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In an acoustic cavity with a heat source, such as a flame in a gas turbine, the thermal
energy of the heat source can be converted into acoustic energy, which may generate
a loud oscillation. If uncontrolled, these nonlinear acoustic oscillations, also known
as thermoacoustic instabilities, can cause large vibrations up to structural failure.
Numerical and experimental studies showed that thermoacoustic oscillations can be
chaotic. It is not yet known, however, how to minimise such chaotic oscillations.
We propose a strategy to analyse and minimise chaotic acoustic oscillations, for
which traditional stability and sensitivity methods break down. We investigate the
acoustics of a nonlinear heat source in an acoustic resonator. First, we propose
covariant Lyapunov analysis as a tool to calculate the stability of chaotic acoustics,
making connections with eigenvalue and Floquet analyses. We show that covariant
Lyapunov analysis is the most general flow stability tool. Second, covariant Lyapunov
vector analysis is applied to a chaotic system. The time-averaged acoustic energy
is investigated by varying the heat-source parameters. Thermoacoustic systems can
display both hyperbolic and non-hyperbolic chaos, as well as discontinuities in the
time-averaged acoustic energy. Third, we embed sensitivities of the time-averaged
acoustic energy in an optimisation routine. This procedure achieves a significant
reduction in acoustic energy and identifies the bifurcations to chaos. The analysis
and methods proposed enable the reduction of chaotic oscillations in thermoacoustic
systems by optimal passive control. The techniques presented can be used in other
unsteady fluid-dynamics problems with virtually no modification.

Key words: nonlinear instability, chaos

1. Introduction
Gas-turbine and rocket-motor manufacturers strive to design engines that do

not experience thermoacoustic instabilities (Lieuwen & Yang 2005; Culick 2006;
Dowling & Mahmoudi 2015; Poinsot 2017; Juniper & Sujith 2018). Thermoacoustic
instabilities occur when the heat released by the flame is sufficiently in phase
with the acoustic pressure (Rayleigh 1878) such that the thermal energy of the
flame that is converted into acoustic energy exceeds dissipation mechanisms. The
first objective of manufacturers is to design a thermoacoustic system in which
small acoustic perturbations decay after some time, i.e. all the eigenvalues are
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stable. Eigenvalue analysis is routinely used in industrial preliminary design and
parametric studies because it can be run quickly (e.g. Lieuwen & Yang 2005;
Magri 2018). However, when nonlinearities become active, thermoacoustic systems
exhibit rich behaviours both via supercritical bifurcations, i.e. when an eigenvalue
becomes unstable, and subcritical bifurcations, i.e. when eigenvalues are stable
but the nonlinearity is triggered by finite-amplitude perturbations (Subramanian &
Sujith 2011). When the bifurcation parameter is varied, thermoacoustic systems may
display periodic, quasi-periodic and chaotic oscillations (Kabiraj, Sujith & Wahi 2011;
Gotoda et al. 2011, 2012; Kabiraj et al. 2012; Kashinath, Waugh & Juniper 2014;
Waugh, Kashinath & Juniper 2014; Nair, Thampi & Sujith 2014; Nair & Sujith 2015;
Orchini, Illingworth & Juniper 2015). Whereas methods to investigate the stability
and sensitivity of fixed points and periodic solutions are well established (e.g. Juniper
& Sujith 2018; Magri 2018), a stability and sensitivity framework to tackle chaotic
acoustic oscillations is not available yet. This paper proposes a framework for stability
and sensitivity analysis of chaotic acoustic oscillations.

In thermoacoustics, chaotic acoustic oscillations originate from two main physical
nonlinearities, which are deterministic. First, the heat released by the flame is
a nonlinear function of the acoustic perturbations at the flame’s base, i.e. the
flame saturates nonlinearly (Dowling 1997, 1999). Both experimental investigations
(Gotoda et al. 2011; Kabiraj et al. 2011; Gotoda et al. 2012; Kabiraj et al. 2012)
and numerical studies (Waugh et al. 2014; Kashinath et al. 2014; Orchini et al.
2015) showed that the nonlinear flame saturation may cause a periodic acoustic
oscillation to become chaotic, by either period doubling, or Ruelle–Takens–Newhouse,
or intermittency scenarios (Nair et al. 2014; Nair & Sujith 2015), which are common
to other fluid dynamics systems (Eckmann 1981; Miles 1984; Eckmann & Ruelle
1985). The numerical studies of Waugh et al. (2014), Kashinath et al. (2014), Orchini
et al. (2015) showed that the nonlinear flame saturation may generate chaotic acoustic
oscillations even in laminar flame models, where the turbulent hydrodynamics is not
modelled. Second, the geometry of the combustor promotes hydrodynamic instabilities,
such as vortex shedding and shear-layer instabilities (Lieuwen 2012), which result
in energetic coherent structures. In turbulent combustors, turbulence unpredictably
modulates the dynamics of coherent structures, which, in turn, unpredictably modulate
the flame dynamics, thereby changing the heat release that feeds into the acoustics.
This paper investigates the chaotic acoustics generated by the nonlinear response of
the heat source.

Although oscillations in thermoacoustic systems may be nonlinear and chaotic,
industrial preliminary design is based on linear analysis (Lieuwen & Yang 2005;
Juniper & Sujith 2018): the first objective is to design eigenvalue-stable thermoacoustic
systems. Sensitivity methods have recently been developed to calculate the effect that
a small change to the system has on the eigenvalue, as reviewed by Magri (2018).
Sensitivity analysis quantitatively informs the practitioner, among others, on (i) how to
optimally change design parameters, such as geometric quantities (Magri & Juniper
2014); (ii) which passive device is most stabilising (Magri & Juniper 2013); and
(iii) how large the uncertainty of the stability calculations is (Magri et al. 2016;
Silva et al. 2016; Mensah, Magri & Moeck 2018). When the gradient provided by
sensitivity analysis is embedded in an optimisation routine, it is possible to calculate
the optimal arrangement of acoustic dampers (Mensah & Moeck 2017) and a stable
set of geometric parameters (Aguilar & Juniper 2018). However, eigenvalue analysis
is necessary but not sufficient to prevent large acoustic oscillations. This is the case of
subcritical bifurcations, where the system can self-sustain finite-amplitude oscillations
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in the bistable region, where all eigenvalues are stable. In this paper, we provide
a method to calculate the sensitivity of chaotic acoustic oscillations, which is the
most general nonlinear scenario, to minimise their energy. First, we need to define
a quantity of interest of which we want to calculate the sensitivity in a chaotic
oscillation. In aperiodic flows, a quantity of interest is the time average of a cost
functional, J ,

〈J (s)〉, lim
T→∞

1
T

∫ T

0
J (s; q(t)) dt, (1.1)

where q is the state vector, t is the time, 〈·〉 represents the time average operation,
which is equal to the expected value in ergodic systems (Birkhoff ergodic theorem
(Birkhoff 1931)), and s is the parameters’ vector. Physically, J may be an acoustic
energy, which we want to minimise to make the combustor operate in stable
conditions. Therefore, the objective is to calculate the sensitivity of the time-averaged
cost functional given a perturbation to the parameters’ vector, i.e. ∇s〈J 〉. Whereas
the sensitivity analysis of eigenvalues is robust, traditional sensitivity methods fail
in chaotic systems because of the butterfly effect (Lea, Allen & Haine 2000), see
§ 2.6. Shadowing methods have recently been proposed (Wang 2013; Wang, Hu &
Blonigan 2014; Ni & Wang 2017) to carry out sensitivity analysis of chaotic systems
as a more efficient alternative to ensemble methods (Eyink, Haine & Lea 2004). By
noting that changing a parameter of a chaotic system has a similar effect to changing
the initial condition, shadowing methods find a perturbed (shadow) trajectory that
does not diverge from the unperturbed trajectory. Such a trajectory is guaranteed to
exist by the shadowing lemma (e.g. Katok & Hasselblatt 1995; Holmes, Lumley &
Berzook 1996; Pilyugin 2006) and the sensitivity calculation is enabled because the
expectation (1.1) is a smooth function of the parameters in hyperbolic dynamical
systems, as explained in Ruelle’s linear theory (Ruelle 2009). A hyperbolic strange
attractor is an invariant set whose tangent space can be decomposed into stable,
unstable and neutrally stable subspaces at almost every point. One basis for this
decomposition consists of the covariant Lyapunov vectors (Ginelli et al. 2007, 2013).
Hyperbolic attractors are also ergodic and, importantly, they have differentiable
expectations (Ruelle 2009), 〈J 〉, whereas non-hyperbolic systems may not. Thus, the
sensitivities of time-averaged cost functionals are well defined in hyperbolic systems,
but may be ill defined in non-hyperbolic systems. For chaotic sensitivity methods to
work in thermoacoustics, it is crucial that the hyperbolicity assumption is verified. In
this paper, first, we introduce covariant Lyapunov vector analysis as a generalisation
of traditional flow stability analysis. It is mathematically and numerically shown that
covariant Lyapunov vector analysis becomes eigenvalue analysis when the attractor
is a fixed point, and becomes Floquet analysis when the attractor is a periodic
orbit. Third, we show that the system admits both hyperbolic and non-hyperbolic
chaotic solutions. Fourth, by combining covariant Lyapunov vector analysis and the
non-intrusive least squares shadowing method (Ni & Wang 2017), we embed the
sensitivities of the time-averaged acoustic energy to the heat-source parameters in a
gradient-based optimisation algorithm to minimise the energy of the oscillation. Fifth,
we suggest how the methods we propose can be used for the suppression of acoustic
oscillations in high-fidelity design.

The paper is structured in two parts. The first part is theoretical and is kept as
general as possible. Section 2 recalls the concept of Lyapunov exponents, covariant
Lyapunov vectors and the numerical algorithm for computing them. In §§ 3.1
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and 3.2, we show analytically that fixed-point and Floquet analyses are subsets
of covariant Lyapunov vector analysis, which are general results. The second part
applies the theory to a chaotic acoustic system with a heat source (§ 4). The covariant
Lyapunov vector analysis of the thermoacoustic model is presented in § 5. Finally, a
gradient-based optimisation is performed in § 6.2 to minimise a time-averaged cost
functional. The paper ends with suggestions for future work and a summary of the
main results in § 7.

2. Covariant Lyapunov vector analysis

This section introduces the key concepts to perform stability and sensitivity
analysis of chaotic thermoacoustic systems. In particular, we present the key results
of Oseledets’ theorem (Oseledets 1968) to lay out the fundamentals of covariant
Lyapunov vector analysis (Ginelli et al. 2013), which has recently seen interest from
the fluid dynamics community (Inubushi, Takehiro & Yamada 2015; Schubert &
Lucarini 2015; Xu & Paul 2016). (Note that covariant Lyapunov vector analysis has
nothing to do with Lyapunov stability analysis based on Lyapunov functions, which
is used, for example, in control theory.)

2.1. Lyapunov exponents
The thermoacoustic problem is governed by partial differential equations, i.e. the
compressible Navier–Stokes equation with equations for the chemistry, and mass
and energy conservation. After spatial discretisation, the thermoacoustic problem is
formally an autonomous dynamical system

q̇(t)=F(q(t)),
q(0)= q0,

}
(2.1)

where the overdot (̇ ) is Newton’s notation for time differentiation; q ∈ RN is the
state vector (e.g. pressure and velocity at each discrete location), where the integer N
denotes the discrete degrees of freedom; the subscript 0 denotes the initial condition;
and F : RN

→ RN is a nonlinear smooth function, which encapsulates the discretised
boundary conditions. We are interested in the evolution of small perturbations,
therefore we split the solution as

q(t)= q̄(t)+ q′(t), (2.2)

where q̄(t) is the unperturbed solution of (2.1) such that ‖q̄(t)‖∼O(1), and q′(t) is the
small perturbation such that ‖q̄′(t)‖∼O(ε), where ε→0. The perturbation is governed
by the tangent equation

q̇′ = J(t)q′,
q′(0)= q′0,

}
(2.3)

where J(t) ≡ dF/dq|q̄(t) is the Jacobian. To define the Lyapunov exponents, it is
convenient to introduce the tangent propagator, which maps the perturbation, q′, from
time t to time t̃, as

q′(t+ t̃)=M(t, t̃)q′(t). (2.4)
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The tangent propagator is governed by the matrix equation

dM

dt̃
= J(t̃)M,

M(t, 0)= I,

 (2.5)

where I is the identity matrix. Setting t = 0 without loss of generality, the norm of
an infinitesimal perturbation, q′0, to the initial condition, q̄0, asymptotically grows (or
decays) as

‖q′(t̃)‖ ∼= ‖q′0‖e
λ(q′0,q̄0)t̃, (2.6)

where ∼= means ‘asymptotically equal to’, and

λ(q′0, q̄)= lim
t̃→∞

1
t̃

log
‖M(0, t̃)q′0‖
‖q′0‖

(2.7)

is the characteristic Lyapunov exponent. Oseledets’ theorem (Oseledets 1968) shows
that there exist m6N distinct Lyapunov exponents λ1(q̄)> λ2(q̄)> · · ·> λm(q̄), which
provide a filtration of the tangent space Tq̄, into subspaces Si, i.e. Tq̄ ≡ S1 ⊃ S2 ⊃

· · · ⊃ Sm, such that q′0 ∈ Sj\Sj+1⇔ λ(q′0, q̄) = λj(q̄). Furthermore, Oseledets’ theorem
shows that λj(q̄) are constants of the attractor q̄, and, in ergodic systems, λj do not
depend on the initial condition, q̄0. Physically, the Lyapunov exponents are the average
exponential contraction/expansion rates of an infinitesimal volume of the phase space
moving along the attractor. For example, as shown in § 3.1, if the attractor is a fixed
point, the Lyapunov exponents are equal to the real part of the eigenvalues of the
Jacobian at the fixed point. Similarly, as shown in § 3.2, if the attractor is a limit
cycle, the Lyapunov exponents are equal to the real part of the Floquet exponents.

2.2. Oseledets’ splitting and covariant Lyapunov vectors
The Lyapunov exponents are invariant measures of the attractor, however, they do not
inform on the directions along which the infinitesimal volume of the phase space
contracts/expands. Such directions are provided by the Oseledets splitting, which is
composed by the Lyapunov subspaces, which are, in turn, spanned by the covariant
Lyapunov vectors. First, the Oseledets matrix (Oseledets 1968) is defined as

Ξ±(t)= lim
t̃→±∞

1
2t̃

log[M(t, t̃)TM(t, t̃)]. (2.8)

This matrix is called ‘forward’ if t̃→+∞ or ‘backward’ if t̃→−∞. The spectrum of
this matrix contains m6N distinct eigenvalues, which are the Lyapunov exponents of
the system λ1>λ2> · · ·>λm. However, the eigenvectors of the forward and backward
matrices differ from each other and are not invariant under time reversal. To gain
more insight in the Oseledets matrix, consider the singular value decomposition
M(t, t̃)=UΣV T, where U and V are orthogonal matrices and Σ is a diagonal matrix
with non-negative real entries (the singular values). We can obtain an eigenvalue
decomposition of the argument of the logarithm of (2.8), MTM=V (ΣTΣ)V T

=VΣ2V T,
which, after applying the logarithm, becomes V log(Σ2)V T

= 2V log(Σ)V T. Thus,
equation (2.8) can be rewritten as Ξ±(t)= limt̃→±∞ V (log(Σ(t, t̃))/t̃)V T, which shows
that the eigenvalues of Ξ± are the Lyapunov exponents, which are equal to the
exponential average of the singular values of M(t, t̃). Let V±j (t) be the jth eigenspace
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of the forward (backward) Oseledets matrix, then the Oseledets subspaces are defined
as

Γ +j (t)= V+j (t)⊕ · · · ⊕ V+m (t), (2.9)

Γ −j (t)= V−1 (t)⊕ · · · ⊕ V−j (t), (2.10)

where ⊕ is the direct sum. The Oseledets subspaces have the property

lim
t̃→∞

1
t̃

log
‖M(t, t̃)q′(t)‖
‖q′(t)‖

= λj, for q′(t) ∈ Γ ±j (t)\Γ
±

j+1(t) (2.11)

and a nested structure RN
= Γ +1 (t) ⊃ Γ

+

2 (t) ⊃ · · · ⊃ Γ +m (t) ⊃ Γ
+

m+1(t) ≡ ∅ and RN
=

Γ −m (t)⊃ Γ
−

m−1(t)⊃ · · · ⊃ Γ
−

1 (t)⊃ Γ
−

0 (t)≡ ∅. By intersecting the Oseledets subspaces,
we obtain the Lyapunov subspaces

Ωj(t)= Γ +j (t)∩ Γ
−

j (t), j ∈ {1, . . . ,m}, (2.12)

which compose the Oseledets splitting. The Lyapunov subspaces are (i) generally
non-orthogonal to each other, (ii) covariant with the dynamics, i.e. M(t, t̃)Ωj(t) =
Ωj(t+ t̃), and (iii) invariant under time reversal. Each vector φj(t) of a set that spans
one of the Lyapunov subspaces is a covariant Lyapunov vector associated with the
Lyapunov exponent λj. If a trajectory is infinitesimally perturbed at some time t1
along a covariant Lyapunov vector, the perturbation will grow at an exponential rate
dictated by the associated Lyapunov exponent and will stay aligned with that same
covariant Lyapunov vector (figure 1).

We derive the equation that governs the covariant Lyapunov vectors. First, because
the Lyapunov subspaces are covariant with the dynamics, the following definition
holds

M(t, t̃)φ(t)= η(t, t̃)φ(t+ t̃), (2.13)

where

M(t, t̃)= e
∫ t+t̃

t J(χ) dχ , (2.14)

where η(t, t̃) is a scalar that measures the asymptotic growth of the norm and
allows φ(t + t̃) to have any desired bounded norm. Substituting (2.14) in (2.13) and
differentiating with respect to t̃ results in

J(t+ t̃)e
∫ t+t̃

t J(χ) dχφ(t)=
dη(t, t̃)

dt̃
φ(t+ t̃)+ η(t, t̃)

dφ(t+ t̃)
dt̃

. (2.15)

By setting t= 0 and omitting the explicit dependence on t= 0, we obtain

dφ

dt̃
= J(t̃)φ(t̃)−

1
η(t̃)

dη(t̃)
dt̃

φ(t̃), (2.16)

for any η(t̃) 6= 0. Moreover, we know from Oseledets’ theorem that

‖M(t̃)φ(0)‖ ∼= eλt̃‖φ(0)‖, (2.17)
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Unperturbed trajectory

Perturbed trajectory

Covariant Lyapunov vector

Perturbation

¬ > 0

¬ = 0¬ < 0

FIGURE 1. Schematic diagram of covariant Lyapunov vectors and perturbations on an
unperturbed trajectory (solid grey line). Three covariant Lyapunov vectors are shown
at two different instants, each associated with a different Lyapunov exponent, which
can be positive, zero or negative. The decay/growth of three perturbations, along the
stable (green), neutral (orange), unstable (red) covariant Lyapunov vector, respectively. The
resulting perturbed trajectories (dashed lines), converge, remain at a constant distance, or
diverge, respectively, to/from the unperturbed trajectory, depending on the sign of the
Lyapunov exponent. This explains why trajectories emanating from two very close initial
conditions will almost surely diverge in chaotic systems – it is highly unlikely for the
vector connecting the two initial conditions not to have a component in the direction of
the unstable covariant Lyapunov vector.

which shows that η(t̃) ∼= eλt̃. If we choose to have a bounded non-zero covariant
Lyapunov vector, i.e. 0< ‖φ‖<∞, equation (2.16) becomes

dφ

dt̃
= Jφ − λφ. (2.18)

It is easier to mathematically manipulate and numerically solve (2.18) than (2.12).
Moreover, equation (2.18) provides a clear picture of the evolution of a covariant
Lyapunov vector: the vector is evolved by the tangent dynamics Jφ, while the extra
term −λφ guarantees that its norm is bounded. It can be shown that if the attractor is
periodic or chaotic, there is a neutral mode (λ= 0), where φ is collinear to ˙̄q (Katok
& Hasselblatt 1995).

In the remainder of this paper, t= 0 without loss of generality and the tilde, (̃), is
dropped for brevity.

2.3. Numerical computation of Lyapunov exponents and covariant Lyapunov vectors
We use a robust algorithm (Ginelli et al. 2007, 2013), called the QR algorithm for
brevity, to calculate the Lyapunov spectrum and covariant vectors. The algorithm
evolves a set of m column vectors gj, j = {1, . . . , m} of an N × m matrix M , via
the tangent equation (2.5). Because the gj will likely have a component in the most
unstable (least stable) space Ω1, their norm will exponentially grow (decay) at rate
λ1, which is bound to numerically overflow (underflow). To overcome this numerical
instability, the QR algorithm executes periodic orthonormalisations of M . By denoting
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the time step with a superscript, the calculation of the Lyapunov exponents and
covariant Lyapunov vectors is enabled by the following algorithm.

(i) Set the initial condition q̄0 and initialise M0 to a random orthonormal set of
vectors [g1 . . . gm].

(ii) Evolve q̄0,M0 using (2.1), (2.5) for nsu iterations, where nsu is called the spinup
time, which must be sufficiently large such that q̄nsu is in the attractor (to some
numerical tolerance).

(iii) Evolve q̄j,M j for nQR iterations.
(iv) Perform QR decomposition on M j, obtaining Qj,Rj. Store Qj,Rj, and set M j

:=

Qj. If j < nT , where nT is the total number of iterations corresponding to the
total simulation time, go back to Item (iii).

(v) Randomly initialise an upper triangular matrix CnT of the same dimension as all
Rj.

(vi) Evolve C j backward by solving RjC j
= C j+1 for C j and subsequently normalise

its columns, i.e. ensuring
∑

k(C
j
lk)

2
= 1.

(vii) Compute Lyapunov exponents: [λ1 . . .λm]= ((nT −nsu)1t)−1∑nT
j=nsu

log(|diag(Rj)|),
where 1t is the time step.

(viii) Compute covariant Lyapunov vectors: [φ1| . . . |φm]
j
= QjC j, valid only for j ∈

[nsu, nT − nsd], where nsd is the spindown time, which must be sufficiently large
for C j to converge to the covariant Lyapunov vector expansion coefficients.

2.4. Hyperbolicity
A strange attractor is hyperbolic if there is a splitting of the tangent space into
stable, neutral and unstable subspaces at every point of the trajectory, q̄(t). Formally,
Tq̄ = Es

q̄ ⊕ En
q̄ ⊕ Eu

q̄, where Es
q̄ and Eu

q̄ are the stable and unstable subspaces
of dimension Ns and Nu, defined by the directions along which the derivative
contracts and expands, respectively, and En

q̄ is the one-dimensional neutral subspace.
(Consequently, a quasi-periodic solution is not hyperbolic because it has at least
two zero Lyapunov exponents, i.e. En

q̄ is at least two-dimensional.) Hyperbolicity has
profound implications on the behaviour of a dynamical system. The existence of
unstable subspaces gives rise to exponentially diverging trajectories, which in turn
gives rise to unpredictable dynamics in the long term. Furthermore, hyperbolicity
typically implies structural stability of the attractor, i.e. the qualitative behaviour of
the attractor does not change if the system is slightly perturbed. In the problem of
computing sensitivities, hyperbolicity is crucial because it determines whether the
time-averaged cost functional responds smoothly to perturbations to the parameters
(Ruelle 1980). Indeed, the most robust sensitivity algorithms (e.g. Wang 2013;
Blonigan & Wang 2014; Wang et al. 2014; Blonigan 2017; Ni & Wang 2017) rely
on the shadowing lemma (Bowen & Ruelle 1975; Pilyugin 2006), which is valid only
in hyperbolic systems. Importantly, it has been hypothesised by Gallavotti & Cohen
(1995), Gallavotti (2006) that most physical dynamical systems develop asymptotically
on an attracting set, the dynamics of which can be regarded as hyperbolic. This is
called the chaotic hypothesis, which stems from the measure theory of turbulence of
Ruelle (1980). In order to verify hyperbolicity in a numerical simulation, the method
described in Takeuchi et al. (2011) is used here. The angles between the three pairs
of subspaces, θu,n = 6 (Eu

q̄, En
q̄), θu,s = 6 (Eu

q̄, Es
q̄), θn,s = 6 (En

q̄, Es
q̄), are computed. These

angles are computed by using the principal angles, cos(θA,B) = σ̄ (QAQB), where
matrices QA and QB define the orthonormal bases of any subspaces A and B (not
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only Eu
q̄, En

q̄, Es
q̄), respectively, and σ̄ is the largest singular value. Then, a probability

density function of each of these angles is extracted via a histogram of the time
series (e.g. figure 15b). The system behaves hyperbolically if there are no tangencies
between the subspaces, i.e. the value of the probability density functions at θ = 0
is 0.

2.5. Shadowing lemma
Shadowing-based sensitivity methods are centred around the shadowing lemma. The
shadowing lemma exists both for discrete or continuous dynamical systems, but
we will only present its discrete version because most engineering problems are
numerically discretised to be solved.

DEFINITION 1 (ε-pseudo-orbit). An ε-pseudo-orbit for the map f is a sequence of
points {yn}, such that

‖yn+1 − f ( yn)‖< ε. (2.19)

An ε-pseudo-orbit is thus a series {yn} where each point yn+1 is at most ε away
from the true iterate f ( yn) of the previous point yn.

DEFINITION 2 (δ-shadow-orbit). An actual orbit {xn}, where xn= f n(x0), is said to be
a δ-shadow-orbit of the ε-pseudo-orbit {yn}a<n<b if

‖xn − yn‖< δ. (2.20)

In other words, an ε-pseudo-orbit is δ-shadowed by a true orbit if the true orbit is
closer than δ from it at each point.

LEMMA 1 (Shadowing Lemma). Let Λ be a hyperbolic attractor for f. Then, for
every δ > 0, there is an ε > 0 such that every ε-pseudo-orbit in Λ is δ-shadowed by
the actual orbit of some point q ∈Λ (e.g. Bowen & Ruelle 1975).

Intuitively, the shadowing lemma guarantees that, even in chaotic systems where
infinitely close trajectories diverge, there is a trajectory of a slightly perturbed system
that does not diverge from the unperturbed system.

2.6. Shadowing methods for sensitivity
The gradient of the time-averaged cost functional (1.1) explicitly reads

∇s〈J 〉,
d
ds

(
lim

T→∞

1
T

∫ T

0
J (s; q(t)) dt

)
. (2.21)

In a chaotic attractor, the operations of differentiation and time average do not
commute, i.e. ∇s〈J 〉 6= 〈∇sJ 〉, where

〈∇sJ 〉 = lim
T→∞

1
T

∫ T

0

(
∂J
∂s
+
∂J
∂q

∂q
∂s

)
dt. (2.22)

Equation (2.22) is an unbounded quantity because ∂q/∂s lives in the tangent space,
a subspace that is exponentially unstable in chaotic attractors. Shadowing-based
sensitivity methods integrate the sensitivity of the cost functional along the shadow
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882 A24-10 F. Huhn and L. Magri

trajectory, which does not diverge from the attractor. This way, the quantity (2.22) is
bounded and equal to ∇s〈J 〉. The original shadowing method (Wang 2013) achieves
this by calculating the perturbation to F in (2.1) due to a perturbation in a parameter
s → s + δs, that is, ∂F/∂s · δs. The perturbation is decomposed in the covariant
Lyapunov vector basis of the baseline trajectory to obtain a set of independent
ordinary differential equations, one for each mode. The solutions of these equations
are the components of the shadow trajectory in the covariant Lyapunov vector basis.
After obtaining the perturbed trajectory in the phase space, the sensitivities can
be readily computed. A major drawback of the original shadowing method is the
need to compute all the covariant Lyapunov vectors for all time steps, which is
computationally expensive. The least-squares shadowing method (Wang et al. 2014)
overcomes this by finding a trajectory of the system at parameter value s + δs that
is close to a trajectory of the system at parameter s via solving a least squares
minimisation problem, which minimises the distance between the two trajectories
at regular checkpoints. While the least-squares shadowing method is faster than the
original shadowing method, it still carries high computational cost, as it requires
solving a linear system of dimension equal to the dimension of the phase space
times the number of checkpoints. Ni & Wang (2017) developed the non-intrusive
least-squares shadowing method, the computational cost of which scales only with
the number of unstable covariant Lyapunov vectors. In this paper, we will apply the
non-intrusive least-squares shadowing method to a chaotic thermoacoustic system.

3. Eigenvalue and Floquet analyses as subsets of covariant Lyapunov analysis
Covariant Lyapunov vector analysis is the most general linear stability tool because

it can be applied to aperiodic solutions (§ 2). On the one hand, when covariant
Lyapunov vector analysis is applied to a fixed point, we recover eigenvalue analysis.
On the other hand, when covariant Lyapunov vector analysis is applied to a periodic
solution, we recover Floquet analysis (Trevisan & Pancotti 1998). We analytically
show the limits of eigenvalue and Floquet analyses in §§ 3.1 and 3.2, respectively.
These results are general – they do not depend on the autonomous nonlinear system
under investigation – and can be applied to other problems in flow stability.

3.1. Eigenvalue analysis of fixed points: connection with covariant Lyapunov vectors
Eigenvalue analysis determines the linear stability of a fixed point of F. Mathemati-
cally, in decomposition (2.2), q̄ does not depend on time. The linearised dynamics
around the fixed point q̄ is governed by (2.3) where the Jacobian J = dF/dq|q̄ is
constant. The formal solution for an initial condition reads

q′(t)= eJtq′0. (3.1)

By assuming that J has a complete eigenbasis, i.e. it is not defective, q′0 can be
decomposed in the eigenbasis {q̂1, . . . , q̂N}, where (̂)j is an eigenvector of J, as

q′0 =
N∑

j=1

(q′0 · q̂j)︸ ︷︷ ︸
,αj

q̂j, (3.2)

where, to keep a similar notation to covariant Lyapunov vector analysis, the eigenpairs
are sorted in descending order according to the real part of the corresponding
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Stability, sensitivity and optimisation of chaotic acoustic oscillations 882 A24-11

eigenvalue σj, i.e. j = 1 denotes the eigenpair with largest growth rate. Substituting
(3.2) in (3.1) yields

q′(t) = eJt
N∑

j=1

αjq̂j

=

N∑
j=1

αjeσjtq̂j. (3.3)

Substituting the perturbation (3.3) into the definition of Lyapunov exponent, equation
(2.7), yields

λ = lim
t→∞

1
t

log

∥∥∥∥∥
N∑

j=1

αjeσjtq̂j

∥∥∥∥∥
‖q′0‖

= lim
t→∞

1
t

log
(
|eσk t
| ‖αkq̂k‖

‖q′0‖

)
= lim

t→∞

1
t

[
log(eRe(σk)t)+ log

(
‖αkq̂k‖

‖q′0‖

)]
= Re(σk), (3.4)

where k is the first index such that αk 6= 0, and Re denotes the real part. Equation (3.4)
shows that the kth Lyapunov exponent, λk, of a linear system on a fixed point is the
real part of the eigenvalue of the Jacobian, Re(σk). Physically, the Lyapunov exponent
is the growth (or decay) rate of small perturbations on top of the steady solution. This
means that the Lyapunov exponent associated with the perturbation q′0 is Re(σk) if q′0
does not belong to Span(q̂1, . . . , q̂k−1), which is the subspace spanned by the first
k− 1 eigenvectors. Because the covariant Lyapunov vector is an unsteady vector, we
have to decompose it in a time-varying basis of the propagator eJt, which consists of
the time-varying vectors q̂jeiωjt (Curtain & Zwart 1995), where i is the imaginary unit.
The angular frequency of the linear oscillation is denoted ωj= Im(σj), where Im is the
imaginary part. Abusing notation by re-using αj as the coordinates in the new basis,
we can decompose φ as

φ(t)=
N∑

j=1

(φ0 · q̂j)︸ ︷︷ ︸
,αj

q̂je
iωjt, (3.5)

such that its time derivative reads

φ̇ =

N∑
j=1

αj(σj −Re(σj))q̂je
iωjt

=

N∑
j=1

αjJq̂je
iωjt −

N∑
j=1

λjαjq̂je
iωjt

= Jφ −

N∑
j=1

λjαjq̂je
iωjt. (3.6)
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882 A24-12 F. Huhn and L. Magri

In order to factor out λj, we consider the set of eigenvectors that share the same
growth rate, Re(σj), although they may have different angular frequencies, ωj.
Mathematically, by considering αk = 0 : k /∈ { j : λj = λ}, the covariant Lyapunov
vector equation (2.18) is recovered

φ̇ = Jφ −

N∑
j=1

λjαjq̂je
iωjt

= Jφ − λ
∑

j,αj 6=0

αjq̂je
iωjt

= Jφ − λφ, (3.7)

which shows that covariant Lyapunov vectors and eigenvectors, grouped by growth
rates, span the same subspaces. Furthermore, any real linear combination of q̂jeiωjt is
a covariant Lyapunov vector with the different q̂j corresponding to eigenvalues that
have the same growth rate (i.e. same Lyapunov exponents). On the one hand, if σj ∈R,
there is only one such j and thus φ= q̂j is a covariant Lyapunov vector. (In principle,
there may be cases where the spectrum contains one real eigenvalue and two complex
conjugates with the same real part as the real eigenvalue. Although we do not consider
this special case, the conclusions we draw still hold.) On the other hand, if σj ∈ C,
there is a pair {αjq̂jeiωjt, α∗j q̂∗j eiωjt} that defines a two-dimensional subspace in which all
vectors are covariant Lyapunov vectors satisfying (2.18), where ∗ denotes the complex
conjugate. Any two non-collinear vectors, e.g. αj= α

∗

j = 1/2 or αj=−α
∗

j =−i/2, can
be taken to define the Lyapunov subspace[

cos(ωjt) − sin(ωjt)
sin(ωjt) cos(ωjt)

] [
Re(q̂j)

Im(q̂j)

]
. (3.8)

On a fixed point, we showed that the plane spanned by the covariant Lyapunov
vectors does not change in time because the plane spanned by Re(q̂j) and Im(q̂j)

is constant. In other words, while the angles between covariant Lyapunov vectors
in the different Lyapunov subspaces vary in time, the angles between different
Lyapunov subspaces are constant. This is in contrast to the chaotic case, where the
angles between Lyapunov subspaces vary in time. Using the subspaces instead of
the covariant Lyapunov vectors is crucial for the analysis of chaotic thermoacoustic
systems, as shown in § 5.3.

3.2. Floquet analysis of limit cycles: connection with covariant Lyapunov vectors
Similarly to § 3.1, in this section we show that if the attractor is a limit cycle, the
Lyapunov exponents correspond to the real part of the Floquet exponents and that the
covariant Lyapunov vectors correspond to the eigenvectors of the monodromy matrix.
Consider the tangent problem (2.3). We assume that the solution is a limit cycle,
i.e. the solution is T-periodic, i.e. q̄(t + T)= q̄(t), hence, the Jacobian is T-periodic,
i.e. J ≡ dF/dq|q̄(t). Let Q(t) = [Q1| · · · |QN] be the fundamental matrix and B the
monodromy matrix (Guckenheimer & Holmes 1983), i.e.

q′(t)=Q(t)c, (3.9)
Q(t+ T)=Q(t)B, (3.10)
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Stability, sensitivity and optimisation of chaotic acoustic oscillations 882 A24-13

where c is the initial condition, q′(0), in the basis {Q1(0), . . . , QN(0)}. Let bj be
the eigenvector of B corresponding to the Floquet multiplier ρj = eνjT , where νj
is the jth Floquet exponent, sorted in descending order according to its real part,
i.e. j = 1 denotes the Floquet exponent with largest growth rate. Although the
Floquet multipliers, which are the eigenvalues of the linearised Poincaré map, Q(t),
are not unique because of the periodicity of the complex exponential, the Floquet
exponents are unique. Noting that q′(t) = q′(t+ + mT) = Q(t+)Bmc, with 0 6 t+ < T
and m = 0, 1, 2, . . ., and decomposing c in the eigenbasis {b1, . . . , bN}, where we
abuse notation and re-use the symbol αj to represent the coordinates in the local
basis, yields

q′(t) = q′(t+ +mT)
= Q(t+)Bmc

= Q(t+)Bm
N∑

j=1

(c · bj︸︷︷︸
,αj

)bj

= Q(t+)
N∑

j=1

αjρ
m
j bj

= Q(t+)
N∑

j=1

αjeνjmTbj. (3.11)

Using (2.7), we can calculate the Lyapunov exponent restricted to times t= t+ +mT

λ(t+) = lim
m→∞

1
t+ +mT

log
(
‖q′(t+ +mT)‖
‖Q(0)c‖

)

= lim
m→∞

1
t+ +mT

log(
∥∥∥∥∥Q(t+)

N∑
j=1

αjeνjmTbj

∥∥∥∥∥
‖Q(0)c‖

)
= lim

m→∞

1
t+ +mT

log
(
|eνkmT

| ‖αkQ(t+)bk‖

‖Q(0)c‖

)
= lim

m→∞

1
t+ +mT

[
log(eRe(νk)mT)+ log

(
‖αkQ(t+)bk‖

‖Q(0)c‖

)]
= lim

m→∞

mT
t+ +mT

Re(νk)

= Re(νk), (3.12)

which shows that the kth Lyapunov exponent, λk, is equal to the real part of the kth
Floquet exponent, Re(νk). The result is independent of t+ and valid for any t+ ∈ [0,T).

Consider a covariant Lyapunov vector φ associated with the Lyapunov exponent
λ=Re(ν). A priori, we do not know the shape of φ. Notwithstanding, we can express
it in terms of a slightly modified eigenbasis of B

φ(t)=Q(t)
N∑

j=1

αjbje−Re(νj)t. (3.13)
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882 A24-14 F. Huhn and L. Magri

By differentiating (3.13) in time, we obtain

φ̇ = Q̇
N∑

j=1

αjbje−Re(νj)t −Q
N∑

j=1

Re(νj)αjbje−Re(νj)t

= Jφ −Q
N∑

j=1

Re(νj)αjbje−Re(νj)t. (3.14)

Similarly to § 3.1, we consider linear combinations of modes that have the same value
of Lyapunov exponent, i.e. αk = 0 : λk 6= λ. Thus

φ̇ = Jφ −Q
N∑

j=1

Re(νj)αjbje−Re(νj)t

= Jφ −Re(ν)Q
N∑

j=1

αjbje−Re(νj)t

= Jφ − λφ, (3.15)

which recovers the covariant Lyapunov vector equation (2.18). In the same vein as in
the fixed-point case (§ 3.1), any real linear combination of Floquet modes that have
the same growth rate is a covariant Lyapunov vector. Finally, notice that φ(t) need
not be periodic, except if it spans a one-dimensional Lyapunov subspace. In fact, if
it is a linear combination of two complex conjugate Floquet modes, we have

φ(t+ T) = e−Re(νj)(t+T)Q(t+ T)(αjbj + α
∗

j b∗j )

= e−Re(νj)(t+T)Q(t)B(αjbj + α
∗

j b∗j )

= e−Re(νj)(t+T)Q(t)(αjbjeνjT + α∗j b∗j eν
∗
j T)

= e−Re(νj)tQ(t)(αjbjeIm(νj)T + α∗j b∗j eIm(ν∗j )T)

6= φ(t), (3.16)

which shows that φ is not T-periodic. Although this result might seem odd at first, φ
behaves similarly to the covariant Lyapunov vectors in (3.8) because, in both cases,
the imaginary part dictates the rate at which they rotate in the plane spanned by
the corresponding mode. Although the mathematics is more involved, the connection
between Floquet analysis and covariant Lyapunov vector analysis naturally follows
the connection with eigenvalue analysis of fixed points (§ 3.1): a limit cycle can be
viewed as a fixed point of a Poincaré map. In summary, on the one hand, covariant
Lyapunov vector analysis provides the same linear dynamics as eigenvalue (Floquet)
analysis when q̄ is a fixed-point (periodic solution). On the other hand, covariant
Lyapunov vector analysis provides the linear dynamics when q̄ is a chaotic attractor,
where eigenvalue and Floquet analyses cannot be applied.

The general theoretical analysis we have presented, which can be applied to other
problems in flow stability, concludes the first part of this paper. From now on, we
focus on a chaotic thermoacoustic system, which is a multi-physical problem in
thermo-fluid dynamics that is relevant to aeronautical propulsion and clean power
generation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.828


Stability, sensitivity and optimisation of chaotic acoustic oscillations 882 A24-15

4. Thermoacoustic model
We present a model of a thermoacoustic system that can exhibit rich dynamics,

such as fixed points, limit cycles, quasi-periodic solutions and chaotic attractors. The
acoustics are longitudinal and governed by the linearised Euler equations.

The stability, sensitivity and optimisation framework presented in this paper can be
used in more realistic models, for example by also solving for the flame, with virtually
no modification.

4.1. Acoustics and heat source
A thermoacoustic system consists of three subsystems that interact with each other:
the acoustics, flame and hydrodynamics (Lieuwen 2012; Magri 2018). The acoustics
strongly depend on the geometry of the configuration and the boundary conditions.
The flame is governed by chemistry mechanisms and their interaction with the
turbulent environment. The hydrodynamics is governed by the geometry of the inlets
and flame holders, which generate large coherent structures due to flow instabilities
(vortex shedding, shear layer instabilities, etc.), which, in turn, are modulated by
turbulence. To accurately model thermoacoustic instabilities, high-fidelity simulations
can be employed (e.g. Poinsot 2017). However, in this fundamental paper, we aim
at capturing the essential physical mechanisms of chaotic thermoacoustic instabilities.
Therefore, we choose a prototypical time-delayed thermoacoustic system with a
longitudinal acoustic cavity and a heat source modelled with a nonlinear time-delayed
model (Subramanian et al. 2011). The main assumptions are: (i) the acoustics are
small perturbations onto a mean flow at rest with uniform density; (ii) viscosity and
diffusivity are negligible; and (iii) the acoustics are one-dimensional, i.e. the cut-on
frequency of the duct is much higher than the frequency of the instability. Under
these assumptions, the linearisation of the inviscid momentum and energy equations
yields, respectively (Balasubramanian & Sujith 2008; Juniper 2011; Magri & Juniper
2013)

∂u
∂t
+
∂p
∂x
= 0, (4.1)

∂p
∂t
+
∂u
∂x
+ ζp− q̇δ(x− xf )= 0, (4.2)

where u, p, q̇, x and t are the non-dimensional velocity, pressure, heat-release rate,
axial coordinate and time, respectively. The reference scales for speed, pressure,
length and time are the mean-flow convection velocity, the mean-flow Mach number
multiplied by the heat capacity factor, the length of the tube and the length of the
tube divided by the mean-flow speed of sound, respectively. The duct has open
ends, which means that the acoustic pressure is zero at the boundaries. The damping
coefficient, ζ , takes into account all the acoustic dissipation (§ 4.1.1). The spatial
extent of the heat source is assumed to negligible as compared to the acoustic
wavelength (Dowling 1997), thus, it is modelled as a compact source of acoustic
energy through a Dirac delta (generalised) function, δ(x− xf ) localised at xf = 0.2.
The heat-release rate is provided by a modified King’s law (King 1914; Heckl 1988,
1990; Polifke et al. 2001; Orchini, Rigas & Juniper 2016)

q̇(t)= β[(1+ uf (t− τ))1/2 − 1], (4.3)

which is a nonlinear time-delayed model for an electrically heated mesh of wires.
This model has similar features to flame models, such as the n–τ model (e.g. Juniper

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.828


882 A24-16 F. Huhn and L. Magri

-5 0
uf

5 -5 0
uf

5

1.5(a) (b)

1.0

0.5

0

-0.5

q�

dq�
/d

u f

-1.0

10

0

-10

Exact
Smoothed

FIGURE 2. Comparison between King’s law and our smoothed version. The smoothed
version is exactly equal to King’s law outside the range |1 + uf | < ε, inside of which
it is approximated by a fourth-degree polynomial, which enables continuity of both the
function and its derivative.

& Sujith 2018). In future work, the heat-release rate, q̇(t), can be obtained, for
example, from the dynamics of premixed flames (Kashinath, Hemchandra & Juniper
2013a,b; Waugh et al. 2014; Orchini et al. 2015; Yu, Juniper & Magri 2019) or
diffusion flames (Tyagi, Jamadar & Chakravarthy 2007; Magri & Juniper 2014).
Solving for the flame dynamics adds many numerical degrees of freedom to the
state vector, which makes the calculations computationally more expensive, but it
does not change the framework we propose. Because Lyapunov analysis is valid
only for smooth dynamical systems, we approximate the heat-release law (4.3) by a
fourth-degree polynomial in a small neighbourhood of uf (t − τ) = −1 to make the
derivative smooth (figure 2).

The heat parameter, β, and time delay, τ , encapsulate all information about the heat
source, base velocity and ambient conditions. We transform the time-delayed problem
into an initial value problem. (This operation is not mandatory, however, it enables us
to use the adaptive initial value problem time integrator scipy.integrate.odeint
with no modification.) Thus, we model the advection of a dummy variable v with
velocity τ−1 as

∂v

∂t
+

1
τ

∂v

∂X
= 0, 0 6 X 6 1, (4.4)

v(X = 0, t)= uf (t). (4.5)

The dummy variable v takes time τ to travel from the left to the right boundary.
Therefore, the time-delayed acoustic velocity is provided by the value of v at the
right boundary, i.e. uf (t − τ) = v(X = 1, t). The calculation of the time-delayed
acoustic velocity via (4.4) adds only a few numerical degrees of freedom (§ 4.1.1).
The time-delayed problem (4.1)–(4.3) is mathematically equivalent to the initial value
problem (4.1)–(4.2) and (4.4)–(4.5) (Jarlebring 2008).
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4.1.1. Numerical discretisation
Equations (4.1), (4.2) are discretised by a Galerkin method (Zinn & Lores 1971).

First, the acoustic variables are separated in time and space as

u(x, t)=
Ng∑
j=1

ηj(t) cos( jπx), (4.6)

p(x, t)=−
Ng∑
j=1

µj(t) sin( jπx), (4.7)

where each spatial function is a natural acoustic mode of the open-ended duct. The
partial differential equations (4.1), (4.2) are projected onto the Galerkin spatial basis
{cos(πx), cos(2πx), . . . , cos(Ngπx)} to yield

η̇j − jπµj = 0, (4.8)
µ̇j + jπηj + ζjµj + 2q̇ sin( jπxf )= 0. (4.9)

The system has 2Ng degrees of freedom. The time-delayed velocity becomes

uf (t− τ)=
Ng∑

k=1

ηk(t− τ) cos(kπxf ), (4.10)

and the damping, ζj, is modelled by a modal expression that damps out higher-
frequency oscillations, ζj = c1 j2

+ c2 j1/2, where c1 = 0.1 and c2 = 0.06 (Subramanian
et al. 2011). This damping model originates from physical principles, as explained
in Landau & Lifshitz (1987). We have assumed that the mean flow is sufficiently
slow such that it can be neglected. Adding a mean flow may quantitatively change
the phases between acoustic waves (Dowling & Morgans 2005), but the conclusions
of this paper are qualitatively unaffected. With a mean flow, a wave approach can be
used instead (Dowling & Morgans 2005).

The linear advection equation (4.4) is discretised using Nc + 1 points with a
Chebyshev spectral method (Trefethen 2000). This discretisation adds Nc degrees of
freedom. The resulting discretised system is time integrated using scipy.integrate.
odeint, which in turn calls lsoda from the odepack library. This method detects
numerical stiffness and switches automatically between the Adams method in the
non-stiff case and a backward differentiation formula in the stiff case (Petzold
1983). On numerical discretisation, the thermoacoustic state vector is q̄, with q̄T

=

(η1, . . . , ηNg, µ1, . . . , µNg, v1, . . . , vNc).

4.1.2. Effect of numerical discretisation
To investigate the effect of the numerical discretisation, we perform two types of

tests. Figure 3 depicts the first type of test, which is done on a chaotic attractor.
Figure 3(a) shows the standard deviation of ηj(t), j = 1, . . . , Ng for different values
of Ng with fixed Nc = 10. The dominant unstable mode is the first mode because the
heat source is located at xf = 0.2, where most of the energy excites the first mode.
Apart from Ng = 5, where a large difference is observed, the calculations with small
Ng correctly capture the energy associated with each of the Galerkin modes that they
compute. When increasing the number of Galerkin modes, the accuracy on the modes
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FIGURE 3. Convergence study on a chaotic attractor (β = 7.0, τ = 0.2). (a) Standard
deviation of the Galerkin modes ηj(t) on a chaotic attractor, varying the number of
Galerkin modes, Ng, with the number of Chebyshev points fixed to Nc + 1 = 11. The
fifth and tenth modes are of the order of machine precision. (b) Same as panel (a), but
with the number of Galerkin modes fixed to Ng = 10 and number of Chebyshev points,
Nc + 1, varying.

that were previously included does not improve. The benefit of increasing Ng is to
increase the spatial resolution by including higher wavenumbers. The magnitude of the
standard deviation decays sharply at the beginning up to j= 10, followed by a slower
decay. Therefore, capturing modes of lower intensity, e.g. O(SD[ηj])∼ 10−3, requires a
large increase in the number of Galerkin modes. Thus, a good compromise between
accuracy and computational cost is obtained with Ng = 10, which is the number of
Galerkin modes used throughout the rest of this paper.

In § 3.1, we showed analytically that, if the attractor is a fixed point, the Lyapunov
exponents are equal to the real part of the eigenvalues of the Jacobian at the fixed
point. Therefore, the difference between the two is a metric that can be used to assess
the quality of the numerical solution, which is the second test. Figure 4(a) shows
the evolution of the first four Lyapunov exponents, the real part of the corresponding
eigenvalues and their converged values as the number of Galerkin modes is increased
to 30. As explained in § 5, the Lyapunov spectrum of this system is composed
of Lyapunov exponents with double multiplicity. The residuals of these Lyapunov
exponents are of the order of 10−4 at the end of the simulations. Once again, a
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FIGURE 4. Convergence study on a fixed point (β = 0.4, τ = 0.2). (a) First four
Lyapunov exponents (since they come in pairs, their mean is plotted) and real part of the
corresponding eigenvalues, varying the number of Galerkin modes, Ng, with the number of
Chebyshev points fixed to Nc+ 1= 11. The vertical axes’ ranges correspond to ±0.5 % of
the converged value (dotted line). (b) Same as panel (a), but with the number of Galerkin
modes fixed to Ng = 10 and number of Chebyshev points, Nc + 1, varying. The vertical
axes’ ranges correspond to ±5 % of the converged value (dotted line).

good compromise between the accuracy of the first four Lyapunov exponents and
computational cost is obtained with Ng = 10. A similar analysis is run by fixing the
Galerkin modes to Ng= 10 and varying the Chebyshev points, Nc+ 1, (figures 3b, 4b),
which shows that the influence of the number of Chebyshev points is not significant.
In this paper, we use Nc + 1= 11.

5. Covariant Lyapunov vector analysis of nonlinear thermoacoustics
We study the time-delayed thermoacoustic system (§ 4.1) with τ = 0.2 and q̄0 =

[1 0 · · · 0], unless stated otherwise. The two-dimensional bifurcation diagram, which
took seven days to be computed on a 16-core machine (Intelr Xeonr CPU E5-2620
v4 (2.10GHz)), is shown in figure 5. The solutions are classified according to their
Lyapunov exponents (sorted in descending order),

Chaotic if λ1 > 0,
Quasi-periodic if λ1 = 0∧ λ2 = 0,
Limit cycle if λ1 = 0∧ λ2 < 0,
Fixed point if λ1 < 0.

 (5.1)

With low β and τ , the system converges to a fixed point because the energy input
from the flame is not sufficient to overcome the damping for oscillations to persist.
On the one hand, with constant low β, the solution bifurcates from fixed point
to limit cycle as τ is increased. Physically, at this bifurcation point the Rayleigh’s
criterion (see § 6) is fulfilled: the pressure and heat release are sufficiently in phase to
balance the dissipation and give rise to a self-excited oscillation. On the other hand,
when fixing τ between 0.08 and 0.36 and increasing β, different types of solution
appear, such as quasi-periodic or chaotic attractors, especially at higher values of β,
which suggests that a saturation of heat release is responsible for the emergence of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.828


882 A24-20 F. Huhn and L. Magri

FP

LC

QP

CH

0.1 2.0 4.0 6.0
ı

†

8.0 10.0

0.40

0.30

0.20

0.10

0.04

FIGURE 5. Bifurcation diagram of the thermoacoustic system with respect to the
parameters β and τ . The attractor classification is obtained by using the Lyapunov
exponents of each solution (5.1). The area marked by the black rectangle corresponds to
a refined sweep. The coarse sweep is done with 1β = 0.1 and 1τ = 0.02, while the fine
sweep is done with 1β = 0.05 and 1τ = 0.002.

this rich dynamics, as also observed in Subramanian et al. (2011). This is further
investigated with the one-dimensional bifurcation diagram (fixed τ = 0.2) of figure 6.
Starting from β = 0.1, the system bifurcates from a fixed point to a limit cycle.
At first, the limit cycle becomes more stable as λ2 decreases until β ≈ 3.6. With
further increasing β, the trend reverses and the limit cycle becomes less stable until
β ≈ 5.8, where a bifurcation from limit cycle to quasi-periodic attractor occurs. The
zone 5.8 . β . 6.5 corresponds to a quasi-periodic attractor, with the occasional
limit cycle due to frequency locking. At the upper bound of this region, a new
bifurcation occurs, passing from quasi-periodic to chaotic solutions. Thus, the system
undergoes a Ruelle–Takens–Newhouse route to chaos in the case of increasing β

while τ = 0.2. The chaotic attractor becomes ‘more chaotic’ in the sense that its
leading Lyapunov exponent, λ1, increases. This trend stops abruptly at β ≈ 7.4, which
coincides with λ3 becoming approximately 0 and the system bifurcates from chaotic
to periodic. This most likely represents a period-doubling route to chaos in reverse
(from high to low β), which is not captured due to lack of resolution in β. Two
more major bifurcations occur as β is increased to 10: limit cycle to quasi-periodic
and quasi-periodic to chaotic.

5.1. Analysis on a fixed-point attractor
By setting β = 0.4, the solution converges to the fixed point q̄ = 0. The spinup and
spindown times are the same and equal to 200 time units, while the simulation time
is 1000 with a time segment of 0.01, yielding [200, 800] as the interval of study.
The spinup time is chosen a posteriori, by choosing a time such that the system is
past the transient regime. Figure 7 shows the Lyapunov exponents and the real part
of the eigenvalues of the Jacobian of the system at q̄ = 0, demonstrating that the
Lyapunov spectrum matches the real part of the eigenvalues. There are 16 distinct
values of Lyapunov exponents, 14 of which have multiplicity two, corresponding to
Lyapunov subspaces of dimension 2, while λ25 and λ30 correspond to one-dimensional
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FIGURE 6. Bifurcation diagrams of the thermoacoustic system versus β (τ = 0.2).
(a) Local maxima of the time series of the acoustic velocity at the flame location, uf (t).
(b) The first three Lyapunov exponents, λ1, λ2, λ3, which determine the type of solution:
fixed point (×), limit cycle (u), quasi-periodic (p), chaotic (q).

Lyapunov subspaces, as described in § 3.1, for a total of 16 Lyapunov subspaces:
Ω1, . . . , Ω16. The velocity and pressure components of the first Galerkin mode, η1

and µ1, of the covariant Lyapunov vectors φ(1) and φ(2) are denoted φ
(1)
1 , φ

(1)
11 , φ

(2)
1

and φ
(2)
11 , respectively (note that the 11th component of the state vector corresponds

to µ1 in the arrangement of § 4.1.1). They are plotted in figure 8(a). The time
series are not purely sinusoidal, as predicted by the analytical result (3.8) of § 3.1,
because the covariant Lyapunov vectors are defined up to a time-varying factor.
This time-varying factor is the normalisation that is imposed in the Gram–Schmidt
orthonormalisation (i.e. the QR decomposition) in step (iv) in § 2.3. This normalisation
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FIGURE 7. Real part of the eigenvalues (p, blue) and Lyapunov spectrum (p, navy blue)
match on the fixed-point solution q̄= 0 (β = 0.4).

varies in time because it is repeated at every time segment. Therefore, the time-varying
normalisation generates higher harmonics in the power spectral density. This can be
seen by comparing the power spectral densities of φ

(1)
1 , V1 and V1/‖V‖ (figure 8b),

where V is the first vector of (3.8). While V1 expectedly presents one mode only at
f1 = ω1/2π≈ 0.6, V1/‖V‖ has peaks at frequencies of the form kf1, k ∈ {1, 3, 5, . . .},
exactly like φ

(1)
1 . The mean of the angles between the Lyapunov subspaces and

the eigensubspaces are shown in figure 9. (Eigensubspaces are subspaces that are
spanned by eigenvectors corresponding to eigenvalues with the same real part, e.g.
a pair of complex conjugates, as described in § 3.1.) The main diagonal, which
compares Lyapunov subspaces to eigensubspaces of the same growth rate, is 0 (to
precision), showing that the Lyapunov subspaces are indeed equal to the (constant)
eigensubspaces. The analysis of this section numerically shows the equivalence
between eigenvectors and covariant Lyapunov vectors on stable fixed points, as
analytically explained in § 3.1.

5.2. Analysis on a periodic attractor
By increasing the heat-release intensity parameter to β = 2.5, the thermoacoustic
system converges to a limit cycle. The spinup and spindown times are the same and
equal to 200 time units, while the simulation time is 1000 with a time segment of
0.01, yielding [200, 800] as the interval of study. The velocity at the heat source uf (t)
(figure 10a) oscillates within [−4.13, 4.73]. The fact that the minima and maxima
of uf (t) are not equal in absolute value can be explained by the asymmetry of the
heat-release law (4.3). The period is T0 = 1.95, corresponding to a frequency of
f0 = 0.51, which appears in the power spectral density of uf (t) (figure 10b) as a
maximum peak. The subsequent peaks occur at kf0, k ∈ {2, 3, . . .}. The frequency
f0 = 0.51 has a value that is close to the natural acoustic frequency of the first mode
of the duct, which is f = π/(2π) = 0.5 (§ 4.1.1). The frequency shift is physically
due to the effect of the heat release and damping.

Figure 11 shows the real part of the first 20 Floquet exponent and the corresponding
Lyapunov exponents. The remaining 10 Floquet exponents are not shown because
their values are large in absolute value and the accuracy of their calculation is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.828


Stability, sensitivity and optimisation of chaotic acoustic oscillations 882 A24-23

500 502 504 506
t f

508 0 2 4 6 8 10

-2

ƒ1
(1)

ƒ 1(1
) , ƒ

1( 11)
, ƒ

1(2
) , ƒ

1( 12)

V1/‖V‖ V1

-4

-6

PSD

1(a) (b)

0

-1

FIGURE 8. Fixed-point solution q̄= 0 (β = 0.4). (a) Velocity and pressure components of
the first Galerkin mode, η1 and µ1, of the covariant Lyapunov vectors φ(1) and φ(2): φ

(1)
1

(——, blue), φ
(1)
11 (——, red), φ

(2)
1 (——, green) and φ

(2)
11 (——, purple) versus time –

each component oscillates between the corresponding component of ±
√

Re(q̂)2 + Im(q̂)2,
where q̂ is the corresponding eigenvector. (b) Power spectral density of φ

(1)
1 (——, blue),

V1/‖V‖ (——, red) and V1 (——, green), where V is the first vector of (3.8). The vertical
axis is logarithmic of base 10.
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FIGURE 9. Mean angle between Lyapunov subspaces and eigensubspaces, 6 (Ωa,Qb), on
the fixed-point solution q̄ = 0 (β = 0.4). (Standard deviation not shown because it is 0
to precision.) The main diagonal, which corresponds to the angles between Lyapunov
subspaces and eigenspaces of the same growth rate (same index), is 0, showing that
covariant Lyapunov vectors or eigenvectors of the same growth rate span the same
subspaces.

limited by machine precision in the computation of the monodromy matrix (e.g.
eλ21T

≈ e−20×2
∼ 10−18). These modes are non-physical and correspond to the

Chebyshev discretisation of the advection equation, as described § 4.1.1. The first
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FIGURE 10. Acoustic velocity at the heat-source location, uf (t), of a limit cycle (β= 2.5).
(a) Time series with initial transient (the full simulation period (1000) is not depicted).
Here, uf (t) becomes periodic with period 1.95 at t≈ 30. (b) Power spectral density. The
vertical axis is logarithmic of base 10. The global maximum is at f0= 0.51 and the other
local maxima are its higher harmonics.

51 10 15
j

20

0

-1

-2

-3

-4

-5

Re
(˜

j),
 ¬

j

FIGURE 11. Real part of the Floquet exponents (p, blue) and Lyapunov spectrum (p,
navy blue) (first 20) match on a limit cycle solution (β = 2.5). The remaining 10 Floquet
exponents are not shown because their values are large in absolute value and the accuracy
of their calculation is limited by machine precision in the computation of the monodromy
matrix.

Lyapunov and Floquet exponents are zero (to a small numerical error), i.e. they
are the neutral modes, and they correspond to vectors tangent to the limit cycle.
The second Lyapunov exponent is the least stable mode, which corresponds to
a one-dimensional Lyapunov subspace. The remaining Lyapunov exponents have
multiplicity two and match the real part of the Floquet exponents, the latter of
which come as pairs of complex conjugates. As explained in § 5.1 and the present
section, the fact the Lyapunov subspaces have double multiplicity has a physical
interpretation. The thermoacoustic dynamics is driven by the nonlinear saturation of
the thermoacoustic eigenfunctions, which come as complex conjugate pairs. As shown
in § 5.3, this physical mechanism is dominant even when the system is chaotic.
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FIGURE 12. Angles between Lyapunov subspaces and Floquet subspaces, 6 (Ωa, Bb), on
a limit cycle solution (β = 2.5). (a) Mean. (b) Standard deviation. The main diagonals of
both figures are 0, showing that Floquet vectors (eigenvectors of the monodromy matrix)
or covariant Lyapunov vectors of the same growth rate span the same subspaces.

Figures 12(a), 12(b) show the mean and the standard deviation, respectively, of
the angle between the Lyapunov subspaces and the Floquet subspaces (subspaces
spanned by groups of eigenvectors of the monodromy matrix that have the same real
part of the Floquet exponent). The fact that the main diagonal of figure 12(b) is 0
demonstrates that these angles are constant, while the fact that the main diagonal
of figure 12(a) is also 0 shows that the constant angles are 0. Thus, the Lyapunov
subspaces are equal to the Floquet subspaces. Similarly to § 5.1, the analysis of this
section numerically shows the equivalence between Floquet vectors (eigenvectors of
the monodromy matrix) and covariant Lyapunov vectors on stable limit cycles, as
analytically explained in § 3.2.

5.3. Analysis on a chaotic attractor
The heat-release intensity parameter is further increased to β = 7.0, with the system
converging to a chaotic attractor. In a chaotic solution, only covariant Lyapunov
vector analysis can calculate the linear dynamics of the attractor. Eigenvalue and
Floquet analyses are no longer valid. The acoustic velocity at the base of the heat
source, uf (t), is oscillatory (figure 13a) but aperiodic. While the dominant peak of
the power spectral density (figure 13b) is largely unaltered from § 5.2, the frequency
spectrum is now denser and shows multiple peaks at several frequencies, which
indicates the presence of chaos. However, quasi-periodic solutions can exhibit the
same behaviour and can be mistaken for chaotic. It is hard thus to classify the
attractor from figures 13(a), 13(b) alone. Instead, we use the Lyapunov spectrum
(figure 14). The first Lyapunov exponent, λ1 ≈ 0.12, is positive, thus confirming
that the attractor is indeed chaotic; φ2(t) is the neutral covariant Lyapunov vector
because λ2 = 0 to numerical error. The remaining Lyapunov exponents correspond
to one-dimensional modes, except for the pairs (λ9, λ10), (λ19, λ20), (λ21, λ22) and
(λ24, λ25), each corresponding to two-dimensional Lyapunov subspaces. Thus, we
conclude that

Eu
q = Span(φ1), (5.2)
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FIGURE 13. Acoustic velocity at the heat-source location, uf (t), on a limit cycle solution
(β = 2.5). (a) Time series. uf (t) is oscillatory, but aperiodic. (b) Power spectral density.
The global maximum is at f0= 0.52, which is close to the global maximum found in the
limit cycle case of § 5.2.
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FIGURE 14. Complete Lyapunov spectrum, with a closeup of the first 3 Lyapunov
exponents, on a chaotic attractor (β=7.0). λ1≈0.12 and λ2=0 to numerical error (neutral
mode). The remaining Lyapunov exponents are negative.

En
q = Span(φ2), (5.3)

Es
q = Span(φ3, . . . , φ30). (5.4)

For sensitivities to exist, the angles between these subspaces must be bounded away
from 0 (), that is, the attractor must be hyperbolic. In the next section, this question
is investigated on multiple design points where the system exhibits chaotic behaviour.

5.4. Are chaotic acoustic attractors hyperbolic?
In § 6.2, the sensitivities of the time-averaged acoustic energy with respect to the
heat-source parameters are embedded in an optimisation routine to minimise the
size of acoustic oscillations. However, as discussed in § 2.6, for such sensitivities to
exist, the thermoacoustic chaotic attractor should be hyperbolic (§ 2.4), otherwise the
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FIGURE 15. (a) Design points where the probability density functions are calculated.
(b) Probability density function of angles between Eu, En, Es. Tangencies are observed
for points D and E, demonstrating that the chaotic attractors in these positions are not
hyperbolic.

sensitivities of (1.1) might not exist. Here, we seek to determine the hyperbolicity
of the system. To determine whether a system is hyperbolic, the complete spectrum
should be computed to construct the unstable, neutral and stable subspaces. This is
possible with the reduced-order model of this paper, but it could be prohibitively
expensive in high-dimensional systems. For the latter, only a portion of the Lyapunov
spectrum and covariant vectors is typically calculated (e.g. Blonigan et al. 2016;
Fernandez & Wang 2017). Because it is computationally expensive to determine
hyperbolicity everywhere in the design space, we restrict ourselves to 9 points,
roughly equally spaced inside the chaotic areas (green in figure 5), which are shown
in figure 15(a) (labels A to I). The probability density functions (PDFs) of the
angles between the three pairs of elements from Eu, En, Es are calculated at each of
these design points (figure 15b). On the one hand, design points D and E are not
hyperbolic, since the PDF of θn,s is non-zero at θ = 0, demonstrating that the system
exhibits tangencies between these two subspaces. On the other hand, the PDFs of
the remaining 7 points indicate that these are hyperbolic, which, physically means
that time-averaged cost functionals respond smoothly to small changes in the design
parameters, i.e. their sensitivities exist. (For completeness, we also report that there
is evidence that shadowing-based methods work well in some non-hyperbolic systems
(Ni 2019).) In conclusion, we found that thermoacoustic systems can physically
exhibit both hyperbolic and non-hyperbolic chaos, depending on the design point.
Notwithstanding, starting from design point B, we will employ shadowing techniques
to compute sensitivities, which are employed in an optimisation routine to minimise
the acoustic energy (§ 6.2).

6. Sensitivity and optimisation of chaotic acoustic oscillations
6.1. Time-averaged cost functionals

We analyse the chaotic acoustic oscillations of point B shown in figure 15(a). Because
thermoacoustics is a multi-physical phenomenon, there are different norms (Chu
1965; George & Sujith 2012), semi-norms (Magri 2015; Blumenthal et al. 2016) and
functionals to define a physical measure. For thermoacoustic systems with negligible
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FIGURE 16. Colour map of time-averaged acoustic energy, 〈Eac〉. To increase colour
resolution near the starting point, B, points with 〈Eac〉> 30 have the same colour.

mean flow, which cannot advect flow inhomogeneities like entropy spots, the acoustic
energy is a suitable quantity of interest. The instantaneous acoustic energy of the
whole system is defined as

Eac(t), 1
2

∫ 1

0
(u2(t)+ p2(t)) dx, (6.1)

which is the sum of the acoustic kinetic and potential energies, i.e. it is the
Hamiltonian (constant of motion) of the natural acoustic system. Because of
Parseval’s theorem, the acoustic energy is related to the Galerkin modes as
Eac(t)= 1

4

∑Ng
j=1(η

2
j (t)+µ

2
j (t)). The acoustic energy, Eac, is (half) the Euclidean norm

of the thermoacoustic system under investigation. In chaotic acoustic oscillations,
we are interested in calculating the sensitivity of the time-averaged acoustic energy,
〈Eac〉. Figure 16 shows the acoustic energy in the refined area of figure 5, with the
optimisation starting point, B, marked. Regions similar to those depicted by different
colours in figure 15(a) are visible. Notably, a sharp discontinuity exists to the right
of the chaotic regions, which corresponds to a line of bifurcation points. Furthermore,
the time-averaged acoustic energy is multi-modal, exhibiting multiple local extrema.
Interestingly, continuous regions of the same type of attractor (figure 6b) do not have
extrema in their interior. Instead, the extrema are found at the edges of the regions,
which suggests that gradient-based optimisation algorithms will be capable of finding
the boundaries that separate attractors.

6.2. Minimisation of acoustic energy in chaotic acoustic oscillations by optimal
design

To minimise the acoustic energy, either the bifurcation diagram in the multidimensional
parameter space is calculated (figure 16), which is computationally cumbersome,
or a nonlinear optimisation problem of a time-averaged cost functional is solved,
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FIGURE 17. (a) Time-averaged acoustic energy versus optimisation iteration. The
optimisation algorithm consecutively reduces the acoustic energy until iteration 7, where
no progress is made. (b) Time-averaged acoustic energy, 〈Eac〉 – colour map with
optimisation path superimposed (——, red).

which is computationally affordable. Following the latter route, the optimisation
problem is formulated as

minimise
β,τ

〈Eac(β, τ )〉

subject to (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7).

}
(6.2)

The set of parameters is updated via the sequential least squares programming method
of the SciPy library. The optimisation stops when the condition

〈Eac〉j − 〈Eac〉j+1

〈Eac〉j
< 0.01 (6.3)

is met, that is, when the improvement between optimisation iterations is less than
1 % of the previous value. The usual gradient vanishing condition of extrema is not
applied because of the existence of discontinuities. Since the gradient does not exist at
these points, its numerical value cannot be trusted close to such points, which is why
condition (6.3) is used instead. Figure 17(a) shows the cost functional as a function
of the iteration in the optimisation algorithm. The acoustic energy decreases rapidly
until iteration 7, where no progress is made and (6.3) is verified, indicating that the
algorithm has converged to a local minimum (β = 6.79889, τ = 0.18685). Overall,
the optimisation achieves a reduction of 14.8 % in acoustic energy in 7 iterations.
Figure 17(b) shows the path that the optimisation procedure takes in the design space,
showing that the final design is indeed a local minimum and that it is located at
the edge of the region of chaotic solutions, as hypothesised in § 6.1. In conclusion,
we found the set of parameters that produce a local minimum of the time-averaged
acoustic energy of a chaotic thermoacoustic system. A similar algorithm can be used
to find local maxima for maximal energy extraction in the design of thermoacoustic
engines.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.828


882 A24-30 F. Huhn and L. Magri

6.3. Future directions
In § 6.1, we found that the time-averaged acoustic energy, 〈Eac〉, displays an intricate
behaviour: it is both discontinuous and multimodal. These two facts have strong
implications when tackling an optimisation problem with a gradient-based approach.
First, gradients are not defined at discontinuous points; second, gradient-based
algorithms might converge to local minima, instead of the global optimum, as in
§ 6.2. While pure gradient-free algorithms might be computationally expensive, hybrid
techniques, which couple gradient-based with gradient-free algorithms, can be a
suitable compromise between overcoming the aforementioned issues of gradient-based
algorithms and exploiting local gradient information to find the shortest path
to an optimal design. For example, a Monte Carlo gradient-based optimisation,
where multiple gradient-based optimisations are launched from various randomised
initial design points and the best of the resulting (local) minima is chosen. Since
thermoacoustic systems can exhibit rich dynamics and admit several types of solutions,
a general technique for calculating sensitivities, including being capable of handling
chaotic attractors, is required. As discussed in this work, covariant Lyapunov vector
(CLV) analysis is the most general framework of analysis of these dynamical systems.
Currently, shadowing methods, which exploit shadowing orbits via covariant Lyapunov
vectors, are the leading candidate for sensitivity calculation in chaotic attractors.

For a practitioner, whose objective is to suppress oscillations, CLV techniques are
required because chaos is always present in realistic turbulent systems. For example,
in turbulent flows the hydrodynamic field modulates the heat released by the flame
in a chaotic way (Lieuwen 2012). In the bistable region of a subcritical bifurcation,
where the system is eigenvalue stable but a finite-amplitude periodic solution exists
(Subramanian et al. 2011), the turbulent hydrodynamic field chaotically forces the
solution to oscillate around the stable fixed point or the upper branch limit cycle,
depending on the initial condition. To eliminate the possibility of such chaotic limit
cycles, the operating design point must be outside the hysteresis region. The boundary
that separates these two regions (known as the fold point with one parameter) is
marked by a discontinuity similar to the ones in figure 16. Because of the presence
of chaos, it would not be possible to identify the fold point with traditional eigenvalue
and Floquet analyses. However, it would be possible to identify it by using the CLV
technique and optimisation we proposed (as shown in § 6.2).

7. Conclusions
Traditional tools in flow instability, such as eigenvalue and Floquet analyses, fail

when the solution is chaotic. We propose to use covariant Lyapunov vector analysis
as a general tool to calculate the stability and sensitivity of unsteady solutions
with chaotic behaviour. First, the connections between covariant Lyapunov vectors,
eigenfunctions and Floquet modes are mathematically shown. We analytically recover
the limits of eigenvalue analysis when the attractor is a fixed point, and Floquet
analysis when the attractor is a limit cycle. Second, we explain the importance of
testing the hyperbolicity of the chaotic solution for the calculation of sensitivities.
Third, we apply the theoretical analysis to a chaotic acoustic system with a heat
source. We show that the system admits both hyperbolic and non-hyperbolic chaotic
attractors, which means that sensitivities might not exist for some sets of parameters.
Departing from a hyperbolic point, and by exploiting the shadow trajectory via the
non-intrusive least-squares shadowing method to calculate sensitivities, we minimise
the acoustic energy of the chaotic oscillations by changing the heat-source parameters
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in an optimisation routine. This work opens up new possibilities for the control of
unsteady acoustic oscillations by optimal design. Because the theoretical framework
is general, the techniques presented can be used in other unsteady fluid-dynamics
problems with virtually no modification.
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