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Abstract. We define and study a new invariant called pre-image pressure and its
relationship with invariant measures. More precisely, for a given dynamical system (X, f)
(where X is a compact metric space and f is a continuous map from X to itself) and
@ € C(X, R) (the space of real-valued continuous functions on X), we prove a variational
principle for pre-image pressure Ppre (f, ¢), Ppre (f, ) = Sup e M £) Hhpre,u () +f pdu},
where hpre , (f) is the pre-image entropy (W.-C. Cheng and S. Newhouse. Ergod. Th. &
Dynam. Sys. 25 (2005), 1091-1113) and M () is the set of invariant measures of f.
Moreover, we also prove that pre-image pressure determines the invariant measures and
give some applications of pre-image pressure to equilibrium states.

1. Introduction

Entropies are fundamental to our current understanding of dynamical systems. There are
two main entropies named topological entropy (see [1]) and measure-theoretic (or metric)
entropy (see [2, 3]). Topological entropy measures the maximal exponential growth rate
of orbits for arbitrary topological dynamical systems, and measure-theoretic (or metric)
entropy measures the maximal loss of information for the iteration of finite partitions in a
measure-preserving transformation . Topological pressure is a generalization to topological
entropy for a dynamical system (see [3]).

Recently, the pre-image structure of maps has become deeply characterized via
entropies (see [4-9]). Several important pre-image entropy invariants, such as pointwise
pre-image entropy, pointwise branch entropy, partial pre-image entropy and bundle-like
pre-image entropy, etc., have been introduced and their relationships with topological
entropy have been established. Cheng and Newhouse defined a pre-image entropy and
proved analogs of many known results for topological and measure-theoretic entropies
(see [10]). In this paper we define and study a new invariant called pre-image pressure,
which is a generalization of the Cheng—Newhouse pre-image entropy for a dynamical
system. More precisely, in §2 we define and study the pre-image pressure and its
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properties, in §3 we prove a variational principle for pre-image pressure, in §4 we prove
that pre-image pressure determines invariant measures and we give some applications of
pre-image pressure to equilibrium states in §5.

2. Pre-image pressure
In this section, we define and study the pre-image pressure and its properties.

Let N be the set of all natural numbers. Let f be a continuous map of a compact metric
space (X, d) to itself. We consider the Bowen—Dinaburg metrics generated by f,

df (x,y) = 0<rp<an><_ld(f"(x), Fro.

For ¢ > 0, n € N and a compact subset K C X, a subset E of K is said to be
(n, €)-separated with respect to f if x, y € E, x # y implies d,{ (x,y)>e€.Lets,(¢, K, f)
denote the largest cardinality of any (n, €)-separated set of K with respect to f.

Let C(X, R) be the space of real-valued continuous functions of X. For ¢ € C(X, R)
and n € N we denote Z:l:_ol o(f1(x)) by (S,¢)(x). Fore > 0, x € X and k € N, we put

Ppre.n(f, @, €, f_k(x)) ‘= sup Z g(S’lw)(y)’
E yeE

where the supremum is taken over all (n, €)-separated sets of f —k (x). Then we put

. 1
Ppre(f, ¢, €) := limsup — log Ppre n ([, ¢, €),
n—oo N
where Ppre n (f, @, €) = SUPyeX k>n Ppre.n(f, @, €, f_k (x)), and we define the pre-image
pressure of f with respect to ¢ as

Pore(f, 9) == lim Pore(f, @, €).
e—0

It is clear that Py (f, ¢) < P(f, ¢) (topological pressure, see [3]) and Ppe(f,0) =
hpre (f) (pre-image entropy, see [10, 11]). Pye(f, ¢) < [l¢| (the supremum norm of ¢
taken over on X) if f is a homeomorphism.

A subset F of compact subset K is said to be an (n, €)-spanning set with respect to f if,
foreach x € K, thereisay € F suchthatd,{(x,y) <e€. Fore >0,x e Xandk € N,
we put

Qpren(fo 9. € [T (0) i=inf 500,

yeF
where the infimum is taken over all (n, €)-spanning sets of f —k(x). We write
. 1
Opre(f, ¢, €) 1= limsup —log Qpre n (f, ¢, €),

n—oo N

where Qpren(f, ¢, €) = Supycx, k=n Cpren (fs @, €, 5 (X))
Let @ be an open cover of X. For x € X and k € N, we put

an(fr 0. a, f @) = ir/;fz

inf e(Sn(ﬂ) (y) ,
Bep yeB
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where the infimum is taken over all finite subcovers 8 of \/flz_o1 f~la with respect
to f_k(x), and put

pn(fs 0, a, f_k(.x)) = lnfz Sup e(SnW)(y)’
Bep YEB

where the infimum is taken over all finite subcovers B of \/7;(} f~la with respect
to f —k(x). Write

Gpren(fr 0, 0) i= sup  qu(f, @, o, fF(x)),
xeX, k>n
and
Poren(fr@.0) == sup  pu(f.o. o, f7F(x)).
xeX, k>n

Clearly gpre,n (f, ¢, @) < ppre,n (f, @, @). In addition we have the following lemma.

LEMMA 2.1. Let f : X — X be continuous and ¢ € C(X, R).

(1) If o is an open cover of X with Lebesgue number §, then qpen(f, ¢, a) =<
Qpre,n(fv ©,8/2).
(ii)) Ife > 0 and y is an open cover with diam(y) < €, then Ppe,(f, ¢, €) <

ppre,n(fa (pa )’)
(iii) Ifa is an open cover of X, then

) 1
lim — log ppre,n(fv @, Ol)
n—-oon

exists and equals inf,, (1/n)10g ppre n (f, @, @).

@(iv) Ifa,y are open covers of X and o < y (i.e. for each C € y, thereisan A € o such
that C C A), then qpre.n (f, ¢, @) < Gpre.n(f5 ¢, V).

(v) Ifdx,y) = diam(a) implies |¢(x) — ¢(¥)| = &, then pprea(f, ¢, ) =
enSQpre,n(f’ @, a).

Proof. (i) Letx € X andn, k € N. If F is an (n, §/2)-spanning set of f~*(x), then

n—1
ol rsuio. s,

yeF i=0
where B(y,€) = {z € X : d(y,z) < €}. Since each B(f!(y),8/2) is a subset of a
member of & we have ¢, (f, ¢, a, f*(x)) < D oveF ¢S9O and hence gpre n (f, @, @) <

Qpre,n(fs (ps 6/2)

(i) Let x € X,n,k € N and let E be an (n,¢€)-separated set of f’k(x).
Since no member of \/;:01 f 7'y contains two elements of E we have ZyeE e <

Pu(fo @, v, f74(x)) and hence Pore,n(f. 9. €) < Ppren(f. 9, ¥)-

(iii) It suffices to show that Ppre,n-i—m(fa p,a) < Rpre,n(fa @, a) - ppre,m(fa @, a).
Let k > n 4+ m. If B is a finite subcover of \/fl:_o1 f~a with respect to f¥(x) and
y is a finite subcover of \/:":_Ol f o with respect to f~%t"(x), then Vv f~"y, where
aVvB={ANB: A € a B € B}, is a finite subcover of \/:’i(')"_l f o with respect

to £ ~*(x). This implies

sup S 90) < (Z sup e(sm(y)) <Z sup e(smw)(y))_

Depv f—ny YED Bep YEB Cey Y€€
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Hence, puim(fi@, 0, f5() < pa(fig,a, fR@) - pulfi@, @ fT5(x).
Therefore, Ppren+m (fs @5 &) < Ppren(fs @5 &) - ppre.m (f5 @, ).
(iv) and (v) easily follow from the definitions. O

Now we investigate some properties of pre-image pressure.

PROPOSITION 2.1. (Spanning set, open covers and separated set define the same pre-

image pressure) We have the following.

D Opren(f. 9.6, fT5() < Poren(fo po €, fH(X)):

(i) Ifé > Oissuchthatd(x,y) < €/2 implies |p(x) — @ (y)| < 8, then forni,nz,l € N
and ! > ny we have

ppre,n1+n2(f: Q, €, fﬁl(x))
<m0 e (0, €/2, F7H)) Qpreny (fs 95 €/2, £ (x)).

(iii) Pore (f, ) = lime 0 Opre(f, @, €).
iv)  Ppre(fo ) = limg s o [lim, 5 00 (1/1) log Ppre.n(f> @, )] if {o} is a sequence of
open covers with diam(ay) — O.

V) Ppre(f, @) = lime 0 liminf, o (1/n) log Ppre.n (f, @, €).
(vi) Pore (f, ) = lim¢ o liminf,, ;o (1/n) log Opren(f> @, €).

Proof. (i) This follows from the fact that a (n, €)-separated set of a compact subset K that
cannot be enlarged to a (n, €)-separated set must be a (n, €)-spanning set for K.

(ii) Let E be an (n] + na, €)-separated subset of f_l(x), F1 be an (n1, €/2)-spanning
subset of f~!(x) and F> be an (n», €/2)-spanning subset of f~H(x). Define ¢ : E —
F1 x F, by choosing, for each y € E, some point ¢(y) = (y1,y2) € F1 x F> with
di (y.y1) < €/2and di,(f™ (y). y2) < €/2. then ¢ is injective. Hence

( Z e(Snlw)(y1)>< Z e(Snzw)(yz)> — Z &S OY D +(Sny ) (v2)

YIEF] N2EF 01, y2)eFIXF
> Z S 9D +(Sny ) (v2)
1,y2)€9(E)
> ¢~ (m+n2)8 Z eSni+m ()
yeE

Therefore, (ii) is correct.

(iii) Let x € X, e > 0, k € N and set Qpre0(/f, ¢, €, f7*(x)) = 1. (ii) holds by (i)
and (ii).

(iv) If § > 0 and y is an open cover with diam(y) < 4, then Py n(f, ¢,8) <
Dpre,n (f, @, ¥) by Lemma 2.1(ii). Using Lemma 2.1(iii) we have

Ppre(fa ¢,8) < lim (1/n)log ppre,n(fa 0, Y).
n—00

Therefore, Ppre(f, @) < limg s oo[limy, 00 (1/1) 10g ppre,n (f, @, ai)].
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If « is an open cover and § is a Lebesgue number for «, then gpren(f, ¢, ) =<
Ppren(f, ¢, 8/2) by Lemma 2.1(i) and part (i) of the proposition. Let 7, = sup{|¢(x) —
()| : d(x,y) < diam(e)}, then ppre.n(f, ¢, @) < €"™Gpre.n(f, ¢, ) by Lemma 2.1(v).
Thus Ppre,n (f,p, ) < '™ Ppre,n(fa ¢, 8/2). Hence,

lim (1/n) log ppre,n(fa @, a) <1y + Ppre(fa ®).
n—00

Therefore, limj, oo[limy, s 00 (1/1) 10g ppre.n (f, @, cx)] < Ppre(f, ) and (iv) is proved.
(v) and (vi) Let e denote the cover of X by all open balls of radius 2¢ and y. denote any
cover by balls of radius €/2. By Lemma 2.1(i), (ii) and (v) and part (i) of the proposition,
we have e~ Ppren(fs @, 0e) < Gpren ([ @, 0e) < Opren(f, ¢, €) < Ppren(f, @, €) <
Ppre,n (f, @, Ve), where T4e = sup{|e(x) — @(y)] : d(x, y) < 4e}.
Therefore, (v) and (vi) follow by (iv). O

PROPOSITION 2.2. (Pre-image pressure is a topologically conjugate invariant) If f;

Xi - X; (i = 1,2) is a continuous map of a compact metric space (X;, d;) and
¢ : X1 — Xz is a homeomorphismwith ¢ o fi = fr0¢, then Pye(f2, ) = Ppre(f1, 90 ¢h)
forany ¢ € C(X2, R).

Proof. Lete > 0, then thereis an§ > O such thatd;(x, y) < & implies da (¢ (x), ¢ (¥)) <e.
Let x € Xp,k,n > 0 and E be a (n, €)-separated set of f{k(x), then ¢_1(E) is a
(n, 8)-separated set of ffk(qﬁ_l (x)) and

3 FOHAOTASTO) = §T @I HGA@N @S @),

YEE ze¢p~E
Hence, Ppre(f2,9,€) < Ppre(f1,9 o ¢,8). Therefore, Ppre(f2,¢) < Ppre(f1, ¥ 0 ¢).
Similarly we have Ppre(f1, ¢ 0 @) < Ppre(f2, 000 0 ¢71) = Pore(f2, 9). o

PROPOSITION 2.3. (Power rule for pre-image pressure) Let f : X — X be a continuous
map of the compact metric space (X,d) and ¢ € C(X,R), then Pye(f™, Smp) =
mPye(f, @) for any m > 0 (here (S ) (x) = 125 o (f1(x))).

Proof. Write g = f™. Letn € Nk > nand x € X. If E is an (n, €)-separated subset

of g~k (x) with respect to g, then E is also an (nm, €)-separated subset of f —mk (x) with
respect to f. Hence

Ppre,n(gv Sm@, €, gik(X)) = Ppre,nm(f: @, €, fﬁmk(x))'

So we have

. 1 _
Pore(g, Smg, €) = limsup —log  sup  Ppre.n(g, Sme, €, 8 ¥ (x))

n—oo N xeX,k>n

. 1 _
<limsup—1log sup Pprem(f, ¢, €, f "k (x))

n—oo N xeX,k>n

) m _
<limsup—1log sup  Ppreum(f. @. €, f k(x))

n—oo HM xeX,k>nm
. 1
<mlimsup—1log sup Ppen(f, ¢, €, @)
n—oo N xeX,k>n

= mPpre(f: @, €).
Therefore, Ppre(f™, Sm¢) < mPpre(f, ¢).
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Let § > 0, then there exists € > 0 such that if d(x, y) < €/2 then |p(x) — ¢(¥)| < §.
For € > 0 above, there are > 0 such that d(x, y) < n implies d(f/(x), f/(y)) < €/4
forall0 < j <m—1.Letn >0,k > n.

CLAIM. If I, s €N such that | > ms, then Py ms(f, ¢, €/4, ) < Ppre,s (8, Sm®, 1,
7).

In fact, if E is an (ms, €/4)-separated subset of f ~L(x) with respect to f, then E is also
an (s, n)-separated subset of f — (x) with respect to g. Hence,

Pore.ns(f. 9. €/4, f 1 (x)) = sup _ Sm#)
E
yeE

— sup Z e SmP) N ++(Sme)(8° " (1)
E yeE
< PpI‘C,S(ga Sme, 1, f_l(x))’
and the claim is thus confirmed.
Write k = mny —lp andn — lp = mny + 11, where 0 < [1,lp < m. Let C(j,¢€) =
sj(e, X, f)ef“‘/’”. By Proposition 2.1(i), (ii) and the previous claim, we have

Poren(fo . €, 75 (x))
<" OQpren—1, (f+ 0, €/2, [ T5(X) Qprey (s @, €/2, fTHT72(0))
< Cl. €/2)€" Qpremmy 11, (f 0. €/2. f 5 (x))
< C(l2. €/2)e" ™2 Qe ny (f. @2 €/4, £75(0) Qpre (f. 0. €/4, f7HH™ (x))
< C(la, €/2)C 1, €/ ™2 P un, (f. 9, €/4, 75 (x))
< C(l. €/2)C (L1, /4 2 Poe (8. S 1. £ (1))
= C(l2. €/2)C (11, €/H)e®" ™2 Pyre (2. S, 1. g7 (f12(x))).

Hence,

. 1 _
Pore(f, ¢, €) =limsup —log  sup  Ppren(f, ¢, €, f 5 (x))

n—oo N xeX,k>n

1
<limsup —log sup C(lz,E/z)C(l],6/4)6(211712)8

n—oo N xeX,k>n

X Poren; (€5 Sm, 1, 85 (x))

1
=26+ limsup——— o su P, , Smo, n, —*(x
n—>oop mni +ll +12 gxex,kpznl pre,nl(g m¢- 1§ ( ))

1
=28+ Eppre(gv Sm@, n).
Therefore, we can get m Ppre (f, ©) < Ppre(g, Sm@)- O

PROPOSITION 2.4. (Product rule of pre-image pressure) If f; : X; — X; (i = 1,2)
is a continuous map of a compact metric space (X;,d;) and if ¢; € C(X;, R), then
Pore (f1 X f2, 01 X 92) = Ppre(f1, 1) + Ppre(f2, 2), where g1 x @2 € C(X1 X X2, R)
is defined by (g1 X @2)(x1,x2) = @1(x1) + @2(x2).
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Proof. Consider the metric on X; x X5 given by

d((x1, x2), (x2, y2)) = max{d(xy, y1), d2(x2, y2)}.

Forx = (x1,x2) € X1 xX2,n,k € Nandk > n. If F; isa (n, €)-spanning set for fi_k(x,-)
then F1 x F; is an (n, €)-spanning set for (f1 x fz)’k(xl, x) with respect to f1 x fa. Also

n—1
Z exP(Z((ﬂl x ) (f1 x f2)' (31, yz))

V1L.Y2)EFIXF, i=0
n—1 n—1
= ( > exp(Z o1 (f] (y»)))( ) exp(Z or(f; (yz))>>.
y1€F] i=0 A ) i=0

Hence,

Opren(fi X f2, 01 X @2, €, (fi X ) ¥ (x1, x2))
< Qpren(f1: 01, € [751) Qpren(f2, 92, €, 5 (x2)).

Therefore, Py (f1 X f2, 91 X 92) < Ppre(f1, 1) + Ppre(f2, ¢2).
If E; is an (n, €)-separated set for fi_k (xi), then E1 x E» is an (n, €)-separated set for
(f1 x fz)_k(xl,xz) with respect to f1 x f2. So,
Ppre,n(fl X f2,01 X @2,€) > Ppre,n(fl» @1, €) - Ppre,n(fQ» 2, €).
Hence,

. 1
lim sup —log Ppre n (f1 X f2, 91 X @2, €)

n—oo N

L1 ) 1
> liminf — log Ppre n (f1, @1, €) + limsup — Pyre » (f2, 92, €).

n—-oo n n—oo N

Proposition 2.1(v) gives

Pore (f1 X f2, 01 X ©2) = Ppre (f1, 91) + Ppre(f2, 02). d

3. Variational principle for pre-image pressure
In this section we prove a variational principle for pre-image pressure.

LEMMA 3.1. [3] Letay,...,ax be given real numbers. If p; > 0 and Zf-‘zl pi = 1, then
k k
Z pi(a; —log p;) < 10%(2 6“’)
i=1 i=1
and equality holds if and only if

et

Zj:le '
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In the following we denote by 5(X) the collection of all Borel subsets and denote by
M(X, f) (or M(f) for short) the set of f-invariant Borel probability measures for a

continuous map f of a compact metric space X into itself. Set B~ = [, /" B(X).
For finite partitions o, 8, weseta Vg = {ANB : A€ a,B e p}. fO0<j<mn
are positive integers, we let a;’ = \/f’:_jl f'a and o* = oz(')’_l. It is not hard to see

that H,(«"|B7) (see [3]) is a non-negative sub-additive sequence for a partition o and
©w € M(f). We define the measure-theoretic (or metric) pre-image entropy of o with
respect to f as

1 1
hy(|B7) = lim —H,(«"|B7) = inf —H,("|B7),
n—00 p n>0n
and define the measure-theoretic (or metric) pre-image entropy of f as
hpre,u(f) = Suphu(a|8_)~
o

THEOREM 3.1. (Variational principle for pre-image pressure) Let f : X — X be a
continuous map of the compact metric space X and ¢ € C(X, R). Then

Pore(f, ) = sup {hpre,u.(f) + / <ﬂdﬂ}o
neM(f)

Proof. (1) Let u € M(f). We shall show that

hpre,u (f) + / pdu < Ppre(f, ).

Let &£ = {Ay,..., A} be a partition of (X, B). Let a > 0 be given and choose ¢ > 0
such that eklogk < a. Since u is regular there are compact sets B; C A; with
mw(Aj\B;j) < €1 < j < k. Let a be the partition o« = {By, By, ..., By} where

By =X\ U'}=1 B;. Then Hy, (¢|) < eklogk < a. Let

b = min d(Bl', Bj) > 0.
I<i#j<k
Pick 0 < § < b/8 such that d(x, y) < 45 implies |p(x) — p(¥)| < €.
Let 81 < B2 < --- be a non-decreasing sequence of finite partitions with diameters
tending to zero. Thus, B = \/C;o:1 Bj and forany k > Oandn > 0

Hy(@"|f7*B) = Jim Hy (" f7*B)).

Lete; = €1(n, €) > O such that d(x, y) < €1, then d(f! (x), fi(y)) <8 for0<i < n.

The collection { f % (x) : x € f¥X}is an upper semi-continuous decomposition of X.
Hence for each x € ka there is an e(x, k, €1) such that if d(x, y) < e2(x,k, €1),y €
f¥X and y; € f*(y), then there is an x; € f~¥(x) such that d(x1, y;) < €]. Let U be
the collection of open €>(x, k, €1) balls in ka as x varies in ka and let €3 be a Lebesgue
number for .

Since diam(8;) — 0 as j — oo, we may choose jo such thatif j > jo and B € §;,
then diam(B) < e3. Let j > jo. Foraset C € f %8 i, let e denote the conditional
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measure of  restricted to C andletay. ={ANC:Acd", ANC#PL.ITANC € ap,
let y (A, C) = sup{(Sy¢)(x) : x € AN C}, then by Lemma 3.1,

Ho@"f~B;) + f Supdpt

3 [M(C)HM @i+ [ s du}

Cef=*p;
< > w0 Y ne(AnO)-loguc(ANC)+y(A, C)]
Cef*B; ANCeay.

< max log Z eV 4.0
Cer i adcaan

For each AN C € af. choose some x4 € AN C such that (S,¢)(xa) = y (A, C).
Let B € B such that C = f*B.

Since f¥(x4) € B and diam(B) < e3, thereisan up € XX suchthatif y € BN fkX,
then d(up, y) < €2(up, k, €1). This implies d(up, fk(xA)) < e(up, k, €1). Hence, there
is a point ¢1(A) € f‘k(uB) such that d(x4, ¢1(A)) < €1. So d(fi(xA), fi(¢1(A))) <6
forall0 <i < n.

Let E¢ be a maximal (n, §)-separated set in f~%(up). Since Ec spans f~%(up), there
is a point ¢(A) € Ec¢ such that d(fi(¢1(A)), fi(¢2(A))) < é§forall0 < i < n.
Hence d(fi(xa), fi(¢2(A))) <28forall0 <i < n. Theny (A, C) < (S,¢)(¢2(A))+ne.

CLAIM. Ify € Ec then card({ANC € o : ¢o(A) = y}) < 2".

In fact, let A, A be such that ¢ (A) = ¢2(X). Then for all 0 < i < n we have
d(fi(xa), f[(xg)) < 44. Since each ball of radius 46 meets at most the closures of two
members of o, {A N C € ay- : $2(A) = y} has cardinality at most 2" and the claim is thus

confirmed.
Thus,
3 A0 < 3N E0@@) < o1 3 (S0,
ANCeal, ANCeal: y€EC
Hence,

Ha(o"1f*8;) + / Sppd < (€ +10g2)n + 1og Sup Poreon(f, 9.8, ().

xeX

Let j — oo and k — o0, we have
Hy (o"|B7) +/Sn<pdu < (e+log2n+1log sup Puen(f, 9,8, f5(x)).
xeX,k>n
So
hy(e|B™) + / pdp <e+10g2 + Ppre(f, ¢, 8) <€ +10g2 + Ppre(f, 9).
Now h, (§|B7) < hy(«|B7) + H, (¢]a) by [11, Lemma 4.8], then

hu(§1B7) +/<Pdu < 2a+10g2 + Pyre(f, 9,
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and, therefore,

hpre,n (f) + / pdu <2a+10g2 + Ppre(f, @)

Replacing f with f” and ¢ with S,¢ (= er':ol o f') in the above inequality, respectively,
and by Proposition 2.3, we have

n|:hpre,/4(f) + / fd,uj| < 2a +1log2 + nPpe(f, ).

So we have
hpre, w(f)+ / pdu < Ppre(f’ ®).

(2) Let € > 0. We shall produce an f-invariant measure u such that

ore, 1 (f) + / Fdu = Poe(f, 0, 0).

Choose sequences n; — 00, k; > n; and x; € X such that
.1 &
Pore(f. ¢, €) = lim — log Pyren; (f. ¢ €, f 75 (x)).
1—00 Nj

Let E; be an (n;, €)-separated set of f —ki (x;) such that

log > eSn?0) > log Pen, (f. . €, f 75 (x)) — 1.
YEE;

Letting 8, denote the point mass at point x € X, let

Sn; 4
ZyeE,- el ,tp)(>)5y
> E e 9@ 7
Z€E;

g; =

and let
Wi = — Zo’iofij.

We may assume without loss of generality that u = lim;_, o ;. We know that u € M(f).

We choose a finite partition « of (X, B) such that for each A € «, u(dA) = 0 and
diam(A) < e.

LetC = {E € B~ : u(E) = 0}. For any o-algebra A of subsets of X, there is an
enlarged o-algebra A¢ defined by A € Ag if and only if there are sets B, M, N such that
A=BUM,Bec A N eCand M C N. We consider the o-algebra B¥ = (f~*B). for
k > 1. Letting B> = (), BX, we have B~ C B® ¢ B* (k > 1).

Now, each element A € B can be expressed as the disjoint union A = B U C with
B e f~%Band C € C. Since o; is supported on f % (x;), we have ¢; (C) = 0. Hence, for
any finite partition y, we have

Ho, (y|BY) = Hy, (y | £ 75 (x1)).
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Since each element of o | f i (x;) contains at most one element of E;, by definition of o;
and Lemma 3.1 we have

Hy, (" 1BY) + / Swodoi = Hy (o |f 7 (x0)) + / Sy doi

= Z oi ({yD((Sn; ) (y) — logoi ({y}))

YEE;

= log Z eSO
YEE;
Fixg e Nwith 1 < g <n;. ForO < j <q — 1puta(j) = [(n; — j/q)]. Here [b]
denotes the integer part of » > 0. Fix 0 < j < g — 1, so by [3, (ii) of Remark 2 in §8.2]

we have
a(j)—1

ol = \/ FrratNga v \/f_lot,
r=0

leS
and S has cardinality of at most 2q. Therefore,

log Z S H,, (o \Bk) + / Sn;p do;
YEE;

a(j)—-1
< Z Hy, (f "4 Da B + H,, <\/ f—lOllBki> +/Sni¢’d‘7i

r=0 leS

a(j)—1
D Hy (f 04+ Dad| f709 D (BY)) + 2q logk + / S ¢ do
r=0

IA

a(j)—1
Z H(riof*(qurj)(anBki)‘i‘zq logk—l—/S,,,.godo,-.
r=0

Summing up over j from 0 to ¢ — 1 and using [3, (iii) of Remark 2 in §8.2] we obtain

ni—1
g log Z eBmi ) < Z Hyyo p-0(@?1B%) +2¢ logk + ¢ / Sp;pdoi.
yeE; p=0

Now divide by n; and use [10, Lemma 6.1(35)] to obtain

o 2q?
%log Z eSn?O) < Hy, (B4 + ni log k +q/godu,~
l _}'EE;‘ l

1

ooy, 24
< Hy, (a?|B )+n—10gk+q pdu;.
Using [10, Lemma 6.1(34)], we have

qure(f: @p,€) < H,u(aq|87)+q'/(pd,uf = Hu(aqlgi) +Q/<ﬂdﬂ'

Dividing by ¢g and letting ¢ — oo we have

Pore(f, 9, €) < hu(alBi) + / odu < hpre,u (f) + / pdpu. d
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A point x € X is said to be a non-wandering point if for each neighborhood U of x
there exists n € N such that f*(U) N U # . Let Q(f) denote the non-wandering set
of f. Itis well known that w(2(f)) = 1 for each u € M(f). From Theorem 3.1, the
following corollaries are obvious.

COROLLARY 3.1.1. Let f : X — X be a continuous map of a compact metric space and
let ¢ € C(X, R). Then:

@ Pue(fs 0) = Pore(flap), @lor)s

(i) Ppre(fi9) = Ppre(flﬂflio x> (p|ﬂ;'l°:0 Frx)-

COROLLARY 3.1.2. If f : X — X is uniquely ergodic and M(f) = {u} then

Pore(f, 9) :hpre,u(f)“r/(pd,u,.

Remark. Applying Theorem 3.1, we can give another proof of Ppe(f1 X f2, 91 X ¢2) >
Ppre(f1, 01) + Ppre(f2, 92) in the product rule of pre-image pressure. Let € > 0.
Theorem 3.1 implies there are invariant measures w, v such that pe , (f1) + [ordp >

Pore(f1, 1) — € and hpee v (f2) + ffﬂz dv > Ppre(f2, ¢2) — €. Then

Ppre(fl X f2,01 X @2) > hpre, /J.xv(fl x f2) +/§01 X @ad(pu x v)

:hpre,u(fl)+hpre,v(f2)+/¢l dM-i‘/(ﬂzdv

> Ppre(fls ®1) + Ppre(f% @2) — 2e.
Therefore, Ppre(f1 X f2, 91 X ¢2) = Ppre(f1, ©1) + Ppre(f2, 92).

4. Pre-image pressure determines invariant measures

In this section we shall show how Py (f, -) determines the invariant measures of f when
f : X — X is a continuous map of a compact metric space X. Recall that a finite signed
measure on X is a map u : B — R, which is countably additive.

LEMMA 4.1. Let f : X — X be a continuous transformation of a compact metric

space X. If o, ¥ € C(X, R) and c € R, then the following are true.

) @ =< v implies Ppe(f,9) =< Ppe(f,¥). In particular, hye(f) + info <
Ppre(fs 9) < hpre(f) -+ sup ¢.

(i)  Ppre(fs @ +0) = Ppre(f, @) +c.

(iii) |Ppre(f: @) — Ppre(fv I <lle—vl.

@iv)  Ppre(f, -) is convex.

(v) Ppre(fs(p"i‘l/fof_w)=Ppre(fv(p)~

Vi) Ppre(fs c@) < cPpre(f, @) if ¢ = 1 and Pyre(f, c@) > cPpre(f, @) if c < 1.

(vii) |Ppre(fs @) < Ppre(f, l@D).

(viii) Ppre(fs @ + V) < Ppre(f, @) + Ppre (f5 ¥).

Proof. (i), (ii) easily follow from the definition of pre-pressure.
(iii) Let € > 0. By Theorem 3.1 there exists a . € M( f) such that

Pore (f, 9) < hpre,u(f) +/g0du+e.
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Hence
Ppre (f, @) — Ppre (f5 Y1) < (hpre,p.(f) + / (pdﬂ> - (hpre,u(f) + / wdﬂ) +€

=/(<p—¢)du+6§ lo — ¥l +e.

Therefore, Ppre(fs §0) - Ppre(fv I//) < ||(ﬂ - ¢||
Similarly, we have Ppre(f, ¥) — Ppre(f, ¢) < ll¢ — ¥ ||. This proves (iii).
(iv) Leta € [0, 1] and € > 0. By Theorem 3.1 there is a u € M (f) such that

Poxe(foag + (1 — )W) < hore n(f) + / (ap+ (1 — )y dp + <.
Hence
Pore(frap + (1 —a)y)

< hyren(f) + /(aqo (1 —a)y)du +e

= a(hpre,u(f) + / <PdlL) + (1 - a)<hpre,p,(f) + / wdﬂ) +€
< aPpre(f, @) + (1 —a) Ppre(f, ¥) + €.
Therefore, Pore(fy a9 + (1 —a)¥) < aPpre(f, @) + (1 — a) Ppre(f, V).
(v) Note that [( o f — ) du = 0 for each u € M(f). This implies

Poe(fiop+¥of—¥)= sup {hpre,,u(f)‘i‘/((p"i‘l/fof_w)dﬂ}
neM(f)

sup {hpre,,u(f) +/‘Pdﬂv} = pre(fs ®).
neM(f)

The proofs of (vi), (vii) and (viii) are obtained in a similar manner as above by applying
Theorem 3.1 and are thus omitted. g

THEOREM 4.1. (Pre-image pressure determines invariant measures) Let f : X — X bea
continuous map of a compact metric space with hpe(f) < 0o. Let 1 : B — R be a finite
signed measure. Then u € M(f) if and only if

/wdﬂ < Ppre(f, 9) forallp € C(X, R).

Proof. The proof follows the idea of the proof of [3, Theorem 9.11] and is omitted. a

The pre-image entropy map of the continuous transformation f : X — X is the map
w — hpre,u(f), which is defined on M(f) and has values in [0, c0]. We denote by
h(pre,»(f) the pre-image entropy map. It is said that A (p.,.)(f) is upper semi-continuous
at o € M(f) if

lim sup ]’lpre,p.(f) = hpre,u.o (f)v
K= 1o

i.e. for € > 0, there is a neighborhood U of ug in M(f) such that u € U implies
hpre,u(f) < hpre,uo(f) + €.
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THEOREM 4.2. Let f : X — X be a continuous map of a compact metric space with
hpre (f) < 00 and let g € M(f). Then

hpte, 1o (f) = inf{Ppre(fv ®) — /wdﬂo cp e C(X, R)}

if and only if h(pre,.)(f) is upper semi-continuous at ji.

Proof. The proof follows completely from that of [3, Theorem 9.12] and is omitted. O

5. Equilibrium states
In this section, we give some applications of pre-image pressure Py (f, -) to equilibrium
states.

Given ¢ € C(X, R). A member p of M(f) is called an equilibrium state for ¢ if

Pore(f, 9) :hpre,u(f)“r/(pd,u,.

Let My (f) denote the collection of all equilibrium states for ¢.
A tangent functional to the convex function Ppe(f,-) at ¢ is a finite signed Borel
measure @ on X such that

Pore(fs @ + V) — Pore(f. 9) = /I/Idu forall y € C(X, R).

We let 7, (f) denote the collection of all tangent functionals to Ppre(f, -) at .

THEOREM 5.1. Let f : X — X be a continuous map of a compact metric space and let

¢ € C(X, R). Then:

(i)  My(f) is convex;

(ii)  the extreme points of My(f) are precisely the ergodic members of My (f);

(iii)  if the pre-image entropy map is upper semi-continuous then My ( f) is compact and
non-empty;

(iv) if e, ¥ € C(X, R) and if there exists ¢ € R such that ¢ — ¥ — c belongs to the
closure of the set {p o f —¢ : ¢ € C(X, R)} in C(X, R), then My(f) = My (f).

Proof. Foreachv € M(f), we let

L((D, V) = hpre,v(f) + / (pdv.

(i) This follows from the fact that the pre-image entropy map is affine [10, Theorem 2.3].

(ii) Let 1 be an extreme point of M, (f). To show that u is ergodic, it is sufficient to
show that u is an extreme point of M(f). Let uy, uo € M(f) and p € (0, 1) such that
u = put + (1 — p)ua. Then pL(p, u1) + (1 — p)L(p, n2) = L(p, ) = Ppre ([ 9).
It follows from Theorem 3.1 that L(p, 1) = L(¢, 2) = Ppre(f, ¢). Hence w1, o €
My (f). Since  is an extreme point of M, (f), 1 = p2 = . Therefore u is an extreme
point of M(f).

(iii) By the upper semi-continuity of the pre-image entropy map, M, (f) is non-empty
and compact.
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(iv) Note that
/(pd,u:/v,hdp,—i—c for all u € M(f).

Therefore,

hpre,u(f)+/‘pdﬂzhpre,u(f)+/1//dﬂ+c’

and Ppre(f, ) = Ppre(f, ¥) + ¢. Hence My (f) = My (f). o

However, the following example shows that the set M) may be empty if the pre-
image entropy map is not upper semi-continuous.

Example 5.1. Choose numbers 8, suchthat 1 < 8, <2butg, — 2. LetT, : X, — X,
denote the one-sided ,-shift [3, §7.3]. We know h(7T,,) = log 8,. By [8, Proposition 2.2]
we have hpe(T,) = logp,, where hpe(T,) denotes the Cheng-Newhouse pre-image
entropy of 7,,. Suppose d,, is a metric on X,, and suppose d,(x, y) < 1,forall x, y € X,,.
We define a new space X which will be the disjoint union of the X, together with a
‘compactification’ point X .

Define the metric p on X by p(x,y) = (1/n)d,(x,y) if x,y € X,, p(x,y) =

P 1/i%ifx € Xy, y € Xpandn < p,and p(x, xo0) = Y 50, 1/i% if x € X,.

Then (X, p) is a compact metric space and the subsets X, converge to Xoo.
The transformation 7 : X — X with T(x) = T,(x) if x € X, and T (x) = X0 iS a
continuous transformation. If 1 € M(T) then u = Y 0| puptn + (1 = Yope i Pn)Sxss
where u, € M(X,, T,) and p, > 0, Z;’lozl pn < 1. Let £(X, T') denote the set of extreme
points of M(T). Hence if u € £(X, T') then either u € £(X,,, T,,) for some n or u = 6y,,.
Therefore, hpre(T) = sup{hpre u(T) : n € E(X, T)} = sup,~; sup{hpre., (Tn) : wn €
E(Xn, Ty)} = sup,sq hpre(T) = log2. If Mo(T) # 9, then by Theorem 5.1(ii) Mo(T)
contains some ergo_dic measure (. Then u € M(X,,T,) for some n, so hpre ; (T) =
log B,,. This is a contradiction. Therefore Mo (T) = @.

Let M“(f) = {n € M(f) : hipre,.}(f) be upper semi-continuous at }.

THEOREM 5.2. Let f : X — X be a continuous map of a compact metric space with
hpre (f) < 00 and let ¢ € C(X, R). Then:

D) My(f) CTy(f) C M(f);

(ii) ,Zp(f) = ﬂ?:] {neM(f): hpre,u.(f) + f‘pd,u > Ppre(fv @) — 1/n};

(i) My(f) =Ty (f) "M (f).

Proof. The proofs of (i) and (ii) follow [3, Theorem 9.14] and the remark of
[3, Theorem 9.15], respectively, and are omitted.
(iii) Using (ii) we have that 7,(f) N M"(f) C My (f). Now let u € My(f),ie.

hpre,n (f) + / pdu = Ppre(f, @).
If up, € M(f), un = w, then

hpre,p, (f) + / odun < Ppre(f, @),
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i.e.
hpre, i () < hpre,un(f) + </ pdu — /‘pdﬂn>'

Hence, lim sup,, , o, Apre,u, (f) =< hpre,u(f), i.€. the pre-image entropy map A pre,.} (f) is
upper semi-continuous at p. Therefore . € 7, (f) N M“(f). m]
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