizing further, we can for example consider

the number of vertices in plane trees for which the longest path to a leaf has length k

(equivalently, the full subtree S rooted at the vertex has height h(S) = k). It turns out that

their number satisfies a central limit theorem with

μk = 2
∑

T :h(T )=k

4−|T | =
1

(k + 1)(k + 2)

and

σ2
k =

2k2 + 6k + 3

6(k + 1)2(k + 2)2
.

2.3.2. The number of antichains and subtrees. The number of antichains in plane trees

was studied, amongst other parameters, in a paper by Klazar [23,24]: we are considering

a rooted tree as the Hasse diagram of a poset in this context, and we are counting all

possible vertex subsets that form an antichain. Klazar proved that the average number of

antichains in a random plane tree of order n is asymptotically equal to

4√
15

·
(

25

16

)n

.

Our goal here is to show that it asymptotically follows a log-normal distribution, even for

arbitrary simply generated families of trees.
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Let a(T ) denote the number of (non-empty) antichains of a rooted tree T whose

branches are T1, T2, . . . , Tk . An antichain either consists only of the root or of a union of

arbitrary (possibly empty) antichains in all the branches, hence we have

a(T ) =

k∏
i=1

(1 + a(Ti)).

Note here that the product counts all possible combinations of antichains in the branches,

including the empty set. However, the antichain consisting only of the root makes up for

it. We can rewrite the recursion as

log(a(T ) + 1) =

k∑
i=1

log(1 + a(Ti)) + log(1 + a(T )−1).

Hence log(a(T ) + 1) can be seen as an additive parameter with toll function

f(T ) = log(1 + a(T )−1).

This may seem useless, since the toll function itself depends on the parameter a. However,

a priori estimates are sufficient to show that the toll function does indeed satisfy our

conditions. It is clearly bounded, since a(T ) � 1 for all trees T . Moreover, since a(T ) is

exponentially large for most trees, f(T ) is small on average. To see why this is true, note

that every set of leaves is an antichain. Hence if 	(T ) is the number of leaves, we have

a(T ) � 2	(T ) and thus

0 < f(T ) = log(1 + a(T )−1) < 2−	(T ).

We have already considered the number of leaves in the previous example and found

that it is linear in |T | on average, hence it follows from this inequality that f(T ) is

exponentially small on average. Let us discuss the details in the special case of pruned

binary trees (Φ(t) = (1 + t)2); other simply generated families can be treated in the same

way. The bivariate generating function, where u marks the number of leaves, is

∑
T

x|T |u	(T ) =
1 − 2x −

√
(1 − 2x)2 − 4x2u

2x
.

For our purposes, we need the special case u = 1/2:

∑
|T |=n

|f(T )| �
∑

|T |=n

2−	(T ) = [xn]
1 − 2x −

√
1 − 4x + 2x2

2x
.

The dominating singularity is 1 − 1/
√

2. Singularity analysis yields

[xn]
1 − 2x −

√
1 − 4x + 2x2

2x
∼

√
1 +

√
2

2
√
πn3/2

· (2 +
√

2)n.

Since the number of pruned binary trees of order n is

1

n + 1

(
2n

n

)
∼ π−1/2n−3/24n,
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we obtain ∑
|T |=n f(T )∑

|T |=n 1
= O

((
2 +

√
2

4

)n)
,

which proves that the conditions of Theorem 2.1 are satisfied. The difference between

log a(T ) and log(a(T ) + 1) is of course small, so it follows that the number of antichains

is asymptotically log-normally distributed for pruned binary trees (and other simply

generated families as well by the same argument). The numerical values of μ and σ2 for

pruned binary trees are

μ ≈ 0.272, σ2 ≈ 0.034.

Remark 3. It should be mentioned how the numerical values are computed. The series

for the mean and the variance both converge at an exponential rate, so their values can

be determined quite accurately from only a few terms. We compute the values of a(T ) for

trees of small order (up to about 15 to 20 vertices) explicitly and ignore all other trees

in the expressions for mean and variance (or replace them by upper and lower bounds).

We can make the estimates for the toll function effective to bound the resulting error.

However, it is quite difficult to compute the constants with higher accuracy than just a few

digits, since explicitly calculating a(T ) for all trees up to a certain order is only feasible if

this order is small. All numerical values here and in the following are given to the highest

accuracy that we were able to obtain by means of this method.

The number of subtrees is closely related to the number of antichains. Indeed, there is

a trivial bijection between antichains and subtrees that contain the root: for any subtree

of a rooted tree that contains the root, the leaves form an antichain (we only count the

root as a leaf in this context if it is the only vertex of the subtree), and this can easily be

reversed.

The enumeration of subtrees in specific families of simply generated trees has been

studied quite extensively by Meir and Moon [27], Baron and Drmota [2] and Moon [31].

There are even some nice exact counting formulas in this context, but no results on the

distribution so far. It turns out that the distributions of the number of antichains and the

number of subtrees are (upon taking the logarithm) essentially identical. If s(T ) denotes

the number of subtrees, then clearly a(T ) � s(T ) by the bijection between antichains

and subtrees containing the root described above. On the other hand, we also have

s(T ) � |T |a(T ), as can be seen by another simple argument. Any subtree of T is uniquely

characterized by its root (the closest vertex to the root of T ) and its leaves (again counting

the root only as a leaf if it is the only vertex). The set of leaves can be any antichain, and

there are at most |T | choices for the subtree root, so the inequality follows immediately.

We conclude that log s(T ) = log a(T ) + O(log |T |), which means that the central limit

theorem carries over to the number of subtrees, with the same constants: μ ≈ 0.272 and

σ2 ≈ 0.034 for pruned binary trees. For labelled trees, the values μ ≈ 0.35 and σ2 ≈ 0.04

have already been determined in [37].
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2.3.3. The number of maximal antichains. This example is also taken from Klazar’s paper

[23]; an antichain is maximal if it is not a proper subset of another antichain. Let m(T )

denote the number of maximal antichains of a tree T . The parameter m can be computed

recursively from the branches T1, T2, . . . , Tk as follows:

m(T ) = 1 +

k∏
i=1

m(Ti),

since a maximal antichain is either a collection of maximal antichains in all the branches

or consists of the root only. As in the previous example, we can rewrite this as

logm(T ) =

k∑
i=1

logm(Ti) − log(1 − m(T )−1),

which means that logm(T ) is an additive parameter with toll function

f(T ) =

{
0 T = •,
− log(1 − m(T )−1) otherwise.

Theorem 2.1 shows that the limiting distribution is again a log-normal law; the technical

conditions can be verified in the same way as in the previous section (in place of the

number of leaves, one can use the number of full subtrees of order 2 in the argument).

The constants μ and σ2 in this example are (for pruned binary trees)

μ ≈ 0.175, σ2 ≈ 0.03.

2.3.4. The shape guessing game. The purpose of this (perhaps not very serious) example

is to show that our theorems can deal with toll functions that are defined in a rather

complicated way. Let a plane tree T be given. A player plays the following guessing

game: she tries to predict the precise shape of T . If she succeeds, her score is the size of

the tree. If not, she is given the root degree and the sizes of the branches, and repeats the

guessing game for each of the branches. She receives the sum of the branch scores as her

total score. It is clear that some trees (e.g., a star) are much more easily ‘guessable’ in this

way than others (e.g., a path). What can be said about the distribution of the expected

score?

Let S denote the expected total score, and let s be the associated toll function. Moreover,

we write tn for the total number of plane trees of order n. For a tree T of order n with

branches T1, T2, . . . , Tk , we have

s(T ) =
1

tn

(
n −

k∑
i=1

S(Ti)

)
,

since the probability of guessing correctly is 1/tn, in which case the score is n rather

than the otherwise expected
∑k

i=1 S(Ti). Clearly, 0 < s(T ) < n/tn, and since tn grows

exponentially, the conditions of Theorem 2.1 are satisfied. We find that the expected score

associated with a tree is asymptotically normally distributed with mean ∼ 0.6698n and

variance ∼ 0.1193n.
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3. Pólya trees and similar families

3.1. Pólya trees

Our technique also applies to the family of Pólya trees. Once again, we define a bivariate

generating function

Y (x, u) =
∑
T

w(T )x|T |uF(T ),

where the sum is over all Pólya trees T . The analogue of the functional equation (2.1) is

now

x exp

( ∞∑
k=1

1

k
Y (xk, uk)

)
=

∑
T

x|T |uF(T )−f(T ). (3.1)

The key observation in the analysis of Pólya trees is the fact that only the first term in

the infinite series matters asymptotically, since the rest of the sum has a larger radius of

convergence. This allows us to prove an analogue of Theorem 2.1 for Pólya trees.

Theorem 3.1. Let tn denote the number of Pólya trees of order n. Assume that the toll

function f is bounded and satisfies∑
|T |=n |f(T )|

tn
= O(cn)

for a constant c ∈ (0, 1), the sum being over all Pólya trees of order n.

Let Tn denote a random Pólya tree of order n. The mean μn = E(F(Tn)) of the parameter

F is asymptotically

μn = μn + O(1),

where the constant μ is given by

μ =

∑
T

(
f(T )ρ|T | + F(T )

ρ2|T |

1 − ρ|T |

)

1 +
∑∞

n=1 ntn
ρ2n

1 − ρn

.

The variance σ2
n = V(F(Tn)) of F is asymptotically

σ2
n = σ2n + O(1)

for a constant σ2 � 0. Moreover, if σ2 �= 0, the renormalized random variable

F(Tn) − μn

σn

converges weakly to a standard normal distribution.

Remark 4. The most remarkable difference from Theorem 2.1 is perhaps the formula

for the constant μ. An explicit expression can be given for the variance as well, but it is

rather long and complicated.
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Proof. One can solve the equation (3.1) ‘explicitly’ for Y (x, u): setting

U(x, u) =

∞∑
k=2

1

k
Y (xk, uk)

and

H(x, u) =
∑
T

x|T |uF(T )(1 − u−f(T )),

we have

Y (x, u) = R(xeH(x,u)+U(x,u)) + H(x, u) = −W (−xeH(x,u)+U(x,u)) + H(x, u), (3.2)

where

R(x) =

∞∑
n=1

nn−1

n!
xn

is the exponential generating function for rooted labelled trees, and W (x) is the closely

related Lambert W -function. They satisfy the functional equations R(x) = x exp(R(x)) and

x = W (x) exp(W (x)) respectively. It is well known that R(x) has a square-root singularity

at x = 1/e with R(1/e) = 1, which carries over to Y (x, u) – in particular, Y (x, 1) has a

singularity at ρ ≈ 0.33832185 with Y (ρ, 1) = 1.

The treatment of mean and variance is analogous to simply generating trees: differen-

tiating (3.1) with respect to u and plugging in u = 1, we obtain

Y (x, 1)

(
Yu(x, 1) +

∑
k�2

Yu(x
k, 1)

)
= Yu(x, 1) −

∑
T

f(T )x|T |,

and thus

Yu(x, 1) =

∑
T f(T )x|T | + Y (x, 1)

∑
k�2 Yu(x

k, 1)

1 − Y (x, 1)
.

Likewise,

xYx(x, 1) =
Y (x, 1)

(
1 +

∑
k�2 x

kYx(x
k, 1)

)
1 − Y (x, 1)

and thus

Yu(x, 1) = xYx(x, 1) ·
∑

T f(T )x|T | + Y (x, 1)
∑

k�2 Yu(x
k, 1)

Y (x, 1)
(
1 +

∑
k�2 x

kYx(xk, 1)
) .

The value of the fraction at x = ρ is exactly the constant μ as stated in the theorem (as can

be seen by some elementary manipulations, also making use of the fact that Y (ρ, 1) = 1).

The asymptotic formula for the mean can now be obtained by another application of

singularity analysis.

The variance is again treated in a similar fashion, and the limiting distribution follows

either from the explicit representation (3.2) by direct singularity analysis and Hwang’s

quasi-power theorem (see [18] or [15, Theorem IX.8]), or by means of Lemma 2.2

again.
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3.1.1. Antichains and subtrees in Pólya trees. Let us now apply our general result to

the example of the number of antichains and subtrees in Pólya trees. The technical

conditions on the toll function are satisfied for the same reason, and the step from

antichains/subtrees containing the root to all subtrees can be performed in the same way.

The result is essentially the same: the logarithm of the number of antichains (or the

number of subtrees that contain the root) asymptotically follows a Gaussian distribution,

and the mean and variance are of linear order with constants that differ only slightly

from labelled trees: μ ≈ 0.38, σ2 ≈ 0.04. The same is true for the number of all subtrees

(that do not necessarily contain the root) for the same reason as for simply generated

trees (see Section 2.3.2). It can also be carried over easily to unrooted (free) trees.

3.2. Homeomorphically irreducible trees and a question of Vince and Wang

The same techniques apply to other similar classes of trees as well. As an example, let us

consider homeomorphically irreducible trees, i.e., trees that do not have vertices of degree

2, motivated by a question posed by Vince and Wang [36]. They were considering the

average subtree order of trees (the average subtree order, first studied by Jamison [20],

is the arithmetic mean of the orders of all subtrees), and asked for the average of this

parameter over all homeomorphically irreducible trees (which play a special role in this

context). They mention that Meir and Moon proved the average to be 1 − e−1 ≈ 0.6321

for labelled trees. However, this is only true under a rather unintuitive probabilistic model

that involves taking all subtrees of all labelled trees of given order and drawing one of

them randomly. It seems much more natural to determine the mean subtree order of each

tree first and to take the average of all the mean subtree orders, which makes a small yet

noticeable difference.

The aim of this section is to provide an answer to the question of Vince and Wang.

As already outlined in [37], the average subtree order is also an additive parameter that

satisfies our conditions.

The enumeration of homeomorphically irreducible trees is nicely described in [17,

Section 3.3]. First of all, we have to consider Pólya trees with the property that no vertex

has outdegree 1. The functional equation only changes slightly:

x exp

( ∞∑
k=1

1

k
Y (xk, uk)

)
− xY (x, u) =

∑
T

x|T |uF(T )−f(T ),

so Lemma 2.2 is still applicable. Now let us verify that the average subtree order does

indeed satisfy the required conditions. For a rooted tree T with branches T1, T2, . . . , Tk ,

we write a(T ) for the number of subtrees that contain the root (which, as we know, is

equal to the number of antichains) and b(T ) for the sum of their orders. Then

a(T ) =

k∏
i=1

(1 + a(T ))

as in Section 2.3.2, and

b(T ) = a(T ) +

k∑
i=1

b(Ti)
∏
j �=i

(1 + a(Tj)).
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The first term takes the root into account, and the ith term in the sum counts the total

number of vertices in branch Ti in all subtrees of T that contain the root. This simplifies

to

b(T )

a(T )
= 1 +

n∑
i=1

b(Ti)

1 + a(Ti)
.

Thus the fraction b(T )/(a(T ) + 1) is an additive parameter with toll function

f(T ) = 1 − b(T )

a(T )
+

b(T )

1 + a(T )
= 1 − b(T )

a(T )(1 + a(T ))
.

Clearly, b(T )/a(T ) � |T |. Recall also that a(T ) � 2	(T ), where 	(T ) is the number of

leaves. For trees without vertices of outdegree 1, the number of leaves is at least (|T | +

1)/2, and therefore f(T ) − 1 is exponentially small. By Remark 2, this means that our

auxiliary function b(T )/(a(T ) + 1) satisfies the necessary conditions and thus a central

limit theorem.

The difference between b(T )/a(T ) and b(T )/(a(T ) + 1) is exponentially small and thus

irrelevant for the distribution. However, so far we have only taken into account subtrees

that contain the root. To complete the argument, we have to make use of an idea that was

outlined in [37]: a random unrooted homeomorphically irreducible tree has almost surely

a unique centroid, and this centroid has at least three branches of linear order (see [29,30]

on distributional properties of centroids and their branches; homeomorphically irreducible

trees are not specifically mentioned there, but the results are the same). Because of that,

only a proportion of the subtrees that is exponentially small does not contain the centroid,

so that all others can be ignored. Conditioned on the size of the centroid branches, each

of them can be regarded as a random rooted (Pólya) tree without vertices of outdegree

1, and the branches are independent of each other. Thus the mean subtree order in the

whole tree is essentially (up to a small error term) the sum of the mean subtree orders in

the centroid branches, and these summands are all independent. Since the convolution of

independent Gaussian random variables is still Gaussian, this completes the argument.

Summing up: the mean subtree order in a random homeomorphically irreducible tree is

asymptotically normally distributed with mean and variance of linear order. The answer

to the question of Vince and Wang is that the average of the mean subtree order over all

homeomorphically irreducible tree is asymptotically ∼ μn, where μ ≈ 0.625. This should

be compared to ordinary Pólya trees (or also unrooted trees), where the mean is slightly

higher (μ ≈ 0.648).

4. Recursive trees and binary search trees

A result analogous to Theorem 2.1 also holds for recursive trees. It is somewhat more

complicated to extend it to more general families of increasing trees [3], since the

singularity type of the generating function strongly depends on the family of trees

considered. We only treat the case of recursive trees and binary search trees in more

detail, two important special cases that have been studied extensively. Let us begin with

a theorem for recursive trees.
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Theorem 4.1. Assume that the toll function f is bounded and satisfies∑
|T |=n |f(T )|
(n − 1)!

= O(cn)

for a constant c ∈ (0, 1), the sum being over all recursive trees T of order n.

Let Tn denote a random recursive tree of order n. The mean μn = E(F(Tn)) of the

parameter F is asymptotically

μn = μn + O(αn)

for any α ∈ (c, 1), where the constant μ is given by

μ =
∑
T

f(T )

(|T | + 1)!
.

The variance σ2
n = V(F(Tn)) of F is asymptotically

σ2
n = σ2n + O(αn),

again for any α ∈ (c, 1). Here, the constant σ2 is given by

σ2 =
∑
T

f(T )(2F(T ) − f(T ))

(|T | + 1)!

+
∑
T1

∑
T2

f(T1)f(T2)

(|T1| + 1)!(|T2| + 1)!

(
|T1||T2|

|T1| + |T2| + 1
− |T1| − |T2|

)
,

all sums being over all recursive trees. Moreover, if σ2 �= 0, then the renormalized random

variable

F(Tn) − μn

σn

converges weakly to a standard normal distribution.

Remark 5. The strong, exponentially small error terms in Theorem 4.1 and later in

Theorem 4.2 are quite remarkable: they stem from the fact that the generating functions

have pole singularities rather than square-root singularities.

Once again, we make use of a bivariate generating function, which is now necessarily

an exponential generating function

Y (x, u) =
∑
T

1

|T |!x
|T |uF(T ),

the sum being over all recursive trees. The analogue of (2.1), which is obtained in the

same way, reads

exp(Y (x, u)) =
∑
T

1

(|T | − 1)!
x|T |−1uF(T )−f(T ). (4.1)

For u = 1, this becomes the familiar differential equation

Yx(x, 1) = exp(Y (x, 1)).
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4.1. Moments

Differentiating (4.1) with respect to u and plugging in u = 1, we obtain

exp(Y (x, 1))Yu(x, 1) =
∑
T

1

(|T | − 1)!
(F(T ) − f(T ))x|T |−1

= Yux(x, 1) −
∑
T

f(T )

(|T | − 1)!
x|T |−1,

which is a linear differential equation in Yu(x, 1). Now recall that the exponential generating

function for recursive trees is Y (x, 1) = − log(1 − x). Then we are left with

Yux(x, 1) =
Yu(x, 1)

1 − x
+

∑
T

f(T )

(|T | − 1)!
x|T |−1,

and the solution to this differential equation is given by

Yu(x, 1) =
1

1 − x

∫ x

0

(1 − v)
∑
T

f(T )

(|T | − 1)!
v|T |−1 dv

=
1

1 − x

∑
T

f(T )

(|T | + 1)!
(|T | + 1 − |T |x)x|T |

=
1

1 − x

∑
T

f(T )

(|T | + 1)!
x|T | +

∑
T

f(T )|T |
(|T | + 1)!

x|T |.

In the same way, we obtain

Yuu(x, 1) =
1

1 − x

∫ x

0

(
Yu(v, 1)2 + (1 − v)

∑
T

f(T )

(|T | − 1)!
(2F(T ) − f(T ) − 1)v|T |−1

)
dv

=
x

(1 − x)2

(∑
T

f(T )

(|T | + 1)!
x|T |

)2

+
1

1 − x

∫ x

0

((∑
T

f(T )|T |
(|T | + 1)!

v|T |
)2

+ (1 − v)
∑
T

f(T )

(|T | − 1)!
(2F(T ) − f(T ) − 1)v|T |−1

)
dv.

In view of our assumptions on the toll function, the radius of convergence of the series

∑
T

f(T )|T |
(|T | + 1)!

x|T |

is at least c−1 > 1, so it represents an analytic function in the circle around 0 of radius

c−1, in particular at 1. The same holds for all the series over all recursive trees in the two

formulas above. Singularity analysis (in the meromorphic setting, thus with strong error

term; see [15, Theorem IV.10]) now shows that

[xn]Yu(x, 1) =
∑
T

f(T )

(|T | + 1)!
+ O(αn)

for every α ∈ (c, 1), so we also have

μn = μn + O(αn)
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for every α ∈ (c, 1), where

μ =
∑
T

f(T )

(|T | + 1)!
.

Applying singularity analysis to Yuu(x, 1) as well, we obtain an asymptotic formula for the

variance:

σ2
n = σ2n + O(αn)

for every α ∈ (c, 1), where

σ2 =
∑
T

f(T )(2F(T ) − f(T ))

(|T | + 1)!

+
∑
T1

∑
T2

f(T1)f(T2)

(|T1| + 1)!(|T2| + 1)!

(
|T1||T2|

|T1| + |T2| + 1
− |T1| − |T2|

)
.

4.2. Limiting distribution

In order to prove the convergence to a limiting distribution, we split the right-hand side

of (4.1) in very much the same way as we did in the case of simply generated families of

trees: we have

exp(Y (x, u)) = Yx(x, u) −
∑
T

1

(|T | − 1)!
x|T |−1uF(T )(1 − u−f(T )).

Now define

H(x, u) =
∑
T

1

|T |!x
|T |uF(T )(1 − u−f(T )),

so that

∂

∂x
(Y (x, u) − H(x, u)) = exp(Y (x, u)).

H(x, u) is analytic (as a function of x) in a larger region than Y (x, u) if u lies in a suitable

neighbourhood of 1, by the same arguments that we used for simply generated families

of trees. If we substitute U(x, u) = Y (x, u) − H(x, u), we are left with

Ux(x, u) = exp(U(x, u) + H(x, u))

and U(0, u) = 0. The solution to this differential equation is given by

U(x, u) = − log

(
1 −

∫ x

0

exp(H(v, u)) dv

)
.

Obviously, H(v, 1) = 0, so we get U(x, 1) = Y (x, 1) = − log(1 − x), as it should be. Note

that the type of the singularity is still logarithmic, and the dominating singularity is

located at the point ρ = ρ(u), for which∫ ρ

0

exp(H(v, u)) dv = 1.
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Note also that

d

dx

∫ x

0

exp(H(v, u)) dv = exp(H(x, u)) �= 0,

hence if u is restricted to a suitable neighbourhood around 1, then ρ is unique and analytic

as a function of u. The asymptotic expansion of U around the dominating singularity ρ

is found as follows:

U(x, u) = − log

(
1 −

∫ x

0

exp(H(v, u)) dv

)

= − log

(∫ ρ

x

exp(H(v, u)) dv

)
= − log

(
exp(H(ρ, u))(ρ − x) + O(|ρ − x|2)

)
= − log(ρ − x) − H(ρ, u) + O(|x − ρ|).

Using singularity analysis and the quasi-power theorem once again, we obtain the desired

central limit theorem.

4.2.1. Subtrees of recursive trees. As an application, let us again consider the number of

subtrees as an example. The technical conditions are satisfied for the same reason as

in Section 2.3.2. Once again, we find that the distribution of the number of subtrees is

asymptotically log-normal. Plugging into the formulas for mean and variance, we arrive

at the numerical values μ ≈ 0.4505 and σ2 ≈ 0.017, which shows that recursive trees tend

to have more subtrees than labelled trees, binary trees or Pólya trees (it is well known that

they are flatter and wider and thus more star-like than Galton–Watson trees; stars have

the largest number of subtrees among all trees of given order) and that the distribution

is more concentrated.

4.3. Binary search trees

Let us finally study binary search trees (which are also equivalent to binary increasing

trees). Again, a completely analogous theorem holds.

Theorem 4.2. Assume that the toll function f is bounded and satisfies∑
|T |=n |f(T )|

n!
= O(cn)

for a constant c ∈ (0, 1), the sum being over all binary search trees T of order n.

Let Tn denote a random binary search tree of order n. The mean μn = E(F(Tn)) of the

parameter F is asymptotically

μn = μ(n + 1) + O(αn)

for any α ∈ (c, 1), where the constant μ is given by

μ =
∑
T

2f(T )

(|T | + 2)!
.
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The variance σ2
n = V(F(Tn)) of F is asymptotically

σ2
n = σ2(n + 1) + O(αn),

again for any α ∈ (c, 1). Here, the constant σ2 is given by

σ2 =
∑
T

2f(T )(2F(T ) − f(T ))

(|T | + 2)!
− μ2 +

∑
T1

∑
T2

4f(T1)f(T2)

(|T1| + 2)!(|T2| + 2)!

×
(

|T1||T2|
|T1| + |T2| + 1

− |T1| − |T2| +
|T1||T2|

(|T1| + |T2| + 2)(|T1| + |T2| + 3)

+
|T1|2|T2|2

(|T1| + |T2| + 1)(|T1| + |T2| + 2)(|T1| + |T2| + 3)

)
,

all sums being over all binary search trees. Moreover, if σ2 �= 0, then the renormalized random

variable

F(Tn) − μn

σn

converges weakly to a standard normal distribution.

Proof. For binary search trees, the approach is similar to recursive trees, albeit slightly

different. The treatment of mean and variance is fully analogous, so we focus on the

limiting distribution. Once again, we consider the bivariate generating function Y (x, u),

which satisfies the equation

(Y (x, u) + 1)2 =
∑
T

1

(|T | − 1)!
x|T |−1uF(T )−f(T ).

It is convenient to work with U(x, u) = Y (x, u) + 1, which satisfies the differential equation

U(x, u)2 = Ux(x, u) +
∑
T

1

(|T | − 1)!
x|T |−1uF(T )(u−f(T ) − 1).

Let us denote the sum on the right-hand side by H(x, u); once again, if u is restricted to

a suitable neighbourhood of 1, this function is analytic (as a function of x) in a larger

region than U(x, u). The differential equation is of Riccati type, and we solve it by means

of the substitution

U(x, u) = −Vx(x, u)

V (x, u)
.

The differential equation then simplifies to

Vxx(x, u)

V (x, u)
= H(x, u)

or

Vxx(x, u) = H(x, u)V (x, u). (4.2)

Recall that by our conditions on the toll function, the coefficients hn = hn(u) = [xn]H(x, u)

satisfy hn = O(αn) for some α < 1 uniformly in u if u is restricted to a suitable neigh-

bourhood of 1. Without loss of generality, we can choose v0 = [x0]V (x, u) = 1, and since
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U(0, u) = 1, we must have v1 = [x1]V (x, u) = −1. The remaining coefficients v2, v3, . . . of

V (x, u) can be calculated recursively from (4.2):

vj =
1

j(j − 1)

j−2∑
i=0

hivj−2−i.

An easy induction shows that vj = O(αn), uniformly in u. Thus we can write

Y (x, u) = −1 − Vx(x, u)

V (x, u)
,

where V (x, u) is analytic in a circle of radius α−1 > 1 around 0, uniformly in u, and

V (x, 1) = 1 − x. Hence the dominating singularity of Y (x, u) is a simple pole at a point

ρ = ρ(u), which is the solution to

V (x, u) = 0.

Note in particular that ρ(1) = 1. Once again, we can apply singularity analysis and the

quasi-power theorem now to conclude the proof of the central limit theorem.

4.3.1. How often does Quicksort encounter a sorted list?. As an example of an additive

tree parameter for binary search trees, we consider a question that can also be interpreted

in terms of the Quicksort algorithm. Binary increasing trees can serve as a model for

Quicksort in the following way: the root stands for the pivot, the left and right branches

stand for the two sublists to which Quicksort is applied recursively.

Given a random permutation to which Quicksort is applied, we are interested in the

number of times that Quicksort is called in the process with a perfectly sorted list as

argument. Let us assume that the pivot is always the first element of the list. Then we can

simply associate the binary search tree of order n in which each vertex has only a right

child (we denote this tree by Rn) to a sorted list.

The toll function associated with our problem is

f(T ) =

{
1 T = Rn for some n,

0 otherwise,

and it clearly satisfies our condition. Thus we obtain a central limit theorem for our

parameter, and the constants are easily calculated as

μ = 2e − 5 ≈ 0.43656366 and σ2 =
55 − 12e − 3e2

2
≈ 0.10672488.

5. Conclusion

We have seen that a central limit theorem holds for rather general additive parameters in

various classes of trees, provided that the associated toll function is (at least on average)

very small as the size of the trees goes to infinity. The assumption of exponential decay

that we made throughout this paper is still rather strong and can probably be replaced by

a much weaker condition. It is not clear, however, where exactly to draw the line between
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Gaussian (as in all our examples) and non-Gaussian (as for example for the path length

of a tree) limiting distributions.

Such results partly exist. Fill and Kapur [12] state sufficient conditions for asymptotic

normality in the binary case if the toll function only depends on the order of the

tree. However, they mention that their arguments are somewhat heuristic. Hwang and

Neininger [19] prove very strong results for the Quicksort recurrence (which is essentially

equivalent to the binary search tree model), and they even allow the toll function to be

random, but it may only depend on the size of the tree itself, not the whole tree. The fact

that in our setting the toll function can depend on the whole tree means that dependences

might be amplified, which could result in a shift in the boundary between Gaussian and

non-Gaussian behaviour (and conceivably a region where both are possible). It would

definitely seem worthwhile to pursue this question further.
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