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Abstract In this paper we study the Assouad dimension of graphs of certain Lévy processes and func-
tions defined by stochastic integrals. We do this by introducing a convenient condition which guarantees
a graph to have full Assouad dimension and then show that graphs of our studied processes satisfy this
condition.

Keywords: Brownian motion; Wiener process; stochastic integral; Assouad dimension; graph

2010 Mathematics subject classification: Primary 28A80
Secondary 60J65; 60G22; 60H05

1. Definitions and motivations

Studying the dimension of various random processes has been of interest for some time. In
this paper we will consider the Assouad dimension of graphs of certain random processes,
notably Lévy processes and functions defined by stochastic integrals.

Lévy processes X(t) were first introduced by Paul Lévy in 1934 [8] and are defined as
the stochastic processes satisfying the following conditions.

1. X(0) = 0 almost surely.

2. For all t, h > 0, X(t + h) − X(t) is equal to X(h) in distribution (stationary
increments).

3. For all 0 < t1 < t2 < · · · < tk, the random variables X(ti) − X(ti−1) are indepen-
dent (independence of increments).

4. For all t > 0, limh→0 X(t + h) − X(t) = 0 in probability (continuity).

We can construct X(t) such that it is almost surely right continuous with left limits
(denoted càdlàg). Such processes are standard tools in many areas of modern mathemat-
ics and their applications. A common example of a Lévy process is the Wiener process
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Figure 1. Two graphs of one-dimensional Brownian motion.

(or Brownian motion) where property 2 (stationary increments) is replaced by Gaussian
increments, so X(t + h) − X(t) is normally distributed with mean 0 and variance h, see
Figure 1 for examples. One can similarly define d-dimensional Brownian motion by con-
sidering the vector-valued stochastic process (W1, . . . ,Wd) where the Wi are independent
Weiner processes.

The geometric properties, such as dimension, of Wiener processes have been a partic-
ularly well-studied area. This includes studying the graphs, level sets and trails of such
processes, which can often be thought of as fractals as they often display some statisti-
cal self-affinity. For any left continuous function X : R → R, we define the graph of the
function by:

GI⊂R

X = {(t, y) | y = X(t), t ∈ I} ∪ J,

where J is the union of vertical segments joining the discontinuities. J is well defined
because X is right continuous. It is clear that if X is continuous then J is empty. Taylor
[13] first calculated the Hausdorff dimension of d-dimensional Brownian motion Bd : R →
R

d, where he showed that almost surely

dimH G
[0,1]
B1

= 3
2

and for any d ≥ 2

dimH Bd([0, 1]) = 2.

Another generalization of Brownian motion is fractional Brownian motion, first intro-
duced by Mandelbrot and Van Ness [9]. Index-h fractional Brownian motion (fBm) on R

with 0 < h < 1 is defined as the stochastic integral

Bh(t) = c(h)−1

∫ ∞

−∞
((t − x)h−1/2

+ − (−x)h−1/2
+ )W (dx)

where W is the Wiener measure, (x)+ = max{0, x} and c(h) = Γ(h + 1/2), where Γ
denotes the gamma function, see Figure 2 for examples. Equivalently, this is a Gaussian
random process Bh(t) where the following hold.
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(a) Graph of fBm with h=0.3 (b) Graph of fBm with h=0.5 (c) Graph of fBm with h=0.7

Figure 2. Graphs of Index-h fBm for different values of h.

1. Bh(0) = 0 almost surely.

2. For all t, u > 0, Bh(t + u) − Bh(t) has normal distribution with mean 0 and variance
u2h (Gaussian increments).

3. For all t > 0, limu→0 Bh(t + u) − Bh(t) = 0 in probability (continuity).

One can see that when h = 1/2, B1/2(t) = B(t) is simply Brownian motion. Much progress
has been made on the properties of fBm, see for instance [1,4,7]. Notably, it was shown
that, almost surely, the graph over the unit interval of index-h fBm has Hausdorff
dimension 2 − h.

Studying the Assouad dimension of various fractals and its properties is an increas-
ingly popular area of research. In this paper, we are interested in calculating the Assouad
dimension of the graph G

[0,1]
X for β-scaling (or Lévy β-stable) processes and stochas-

tic integrals X. These results will be compared with the previously obtained Hausdorff
dimensions.

We say that X(t) satisfies a β-scaling property if, for any t, a > 0:

a−(1/β)X(at) =d X(t),

where ‘=d’ denotes ‘equal in distribution’. For example, the Wiener process has the
2-scaling property.

A non-empty compact bounded set F is said to be s-homogeneous if there exists a
constant C > 0 such that for all 0 < R, r ∈ (0, R] and x ∈ F

N(B(x,R) ∩ F, r) ≤ C

(
R

r

)s

where B(x,R) denotes the closed ball of centre x and radius R, and N(E, r) is the number
of squares of the r × r grid that intersect the compact set E.

The Assouad dimension of a non-empty compact bounded set F is then defined to be

dimA F = inf {s ≥ 0: F is s-homogeneous} .

This dimension provides information on the extremal local scaling of a set; in this setting,
it will tell us about the maximal fluctuations of a random process. For a more detailed
introduction to this dimension, see [5,12].
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This paper will be split into three parts. First we will define a condition, Definition 2.1,
which guarantees that a graph will have full Assouad dimension. Then in § 3 we show
that graphs of β-scaling Lévy processes satisfy this condition and, combining these results,
we prove that graphs of functions defined by certain stochastic integrals also have full
Assouad dimension. Finally in § 4 we remark that our results extend to higher dimensions.

2. Assouad dimension of graphs

In this section we will state a convenient condition to check whether a graph of a function
f : [0, 1] → R has full Assouad dimension.

We begin with a definition.

Definition 2.1. Let R1, R2 > 0 be positive numbers and let n1, n2 > 0 be integers.
Given a point a ∈ R

2, we define WR1×R2
n1×n2

(a) as the following collection of sets:

x

{
Di,j + a | Di,j =

[
i

n1
R1,

i + 1
n1

R1

]
×

[
j

n2
R2,

j + 1
n2

R2

]
,

i ∈ {0, . . . , n1 − 1}, j ∈ {0, . . . , n2 − 1}
}

.

We see that WR1×R2
n1×n2

(a) is the collection of rectangles with disjoint interiors which
partitions the R1 × R2 rectangle whose bottom left vertex is a.

Then let NR1×R2
n1×n2

(a,G
[0,1]
f ) = #{WR1×R2

n1×n2
(a) ∩ G

[0,1]
f }; this is the number of rectangles

which intersect the graph.

The following theorem is a direct consequence of the definition of Assouad dimension,
and we omit the proof.

Theorem 2.2. If there exists an A > 0 and sequences

ai ∈ R
2, Ri ∈ (0, 1), ni ∈ N (∀i ∈ N)

with ni → ∞ such that for all i ∈ N

NRi×Ri
ni×ni

(ai, G
[0,1]
f ) ≥ An2

i ,

then

dimA G
[0,1]
f = 2.

While this might seem a restrictive condition to ask a general function to satisfy, it
is quite natural in the setting of Wiener processes, owing to the almost sure unbounded
variation and β-scaling property of the process. Considering squares instead of balls in
the definition of Assouad dimension is similar to the definition of the Furstenberg star
dimension, which is in fact equivalent to the Assouad dimension, see [2].
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Remark 2.3. Note that one could replace the inequality with the following equality

NRi×Ri
ni×ni

(ai, G
[0,1]
f ) = n2

i .

This follows from [6, Theorem 2.4], where it is shown that a set has full Assouad dimension
if and only if it has the unit ball as a weak tangent. This means that any cover of our set
is also a cover of a ball and so all smaller squares are needed in the cover.

3. Applications to β-scaling Lévy processes

Let X(t) be a Lévy process. We assume that X(1) is non-vanishing almost everywhere
on R as a random variable, that is, the distribution function of X(1) is 0 only on a set of
measure 0.

Then for any β-scaling Lévy process X we can compute the probability of the following
event ‘N1×1

n×n(0, G
[0,1]
X ) = n2’. This is a positive number depending only on n, and we

use P (n) to denote this number. The event ‘X hits a rectangle’ is measurable when X
is continuous; when it is discontinuous we join the graph with a vertical line and the
process is càdlàg, so the event ‘X hits a rectangle’ is still measurable. Thus our event is
measurable as the union of measurable events.

For a β-scaling random process X, we can decompose the graph into countably many
disjoint parts:

G
[0,1]
X =

∞⋃
i=0

GIi

X ,

where Ii are closed intervals with disjoint interiors such that their union is the unit
interval. In our case, one could think of this as partitioning the unit interval by intervals
of length 1/2i. For example, take a1 = 0 and for all i ≥ 1 let ai+1 = ai + 1/2i and Ii =
[ai, ai + 1/2i].

Denote by |Ii| the length of interval Ii = [ai, bi]. As we can take X as a left continuous
function, X(ai) ∈ R is defined for all i. For each i we can apply a linear map Ti : GIi

X →
[0, 1]2:

Ti(x, y) =
(

1
|Ii| (x − ai),

1
|Ii|1/β

(y − X(ai))
)

.

By definition, it is easy to see that Ti(GIi

X) are independent β-scaling Lévy processes
with the same, original distribution. For convenience we identify Ti(GIi

X) = G
[0,1]
Xi

, where
Xi are independent, identically distributed β-scaling Lévy processes.

Let ni be a sequence of integers such that limi→∞ ni = ∞. We can compute the prob-
ability of the event Ai = ‘N1×1

ni×ni
((0, 0), G[0,1]

Xi
) = n2

i ’. From the discussions above, we
see that the probability is P (ni). In fact denote tk = k/n2

i for all k ∈ {1, . . . , n2
i } and

D(j) = [j/ni, (j + 1)/ni] for all j ∈ {0, . . . , ni − 1}. Then we can see that:

P (ni) ≥ P

(
∀k ∈ [1, n2

i ], k ∈ N,X(tk) ∈ D

({
k

ni

}
ni

))
> 0.

Here {·} denotes the fractional part function. The last inequality follows from our assump-
tion that X(1) is non-vanishing almost everywhere on R. It is clear that this restraint
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could be relaxed to non-vanishing on some interval without much effort. The rest follows
from the property of independent increments.

We can choose ni to grow slowly enough that
∑

i P (ni) = ∞. Note that the Ri can be
chosen so that each square is disjoint and, as Lévy processes are Markov, the events Ai

are all independent. Then by the Borel–Cantelli lemma we see that with probability 1,
infinitely many events Ai occur. Now if Ai happens, then:

N1×1
ni×ni

((0, 0), G[0,1]
Xi

) = n2
i ;

applying the function T−1
i to the graph, we see that (remember Ii = [ai, bi]):

N
|Ii|×|Ii|1/β

ni×ni
((ai,X(ai)), GIi

X) = n2
i .

Since β ≥ 1, we see that |Ii| ≤ |Ii|1/β . Also remember that X can be taken to be a
right continuous function, and we also include the vertical segments of the jumps in
G

[0,1]
X . Therefore it is clear that there exists an absolute constant C > 0:

N

(
B((ai,X(ai)), |Ii|) ∩ G

[0,1]
X ,

|Ii|
ni

)
≥ Cn2

i .

As infinitely many Ai occur, using Theorem 2.2, we see that:

dimA G
[0,1]
X = 2.

We conclude the above argument as the following theorem.

Theorem 3.1. Let X be a β-scaling Lévy process with β ≥ 1, such that X(1) is a
random variable whose distribution function is non-vanishing almost everywhere. Then
almost surely:

dimA G
[0,1]
X = 2.

We know that the Wiener process W (t) is a 2-scaling Lévy process. Therefore, we see
the following.

Corollary 3.2.

dimA G
[0,1]
W = 2.

Ville Suomala and Changhao Chen, in a personal communication, kindly remarked that
this result follows from the graph of Brownian motion having full lower porosity dimen-
sion. This approach is inspired by [3], where it was shown that the graph of Brownian
motion has full upper porosity dimension. However, this porosity dimension technique
does not extend to our following, more general, result, which relies upon this one.

In fact, we can say more about the Assouad dimension of random processes which are
functions defined as stochastic integrals, such as fractal Brownian motion.
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Theorem 3.3. Let f : R → R be a function which is zero only finitely often, continuous
on some interval and has continuous derivative on that same interval. Then we define
Bf (t) as the function defined by the stochastic integral:

Bf (t) =
∫ t

0

f(x)W (dx).

We have that almost surely:

dimA G
[0,1]
Bf

= 2.

Remark 3.4. In particular, graphs of fractional Brownian motions with indices 0 <
h < 1 have full Assouad dimension almost surely.

Proof. Given a function f which is zero only finitely often, continuous and has con-
tinuous derivative on some interval, say J , we can simply focus on the function restricted
to J , normalizing to obtain a function which is C1 and zero only finitely often on the
unit interval. We may then assume that f(t) > 1 for t ∈ [0, 1] by again restricting our
function to an interval where the function is bounded away from zero and normalizing.

As the Assouad dimension provides local information, if the dimension of the graph
of the function defined by the stochastic integral of this new function is full then the
dimension of the original graph is also full. Thus we assume for the rest of this proof that
f is a C1 function which is greater than 1.

Ideally, we would wish to integrate by parts in the standard Riemann–Stieltjes sense
∫ t

0

f(x)W (dx) = f(t)W (t) −
∫ t

0

W (x)f ′(x) dx. (*)

The problem is that the integral on the left-hand side of the above equation is interpreted
as the Itô integral, for which regular integration by parts does not hold. There is, however,
a generalization of this formula for stochastic integrals which holds as f and W are both
semimartingales; see [11, Chapter 2, § 6] for further details. To be precise we should write
the following equation

∫ t

0

f(x)W (dx) = f(t)W (t) −
∫ t

0

W (x)f ′(x) dx − [f,W ]t.

Here [f,W ]t is the quadratic covariation between f and W .
Let 0 = t1 < t2 < · · · < tn = t be a partition P of [0, t] and let |P | be the maximum of

tk+1 − tk, k ∈ {0, . . . , n − 1}:

[f,W ]t = lim
|P |→0

n−1∑
i=1

(f(ti+1) − f(ti))(W (ti+1) − W (ti)).

The above convergence is taken in the sense of probability. By using Cauchy–Schwarz we
see that:

[f,W ]t ≤ [f, f ]1/2
t [W,W ]1/2

t .
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However, it is standard that [f, f ]t = 0 and [W,W ]t = t as f is C1. So we see that the
integral by parts formula (*) is indeed correct for this situation. The integral

∫ t

0

W (x)f ′(x) dx

is defined as a random process whose sample space is that of the Wiener process, where
fixing a sample path of the Wiener process will determine the integral. We are interested in
almost sure properties of this process and will do so by considering almost sure properties
of the Wiener process.

The strategy for the rest of this proof is to choose carefully a typical path of the Wiener
process. We denote the sample space of the Wiener process as Ω.

First, we see that for almost all ω ∈ Ω, W (t, ω) is càdlàg in t, and therefore there is a
constant Cω such that:

|W (t, ω)| ≤ Cω

for all t ∈ [0, 1].
The second almost sure property is described in the proof of Theorem 3.1: that there

are infinitely many intervals Ii = [ai, bi] ⊂ [0, 1] and a sequence ni → ∞ such that for
k ∈ {0, 1, . . . , ni − 1}∣∣∣∣W

(
ai + (k + 1)

|Ii|
ni

, ω

)
− W

(
ai + k

|Ii|
ni

, ω

)∣∣∣∣ ≥ |Ii|1/2 ≥ |Ii|.

In the following discussion we shall fix a typical ω such that W (t, ω) satisfies the above
two almost sure properties, in particular, we think of Cω > 0 as a fixed constant.

Then we see that:∣∣∣∣Bf

(
ai + (k + 1)

|Ii|
ni

, ω

)
− Bf

(
ai + k

|Ii|
ni

, ω

)∣∣∣∣
=

∣∣∣∣
∫ ai+(k+1)(|Ii|/ni)

ai+k(|Ii|/ni)
f(x)W (dx)

∣∣∣∣

=
∣∣∣∣f(ai + k(|Ii|/ni))W (x, ω)|ai+(k+1)(|Ii|/ni)

ai+k(|Ii|/ni)
+

∫ ai+(k+1)(|Ii|/ni)

ai+k(|Ii|/ni)

W (x)f ′(x) dx

∣∣∣∣.
Since f is C1, we see that there is a constant Cf (which does not depend on i) such

that for all x ∈ [ai + k(|Ii|/ni), ai + (k + 1)(|Ii|/ni)]:

|W (x)f ′(x)| ≤ CfCω.

Then we have the following inequalities:∣∣∣∣f
(

ai + k
|Ii|
ni

)
W (x, ω)|ai+(k+1)(|Ii|/ni)

ai+k(|Ii|/ni)

∣∣∣∣ ≥
∣∣∣∣f

(
ai + k

|Ii|
ni

)∣∣∣∣|Ii|1/2 ≥ |Ii|1/2 (**)

and ∣∣∣∣
∫ ai+(k+1)(|Ii|/ni)

ai+k(|Ii|/ni)

W (x)f ′(x) dx

∣∣∣∣ ≤ CfCω
|Ii|
ni

.
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Since |Ii| → 0, we see that for a constant C ′ which depends only on f and ω:
∣∣∣∣Bf

(
ai + (k + 1)

|Ii|
ni

, ω

)
− Bf

(
ai + k

|Ii|
ni

, ω

)∣∣∣∣ ≥ C ′|Ii|. (***)

The above inequality holds for all k ∈ {0, . . . , ni − 1}.
Moreover, W has a ‘zigzag’ property. For even integers k we have

W

(
ai + (k + 1)

|Ii|
ni

, ω

)
− W

(
ai + k

|Ii|
ni

, ω

)
> 0,

and for odd integers k we have

W

(
ai + (k + 1)

|Ii|
ni

, ω

)
− W

(
ai + k

|Ii|
ni

, ω

)
< 0.

Heuristically this says that the process increases on the first interval, decreases on the
second and so forth, zigzagging from top to bottom. We can see that the expressions inside
the absolute values in (**) and (***) also satisfy similar ‘zigzag’ properties. Therefore,
there is a constant A = A(ω, f) > 0 such that:

N

(
B((ai, Bf (ai)), |Ii|) ∩ G

[0,1]
Bf

,
|Ii|
ni

)
≥ An2

i .

This concludes the proof because the above argument holds for a set of full probability
ω ∈ Ω. �

4. A remark on higher-dimensional Brownian motion

Definition 2.1 has a natural generalization in R
d.

Definition 4.1. Let R1, . . . , Rd > 0 be positive numbers and n1, . . . , nd be integers.
Given a point a ∈ R

d, we define WR1×···×Rd
n1×···×nd

(a) as the following collection of sets:
{

Di1,...,id
+ a | Di1,...,id

=
[

i1
n1

R1,
i1 + 1

n1
R1

]
× · · · ×

[
id
nd

Rd,
id + 1

nd
Rd

]
,

ij ∈ {0, . . . , nj − 1}, j ∈ {1, . . . , d}
}

.

We see that WR1×R2
n1×n2

(a) is a collection of rectangles with disjoint interiors.

Using the above definition and a similar argument as the one in § 3, Theorem 2.2 also
extends to higher dimensions. We can show the following result, for which we omit the
proof.

Theorem 4.2. Let Bd(t) be the d-dimensional Brownian motion, from R to R
d. Then

almost surely:

dimA Bd([0, 1]) = d.
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We can compare this result with the well-known one

dimH Bd([0, 1]) = 2

for d ≥ 2. The Hausdorff dimension being 2 here can be thought of as reflecting that
higher-dimensional Brownian motion is transient, while the Assouad dimension shows
that there are still areas of maximal fluctuation.

Brownian motion also provides examples of Salem sets that can have different Hausdorff
and Assouad dimensions; we refer the reader to [7] for further discussion on the links
between random processes and Salem sets.
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10. P. Möters and Y. Peres, Brownian motion, Cambridge Series in Statistical and
Probabilistic Mathematics (Cambridge University Press, 2010).

11. P. Protter, Stochastic integration and differential equations, 2nd edn, Stochastic
Modelling and Applied Probability (Springer-Verlag, Berlin Heidelberg, 2005).

12. J. C. Robinson, Dimensions, embeddings and attractors (Cambridge University Press,
Cambridge, 2011).

13. S. J. Taylor, The Hausdorff α-dimensional measure of Brownian paths in n-space, Math.
Proc. Camb. Philos. Soc. 49(2) (1953), 31–39.

https://doi.org/10.1017/S0013091518000433 Published online by Cambridge University Press

https://arxiv.org/abs/1602.02180
http://arxiv.org/abs/1611.06960
https://doi.org/10.1017/S0013091518000433

	1 Definitions and motivations
	2 Assouad dimension of graphs
	3 Applications to -scaling Lévy processes
	4 A remark on higher-dimensional Brownian motion
	References

