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Abstract. We define and study a new invariant called pre-image pressure and its
relationship with invariant measures. More precisely, for a given dynamical system (X, f )

(where X is a compact metric space and f is a continuous map from X to itself) and
ϕ ∈ C(X,R) (the space of real-valued continuous functions on X), we prove a variational
principle for pre-image pressure Ppre(f, ϕ), Ppre(f, ϕ) = supµ∈M(f ){hpre,µ(f )+

∫
ϕ dµ},

where hpre,µ(f ) is the pre-image entropy (W.-C. Cheng and S. Newhouse. Ergod. Th. &
Dynam. Sys. 25 (2005), 1091–1113) and M(f ) is the set of invariant measures of f .
Moreover, we also prove that pre-image pressure determines the invariant measures and
give some applications of pre-image pressure to equilibrium states.

1. Introduction
Entropies are fundamental to our current understanding of dynamical systems. There are
two main entropies named topological entropy (see [1]) and measure-theoretic (or metric)
entropy (see [2, 3]). Topological entropy measures the maximal exponential growth rate
of orbits for arbitrary topological dynamical systems, and measure-theoretic (or metric)
entropy measures the maximal loss of information for the iteration of finite partitions in a
measure-preserving transformation . Topological pressure is a generalization to topological
entropy for a dynamical system (see [3]).

Recently, the pre-image structure of maps has become deeply characterized via
entropies (see [4–9]). Several important pre-image entropy invariants, such as pointwise
pre-image entropy, pointwise branch entropy, partial pre-image entropy and bundle-like
pre-image entropy, etc., have been introduced and their relationships with topological
entropy have been established. Cheng and Newhouse defined a pre-image entropy and
proved analogs of many known results for topological and measure-theoretic entropies
(see [10]). In this paper we define and study a new invariant called pre-image pressure,
which is a generalization of the Cheng–Newhouse pre-image entropy for a dynamical
system. More precisely, in §2 we define and study the pre-image pressure and its
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properties, in §3 we prove a variational principle for pre-image pressure, in §4 we prove
that pre-image pressure determines invariant measures and we give some applications of
pre-image pressure to equilibrium states in §5.

2. Pre-image pressure
In this section, we define and study the pre-image pressure and its properties.

Let N be the set of all natural numbers. Let f be a continuous map of a compact metric
space (X, d) to itself. We consider the Bowen–Dinaburg metrics generated by f ,

d
f
n (x, y) := max

0≤i≤n−1
d(f i(x), f i(y)).

For ε > 0, n ∈ N and a compact subset K ⊂ X, a subset E of K is said to be
(n, ε)-separated with respect to f if x, y ∈E, x �= y implies dfn (x, y)> ε. Let sn(ε,K, f )
denote the largest cardinality of any (n, ε)-separated set of K with respect to f .

Let C(X,R) be the space of real-valued continuous functions of X. For ϕ ∈ C(X,R)

and n ∈ N we denote
∑n−1
i=0 ϕ(f

i(x)) by (Snϕ)(x). For ε > 0, x ∈ X and k ∈ N, we put

Ppre,n(f, ϕ, ε, f
−k(x)) := sup

E

∑
y∈E

e(Snϕ)(y),

where the supremum is taken over all (n, ε)-separated sets of f−k(x). Then we put

Ppre(f, ϕ, ε) := lim sup
n→∞

1

n
logPpre,n(f, ϕ, ε),

where Ppre,n(f, ϕ, ε) = supx∈X,k≥n Ppre,n(f, ϕ, ε, f
−k(x)), and we define the pre-image

pressure of f with respect to ϕ as

Ppre(f, ϕ) := lim
ε→0

Ppre(f, ϕ, ε).

It is clear that Ppre(f, ϕ) ≤ P(f, ϕ) (topological pressure, see [3]) and Ppre(f, 0) =
hpre(f ) (pre-image entropy, see [10, 11]). Ppre(f, ϕ) ≤ ‖ϕ‖ (the supremum norm of ϕ
taken over on X) if f is a homeomorphism.

A subset F of compact subsetK is said to be an (n, ε)-spanning set with respect to f if,
for each x ∈ K , there is a y ∈ F such that dfn (x, y) ≤ ε. For ε > 0, x ∈ X and k ∈ N,
we put

Qpre,n(f, ϕ, ε, f
−k(x)) := inf

F

∑
y∈F

e(Snϕ)(y),

where the infimum is taken over all (n, ε)-spanning sets of f−k(x). We write

Qpre(f, ϕ, ε) := lim sup
n→∞

1

n
logQpre,n(f, ϕ, ε),

whereQpre,n(f, ϕ, ε) := supx∈X, k≥n Qpre,n(f, ϕ, ε, f
−k(x)).

Let α be an open cover of X. For x ∈ X and k ∈ N, we put

qn(f, ϕ, α, f
−k(x)) := inf

β

∑
B∈β

inf
y∈B e

(Snϕ)(y),
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where the infimum is taken over all finite subcovers β of
∨n−1
i=0 f

−iα with respect
to f−k(x), and put

pn(f, ϕ, α, f
−k(x)) := inf

β

∑
B∈β

sup
y∈B

e(Snϕ)(y),

where the infimum is taken over all finite subcovers β of
∨n−1
i=0 f

−iα with respect
to f−k(x). Write

qpre,n(f, ϕ, α) := sup
x∈X, k≥n

qn(f, ϕ, α, f
−k(x)),

and
ppre,n(f, ϕ, α) := sup

x∈X, k≥n
pn(f, ϕ, α, f

−k(x)).

Clearly qpre,n(f, ϕ, α) ≤ ppre,n(f, ϕ, α). In addition we have the following lemma.

LEMMA 2.1. Let f : X → X be continuous and ϕ ∈ C(X,R).
(i) If α is an open cover of X with Lebesgue number δ, then qpre,n(f, ϕ, α) ≤

Qpre,n(f, ϕ, δ/2).
(ii) If ε > 0 and γ is an open cover with diam(γ ) ≤ ε, then Ppre,n(f, ϕ, ε) ≤

ppre,n(f, ϕ, γ ).
(iii) If α is an open cover of X, then

lim
n→∞

1

n
logppre,n(f, ϕ, α)

exists and equals infn(1/n) logppre,n(f, ϕ, α).
(iv) If α, γ are open covers of X and α ≺ γ (i.e. for each C ∈ γ , there is an A ∈ α such

that C ⊂ A), then qpre,n(f, ϕ, α) ≤ qpre,n(f, ϕ, γ ).
(v) If d(x, y) ≤ diam(α) implies |ϕ(x) − ϕ(y)| ≤ δ, then ppre,n(f, ϕ, α) ≤

enδqpre,n(f, ϕ, α).

Proof. (i) Let x ∈ X and n, k ∈ N. If F is an (n, δ/2)-spanning set of f−k(x), then

f−k(x) ⊂
⋃
y∈F

n−1⋂
i=0

f−i B̄(f i(y), δ/2),

where B̄(y, ε) = {z ∈ X : d(y, z) ≤ ε}. Since each B̄(f i(y), δ/2) is a subset of a
member of α we have qn(f, ϕ, α, f −k(x)) ≤ ∑

y∈F e(Snϕ)(y) and hence qpre,n(f, ϕ, α) ≤
Qpre,n(f, ϕ, δ/2).

(ii) Let x ∈ X,n, k ∈ N and let E be an (n, ε)-separated set of f−k(x).
Since no member of

∨n−1
i=0 f

−iγ contains two elements of E we have
∑
y∈E e(Snϕ)(y) ≤

pn(f, ϕ, γ, f
−k(x)) and hence Ppre,n(f, ϕ, ε) ≤ ppre,n(f, ϕ, γ ).

(iii) It suffices to show that ppre,n+m(f, ϕ, α) ≤ ppre,n(f, ϕ, α) · ppre,m(f, ϕ, α).
Let k ≥ n + m. If β is a finite subcover of

∨n−1
i=0 f

−iα with respect to f−k(x) and
γ is a finite subcover of

∨m−1
i=0 f

−iα with respect to f−k+n(x), then β ∨ f−nγ , where
α ∨ β = {A ∩ B : A ∈ α,B ∈ β}, is a finite subcover of

∨n+m−1
i=0 f−iα with respect

to f−k(x). This implies∑
D∈β∨f−nγ

sup
y∈D

e(Sn+mϕ)(y) ≤
(∑
B∈β

sup
y∈B

e(Snϕ)(y)
)(∑

C∈γ
sup
y∈C

e(Smϕ)(y)
)
.
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Hence, pn+m(f, ϕ, α, f −k(x)) ≤ pn(f, ϕ, α, f
−k(x)) · pm(f, ϕ, α, f

−k+n(x)).
Therefore, ppre,n+m(f, ϕ, α) ≤ ppre,n(f, ϕ, α) · ppre,m(f, ϕ, α).

(iv) and (v) easily follow from the definitions. �

Now we investigate some properties of pre-image pressure.

PROPOSITION 2.1. (Spanning set, open covers and separated set define the same pre-
image pressure) We have the following.

(i) Qpre,n(f, ϕ, ε, f
−k(x)) ≤ Ppre,n(f, ϕ, ε, f

−k(x)).
(ii) If δ > 0 is such that d(x, y) < ε/2 implies |ϕ(x)− ϕ(y)| < δ, then for n1, n2, l ∈ N

and l ≥ n1 we have

ppre,n1+n2(f, ϕ, ε, f
−l (x))

≤ e(n1+n2)δQpre,n1(f, ϕ, ε/2, f
−l (x))Qpre,n2(f, ϕ, ε/2, f

−l+n1(x)).

(iii) Ppre(f, ϕ) = limε→0Qpre(f, ϕ, ε).
(iv) Ppre(f, ϕ) = limk→∞[limn→∞(1/n) logppre,n(f, ϕ, αk)] if {αk} is a sequence of

open covers with diam(αk) → 0.
(v) Ppre(f, ϕ) = limε→0 lim infn→∞(1/n) logPpre,n(f, ϕ, ε).
(vi) Ppre(f, ϕ) = limε→0 lim infn→∞(1/n) logQpre,n(f, ϕ, ε).

Proof. (i) This follows from the fact that a (n, ε)-separated set of a compact subset K that
cannot be enlarged to a (n, ε)-separated set must be a (n, ε)-spanning set forK .

(ii) Let E be an (n1 + n2, ε)-separated subset of f−l (x), F1 be an (n1, ε/2)-spanning
subset of f−l (x) and F2 be an (n2, ε/2)-spanning subset of f−l+n1(x). Define φ : E →
F1 × F2 by choosing, for each y ∈ E, some point φ(y) = (y1, y2) ∈ F1 × F2 with
d
f
n1(y, y1) ≤ ε/2 and dfn2(f

n1(y), y2) ≤ ε/2, then φ is injective. Hence

( ∑
y1∈F1

e(Sn1ϕ)(y1)

)( ∑
y2∈F2

e(Sn2ϕ)(y2)

)
=

∑
(y1,y2)∈F1×F2

e(Sn1ϕ)(y1)+(Sn2ϕ)(y2)

≥
∑

(y1,y2)∈φ(E)
e(Sn1ϕ)(y1)+(Sn2ϕ)(y2)

≥ e−(n1+n2)δ
∑
y∈E

e(Sn1+n2ϕ)(y).

Therefore, (ii) is correct.

(iii) Let x ∈ X, ε > 0, k ∈ N and set Qpre,0(f, ϕ, ε, f
−k(x)) = 1. (iii) holds by (i)

and (ii).

(iv) If δ > 0 and γ is an open cover with diam(γ ) ≤ δ, then Ppre,n(f, ϕ, δ) ≤
ppre,n(f, ϕ, γ ) by Lemma 2.1(ii). Using Lemma 2.1(iii) we have

Ppre(f, ϕ, δ) ≤ lim
n→∞(1/n) logppre,n(f, ϕ, γ ).

Therefore, Ppre(f, ϕ) ≤ limk→∞[limn→∞(1/n) logppre,n(f, ϕ, αk)].
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If α is an open cover and δ is a Lebesgue number for α, then qpre,n(f, ϕ, α) ≤
Ppre,n(f, ϕ, δ/2) by Lemma 2.1(i) and part (i) of the proposition. Let τα = sup{|ϕ(x) −
ϕ(y)| : d(x, y) ≤ diam(α)}, then ppre,n(f, ϕ, α) ≤ enταqpre,n(f, ϕ, α) by Lemma 2.1(v).
Thus ppre,n(f, ϕ, α) ≤ enταPpre,n(f, ϕ, δ/2). Hence,

lim
n→∞(1/n) logppre,n(f, ϕ, α) ≤ τα + Ppre(f, ϕ).

Therefore, limk→∞[limn→∞(1/n) logppre,n(f, ϕ, αk)] ≤ Ppre(f, ϕ) and (iv) is proved.
(v) and (vi) Let αε denote the cover ofX by all open balls of radius 2ε and γε denote any

cover by balls of radius ε/2. By Lemma 2.1(i), (ii) and (v) and part (i) of the proposition,
we have e−nτ4ε ppre,n(f, ϕ, αε) ≤ qpre,n(f, ϕ, αε) ≤ Qpre,n(f, ϕ, ε) ≤ Ppre,n(f, ϕ, ε) ≤
ppre,n(f, ϕ, γε), where τ4ε = sup{|ϕ(x)− ϕ(y)| : d(x, y) ≤ 4ε}.

Therefore, (v) and (vi) follow by (iv). �

PROPOSITION 2.2. (Pre-image pressure is a topologically conjugate invariant) If fi :
Xi → Xi (i = 1, 2) is a continuous map of a compact metric space (Xi, di) and
φ : X1 → X2 is a homeomorphism with φ◦f1 = f2 ◦φ, then Ppre(f2, ϕ) = Ppre(f1, ϕ◦φ)
for any ϕ ∈ C(X2, R).

Proof. Let ε > 0, then there is an δ > 0 such that d1(x, y) < δ implies d2(φ(x), φ(y))<ε.
Let x ∈ X2, k, n > 0 and E be a (n, ε)-separated set of f−k

2 (x), then φ−1(E) is a
(n, δ)-separated set of f−k

1 (φ−1(x)) and∑
y∈E

eϕ(y)+ϕ(f2(y))+···+ϕ(f n−1
2 (y)) =

∑
z∈φ−1E

eϕ(φz)+ϕ(φf1(z))+···+ϕ(φf n−1
1 (z)).

Hence, Ppre(f2, ϕ, ε) ≤ Ppre(f1, ϕ ◦ φ, δ). Therefore, Ppre(f2, ϕ) ≤ Ppre(f1, ϕ ◦ φ).
Similarly we have Ppre(f1, ϕ ◦ φ) ≤ Ppre(f2, ϕ ◦ φ ◦ φ−1) = Ppre(f2, ϕ). �

PROPOSITION 2.3. (Power rule for pre-image pressure) Let f : X → X be a continuous
map of the compact metric space (X, d) and ϕ ∈ C(X,R), then Ppre(f

m, Smϕ) =
mPpre(f, ϕ) for anym > 0 (here (Smϕ)(x) = ∑m−1

i=0 ϕ(f
i(x))).

Proof. Write g = fm. Let n ∈ N, k ≥ n and x ∈ X. If E is an (n, ε)-separated subset
of g−k(x) with respect to g, then E is also an (nm, ε)-separated subset of f−mk(x) with
respect to f . Hence

Ppre,n(g, Smϕ, ε, g
−k(x)) ≤ Ppre,nm(f, ϕ, ε, f

−mk(x)).

So we have

Ppre(g, Smϕ, ε) = lim sup
n→∞

1

n
log sup

x∈X,k≥n
Ppre,n(g, Smϕ, ε, g

−k(x))

≤ lim sup
n→∞

1

n
log sup

x∈X,k≥n
Ppre,nm(f, ϕ, ε, f

−mk(x))

≤ lim sup
n→∞

m

nm
log sup

x∈X,k≥nm
Ppre,nm(f, ϕ, ε, f

−k(x))

≤ m lim sup
n→∞

1

n
log sup

x∈X,k≥n
Ppre,n(f, ϕ, ε, f

−k(x))

= mPpre(f, ϕ, ε).

Therefore, Ppre(f
m, Smϕ) ≤ mPpre(f, ϕ).
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Let δ > 0, then there exists ε > 0 such that if d(x, y) < ε/2 then |ϕ(x)− ϕ(y)| < δ.
For ε > 0 above, there are η > 0 such that d(x, y) < η implies d(f j (x), f j (y)) < ε/4
for all 0 ≤ j ≤ m− 1. Let n > 0, k ≥ n.

CLAIM. If l, s ∈ N such that l≥ ms, then Ppre,ms(f, ϕ, ε/4, f−l (x))≤Ppre,s(g, Smϕ, η,

f−l (x)).
In fact, if E is an (ms, ε/4)-separated subset of f−l (x) with respect to f , then E is also

an (s, η)-separated subset of f−l (x) with respect to g. Hence,

Ppre,ms(f, ϕ, ε/4, f −l (x)) = sup
E

∑
y∈E

e(Smsϕ)(y)

= sup
E

∑
y∈E

e(Smϕ)(y)+···+(Smϕ)(gs−1(y))

≤ Ppre,s(g, Smϕ, η, f
−l (x)),

and the claim is thus confirmed.
Write k = mn2 − l2 and n − l2 = mn1 + l1, where 0 ≤ l1, l2 < m. Let C(j, ε) =

sj (ε,X, f )e
j‖ϕ‖. By Proposition 2.1(i), (ii) and the previous claim, we have

Ppre,n(f, ϕ, ε, f
−k(x))

≤ enδQpre,n−l2(f, ϕ, ε/2, f−k(x))Qpre,l2(f, ϕ, ε/2, f
−k+n−l2(x))

≤ C(l2, ε/2)enδQpre,mn1+l1(f, ϕ, ε/2, f −k(x))

≤ C(l2, ε/2)e(2n−l2)δQpre,mn1(f, ϕ, ε/4, f
−k(x))Qpre,l1(f, ϕ, ε/4, f

−k+mn1(x))

≤ C(l2, ε/2)C(l1, ε/4)e
(2n−l2)δPpre,mn1(f, ϕ, ε/4, f

−k(x))

≤ C(l2, ε/2)C(l1, ε/4)e
(2n−l2)δPpre,n1(g, Smϕ, η, f

−k(x))

= C(l2, ε/2)C(l1, ε/4)e(2n−l2)δPpre,n1(g, Smϕ, η, g
−n2 (f l2(x))).

Hence,

Ppre(f, ϕ, ε) = lim sup
n→∞

1

n
log sup

x∈X,k≥n
Ppre,n(f, ϕ, ε, f

−k(x))

≤ lim sup
n→∞

1

n
log sup

x∈X,k≥n1

C(l2, ε/2)C(l1, ε/4)e(2n−l2)δ

× Ppre,n1(g, Smϕ, η, g
−k(x))

= 2δ + lim sup
n→∞

1

mn1 + l1 + l2
log sup

x∈X,k≥n1

Ppre,n1(g, Smϕ, η, g
−k(x))

= 2δ + 1

m
Ppre(g, Smϕ, η).

Therefore, we can get mPpre(f, ϕ) ≤ Ppre(g, Smϕ). �

PROPOSITION 2.4. (Product rule of pre-image pressure) If fi : Xi → Xi (i = 1, 2)
is a continuous map of a compact metric space (Xi, di) and if ϕi ∈ C(Xi,R), then
Ppre(f1 × f2, ϕ1 × ϕ2) = Ppre(f1, ϕ1) + Ppre(f2, ϕ2), where ϕ1 × ϕ2 ∈ C(X1 × X2, R)

is defined by (ϕ1 × ϕ2)(x1, x2) = ϕ1(x1)+ ϕ2(x2).
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Proof. Consider the metric on X1 ×X2 given by

d((x1, x2), (x2, y2)) = max{d1(x1, y1), d2(x2, y2)}.
For x = (x1, x2) ∈ X1×X2 , n, k ∈ N and k ≥ n. If Fi is a (n, ε)-spanning set for f−k

i (xi)

then F1 ×F2 is an (n, ε)-spanning set for (f1 ×f2)
−k(x1, x2) with respect to f1 ×f2. Also

∑
(y1,y2)∈F1×F2

exp

(n−1∑
i=0

(ϕ1 × ϕ2)(f1 × f2)
i (y1, y2)

)

=
( ∑
y1∈F1

exp

(n−1∑
i=0

ϕ1(f
i
1 (y1))

))( ∑
y2∈F2

exp

(n−1∑
i=0

ϕ2(f
i
2 (y2))

))
.

Hence,

Qpre,n(f1 × f2, ϕ1 × ϕ2, ε, (f1 × f2)
−k(x1, x2))

≤ Qpre,n(f1, ϕ1, ε, f
−k

1 (x1))Qpre,n(f2, ϕ2, ε, f
−k

2 (x2)).

Therefore, Ppre(f1 × f2, ϕ1 × ϕ2) ≤ Ppre(f1, ϕ1)+ Ppre(f2, ϕ2).
If Ei is an (n, ε)-separated set for f−k

i (xi), then E1 × E2 is an (n, ε)-separated set for
(f1 × f2)

−k(x1, x2) with respect to f1 × f2. So,

Ppre,n(f1 × f2, ϕ1 × ϕ2, ε) ≥ Ppre,n(f1, ϕ1, ε) · Ppre,n(f2, ϕ2, ε).

Hence,

lim sup
n→∞

1

n
logPpre,n(f1 × f2, ϕ1 × ϕ2, ε)

≥ lim inf
n→∞

1

n
logPpre,n(f1, ϕ1, ε)+ lim sup

n→∞
1

n
Ppre,n(f2, ϕ2, ε).

Proposition 2.1(v) gives

Ppre(f1 × f2, ϕ1 × ϕ2) ≥ Ppre(f1, ϕ1)+ Ppre(f2, ϕ2). �

3. Variational principle for pre-image pressure
In this section we prove a variational principle for pre-image pressure.

LEMMA 3.1. [3] Let a1, . . . , ak be given real numbers. If pi ≥ 0 and
∑k
i=1 pi = 1, then

k∑
i=1

pi(ai − logpi) ≤ log

( k∑
i=1

eai
)

and equality holds if and only if

pi = eai∑k
j=1 e

aj
. �
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In the following we denote by B(X) the collection of all Borel subsets and denote by
M(X, f ) (or M(f ) for short) the set of f -invariant Borel probability measures for a
continuous map f of a compact metric space X into itself. Set B− = ⋂∞

n=0 f
−nB(X).

For finite partitions α, β, we set α ∨ β = {A ∩ B : A ∈ α,B ∈ β}. If 0 ≤ j ≤ n

are positive integers, we let αnj = ∨n−1
i=j f−iα and αn = αn−1

0 . It is not hard to see
that Hµ(αn|B−) (see [3]) is a non-negative sub-additive sequence for a partition α and
µ ∈ M(f ). We define the measure-theoretic (or metric) pre-image entropy of α with
respect to f as

hµ(α|B−) = lim
n→∞

1

n
Hµ(α

n|B−) = inf
n≥0

1

n
Hµ(α

n|B−),

and define the measure-theoretic (or metric) pre-image entropy of f as

hpre,µ(f ) = sup
α
hµ(α|B−).

THEOREM 3.1. (Variational principle for pre-image pressure) Let f : X → X be a
continuous map of the compact metric space X and ϕ ∈ C(X,R). Then

Ppre(f, ϕ) = sup
µ∈M(f )

{
hpre,µ(f )+

∫
ϕ dµ

}
.

Proof. (1) Let µ ∈ M(f ). We shall show that

hpre,µ(f )+
∫
ϕ dµ ≤ Ppre(f, ϕ).

Let ξ = {A1, . . . , Ak} be a partition of (X,B). Let a > 0 be given and choose ε > 0
such that εk log k < a. Since µ is regular there are compact sets Bj ⊂ Aj with
µ(Aj\Bj ) < ε, 1 ≤ j ≤ k. Let α be the partition α = {B0, B1, . . . , Bk} where
B0 = X

∖ ⋃k
j=1 Bj . Then Hµ(ξ |α) < εk log k < a. Let

b = min
1≤i �=j≤k d(Bi, Bj ) > 0.

Pick 0 < δ < b/8 such that d(x, y) < 4δ implies |ϕ(x)− ϕ(y)| < ε.
Let β1 ≤ β2 ≤ · · · be a non-decreasing sequence of finite partitions with diameters

tending to zero. Thus, B = ∨∞
j=1 βj and for any k > 0 and n > 0

Hµ(α
n|f−kB) = lim

j→∞Hµ(α
n|f−kβj ).

Let ε1 = ε1(n, ε) > 0 such that d(x, y) < ε1, then d(f i(x), f i(y)) < δ for 0 ≤ i < n.
The collection {f−k(x) : x ∈ f kX} is an upper semi-continuous decomposition of X.

Hence for each x ∈ f kX there is an ε2(x, k, ε1) such that if d(x, y) < ε2(x, k, ε1), y ∈
f kX and y1 ∈ f−k(y), then there is an x1 ∈ f−k(x) such that d(x1, y1) < ε1. Let U be
the collection of open ε2(x, k, ε1) balls in f kX as x varies in f kX and let ε3 be a Lebesgue
number for U .

Since diam(βj ) → 0 as j → ∞, we may choose j0 such that if j ≥ j0 and B ∈ βj ,
then diam(B̄) < ε3. Let j ≥ j0. For a set C ∈ f−kβj , let µC denote the conditional
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measure of µ restricted to C and let αnC = {A ∩ C : A ∈ αn,A ∩ C �= ∅}. If A ∩ C ∈ αnC ,
let γ (A,C) = sup{(Snϕ)(x) : x ∈ A ∩ C}, then by Lemma 3.1,

Hµ(α
n|f−kβj )+

∫
Snϕ dµ

=
∑

C∈f−kβj

[
µ(C)HµC (α

n
C)+

∫
C

Snϕ dµ

]

≤
∑

C∈f−kβj
µ(C)

∑
A∩C∈αnC

µC(A ∩ C)[−logµC(A ∩ C)+ γ (A,C)]

≤ max
C∈f−kβj

log
∑

A∩C∈αnC
eγ (A,C).

For each A ∩ C ∈ αnC choose some xA ∈ A ∩ C such that (Snϕ)(xA) = γ (A,C).
Let B ∈ βj such that C = f−kB.

Since f k(xA) ∈ B̄ and diam(B̄) < ε3, there is an uB ∈ f kX such that if y ∈ B̄ ∩ f kX,
then d(uB, y) < ε2(uB, k, ε1). This implies d(uB, f k(xA)) < ε2(uB, k, ε1). Hence, there
is a point φ1(A) ∈ f−k(uB) such that d(xA, φ1(A)) < ε1. So d(f i(xA), f i(φ1(A))) < δ

for all 0 ≤ i < n.
Let EC be a maximal (n, δ)-separated set in f−k(uB). Since EC spans f−k(uB), there

is a point φ2(A) ∈ EC such that d(f i(φ1(A)), f
i(φ2(A))) ≤ δ for all 0 ≤ i < n.

Hence d(f i(xA), f i(φ2(A))) ≤ 2δ for all 0 ≤ i < n. Then γ (A,C) ≤ (Snϕ)(φ2(A))+nε.

CLAIM. If y ∈ EC then card({A ∩ C ∈ αnC : φ2(A) = y}) ≤ 2n.

In fact, let A, Ã be such that φ2(A) = φ2(Ã). Then for all 0 ≤ i < n we have
d(f i(xA), f

i(xÃ)) ≤ 4δ. Since each ball of radius 4δ meets at most the closures of two
members of α, {A ∩ C ∈ αnC : φ2(A) = y} has cardinality at most 2n and the claim is thus
confirmed.

Thus, ∑
A∩C∈αnC

eγ (A,C)−nε ≤
∑

A∩C∈αnC
e(Snϕ)(φ2(A)) ≤ 2n

∑
y∈EC

e(Snϕ)(y).

Hence,

Hµ(α
n|f−kβj )+

∫
Snϕ dµ ≤ (ε + log 2)n+ log sup

x∈X
Ppre,n(f, ϕ, δ, f

−k(x)).

Let j → ∞ and k → ∞, we have

Hµ(α
n|B−)+

∫
Snϕ dµ ≤ (ε + log 2)n+ log sup

x∈X,k≥n
Ppre,n(f, ϕ, δ, f

−k(x)).

So

hµ(α|B−)+
∫
ϕ dµ ≤ ε + log 2 + Ppre(f, ϕ, δ) ≤ ε + log 2 + Ppre(f, ϕ).

Now hµ(ξ |B−) ≤ hµ(α|B−)+Hµ(ξ |α) by [11, Lemma 4.8], then

hµ(ξ |B−)+
∫
ϕ dµ ≤ 2a + log 2 + Ppre(f, ϕ),

https://doi.org/10.1017/S0143385706000812 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385706000812


1046 F. Zeng et al

and, therefore,

hpre,µ(f )+
∫
ϕ dµ ≤ 2a + log 2 + Ppre(f, ϕ).

Replacing f with f n and ϕ with Snϕ
(= ∑n−1

i=0 ϕ◦f i) in the above inequality, respectively,
and by Proposition 2.3, we have

n

[
hpre,µ(f )+

∫
f dµ

]
≤ 2a + log 2 + nPpre(f, ϕ).

So we have

hpre, µ(f )+
∫
ϕ dµ ≤ Ppre(f, ϕ).

(2) Let ε > 0. We shall produce an f -invariant measure µ such that

hpre, µ(f )+
∫
f dµ ≥ Ppre(f, ϕ, ε).

Choose sequences ni → ∞, ki > ni and xi ∈ X such that

Ppre(f, ϕ, ε) = lim
i→∞

1

ni
logPpre,ni (f, ϕ, ε, f

−ki (xi)).

Let Ei be an (ni , ε)-separated set of f−ki (xi) such that

log
∑
y∈Ei

e(Sni ϕ)(y) ≥ logPpre,ni (f, ϕ, ε, f
−ki (xi))− 1.

Letting δx denote the point mass at point x ∈ X, let

σi =
∑
y∈Ei e

(Sni ϕ)(y)δy∑
z∈Ei e

(Sni ϕ)(z)
,

and let

µi = 1

ni

ni−1∑
j=0

σi ◦ f−j .

We may assume without loss of generality thatµ = limi→∞ µi . We know thatµ ∈ M(f ).
We choose a finite partition α of (X,B) such that for each A ∈ α, µ(∂A) = 0 and

diam(A) < ε.
Let C = {E ∈ B− : µ(E) = 0}. For any σ -algebra A of subsets of X, there is an

enlarged σ -algebra AC defined by A ∈ AC if and only if there are sets B,M,N such that
A = B ∪M,B ∈ A, N ∈ C and M ⊆ N . We consider the σ -algebra Bk = (f−kB)C for
k ≥ 1. Letting B∞ = ⋂

k≥1 Bk, we have B− ⊂ B∞ ⊂ Bk (k ≥ 1).
Now, each element A ∈ Bki can be expressed as the disjoint union A = B ∪ C with

B ∈ f−kiB and C ∈ C. Since σi is supported on f−ki (xi), we have σi(C) = 0. Hence, for
any finite partition γ , we have

Hσi (γ |Bki ) = Hσi (γ |f−ki (xi)).
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Since each element of αni |f−ki (xi) contains at most one element of Ei , by definition of σi
and Lemma 3.1 we have

Hσi (α
ni |Bki )+

∫
Sni ϕ dσi = Hσi (α

ni |f−ki (xi))+
∫
Sni ϕ dσi

=
∑
y∈Ei

σi({y})((Sniϕ)(y)− log σi({y}))

= log
∑
y∈Ei

e(Sni ϕ)(y).

Fix q ∈ N with 1 ≤ q < ni . For 0 ≤ j ≤ q − 1 put a(j) = [(ni − j/q)]. Here [b]
denotes the integer part of b > 0. Fix 0 ≤ j ≤ q − 1, so by [3, (ii) of Remark 2 in §8.2]
we have

αni =
a(j)−1∨
r=0

f−(rq+j)αq ∨
∨
l∈S
f−lα,

and S has cardinality of at most 2q . Therefore,

log
∑
y∈Ei

e(Sni ϕ)(y) = Hσi (α
ni |Bki )+

∫
Sni ϕ dσi

≤
a(j)−1∑
r=0

Hσi (f
−(rq+j)αq |Bki )+Hσi

(∨
l∈S
f−lα|Bki

)
+

∫
Sni ϕ dσi

≤
a(j)−1∑
r=0

Hσi (f
−(rq+j)αq |f−(rq+j)(Bki ))+ 2q log k +

∫
Sni ϕ dσi

=
a(j)−1∑
r=0

Hσi◦f−(rq+j) (αq |Bki )+ 2q log k +
∫
Sni ϕ dσi .

Summing up over j from 0 to q − 1 and using [3, (iii) of Remark 2 in §8.2] we obtain

q log
∑
y∈Ei

e(Sni ϕ)(y) ≤
ni−1∑
p=0

Hσi◦f−p (αq |Bki )+ 2q2 log k + q

∫
Sni ϕ dσi .

Now divide by ni and use [10, Lemma 6.1(35)] to obtain

q

ni
log

∑
y∈Ei

e(Sni ϕ)(y) ≤ Hµi (α
q |Bki )+ 2q2

ni
log k + q

∫
ϕ dµi

≤ Hµi (α
q |B∞)+ 2q2

ni
log k + q

∫
ϕ dµi.

Using [10, Lemma 6.1(34)], we have

qPpre(f, ϕ, ε) ≤ Hµ(α
q |B−)+ q

∫
ϕ dµ ≤ Hµ(α

q |B−)+ q

∫
ϕ dµ.

Dividing by q and letting q → ∞ we have

Ppre(f, ϕ, ε) ≤ hµ(α|B−)+
∫
ϕ dµ ≤ hpre,µ(f )+

∫
ϕ dµ. �
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A point x ∈ X is said to be a non-wandering point if for each neighborhood U of x
there exists n ∈ N such that f n(U) ∩ U �= ∅. Let 
(f ) denote the non-wandering set
of f . It is well known that µ(
(f )) = 1 for each µ ∈ M(f ). From Theorem 3.1, the
following corollaries are obvious.

COROLLARY 3.1.1. Let f : X → X be a continuous map of a compact metric space and
let ϕ ∈ C(X,R). Then:
(i) Ppre(f, ϕ) = Ppre(f |
(f ), ϕ|
(f ));
(ii) Ppre(f, ϕ) = Ppre(f |⋂∞

n=0 f
nX, ϕ|⋂∞

n=0 f
nX).

COROLLARY 3.1.2. If f : X → X is uniquely ergodic and M(f ) = {µ} then

Ppre(f, ϕ) = hpre,µ(f )+
∫
ϕ dµ.

Remark. Applying Theorem 3.1, we can give another proof of Ppre(f1 × f2, ϕ1 × ϕ2) ≥
Ppre(f1, ϕ1) + Ppre(f2, ϕ2) in the product rule of pre-image pressure. Let ε > 0.
Theorem 3.1 implies there are invariant measures µ, ν such that hpre,µ(f1) + ∫

ϕ1 dµ >

Ppre(f1, ϕ1)− ε and hpre,ν(f2)+ ∫
ϕ2 dν > Ppre(f2, ϕ2)− ε. Then

Ppre(f1 × f2, ϕ1 × ϕ2) ≥ hpre, µ×ν (f1 × f2)+
∫
ϕ1 × ϕ2 d(µ× ν)

= hpre, µ(f1)+ hpre,ν(f2)+
∫
ϕ1 dµ+

∫
ϕ2 dν

> Ppre(f1, ϕ1)+ Ppre(f2, ϕ2)− 2ε.

Therefore, Ppre(f1 × f2, ϕ1 × ϕ2) ≥ Ppre(f1, ϕ1)+ Ppre(f2, ϕ2).

4. Pre-image pressure determines invariant measures
In this section we shall show how Ppre(f, ·) determines the invariant measures of f when
f : X → X is a continuous map of a compact metric space X. Recall that a finite signed
measure on X is a map µ : B → R, which is countably additive.

LEMMA 4.1. Let f : X → X be a continuous transformation of a compact metric
space X. If ϕ,ψ ∈ C(X,R) and c ∈ R, then the following are true.
(i) ϕ ≤ ψ implies Ppre(f, ϕ) ≤ Ppre(f,ψ). In particular, hpre(f ) + infϕ ≤

Ppre(f, ϕ) ≤ hpre(f )+ supϕ.
(ii) Ppre(f, ϕ + c) = Ppre(f, ϕ)+ c.
(iii) |Ppre(f, ϕ)− Ppre(f,ψ)| ≤ ‖ϕ − ψ‖.
(iv) Ppre(f, ·) is convex.
(v) Ppre(f, ϕ + ψ ◦ f − ψ) = Ppre(f, ϕ).
(vi) Ppre(f, cϕ) ≤ cPpre(f, ϕ) if c ≥ 1 and Ppre(f, cϕ) ≥ cPpre(f, ϕ) if c ≤ 1.
(vii) |Ppre(f, ϕ)| ≤ Ppre(f, |ϕ|).
(viii) Ppre(f, ϕ + ψ) ≤ Ppre(f, ϕ)+ Ppre(f,ψ).

Proof. (i), (ii) easily follow from the definition of pre-pressure.
(iii) Let ε > 0. By Theorem 3.1 there exists a µ ∈ M(f ) such that

Ppre(f, ϕ) < hpre,µ(f )+
∫
ϕ dµ+ ε.
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Hence

Ppre(f, ϕ)− Ppre(f,ψ) <

(
hpre,µ(f )+

∫
ϕ dµ

)
−

(
hpre,µ(f )+

∫
ψ dµ

)
+ ε

=
∫
(ϕ − ψ) dµ+ ε ≤ ‖ϕ − ψ‖ + ε.

Therefore, Ppre(f, ϕ)− Ppre(f,ψ) ≤ ‖ϕ − ψ‖.
Similarly, we have Ppre(f,ψ) − Ppre(f, ϕ) ≤ ‖ϕ − ψ‖. This proves (iii).
(iv) Let a ∈ [0, 1] and ε > 0. By Theorem 3.1 there is a µ ∈ M(f ) such that

Ppre(f, aϕ + (1 − a)ψ) < hpre,µ(f )+
∫
(aϕ + (1 − a)ψ) dµ+ ε.

Hence

Ppre(f, aϕ + (1 − a)ψ)

< hpre,µ(f )+
∫
(aϕ + (1 − a)ψ) dµ+ ε

= a

(
hpre,µ(f )+

∫
ϕ dµ

)
+ (1 − a)

(
hpre,µ(f )+

∫
ψ dµ

)
+ ε

≤ aPpre(f, ϕ)+ (1 − a)Ppre(f,ψ) + ε.

Therefore, Ppre(f, aϕ + (1 − a)ψ) ≤ aPpre(f, ϕ)+ (1 − a)Ppre(f,ψ).
(v) Note that

∫
(ψ ◦ f − ψ) dµ = 0 for each µ ∈ M(f ). This implies

Ppre(f, ϕ + ψ ◦ f − ψ) = sup
µ∈M(f )

{
hpre,µ(f )+

∫
(ϕ + ψ ◦ f − ψ) dµ

}

= sup
µ∈M(f )

{
hpre,µ(f )+

∫
ϕ dµ

}
= Ppre(f, ϕ).

The proofs of (vi), (vii) and (viii) are obtained in a similar manner as above by applying
Theorem 3.1 and are thus omitted. �

THEOREM 4.1. (Pre-image pressure determines invariant measures) Let f : X → X be a
continuous map of a compact metric space with hpre(f ) < ∞. Let µ : B → R be a finite
signed measure. Then µ ∈ M(f ) if and only if∫

ϕ dµ ≤ Ppre(f, ϕ) for all ϕ ∈ C(X,R).
Proof. The proof follows the idea of the proof of [3, Theorem 9.11] and is omitted. �

The pre-image entropy map of the continuous transformation f : X → X is the map
µ → hpre,µ(f ), which is defined on M(f ) and has values in [0,∞]. We denote by
h(pre,·)(f ) the pre-image entropy map. It is said that h(pre,·)(f ) is upper semi-continuous
at µ0 ∈ M(f ) if

lim sup
µ→µ0

hpre,µ(f ) ≤ hpre,µ0(f ),

i.e. for ε > 0, there is a neighborhood U of µ0 in M(f ) such that µ ∈ U implies
hpre,µ(f ) < hpre,µ0(f )+ ε.
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THEOREM 4.2. Let f : X → X be a continuous map of a compact metric space with
hpre(f ) < ∞ and let µ0 ∈ M(f ). Then

hpre,µ0(f ) = inf

{
Ppre(f, ϕ)−

∫
ϕ dµ0 : ϕ ∈ C(X,R)

}

if and only if h(pre,·)(f ) is upper semi-continuous at µ0.

Proof. The proof follows completely from that of [3, Theorem 9.12] and is omitted. �

5. Equilibrium states
In this section, we give some applications of pre-image pressure Ppre(f, ·) to equilibrium
states.

Given ϕ ∈ C(X,R). A member µ of M(f ) is called an equilibrium state for ϕ if

Ppre(f, ϕ) = hpre,µ(f )+
∫
ϕ dµ.

Let Mϕ(f ) denote the collection of all equilibrium states for ϕ.
A tangent functional to the convex function Ppre(f, ·) at ϕ is a finite signed Borel

measure µ on X such that

Ppre(f, ϕ + ψ) − Ppre(f, ϕ) ≥
∫
ψ dµ for all ψ ∈ C(X,R).

We let Tϕ(f ) denote the collection of all tangent functionals to Ppre(f, ·) at ϕ.

THEOREM 5.1. Let f : X → X be a continuous map of a compact metric space and let
ϕ ∈ C(X,R). Then:
(i) Mϕ(f ) is convex;
(ii) the extreme points of Mϕ(f ) are precisely the ergodic members of Mϕ(f );
(iii) if the pre-image entropy map is upper semi-continuous then Mϕ(f ) is compact and

non-empty;
(iv) if ϕ,ψ ∈ C(X,R) and if there exists c ∈ R such that ϕ − ψ − c belongs to the

closure of the set {ϕ ◦ f − ϕ : ϕ ∈ C(X,R)} in C(X,R), then Mϕ(f ) = Mψ(f ).

Proof. For each ν ∈ M(f ), we let

L(ϕ, ν) = hpre,ν(f )+
∫
ϕ dν.

(i) This follows from the fact that the pre-image entropy map is affine [10, Theorem 2.3].
(ii) Let µ be an extreme point of Mϕ(f ). To show that µ is ergodic, it is sufficient to

show that µ is an extreme point of M(f ). Let µ1, µ2 ∈ M(f ) and p ∈ (0, 1) such that
µ = pµ1 + (1 − p)µ2. Then pL(ϕ,µ1) + (1 − p)L(ϕ,µ2) = L(ϕ,µ) = Ppre(f, ϕ).
It follows from Theorem 3.1 that L(ϕ,µ1) = L(ϕ,µ2) = Ppre(f, ϕ). Hence µ1, µ2 ∈
Mϕ(f ). Since µ is an extreme point of Mϕ(f ), µ1 = µ2 = µ. Thereforeµ is an extreme
point of M(f ).

(iii) By the upper semi-continuity of the pre-image entropy map, Mϕ(f ) is non-empty
and compact.
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(iv) Note that ∫
ϕ dµ =

∫
ψ dµ+ c for all µ ∈ M(f ).

Therefore,

hpre,µ(f )+
∫
ϕ dµ = hpre,µ(f )+

∫
ψ dµ+ c,

and Ppre(f, ϕ) = Ppre(f,ψ)+ c. Hence Mϕ(f ) = Mψ(f ). �

However, the following example shows that the set Mϕ(f ) may be empty if the pre-
image entropy map is not upper semi-continuous.

Example 5.1. Choose numbers βn such that 1 < βn < 2 but βn → 2. Let Tn : Xn → Xn

denote the one-sided βn-shift [3, §7.3]. We know h(Tn) = logβn. By [8, Proposition 2.2]
we have hpre(Tn) = logβn, where hpre(Tn) denotes the Cheng–Newhouse pre-image
entropy of Tn. Suppose dn is a metric on Xn and suppose dn(x, y) ≤ 1, for all x, y ∈ Xn.
We define a new space X which will be the disjoint union of the Xn together with a
‘compactification’ point x∞.

Define the metric ρ on X by ρ(x, y) = (1/n2)dn(x, y) if x, y ∈ Xn, ρ(x, y) =∑p
i=n 1/i2 if x ∈ Xn, y ∈ Xp and n < p, and ρ(x, x∞) = ∑∞

i=n 1/i2 if x ∈ Xn.
Then (X, ρ) is a compact metric space and the subsets Xn converge to x∞.

The transformation T : X → X with T (x) = Tn(x) if x ∈ Xn and T (x∞) = x∞ is a
continuous transformation. If µ ∈ M(T ) then µ = ∑∞

n=1 pnµn + (
1 − ∑∞

n=1 pn
)
δx∞ ,

whereµn ∈ M(Xn, Tn) and pn ≥ 0,
∑∞
n=1 pn ≤ 1. Let E(X, T ) denote the set of extreme

points of M(T ). Hence if µ ∈ E(X, T ) then either µ ∈ E(Xn, Tn) for some n or µ = δx∞ .
Therefore, hpre(T ) = sup{hpre,µ(T ) : µ ∈ E(X, T )} = supn≥1 sup{hpre,µn(Tn) : µn ∈
E(Xn, Tn)} = supn≥1 hpre(Tn) = log 2. If M0(T ) �= ∅, then by Theorem 5.1(ii) M0(T )

contains some ergodic measure µ. Then µ ∈ M(Xn, Tn) for some n, so hpre,µ(T ) =
logβn. This is a contradiction. Therefore M0(T ) = ∅.

Let Mu(f ) = {µ ∈ M(f ) : h{pre,·}(f ) be upper semi-continuous at µ}.
THEOREM 5.2. Let f : X → X be a continuous map of a compact metric space with
hpre(f ) < ∞ and let ϕ ∈ C(X,R). Then:
(i) Mϕ(f ) ⊂ Tϕ(f ) ⊂ M(f );

(ii) Tϕ(f ) = ⋂∞
n=1 {µ ∈ M(f ) : hpre,µ(f )+

∫
ϕ dµ > Ppre(f, ϕ)− 1/n};

(iii) Mϕ(f ) = Tϕ(f ) ∩ Mu(f ).

Proof. The proofs of (i) and (ii) follow [3, Theorem 9.14] and the remark of
[3, Theorem 9.15], respectively, and are omitted.

(iii) Using (ii) we have that Tϕ(f ) ∩ Mu(f ) ⊂ Mϕ(f ). Now let µ ∈ Mϕ(f ), i.e.

hpre,µ(f )+
∫
ϕ dµ = Ppre(f, ϕ).

If µn ∈ M(f ), µn → µ, then

hpre,µn(f )+
∫
ϕ dµn ≤ Ppre(f, ϕ),
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i.e.

hpre,µn(f ) ≤ hpre,µ(f )+
(∫

ϕ dµ−
∫
ϕ dµn

)
.

Hence, lim supn→∞ hpre,µn(f ) ≤ hpre,µ(f ), i.e. the pre-image entropy map h{pre,·}(f ) is
upper semi-continuous at µ. Therefore µ ∈ Tϕ(f ) ∩ Mu(f ). �
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