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Abstract
In this paper, we investigate the problem of how to combine operational losses collected from

various banks of different sizes and loss reporting thresholds in order to estimate the distribution of

operational loss severities for a bank of a given size. We model the severity of operational losses by

using the extreme value theory to account for the reporting bias of the external data, and a

regression analysis based on the GAMLSS framework to model the scaling properties of operational

losses. In contrast to previous studies on the scaling problem, our analysis gives particular emphasis

to the scaling properties of the tail of the loss distribution. Contrary to existing knowledge, we find

that the size of a bank is an important determinant of the severity of operational losses and that the

tail index of the distribution is negatively correlated with the size of the bank. The results indicate

that for very large banks, distribution of the operational loss severity can be extremely heavy tailed

(i.e. tail index less than 1), a finding which have significant implications for capital calculation as

well as for risk management. Furthermore, we also demonstrate that the capital estimates provided

by our model is consistent with the industry standards and the model can be used by individual

banks to simulate data to complement their internal data.
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1 Introduction

The minimum capital requirement for banks set by the first accord of the Basel Committee on

Banking Supervision in 1988 primarily focused on the credit risk of banks (Basel, 1988). In 1997 the

agreement was amended to incorporate market risk for capital calculations (Basel, 1996). Since then
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much research has been done on measuring and managing market and credit risk for banks but very

little attention has been given to other types of risk such as operational risk. However, large scale

operational loss events such as the unauthorized trading at Barings Bank in the UK which led to its

collapse in 1995, the $2.2 billion loss at National Australia bank in 2001 due to product issues and

model errors in their HomeSide mortgage servicing subsidiary, the $2.2 billion settlement with

investors of Enron in 2005 by JP Morgan Chase for their role in helping the failed energy company

to provide misleading financial results, and more recently, the $7.2 billion loss due to fraudulent

trading at Société Générale have made both industry and regulators realise that merely focusing on

credit and market risk is insufficient to ensure the solvency of a bank. It has been found that

operational risk in a bank is often much larger than the market risk (De Fontnouvelle et al., 2006).

In response, the Basel committee included operational risk as one of the risks that need to be

quantified in their Basel II accord in 2004 (Basel, 2006).

However, there are definite challenges for risk managers in quantifying operational risk. Firstly,

there is no widely accepted methodology to quantify operational risk. Secondly, the heavy-tailed

nature of the operational loss distributions makes it difficult to estimate the tails, especially when

data is inadequate. Thirdly, most of the Low-frequency/high-severity (LF/HS) operational losses are

high degree unique events, which makes it even more difficult to model the tail. Given these

circumstances the amount of unknown and the unknowable is far greater than the known in the

area of operational risk. As a result there are considerable uncertainties regarding the economic

capital estimates for operational risk. For example, using bank-level data of six large internationally

active banks, De Fontnouvelle et al. (2007) report a wide variation in the shape parameter (a low of

0.498 to a high of 0.859) of the fitted Generalized Pareto distribution (GPD) for the losses from

each bank. In a comment on their paper Kuritzkes points out that this wide variation has a

significant impact on the capital charge for individual banks. Using six hypothetical banks with

identical exposures, Kuritzkes demonstrates that the capital charge can vary from $208 mill (if the

shape parameter is 0.498) to $4,320 mill (if the shape parameter is 0.859). This significant variation

raises the important question as to what extent banks and regulators can rely on bank level data to

model the shape of the tail of the loss distribution. Given that banks are required to hold enough

capital to cover one in a thousand year adverse event, it is obvious that it is impossible to observe

the relevant operational loss data for capital estimation within any one firm. As a solution to

this Basel II requires banks to use external data to complement their internal data. However, the

process of combining internal data with external data is an exercise which requires due diligence

due to biases inherent in the external data. If not properly combined, external data may distort

parameter estimates and eventually lead to perverse estimates of economic capital (Baud et al.,

2002). Wilson (2007) points out there are three types of biases inherent to external data which may

lead to poor estimates:

i) Reporting bias – occurs when different thresholds have been used by institutions to report losses

to the external database

ii) Control bias – occurs when data is collected from institutions with different risk control systems

iii) Scale bias – occurs when data is collected from institutions with different sizes

In this paper we demonstrate how an external database can be used to model the severity of

operational losses by correcting for reporting bias and scale bias.

The severity model developed in this study makes use of a method based on Extreme value theory

proposed by De Fontnouvelle et al. (2006) to account for the reporting bias of the external data, and
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a regression analysis based on the GAMLSS framework introduced by Rigby & Stasinopoulos

(2001, 2005) to model the scaling properties of operational losses. The model can simulate losses

for a bank given the size of the bank and other explanatory variables that might affect the severity of

operational losses. The model is calibrated using the industry data and therefore can be used by

banks with very little data of their own or by banks whose operational environment has changed

significantly due to a merger or an acquisition. The next section provides a brief review of scaling

models reported in the literature. The section 3 formulates the model and provides details of the

research methodology, section 4 presents the results of the model after fitting it to data from the US

banking industry, section 5 provides a demonstration of the severity model at work by computing

capital estimates for several hypothetical banks as well as for two real banks by making simplified

assumptions about the frequency distribution, and section 6 concludes.

2 Literature Review

It is natural to hypothesise that the severity of operational losses will have a relationship to the size

of the bank. To the best of our knowledge, the first to test this hypothesis for financial firms were

Shih et al. (2000). They tested the correlation of the firm size indicators of revenue, assets, and the

number of employees with the operational loss severities using the OpVar database (which is an

external database consisting of publicly reported losses). They reported all three variables to be

correlated with loss severity, with the revenue showing the strongest relationship. Furthermore,

authors found that the relationship between the loss severity and the size of the firm is nonlinear.

They reported that ‘‘a firm that is twice as large as another does not, on average, suffer a loss that is

twice the size of the loss experienced by the other firm’’. They hypothesised that the relationship

between the loss severity and the size of a firm can be modelled as

logðLossiÞ ¼ b0 þ b1 logðrevenueiÞ

An ordinary least squares (OLS) regression of the model confirmed a linear relationship between the

log-loss severity and the log-revenue. However, authors reported the presence of heteroskedacity in

the error term and corrected for this by running a weighted least squares (WLS) regression. They

reported an adjusted R2 value of 9% for their WLS regression and concluded that the size only

accounts for around 5% of the variability in the loss severity. Furthermore, they reported that ‘‘there

is clear evidence of diminishing relationship between the size of a firm and loss magnitude’’. A major

limitation of this study is that authors did not correct for reporting bias in the external data. Later,

De Fontnouvelle et al. (2006) showed that reporting bias in the OpVar database is too significant to

be ignored. Therefore the results of the study should be taken with a grain of salt since parameter

estimates are likely to be distorted as the model has been fitted using a disproportionate number of

large losses.

Another early study to consider the scaling problem is Na et al. (2006). Their study mainly analysed

the scaling of aggregate losses as opposed to individual losses. Authors assumed aggregate

operational losses can be broken down into two components, firstly a common component, which is

assumed to be stochastic, capturing the influence on the loss severity by factors such as

macroeconomic, geopolitical, cultural and business environment common to all banks and secondly

an idiosyncratic component, which is deterministic, capturing the influence of the size of the bank

on the loss severity. Their analysis revealed that the mean and the standard deviation of the

aggregate losses scale similarly. Moreover, they found that the ratio of aggregate loss between two

business lines (or banks) is simply equal to the ratio between their gross income. Authors also briefly
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analyzed whether their scaling model can be applied to individual loss severities. However, they

reported that the results did not turn out to be convincing.

A study which took a slightly different approach to analyze the scaling properties of operational

losses is that of Cope & Labbi (2008). The authors used quantile regression techniques to analyse

the relationship between different quantiles of the operational loss distribution and the size of a

bank. Their study revealed that large losses scale differently from small losses and also confirmed a

diminishing relationship between the loss size and the firm size for certain categories of operational

losses. An important finding of their study is that not all operational losses are positively correlated

with the size of a bank. They reported that for certain lines of business and event types, operational

loss severity may decrease as the size of a bank increases. A limitation of the study is that in order to

apply the quantile regression techniques proposed by the authors one needs to be able to identify the

corresponding percentile level of each loss. However, it is not possible to achieve this when data is

collected from more than one bank subject to a reporting threshold. To overcome this issue authors

proposed a novel quantile matching algorithm. The algorithm requires the loss reporting threshold

to be known and fixed. For some databases such as the ORX database, which the authors used in

their study, this is not a problem. However, for most other external databases the loss reporting

threshold of individual banks is unknown. In such instances one would require different techniques

or a modification to the authors’ quantile matching algorithm.

A more recent paper to look at the scaling problem is by Dahen & Dionne (2010). They extended

the work of Shih et al. (2000) by introducing scaling factors other than the firm size into the

regression analysis. Also, in contrast to Shih et al. (2000) the authors used the Heckman method to

correct for selection bias in the external data. The form of the regression model they employed is

logðLossiÞ ¼ b0 þ b1 logðassetsiÞ þ
X
all j

bjBLij þ
X
all k

bkETik þ ei

where, BLij is a business line indicator, ETik is an operational loss event type indicator, ei is an error

term assumed to be normal, and bs are the parameters to be estimated. The model was fitted using

OLS and an adjusted R2 value of 29.58% was reported as an overall fit to the data. Although the

value of R2 is low, it was a significant improvement on the R2 value reported by Shih et al. (2000).

However, given the low value of R2 it is reasonable to question the appropriateness of the

distributional assumption made by the authors that log-losses are Normally distributed. If the

log-losses are distributed as a Normal distribution, then the losses should follow a Lognormal

distribution. Although Lognormal distribution is a fairly heavy-tailed distribution, it is not as heavy-

tailed as Pareto or Log-gamma distribution. Various previous studies have found evidence that

operational losses are (extremely) heavy-tailed (see e.g., De Fontnouvelle et al., 2007; Moscadelli,

2004). The low value of the adjusted R2 found by Dahen & Dionne (2010) could be possibly

explained by the inappropriateness of the distributional assumption.

Another interesting study of the scaling problem is found in Wei (2007) where he tested the

suitability of using the peak over threshold (POT) method from extreme value theory over the

traditional actuarial techniques to model severity of losses. The author reported that the capital

charge based on the Generalized Pareto distribution from the POT method was too conservative

and too costly for the banks, whereas traditional actuarial models which assume losses arise from a

known parametric family of distribution with scale parameter related to bank assets, provided a

much more reasonable yet conservative capital estimates.
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As discussed so far most of the previous work has focused on how the mean of the log-loss severity

may scale in response to the size of a bank. However, there are several issues in this approach.

Firstly, mean of the log-losses does not relate to any meaningful statistic of the (raw) loss

distribution. Hence, results are difficult to interpret in most circumstances. Secondly, the

operational risk capital charge for a bank is determined by the 99.9th percentile of the loss

distribution. The information provided by a scaling model fitted to the mean of the log-losses

provides very little information on how the 99th percentile may scale. To illustrate this point

consider two banks denoted as Bank I and Bank II with assets of $100 bill and $200 bill respectively.

Let’s assume that the operational loss distribution of both banks follows a Log-gamma distribution

with parameter values for Bank I being aI 5 6.25, and pI 5 25, and parameter values for Bank II

being aII 5 1.3889, and pII 5 2.778 (the density function and a discussion of Log-gamma

distribution will be given later in subsection 4.3.1). The mean and the 99.9th percentile loss for

each bank under these distributional assumptions are given in table 1. One can observe from the

table that the mean operational loss (as well as the mean log-loss) at the larger bank is less than half

the mean loss at the smaller bank. However, the 99.9th percentile loss in the large bank is more than

twice the loss in the small bank. In this particular example, the mean of the log-losses (as well as the

mean of the raw-losses) and the 99.9th percentile of the log-losses scale in the opposite direction.

In this situation OLS regression techniques (which have been used by many of the previous studies)

would lead to a misleading conclusion that the size of a bank is negatively related to the loss

severity. Although this may in fact be true of the mean of the loss distribution, in terms of capital

calculation the result will be misleading.

In general, mean of a loss distribution provides very little information when losses are heavy-tailed.

Rootzén & Klüppelberg (1999) points out that ‘‘for catastrophic risk means don’t mean anything’’.

To illustrate this we shall provide two slightly altered examples taken from their paper.

Consider that a bank is exposed to two types of risk. Under Risk Type I a bank may lose 1 with a

probability of 50% or lose 1.5 with a probability of 50% for each day of 365 days. In contrast, under

Risk Type II a bank may lose 0.2 with a probability of 99.85% or lose 700.2 with a probability of

0.15% for each day of 365 days. In this example the expected loss for both risk types is 456.25.

However, the distribution of losses is quite different for the two types of risk, as illustrated in figure 1.

One can observe that the mean is an important summary statistic for Risk Type I. However, for Risk

Type II, mean has little significance in explaining the overall risk. Under risk type II, a bank may lose

73 with a probability of 58% or lose at least 773 with a probability of 42%. Clearly the second risk

type is more risky than the first, but mean alone cannot differentiate this.

The second issue Rootzén & Klüppelberg (1999) raised is that mean may be quite unstable for losses

which follow a heavy-tailed distribution. To illustrate this, consider two banks, Bank I and Bank II,

Table 1. Mean and the 99.9th percentile loss for the hypothetical Bank I and Bank II.

Raw Loss ($ mill) Log Loss ($ mill)

Bank I Bank II Bank I Bank II

($100 bill in assets) ($200 bill in assets) ($100 bill in assets) ($200 bill in assets)

Mean 78.17 34.33 4 2

99.9th percentile 1025.43 2387.28 6.933 7.778
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in which operational risk follows a Pareto distribution; Pr(X . x) 5 x2a, for x . 1 with a5 1.01 for

bank I and a5 1.001 for bank II. Figure 2 provides the plots of the density function of the loss

distribution for the two banks. Clearly, both distributions are very similar. In fact, the loss level at

the 99.9% percentile is 933 for Bank I and 993 for Bank II. Hence, the capital amount that the two

banks need to hold should be very similar. However, the mean operational loss at Bank I is 101,

whereas the mean loss at Bank II is 1001. The means differ by about a factor of 10. Again, this

particular example demonstrates how the mean may be misleading for heavy-tailed risks. If one

analysed the mean of the loss distribution of each bank, to find a relationship between the size of a

bank and the severity of losses, the results could be misleading. In this instance considering the

logarithm of losses will be useful. But as we demonstrated earlier, mean of log-losses does not

necessarily need to follow the same scaling mechanism as the tail of the distribution. Hence,

different techniques need to be considered.

The preceding three examples illustrated why it is inappropriate to scale the severity of losses by

using regression techniques which only try to fit the mean of the response variable. Such models

may lead to spurious results about the relationship between the size of a firm and the loss severity

even under correct distributional assumptions. A better approach to analyse the scaling properties

would be to model the tail index of the loss distribution. In this study we explicitly model the tail

Figure 1. The distribution of total Losses for two risk types with same mean.

Figure 2. The density of two different Pareto risks.
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index of the loss distribution by using size and other explanatory variables. We considered several

distributional assumptions for operational loss data and found that a Log-gamma distribution

provides the best fit. Our results suggest that the tail index of the operational loss distribution and the

size of a bank have a negative relationship. In other words, the tail of the operational loss distribution

in large banks is heavier than in small banks. In particular, we find that the 99th percentile loss can

increase by up to 25% to 35% when the size of a bank doubles. Hence, our results suggest that the

size of a bank has a more significant impact on the capital requirement than thought previously.

3 The Methodology

As discussed earlier, previous literature has revealed evidence of heteroskedacity in operational loss

data. A one possible explanation for this could be the level of sophistication in banking activities

between small banks and large banks. Small banks tend to carry out less sophisticated standard

banking activities such as taking deposits, providing personal loans and facilitating transactions. The

severity of operational losses which can arise from such activities tends to be lower. In contrast, in

addition to standard banking activities, larger banks engage in more sophisticated banking activities

such as securitization, trading of exotic securities, providing syndicated loans, assisting in mergers and

acquisitions, and market making. The severity of operational losses from such complex banking

activities is usually higher than those losses which can arise from standard banking activities. Since

large banks engage in both standard as well as complex banking activities, it is reasonable to

hypothesise that the variation in the severity of operational losses in a large bank is higher than in a

small bank. Hence, a scaling model for operational losses should be able to account for this variation.

Furthermore, another issue which needs to be considered when developing a scaling model is the

differences in severities across different operational risk events and business lines. The loss

collection exercise by the Basel Committee in 2002 and 2008 has revealed that certain operational

loss events and business lines have distributions with longer tails than the others (Basel, 2003;

2009). Hence, a model which only accounts for the variation in the mean of the severities for

different categories of operational risk would not be able to capture the tail behaviour properly. In

other words a good scaling model should be able to account for the variation in location, scale and

shape of the distribution across different business lines and event types.

A convenient framework to model location, scale and shape of a distribution is the recently

introduced ‘generalized additive models for location scale and shape’ (GAMLSS) (Rigby &

Stasinopoulos, 2001; 2005). GAMLSS is a very general class of regression model that incorporates

popular GLM1, GAM2, GLMM3 and GAMM4 together. However, GAMLSS is more general than

the above mentioned, since firstly it relaxes the assumption that the response variable belongs to

the natural exponential family. Hence, GAMLSS is a convenient framework to test various

distributional assumptions such as Gumbel, Weibull and Student-t, in addition to the standard

natural exponential family distributions.

The second advantage of the GAMLSS framework is that it does not limit the modelling to the

location of the distribution as in GLM and the other similar frameworks. The standard GLM setup

(similarly OLS) cannot model distributional parameters other than the location parameter explicitly

1 GLM – Generalized linear models
2 GAM – Generalized Additive models
3 GLMM – Generalized Linear Mixed Models
4 GAMM – Generalized Additive Mixed Models
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by using explanatory variables. The ability of the GAMLSS framework to model all the

distributional parameters allows one to estimate models with more flexible scaling properties. For

example, if we assume log losses are distributed normally and if we model the standard deviation

using the size of the bank as an explanatory variable, we can obtain a model that allows losses in a

large bank to have a larger standard deviation compared to the losses in a smaller bank, but with

both banks having the same mean (and median) logarithm of loss. In other words we can implicitly

allow different quantiles of the distribution to scale differently. On the other hand, if we assume

losses follow a Weibull distribution with shape parameter related to some covariates, then we could

obtain a model which allows loss distribution to have either negative, positive or symmetric

skewness depending on the values of the covariates.

In the GAMLSS framework all distributional parameters can be explicitly modelled using both fixed

and random effects (Rigby & Stasinopoulos, 2005). Furthermore, each distributional parameter can

be modelled as linear and/or non-linear, parametric and/or smooth non-parametric functions of

explanatory variables and/or random effects. In this study we limit our analysis to parametric linear

GAMLSS models.

3.1 The Parametric Linear GAMLSS Framework

Consider log losses y 5 (y1, y2, y, yn)T are a random sample of independent observations. Let

f ðyi; !iÞ be the density function conditional on the parameter vector !i. The !i can have any number

of distributional parameters each of which can be modelled by explanatory variables. However, for

the sake of simplicity in notation for the following discussion we shall assume !i5 (mi, si)
T is a

vector of two distributional parameters.

We define a set of link functions that specifies the relationship between the linear predictor and the

distributional parameters of each component distribution as

g1ðmiÞ ¼ Zi1 ¼ b11 þ b12Xi12 þ b13Xi13 þ � � � þ b1p Xi1P

g2ðsiÞ ¼ Zi2 ¼ b21 þ b22Xi22 þ b23Xi23 þ � � � þ b2pXi2P

)
i ¼ 1; � � � ; n;

where, Xijp is the value of the pth explanatory variable relating to the observation yi in the jth

distributional parameter, and bjp is the parameter corresponding to Xijp. This set of equations can be

simplified with the help of matrix notation as

g1ðliÞ ¼ X1b1

g2ðriÞ ¼ X2b2

where, Xj are the design matrix of the jth distributional parameter, and bj are the corresponding

parameter vectors.

The maximum likelihood estimates of b1 and b2 can be obtained by solving

Max
b1 ; b2

Xn

i¼1

log f ðyi; b1; b2Þ ð1Þ

The optimization of eq. (1) can be carried out using the RS algorithm of Rigby and Stasinopoulos

(2010, p. 92). We used the packages gamlss (Stasinopoulos & Rigby, 2007) in software R

(R Development Core Team, 2010) for parameter estimation.
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3.2 Diagnostics and Model Selection

Rigby & Stasinopoulos (2005) recommend using normalized quantile residuals of Dunn & Smyth

(1996) to verify the adequacy of the fitted GAMLSS models. For a response variable Y having a

continuous cumulative distribution function F(yi; hi), Dunn & Smyth (1996) define normalized

quantile residuals as r̂i ¼ F�1 Fðyi; bhiÞ

h i
, where F21(U) is the inverse cumulative distribution

function of the standard Normal distribution. If the model is adequate, then the error ri should be

standard Normally distributed. Any departure of the estimated residuals r̂i from the standard

Normal distribution can be seen as an inadequacy of the model. Tests for normality of the estimated

residuals can easily be carried out using a QQ plot of estimated residuals against the theoretical

quantiles of the standard Normal distribution.

If there is more than one competing model, an information criterion can be used to test between the

models. The formula to compute the information criterion is

CR ¼ �2 logðL̂Þþ c� ðdegrees of freedomÞ ð2Þ

where, c is the penalty term and the degrees of freedom is the number of fitted parameters in the

model. When c 5 2 we have the Akaike Information Criterion (AIC), and c 5 log(n) we get the

Schwartz Bayesian Criterion (SBC).

3.3 Accounting for Reporting Bias

Most external databases suffer from reporting bias. The reporting bias is quite significant in databases

maintained by vendors who collect publicly reported operational losses since not all operational losses

are publicly disclosed. De Fontnouvelle et al. (2006) find that the reporting bias in external data is

significant and losses as large as $50 mill only have around 30% probability of being publicly disclosed.

Thus, if the reporting bias is not properly taken into account parameter estimates will be biased and the

model will overestimate the losses since it has been fitted using disproportionate number of large losses.

A possible method to account for the reporting bias is to use inverse probability weights wi for each

observation when computing the log-likelihood in eq. (1). Thus, the maximization problem becomes

Max
b1 ; b2

Xn

i¼1

wi log f ðyi; b1; b2Þ ð3Þ

In order to estimate the weights we use a method based on the Extreme value theory proposed by De

Fontnouvelle et al. (2006). The following presentation draws on their paper.

Let us assume a (log) loss yi is publicly reported only if it exceeds some unobservable random

truncation point5 ti. By assuming yi and ti are independent, De Fontnouvelle et al. (2006) show that

the distribution of the observed log losses in the external database is

f ðyijyi4tiÞ ¼
f ðyiÞGðyiÞR
<

f ðyÞGðyÞ dy
ð4Þ

5 Here the ‘truncation point’ refers to an unobserved, observation specific random variable that determines

whether a loss event is observed by the data collector or not. The reader should not confuse the ‘truncation point’ with

the data collection ‘threshold’, which is known and fixed. If a loss is greater than the random ‘truncation point’ but

less than the data collection ‘threshold’ the data collector will observe the loss but will not include it in the database.

In contrast, if a loss amount is higher than the collection ‘threshold’ but lower than the random ‘truncation point’ then

the data collector will not observe the loss, hence it will not be included in the database. Only the losses that are

higher than the random ‘truncation point’ as well as the fixed data collection ‘threshold’ are included in the database.
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where f(yi) is the marginal densities of yi and G(.) is the cumulative distribution function of random

truncation point ti.

In order to estimate eq. (4) one needs to define the functions for f(.) and G(.).

De Fontnouvelle et al. (2006) state that there are many random factors which affect whether a loss

will be publicly reported or not, such as the type of loss, the business line, whether there have been

any legal proceedings, and the idiosyncrasies of executives and reporters who decide whether to

report the loss or not. Hence, using the central limit theorem, authors argue that the truncation

point should be Normally distributed. However, they find that in practice the Normality assumption

for G(.) leads to non-convergence of the numerical optimization of the maximum likelihood6.

Therefore, they recommend using a Logistic distribution instead, which closely approximates the

Normal distribution. The cdf of the Logistic distribution is given by

Gðti; t; aÞ ¼
1

1þ exp �ðti�tÞ
a

h i
where, t is the location parameter which indicates the log loss with a 50% probability of being

reported in the database and a is the scale parameter which dictates the rate at which probability of

reporting increases with the loss magnitude.

In most practical situations, the functional form of f(.) remains unknown. However, if we assume

f(.) is in the maximum domain of attraction of the Generalized extreme value distribution7, then the

Pickands–Balkema–de Haan theorem (see McNeil et al., 2005, p. 275 for details) tells us that for a

high enough threshold u, the conditional excess distribution function Fu(zi) where, zi 5 (yi2u) can

be approximated by a Generalized Pareto distribution (GPD), which has a cdf of the form

GPDðzi; x; bÞ ¼
1� 1þ xzi

b

� ��1=x
x 6¼ 0

1�exp � zi

b

� �
x ¼ 0:

(
Furthermore, if yi belongs to a heavy-tailed class of distribution (i.e. the distribution of log-losses

lies within the maximum domain of attraction of the Fréchet distribution), then the distribution of zi

will converge to a GPD with j . 0 and if yi belongs to a medium-to-light-tailed class of distribution

(i.e. the distribution of log-losses lies within the maximum domain of attraction of the Gumbel

distribution), then zi will converge to a GPD with j 5 0, which is the cdf of an exponential

distribution. It is well known that the operational losses are heavy tailed (see De Fontnouvelle et al.,

2007; Moscadelli, 2004). Hence, the logarithm of operational losses should belong to a medium-to-

light-tailed distribution (see results 3.3.33 and 3.3.34 of Embrechts et al., 1997). In other words zi

can be approximated using an exponential distribution for a high enough threshold u. Thus, for a

large enough threshold u we can obtain the likelihood equation

Lðb; t; aÞ ¼
Yn
i¼1

hðzi ; bÞGðzi ; t=; aÞR
<

hðz ; bÞGðz ; t=; aÞ dz
ð5Þ

where, hðzi ; bÞ ¼ 1
b expð�zi

bÞ and, t/ 5 (t2 u). Then the parameters b, t/, and a can be estimated by

maximising the likelihood by numerical techniques. Once the parameters are estimated one could

compute the weights by

wi ¼
1

Gðyijt; aÞ

6 We also experienced the same problem with the Normality assumption.
7 Essentially all the common continuous distributions of statistics are in the maximum domain attraction of

the Generalized extreme value distribution. See p. 267 of McNeil et al. (2005) for further details.
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It is also possible to normalize the weights by using the following formula, such that the sum of

weights will add up to the number of observations.

w
=
i ¼

nwiPn
i¼1 wi

ð6Þ

where, n is the total number of observations.

4 Application of the Model

We applied the model described in section 3 to Algorithmics’s ‘Algo Opdata’ database. The database

contains publicly reported operational losses above USD $1 mill from financial firms around

the world. In order to obtain a fairly homogeneous sample of losses we restricted our analysis to

data collected from the US banking industry during the 15 year time period from 1-Jan-1994 to

31-Dec-2008 from banks with assets greater than or equal to $100 bill. There are several reasons for

excluding banks with assets less than $100 bill from our analysis. Firstly, most of the records for

banks with assets less than $100 bill were incomplete as they did not have values for total deposits,

total equity, and number of employees. We made an attempt to recover the missing values but were

unsuccessful because documents such as annual reports were not publicly available as most of these

small banks are not publicly traded. Secondly, since Algo OpData is collected from public sources

such as newspapers, court documents, SEC filings etc., we suspected that the reporting bias in small

banks could be different from the reporting bias in medium to large scale banks for the following

reasons: 1) usually media tend to treat losses in large banks as more newsworthy than losses in small

local banks, therefore the probability of data vendor picking up a loss from a media source is greater

for a medium to large scale bank than for a small local bank, 2) regulatory disclosure requirements

of small banks are different from medium to large scale banks8, therefore probability of a loss being

publicly disclosed is lower for small banks, 3) disclosures requirements of publicly listed entities are

much more greater than for non-listed entities. Given these circumstances we decided to limit our

analysis to banks with assets greater than or equal to $100 bill. However, it should be pointed out

that limiting the analysis to banks with assets greater than or equal to $100 bill does not discount

the significance of the study, since our sample contains 855 data points, with a fair range of banks

from $100 bill to $2000 bill in assets as shown in table 2.

In the following section we shall present the preliminary analysis of the chosen sample and a brief

description of the potential explanatory variables for model fitting and their descriptive statistics.

4.1 Preliminary Analysis of the Data and the Explanatory Variables

4.1.1 Size
As discussed earlier much of the previous work has suggested an increasing relationship between

loss magnitude and the size of the firm. Algo OpData contains several possible quantities that can

be taken as a measurement of firm size, namely total assets, total deposits, total equity and the

number of employees. We considered each of these variables in the regression analysis to find the

one with the highest explanatory power.

8 For example, small banks are not subject to the Section 32 of FIDCIA which requires banks to establish an

independent audit committee and report on the effectiveness of the entity’s internal control. Altamuro & Beatty

(2010) find evidence that the quality of financial reporting of banks subject to Section 32 of FIDCIA is better

than the small banks which are exempted.

A scaling model for severity of operational losses GAMLSS

71

https://doi.org/10.1017/S1748499512000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000267


4.1.2 Business Lines (BL)
Certain lines of business can be perceived to be more risky than others. Thus, severity of operational

losses may depend on the business line. As a preliminary analysis we classified business activity into

six business lines and computed the median, 75th, and 99th percentiles of the losses for each business

line. The results are given in table 3.

Results show that the highest number of losses have occurred in ‘retail brokerage’ followed by

‘trading and sales’. ‘Corporate finance’ had the highest losses in all three percentiles indicating that

this particular business line is relatively riskier than the others. In contrast, retail brokerage had

lower severities at all three percentiles.

4.1.3 Event Type (ET)
The type of operational loss is another potential explanatory variable. We categorised losses into

five different event types as outlined in table 4. Preliminary analysis showed that more than half of

the operational losses were due to ‘clients, products & business practices’ (CPBP). CPBP had large

losses at higher percentiles indicating particular event category to be riskier than the others.

4.1.4 Equity Ratio
Ideally when modelling operational risk one needs to take into account the internal controls and

risk culture of a firm. Unfortunately the Algo OpData does not provide any such information.

Table 2. The Distribution of the Selected Sample by Total Assets.

Assets ($ bill) Number of Obs. Assets ($ bill) Number of Obs. Assets ($ bill) Number of Obs.

100 to 200 83 800 to 900 84 1500 to 1600 25

200 to 300 103 900 to 1000 38 1600 to 1700 33

300 to 400 74 1000 to 1100 67 1700 to 1800 22

400 to 500 70 1100 to 1200 36 1800 to 1900 3

500 to 600 44 1200 to 1300 26 1900 to 2000 11

600 to 700 10 1300 to 1400 13 2000 to 2100 10

700 to 800 61 1400 to 1500 30 21001 12

Table 3. The Summary Statistics by Business Line.

Percentile

Business Line

Business Line

Index

Number of

Losses

% of

Losses 50th 75th 99th

Corporate Finance (CF) 1 117 13.7% 26.8 93.7 4133.0

Trading and Sales (TS) 2 176 20.6% 15.9 63.7 1905.9

Retail Banking (RB) 3 149 17.4% 7.2 21.1 1222.6

Commercial Banking (CB) 4 127 14.9% 12.0 33.4 662.0

Retail Brokerage (RBr) 5 179 20.9% 5.0 19.8 626.3

PS, AS, AM 6 107 12.5% 17.2 56.0 731.6

Note 1: Basel II classifies operational losses into eight business lines. Due to the limited amount of data ‘Payment

and Settlement’, ‘Agency Services’, and ‘Asset Management’ were grouped together and have been labelled as

‘PS, AS, AM’.

Note 2: All losses are expressed in 2008 dollar terms.
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Therefore, we turned to other publicly available variables which can be used as proxies for risk

culture and internal controls.

The first variable we considered was a governance index created by Gompers et al. (2003). This

index measures shareholder rights in comparison to management power. The index can be

considered as a proxy of the quality of governance, assuming that the greater the power held by

management, the more likely they are to breach fiduciary duties and adopt ad hoc market practices.

However, we found little use of the index since index values were not available for the full sample

duration as well as for many small banks in the sample.

Secondly, as an alternative we considered equity ratio as a proxy for the risk taking tendency of the

senior management. The Equity ratio of a company is defined as the ratio between shareholders’

equity and total assets. The ratio indicates the proportion of equity used to finance a company’s

total assets. It is a measure of leverage used as an alternative to the popular debt-to-equity ratio.

Since Algo OpData provides information on both assets as well as the shareholder equity, the ratio

was readily computable. We hypothesized that a high leverage is an indicator of the overall riskiness

of the company and can therefore provide insight into risk culture within the company. If our

hypothesis is correct the regression analysis should yield that the variable is positively correlated

with the losses.

4.2. Estimating the Weights

The first step in developing the scaling model is to compute weights for the observations by using

the techniques discussed in section 3.3. First, we plot a sample mean excess plot of the losses to

confirm that the losses belong to a heavy-tailed class of distribution. We find that the mean excess

plot has a linear upward trend as expected (see figure 3), which confirms that our data belongs

to a distribution that lies in the maximum domain attraction of Fréchet distribution. In other

words, distribution of the logarithm of losses should lie in the maximum domain attraction of

Gumbel distribution, and therefore, for a high enough threshold one can approximate the excess

log-loss distribution to an exponential distribution as described in section 3.3.

Table 4. The Summary Statistics by Event Type.

Percentile

Event Type ET Index

Number of

Losses

% of

Losses 50th 75th 99th

Internal fraud (IF) 1 133 15.6% 10.1 31.7 637.2

External fraud (EF) 2 118 13.8% 7.8 24.3 250.7

Clients, Products and Business

Practices (CPPB)

3 457 53.5% 13.8 62.4 2966.8

Execution, Delivery and

Process Management (EDPM)

4 66 7.7% 9.6 36.9 662.0

EPWS, DPA, BDSF 5 81 9.5% 5.4 26.2 856.4

Note 1: Basel II classifies operational losses into seven event types. Due to the limited amount of data the

‘Employment Practices and Workplace Safety’, ‘Damage to Physical Assets’, and ‘Business Disruption and

System Failures’ were grouped together and have been labelled as ‘EPWS, DPA, BDSF’.

Note 2: All losses are expressed in 2008 dollar terms.
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It is well known that the GPD approximation works well only if the threshold u is selected properly.

If the threshold u is chosen correctly, then for any other threshold v (.u) the estimated parameter values

for b should remain equal to the initial estimates. To verify this we estimated the parameters b, t, and a

by maximizing the likelihood equation given in eq. (5) for various thresholds. The estimated parameter

values are given in table 5. We find that the parameter values for b and a stabilizes after the $5 mill

threshold. Hence, weights were computed using eq. (6) where â ¼ 0:96, and t̂ ¼ ð3:27þ logð5ÞÞ. These

weights have been used to estimate all the GAMLSS models presented in the subsequent sections.

4.3 Model Selection

4.3.1 Choosing a Base Model
The initial step in model selection is to find a base model having no explanatory variables which

closely follows the data. In other words we are seeking an appropriate probability distribution

assumption for model fitting. As discussed earlier in section 3.3 operational losses are heavy tailed,

hence logarithm of operational losses should belong to a distribution which lies in the maximum

domain of attraction of the Gumbel distribution. Distributions within this class exhibit tails with

Figure 3. Mean Excess Plot of Operational Losses.

Table 5. Estimation Results b, t, and a for Various Thresholds.

Threshold u

Parameter $1M $2M $3M $4M $5M $7M $10M $12M $15M $20M

â 0.92 0.93 0.88 0.89 0.96 0.96 0.96 0.98 0.96 0.96

t̂= 4.91 4.15 2.91 2.67 3.27 3.17 2.60 2.69 2.30 2.06

b̂ 0.86 0.87 1.00 0.99 0.88 0.85 0.87 0.84 0.86 0.85

Note: We carried out likelihood ratio tests of the restriction that the reporting probabilities are constant across

all losses for each threshold level (i.e. there is no reporting bias in the data). The p-values of the likelihood

ratio tests for all the threshold values were less than 0.01, which confirmed the existence of reporting bias.
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exponential decay. Many thin to medium tailed distributions fall under this class of distributions

including the Normal, Lognormal, Exponential, Gamma, Weibull, and Gumbel among others

(McNeil et al., 2005, p. 269). We fitted several of these distributions to the data and computed the

AIC values using eq. (2). A list of the distributions we fitted together with their density functions,

formulas for mean and variance are given in table 6. The estimated parameter values of the fitted

models and their AIC values are given in table 7.

Table 6. The List of Fitted Distributions.

Name Density Function, f(y) E(y) Var(y)

Exponential 1
m exp � y

m

� �
m m2

Gammaa ms

GðsÞ y
s�1expð�ymÞ s

m
s
m2

Inverse Gaussian 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2y3
p exp � 1

2m2s2y
ðy�mÞ2

h i
m s2m3

Log-Normal 1ffiffiffiffiffiffiffiffi
2ps2
p 1

y exp � ½logðyÞ�m�2

2s2

h i
e mþs2

2

� �
es

2
�1

� �
eð2mþs

2Þ

Gumbelb 1
s exp y�m

s

� �
�exp y�m

s

� �� �
m2gs p2s2

6

Normal 1ffiffiffiffiffiffiffiffi
2ps2
p exp � ðy�mÞ

2

2s2

h i
m s2

Three param- t c
1

sB 1
2;
u
2ð Þu

1=2 1þ ðy�mÞ
2

s2u

h i�uþ1
2 m s2u

n�2

Weibull sys�1

ms exp � y
m

� �sh i
mG 1

sþ 1
� �

m2 G 2
sþ 1
� �

� G 1
sþ 1
� �� �2n o

a – G(.) is the gamma function.

b – g is the Euler–Mascheroni constantE 0.5772.

c – B(.) is the beta function.

Table 7. The Competing Base Models.

Distribution Parameter Estimates AIC

Gamma m 1.259 (0.055) 1716.8

s 1.284 (0.059)

Weibull m 1.074 (0.034) 1720.3

s 1.153 (0.030)

Truncated three parameter t m 0.144 (0.195) 1726.4

s 0.985 (0.117)

n 4.041 (1.112)

Truncated Normal m 24.476 (2.009) 1737.6

s 2.539 (0.410)

Truncated Gumbel m 28.067 (1.910) 1743.4

s 5.405 (0.710)

Exponential m 1.020 (0.035) 1745.8

Log-Normal m 20.417 (0.037) 1844.8

s 1.078 (0.026)

Inverse Gaussian m 1.020 (0.061) 2287.3

s 1.720 (0.042)

Note: Since only the losses which are above the $1 mill threshold are included in the database the range of the

log-losses is y1A[0,N). Hence, truncated versions of Normal, Gumbel, and t-distribution were fitted to the data.

A scaling model for severity of operational losses GAMLSS

75

https://doi.org/10.1017/S1748499512000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000267


As reported in table 7, the model fitted with the Gamma distribution provided the lowest AIC value.

Hence, we chose the Gamma distribution for model fitting.

It is worth pointing out that when the logarithm of a random variable X follows a Gamma

distribution, X itself is said to follow a Log-gamma distribution. Log-gamma distribution is a

heavy-tailed distribution with a Pareto-type tail behaviour. That is, there exists a slowly varying9

function h(.) such that

PrðX4xÞ¼x�ahðxÞ ð7Þ

The parameter a in the above equation is called the tail index of the distribution. The value of a
determines the thickness of the tail. The smaller the a, the thicker the tail of the distribution. In

other words, extreme observations become even more likely. This particular characteristic makes

Pareto-type distributions (which includes Log-gamma) an attractive framework to model

operational risk.

The density function of the Log-gamma distribution is given by

f ðxÞ ¼
ap

GðpÞ
x�a�1 ½logðxÞ�p�1

ð8Þ

where, G(.) is the gamma function, and p and a are the lower and upper shape parameters. The

distribution function of the Log-gamma distribution is given as

FðxÞ ¼
gðp; a logðxÞÞ

GðpÞ
ð9Þ

where, g(.) is the lower incomplete gamma function. The expected value of the Log-gamma random

variable is given by

EðxÞ ¼
a

a�1

� �p
for a41 ð10Þ

and, the variance by

VarðxÞ ¼
a

a�2

� �p
�

a
a�1

� �2p
for a42 ð11Þ

The coordinates (F, L) of the Lorenz curve is given by

F ¼
gðp; alogðxÞÞ

GðpÞ
; L ¼

gðp; ða�1ÞlogðxÞÞ

GðpÞ

	 

ð12Þ

Note that if X , Log-gamma(a, p) as defined in eq. (8) then a random variable Y 5 log(X) follows a

gamma distribution as defined in table 7 with m5 a and s 5 p, where m is called the rate parameter

and s is called the shape parameter.

The Log-gamma distribution has a finite variance only if a. 2. Moreover, distribution has a finite

mean only if a. 1. A distribution with a, 1 is referred to as an extremely heavy-tailed distribution

or as an infinite mean model. Such distributions can have important implications for capital

calculations as have been pointed out by Nešlehová et al. (2006). We shall discuss this issue in detail

later in section 4.6.1.

9 see Embrechts et al. (1997, p. 564) for the definition of slowly varying functions.
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4.3.2 Step-wise Selection of Explanatory Variable
Once the distributional assumption has been established, we carried out a step-wise selection of

the explanatory variables discussed in section 4.1 for the parameters m and s of the Gamma

distribution. The strategy which we used to select the explanatory variables is presented

schematically in figure 4.

The choice of link functions is an important consideration in fitting GAMLSS models. For the

Gamma distribution both parameters m and s are defined as greater than zero. Therefore, log link

function appears to be a suitable candidate for both parameters. However, inverse link function is

the canonical link function for Gamma distribution in the GLM framework10. Hence, we tested

models with log link function as well as inverse link function by comparing the AIC values and the

normalized quantile residual plots (discussed earlier in subsection 4.4). We found that models fitted

using a log link function to m and s provided lower AIC values as well as better residual plots.

Therefore, log link functions were chosen for both parameters.

As mentioned earlier Algo Opdata provides several possible quantities, namely total assets, total

deposits, total equity and number of employees, which could be used to measure the size of a bank.

We considered logarithm of each of these variables in the regression analysis and compared the

AIC values and the residual plots to find the variables with the highest explanatory power. Both

log-assets as well as log-equity provided models with slightly better fit than the models based on

log(number of employees) and log-deposits. Given that all these variables are highly correlated

it is no surprise that all of them were found to be significant. Since total assets is usually a better

measure of the size of a bank and the magnitude of its operations than total equity, and also because

previous studies have used total assets for their analysis, we decided to use log-assets in model fitting

over log-equity.

The parameter estimates of the final model given by the step-wise selection method is shown in

table 8 (denoted as model G). The model has been fitted using retail brokerage as the baseline

category for business lines and the event variable ‘EPWS, DPA, BDSF’ as the baseline category for

event types.

Based on the step-wise selection method outlined earlier we find log-assets, equity ratio, corporate

finance, commercial banking, ‘PS, AS, AM’ business lines, and the clients, products and business

practices event type are significant explanatory variables to the rate parameter m. As for the shape

parameter s, log-Assets and commercial banking were found to be significant explanatory variables.

We find that the size of a firm is a significant explanatory variable for both shape as well as the rate

parameter of the distribution. In particular, we find a negative correlation between the size of a bank

and the rate parameter m. This implies that the tail of the operational loss distribution becomes

heavier with the size variable. This is an important finding since previous studies have mostly

focused on the effect of the size of a bank on the mean of the log-loss distribution and had come to

the conclusion ‘‘ysize effect is of little significance in explaining the level of losses’’ (Dahen &

Dionne, 2010, p. 1491). A detailed analysis of this important result as well as an interpretation of

the estimated parameters will be provided later in subsection 4.6. In the subsequent sections we will

present the robustness analysis for the parameter estimates and the model diagnostics.

10 However, note that our parameterization of the Gamma distribution is different from the GLM para-

meterization.
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4.4 Model Diagnostics and Robustness Analysis

4.4.1 Diagnostic Plots
The diagnostics for the fitted model were carried out using a QQ plot of normalized quantile

residuals as described in section 3.2. The resulting QQ plot is given in figure 5. The QQ plot

indicates that the estimated residuals closely follow a standard Normal distribution. Hence, we

concluded that the model provides a reasonable fit to the data.

4.4.2 Robustness of Parameter Estimates
In order to test whether the estimated parameters are robust to model specification and the

underlying data we analyzed the following two cases:

1) Model G.1 – refit model G after removing losses above $1 bill in banks with assets greater than

$500 bill.

End: Final Model

Stage IV: Backward elimination of �, given the model for � and �

Stage III: Backward elimination of �, given the model for � and �

Stage II: Forward selection of �, given the model for �

Stage I: Forward selection of �

Start: Base Model - Only Intercept for � and � 

Figure 4. The Step-Wise Selection Strategy of Explanatory Variables.

Table 8. Estimated Parameter Values for Model G.

m s

Explanatory Variable Estimate St. Err. Estimate St. Err.

Intercept 2.69 (0.909) 4.801 (0.857)

Log-assets 20.182 (0.067) 20.331 (0.065)

Equity Ratio 3.983 (1.1) – –

Corporate Finance 20.37 (0.11) – –

Trading and Sales – – – –

Retail Banking – – – –

Commercial Banking 20.438 (0.139) 20.279 (0.159)

PS, AS, AM 20.270 (0.103) – –

Internal fraud – – – –

External fraud – – – –

Clients, Products and Business Practices 20.148 (0.048) – –

Execution, Delivery and Process Management – – – –

Note: the model is fitted using retail brokerage as the baseline line category for business lines and ‘EPWS,

DPA, BDSF’ as the baseline category for event types.
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2) Model G.2 to G.11 – sequentially add explanatory variable to a model with only intercept and

log-assets as explanatory variables.

The Case 1 test the robustness of the parameter estimates against few extreme losses occurred in large

banks. There were 5 losses above $1 billion in banks with assets greater than $500 billion. The refitted

model after removing those data points are given in table 9 under the column heading model G.1.

We find that the parameter estimates do not vary much from initial estimates. Especially, the

coefficient of the size variable remains remarkably stable even after removing the large losses.

Since size is an important variable for the scaling model, we analyzed the stability of the coefficient

of the size variable with respect to model specification in Case 2, by fitting a series of models with

different specifications. We started with model G.2 which only has the log-assets as explanatory

variables. Then we sequentially added other explanatory variables to the simple model and tested

the stability of the coefficients of the size variable. The results show that the size variable remained

relatively stable as well as statistically significant, across all models.

4.5 Validation of the Model by Simulation

As a further validation of the model we simulated losses for the US banking industry, and two

individual US banks, and compared the simulated losses against the observed losses. For individual

banks we chose two banks with sufficient loss data for statistical estimations. To protect anonymity

we shall refer to the two banks as Bank A and Bank B. Bank A had incurred 141 losses and Bank B

had incurred 92 losses during the sample period. Both banks were operating continually throughout

the sample period. The results of the simulations are presented in the following sections.

4.5.1 Simulating Losses for the US Banking Industry
We simulated 1,000,000 random losses for the US banking industry by using the observed values of

the explanatory variables in the fitted model repeatedly. Then we tested the goodness-of-fit by

comparing the quantiles of the simulated losses with the observed losses using a QQ plot.

Furthermore, we constructed distribution free 95% confidence intervals for the quantiles of the

Figure 5. Normalized Quantile Residual Plot of the Model G.
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Table 9. The Robustness Analysis.

Model G.1 Model G.2 Model G.3 Model G.4 Model G.5

Exp. Variable m s m s m s m s m s

Intercept 2.647 4.783 2.786 4.133 2.824 4.209 2.021 4.157 2.029 4.192

(0.872) (0.746) (0.935) (0.949) (0.867) (0.816) (0.924) (0.892) (0.941) (0.860)

Log-assets 20.179 20.33 20.188 20.288 20.191 20.293 20.151 20.288 20.147 20.29

(0.064) (0.057) (0.069) (0.070) (0.065) (0.062) (0.068) (0.068) (0.069) (0.065)

Equity Ratio 4.042 – – – – – 4.260 – 4.075 –

(1.100) (1.052) (1.048)

Corporate Finance 20.362

(0.114)

– – – – – – – 20.344

(0.115)

–

Trading & Sales – – – – – – – – – –

Retail Banking – – – – – – – – – –

Comm. Banking 20.439 20.281 – – – 20.058 – 20.037 – 20.017

(0.124) (0.150) (0.102) (0.103) (0.105)

PS, AS, AM 20.270 – – – – – – – – –

(0.106)

Internal fraud – – – – – – – – – –

External fraud – – – – – – – – – –

CLBP 20.146 – – – – – – – – –

(0.053)

EDPM – – – – – – – – – –
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Model G.6 Model G.7 Model G.8

Exp. Variable m s m s m s

Intercept 2.389 4.496 2.548 4.675 3.216 5.107

(0.832) (0.756) (0.953) (0.892) (0.998) (1.008)

Log-assets 20.169 20.31 20.178 20.322 20.190 20.324

(0.061) (0.058) (0.069) (0.068) (0.070) (0.071)

Equity Ratio 4.043 – 4.208 – 1.506 22.681

(1.143) (1.145) (2.673) (2.913)

Corporate Finance 20.364 – 20.402 – 20.595 20.192

(0.114) (0.118) (0.158) (0.149)

Trading & Sales – – – – 20.125 20.005

(0.173) (0.189)

Retail Banking – – – – 20.138 20.026

(0.132) (0.136)

Comm. Banking 20.368 20.269 20.421 20.284 20.633 20.374

(0.138) (0.155) (0.126) (0.150) (0.152) (0.175)

PS, AS, AM – – 20.295 – 20.577 20.237

(0.105) (0.170) (0.163)

Internal fraud – – – – 20.273 20.294

(0.157) (0.151)

External fraud – – – – 0.046 20.054

(0.185) (0.181)

CLBP – – – – 20.319 20.212

(0.143) (0.140)

EDPM – – – – 20.071 20.033

(0.252) (0.265)

Table 9. Continued
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observed losses using the methodology outlined in Arnold et al. (1992). The resultant QQ plot and

the table of some of the selected quantiles with their confidence intervals are given in figure 6 and

table 10 respectively.

We find that the QQ plot follows a fairly straight line with a unit gradient confirming our model.

The model fits particularly well in the lower percentiles of the loss distribution. However, the QQ

plot indicates a possible deterioration in the fit towards the tail of the distribution. The reported

values in table 10 shows that simulated loss is 9.7% higher than the observed loss at the

95th percentile. At the 99.9th percentile the difference between the simulated and the observed

percentiles becomes 34.3%. However, a closer look at the table reveals that the percentiles of the

simulated losses lie well within the 95% confidence intervals of the percentiles of the observed losses.

Hence, there is not enough evidence to suggest that the model is overestimating the losses. One could

observe from table 10 that the confidence intervals of the higher percentiles of the observed losses are

fairly wide due to lack of data. This increases the uncertainty of the goodness-of-fit in the tail of the

Figure 6. QQ Plot of Simulated Losses vs. Observed Losses for US Banking Industry. Note:
quantiles for the observed losses have been computed using the weights estimated in subsection 4.2.

Table 10. Summary Statistics of the Simulation for the US Banking Industry.

Observed Losses ($M) Simulated Losses ($M)

Quantile [95 % CI] [95 % CI]

25% 1.4 [1.3, 1.6] 1.5 [1.5, 1.5]

50% 2.1 [1.8, 2.3] 2.3 [2.3, 2.3]

75% 3.9 [3.2, 4.7] 4.4 [4.4, 4.4]

90% 9.2 [7.9, 11] 10.2 [10.1, 10.2]

95% 17.6 [14.7, 20.2] 19.3 [19.2, 19.5]

97% 26.9 [23.1, 32.4] 31.0 [30.7, 31.4]

99% 72.9 [57.4, 90.7] 88.5 [86.9, 90.3]

99.9% 711.19 [516.7, 1905.9] 955.0 [891.5, 1027.6]

Note 1: percentiles for the observed losses have been computed using the weights estimated in subsection 4.2.
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distribution. In such situations one would need to take a conservative approach to assess the

goodness-of-fit of the model. Under the given circumstances we believe that the seeming

overestimation of the far tail of the distribution by the fitted model will reduce the uncertainty

of underestimation of the tail. Thus, this apparent overestimation in the tail can be seen as a

strength of the model rather than a weakness. Hence, we conclude that the model provides a

reasonable, yet conservative fit, to the data.

4.5.2 Simulating Losses for Two Individual Banks in the US
Our purpose is to build a model that can simulate losses to a bank when there is not enough internal

data of their own to assess the tail of the loss distribution accurately. Thus, to verify whether our

model can be used for this purpose we re-estimated the parameters of model G by removing the

losses incurred in Bank A from the dataset and then simulated 1,000,000 random losses using the

new parameter estimates. Similarly, 1,000,000 random losses were simulated for Bank B by

re-estimating the parameters of model G by removing the losses incurred in Bank Bfrom the dataset.

The QQ plots of the observed losses against the simulated losses are given in figure 7 and figure 8. A

summary table of the percentiles and their confidence intervals is given in table 11. The re-estimated

parameter values for model G is given in table 12 and table 13.

The QQ plots for both banks followed a straight line with a unit gradient confirming our model.

table 11 shows that the percentiles of the simulated losses are well within the 95% confidence

intervals of the observed percentiles. Hence, the results confirm that the model can be used by

individual banks to complement their internal data.

4.6 Interpretation of the Fitted Model

In this section we will analyze how various parameters in the fitted model affect the severity of the

loss distribution. In particular, we are interested in how parameters affect the tail index of

distribution, 99th percentile loss, and the average operational loss.

4.6.1 The Effect of Size on Operational Loss Severity
To analyze how the size of a bank may affect its operational loss distribution we consider a series

of hypothetical banks with various sizes ranging from $200 bill in assets to $2000 bill in assets.

The analysis is carried out by keeping the equity ratio of the hypothetical banks at 6.7%, which is the

median equity ratio for US banks in our sample. The computed mean, 99th percentile loss, and the tail

index for each bank is given in table 14, table 15, and table 17 respectively. Table 16 provides the

percentage change of the 99th percentile of the loss distribution as the size of a bank doubles.

The results in table 14 show that mean loss severity for most BL/ET categories increases with the

size of the bank. The baseline combination ‘OtherB-OtherE’ is the main exception11. It is somewhat

puzzling why we may observe a decreasing relationship between severity of loss and the size of the

bank in this particular BL/ET category. However, a previous study by Cope & Labbi (2008) had

also reported similar findings. Given that 57% of the number of losses in this category were due to

fraud (which accounted for 69.6% of the total loss in this category), our results are consistent with

the findings reported by Cope & Labbi (2008) where they have reported a decreasing relationship

11 The average loss in the ‘OtherB-CPBP’ category seems to slightly reduce at first when the size of the bank

increases. However, the decrease does not seem to be significant and for very large banks average loss eventually

starts to increase.
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between fraud related loss severities and the size of a bank. One possible explanation for this

phenomenon is that as banks become larger they will have access to more sophisticated IT systems,

internal controls, and audit methods which can reduce fraud, leading to a decreasing relationship

between average loss severity between fraud and the size of a bank.

However, although the mean loss may decrease for some BL/ET categories, we find loss at the

99th percentile increases for all BL/ET combinations as the size of a bank increases (see table 15). The

results in table 16 show that for certain BL/ET combinations 99th percentile loss can increase by up to

25% to 35% when the size of a bank doubles. This is an important result as it proves (contrary to previous

studies) that the size of a bank is in fact an important determinant of the severity of operational losses.

In particular, the fitted model suggests that large banks are exposed to more tail risk than small banks.

Figure 7. QQ plot of Simulated Losses vs. Observed Losses for Bank A. Note: quantiles for the
observed losses have been computed using the weights estimated in subsection 4.2.

Figure 8. QQ plot of Simulated Losses vs. Observed Losses for Bank B. Note: quantiles for the
observed losses have been computed using the weights estimated in subsection 4.2.
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Another way of quantifying the size effect is to compute the tail index implied by the fitted model

for banks of various sizes. The results presented in table 17 show that the tail index decreases for

all BL/ET combinations as the firm size increases. For almost all BL/ET combinations the tail

index is less than 2. That is, the variance of the loss distribution is infinite (which is usually

considered as a characteristic of a heavy-tailed distribution). In addition, we find that for very large

banks the tail index becomes less than 1 for certain BL/ET categories. That is, the losses follow

an extremely heavy-tailed distribution and hence the mean is infinite. Losses which follow an

Table 11. Summary Statistics of the Simulation for Bank A and B.

Bank A Bank B

Observed ($M) Simulated ($M) Observed ($M) Simulated ($M)

Percentile [95 % CI] [95 % CI] [95 % CI] [95 % CI]

25th 1.3 1.4 1.3 1.3

[1.1, 1.6] [1.4, 1.4] [1.1, 1.5] [1.3, 1.3]

50th 2.0 2.1 1.9 1.9

[1.6, 2.4] [2.1, 2.1] [1.4, 2.4] [1.9, 1.9]

75th 3.3 3.7 2.7 3.5

[2.5, 5.3] [3.7, 3.7] [2.1, 5.9] [3.5, 3.5]

90th 8.7 7.9 6.7 8.0

[6.1, 13.2] [7.8, 7.9] [3.7, 15] [7.9, 8]

95th 14.9 13.9 14.5 15.1

[11.8, 18.9] [13.8, 13.9] [6.6, 25.2] [15, 15.2]

97th 20.1 21.0 24.0 24.4

[15, 27.1] [20.8, 21.2] [10.5, 37.9] [24.1, 24.6]

99th 51.9 52.2 56.3 70.3

[26.2, 118.1] [51.3, 53.1] [37.9, 227.4] [69, 71.7]

Note: percentiles for the observed losses have been computed using the weights estimated in subsection 4.2.

Table 12. Re-estimated Parameter Values of Model G after Removing Bank A.

m s

Explanatory Variable Estimate St. Err. Estimate St. Err.

Intercept 2.012 (0.901) 4.234 (0.798)

Log-assets 20.135 (0.118) 20.290 (0.061)

Equity Ratio 4.267 (0.065) – –

Corporate Finance 20.330 (1.194) – –

Trading and Sales – – – –

Retail Banking – – – –

Commercial Banking 20.369 (0.113) 20.197 (0.149)

PS, AS, AM 20.268 (0.052) – –

Internal fraud – – – –

External fraud – – – –

Clients, Products and Business Practices 20.099 (0.135) – –

Execution, Delivery and Process Management – – – –

Note: the model is fitted using retail brokerage as the baseline line category for business lines and ‘EPWS,

DPA, BDSF’ as the baseline category for event types.
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extremely heavy-tailed distribution can have serious implications on capital calculations as well as

risk management for banks. Nešlehová et al. (2006) provide a detailed discussion on these issues

and the challenges of modelling operational risk with extremely heavy tailed behaviour. The

following discussion draws on their paper.

Nešlehová et al. (2006) point out that for loss distributions which follow a Pareto-type tail

behaviour (i.e., as in eq. (7)), the Value-at-Risk (VaR) grows exponentially as a decrease. Therefore,

when a tends to zero the capital charge computed by VaR could become ridiculously high. The fitted

model suggests that use of VaRg can become problematic for large banks since losses in some BL/ET

combinations may be extremely heavy-tailed. A one possible solution for this problem is to

Table 13. Re-estimated Parameter Values of Model G after Removing Bank B.

m s

Explanatory Variable Estimate St. Err. Estimate St. Err.

Intercept 3.194 (0.893) 5.214 (0.781)

Log-assets 20.223 (0.117) 20.365 (0.06)

Equity Ratio 3.810 (0.065) – –

Corporate Finance 20.326 (1.135) – –

Trading and Sales – – – –

Retail Banking – – – –

Commercial Banking 20.410 (0.112) 20.294 (0.157)

PS, AS, AM 20.247 (0.053) – –

Internal fraud – – – –

External fraud – – – –

Clients, Products and Business Practices 20.139 (0.133) – –

Execution, Delivery and Process Management – – – –

Note: the model is fitted using retail brokerage as the baseline line category for business lines and ‘EPWS,

DPA, BDSF’ as the baseline category for event types.

Table 14. Estimated Average Loss ($ mill).

Total Assets ($ bill)

Business Line Event Type 200 300 400 500 600 700 2000

CF CPBP 33.1 43.7 65.1 122.8 513.0 NA NA

CF OtherE 12.6 13.1 14.0 15.1 16.6 18.5 NA

CB CPBP 24.7 42.1 146.7 NA NA NA NA

CB OtherE 9.0 9.8 10.9 12.5 14.8 18.6 NA

PS, AS, AM CPBP 16.2 17.6 19.7 22.6 26.7 33.0 NA

PS, AS, AM OtherE 8.3 8.2 8.3 8.5 8.8 9.0 23.1

OtherB CPBP 5.7 5.5 5.4 5.4 5.4 5.4 6.5

OtherB OtherE 4.0 3.9 3.8 3.7 3.7 3.7 3.7

Note 1 : CF – ‘Corporate finance’, CB – ‘Commercial banking’, PS, AS, AM – grouped business lines of

‘Payment and Settlement’, ‘Agency Services’, and ‘Asset Management’, OtherB – all other business lines,

CPBP – ‘Clients products and business practices’, OtherE – all other event types.

Note 2 : All values have been computed by assuming an equity ratio of 6.7%.

Note 3 : NA refers to situations with infinite means.
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implement a minimum probability threshold as suggested by Evans (2001). The author states that

‘‘a reasonable value judgment may be that events which have less than a 1 in 1,000,000 chance of

happening should simply be ignored’’. However, for the fitted model we find a higher probability

limit of 1 in 10,000 would be required to obtain capital estimates consistent with the industry

standards for very large banks. We shall revisit this issue in detail later in section 5 when we

compute capital estimates.

Here, one might be tempted to argue that infinite mean models should not be used to model

operational losses since the total capital existing is finite. Nešlehová et al. (2006) point out that one

shouldn’t shy away from infinite mean models as financial literature is full of power law models

which have some infinite moments, and yet they are used frequently. However, authors do warn that

a transition from infinite second moment to infinite first moment requires careful handling.

Table 15. Estimated Loss at the 99th Percentile ($ mill).

Total Assets ($ bill)

Business Line Event Type 200 300 400 500 600 700 2000

CF CPBP 2139 2354 2547 2724 2890 3047 4694

CF OtherE 747 811 868 920 968 1013 1471

CB CPBP 1396 1578 1739 1886 2023 2153 3519

CB OtherE 517 574 624 670 712 751 1147

PS, AS, AM CPBP 1030 1123 1206 1281 1352 1418 2096

PS, AS, AM OtherE 397 428 455 480 503 524 734

OtherB CPBP 200 214 226 236 246 255 344

OtherB OtherE 97 102 107 112 116 119 154

Note 1 : CF – ‘Corporate finance’, CB – ‘Commercial banking’, PS, AS, AM – grouped business lines of

‘Payment and Settlement’, ‘Agency Services’, and ‘Asset Management’, OtherB – all other business lines,

CPBP – ‘Clients products and business practices’, OtherE – all other event types.

Note 2 : All values have been computed by assuming an equity ratio of 6.7%.

Table 16. The increase in the 99th percentile loss when the size of the bank doubles.

Increase in Total Assets

Business Line Event Type $200 bill to $400 bill $400 bill to $800 bill $800 bill to $1600 bill

CF CPBP 19.1% 25.5% 32.5%

CF OtherE 16.2% 21.7% 27.5%

CB CPBP 24.5% 30.9% 37.8%

CB OtherE 20.8% 26.2% 31.9%

PS, AS, AM CPBP 17.1% 22.8% 29.0%

PS, AS, AM OtherE 14.6% 19.4% 24.6%

OtherB CPBP 12.8% 17.0% 21.5%

OtherB OtherE 11.0% 14.5% 18.3%

Note 1 : CF – ‘Corporate finance’, CB – ‘Commercial banking’, PS, AS, AM – grouped business lines of

‘Payment and Settlement’, ‘Agency Services’, and ‘Asset Management’, OtherB – all other business lines,

CPBP – ‘Clients products and business practices’, OtherE – all other event types.

Note 2 : All values have been computed by assuming an equity ratio of 6.7%.
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The second issue of infinite mean models is related to diversification of risk. Often in practice the

operational risk capital charge is determined by computing VaRg for each business line and adding

them up as

VaR99:9%ðLÞ ¼
XK

k¼1

VaR99:9%ðLkÞ

where, L is the total loss random variable of the bank, and Lk are the total loss random variables for

business lines k 5 1, y, K. Then, if the bank can demonstrate a reduction in risk due to correlation,

a capital reduction would be allowed from the latter. As per our findings this particular method

of capital calculation creates several problems. Firstly, we find operational losses are heavy-tailed

(i.e. a, 2) for most BL/ET combinations as reported in table 17. In this context a diversification

reduction based on correlation makes no sense since correlation coefficients are not defined

when a, 2. Secondly, for large banks we find a can become less than 1 for certain BL/ET

combinations. Under these conditions (i.e. a, 1) VaRg is no longer a coherent risk measure12 since

the subadditivity property

VaRgðLÞ ¼ VaRg

XK

k¼1

Lk

 !
�
XK

k¼1

VaRgðLkÞ

will no longer hold. Rootzén & Klüppelberg (1999) and Nešlehová et al. (2006) provide several

examples of situations in which subadditivity property is violated by VaR under extremely heavy-

tailed distributions. In particular, Nešlehová et al. (2006) show that for independent business lines

having Pareto-type risks (i.e. a tail behaviour of the form eq. (7)) with 0 , a, 1

VaRg

XK

k¼1

Lk

 !
4
XK

k¼1

VaRgðLkÞ

for sufficiently large g. In other words, when losses are distributed as in an infinite mean model

diversification no longer exists in the traditional sense under the VaRg measure. The authors state

Table 17. Estimated Tail Indices.

Total Assets ($ bill)

Business Line Event Type 200 300 400 500 600 700 2000

CF CPBP 1.240 1.152 1.093 1.049 1.015 0.987 0.815

CF OtherE 1.437 1.335 1.267 1.216 1.177 1.144 0.945

CB CPBP 1.158 1.076 1.021 0.980 0.948 0.922 0.761

CB OtherE 1.342 1.247 1.183 1.136 1.099 1.068 0.882

PS, AS, AM CPBP 1.371 1.273 1.208 1.160 1.122 1.091 0.901

PS, AS, AM OtherE 1.589 1.476 1.400 1.344 1.301 1.264 1.044

OtherB CPBP 1.795 1.667 1.582 1.519 1.469 1.428 1.180

OtherB OtherE 2.080 1.932 1.833 1.760 1.703 1.656 1.367

Note 1 : CF – ‘Corporate finance’, CB – ‘Commercial banking’, PS, AS, AM – grouped business lines of

‘Payment and Settlement’, ‘Agency Services’, and ‘Asset Management’, OtherB – all other business lines,

CPBP – ‘Clients products and business practices’, OtherE – all other event types.

Note 2 : All values have been computed by assuming an equity ratio of 6.7%.

12 A risk measure is said to be coherent if it satisfies the properties of monotonicity, translational invariance,

homogeneity, and subadditivity (Artzner et al., 1999).
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that ‘‘yin the presence of extremely heavy-tailed loss distributions, standard economic thinking

may have to be reconsidered’’ and we ‘‘yhave to accept that a VAR-based risk-capital calculation

for operational risk is not yet fully understood’’. The tail index estimates given in table 17 indicates

that the banks with assets greater than $500 bill should take extra concern about these issues.

Usually subadditivity is considered an important property for a risk measure as it promotes

diversification. However, as has been pointed out by Rootzén & Klüppelberg (1999) subadditivity

does not necessarily need to hold for catastrophic risk. By using a simple example authors show that

combining two catastrophic risks will increase the probability of ruin rather than decrease it. The

authors state that ‘‘big is not always beautiful’’ and ‘‘catastrophic financial risks don’t become

smaller if collected in one big company’’. Hence, non-subadditivity of VaRg when a, 1 should not

be considered as a limitation of the risk measure. However, risk managers should keep in mind that

when operational losses follow extremely heavy-tailed distributions, simply adding up the capital

estimates for each business lines would not provide a conservative estimate as it would provide in

most other types of risk. This issue would be particularly important to banks with assets greater

than $500 bill in which tail index of operational losses can become less than 1 as seen from table 17.

The final point we would like to raise is the one-loss-causes-ruin problem of operational risk.

The one-loss-causes-ruin problem refers to the phenomena that a significant portion of total

losses are caused by few individual losses. This phenomena can be illustrated by the use of a Lorenz

curve. The concept of a Lorenz curve is used in economics to analyze inequality of income

distribution (and wealth) in a population. A related concept to the Lorenz curve is Pareto’s

famous 80:20 law which states ‘‘80% of the all effects results from 20% of the causes’’. The

80:20 law has been observed in many economic and natural processes and is referred to as law

of the vital few. (see Ultsch, 2002, to find many situations in which Pareto’s 80:20-law is reported).

The 80:20 law applies when outcomes of interest follow an exact Pareto distribution with

aE1.16096. If operational losses follow the Pareto law, then 80% of the total loss would be

caused by 20% of the individual losses. Hence, the threat to a bank’s solvency would be mainly

driven by those 20% large individual losses. To see whether such a pattern exists in operational

losses, we computed the implied Lorenz curves by the fitted model for each BL/ET combination

for two hypothetical banks with $300 bill assets and $600 bill assets respectively, using eq. (12).

The plots of the resulting curves are given in figure 9 and figure 10. By comparing the two plots

Figure 9. The Lorenz curves of the loss distributions at a bank with 300 bill assets. Note: an equity
ratio 6.7% has been assumed to compute the Lorenz curve.
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one could observe that the percentage of total loss caused by few extreme losses is high at

the larger bank. To illustrate this further, we have reported values of the Lorenz curve for

selected percentages in table 18 and table 19. The value given in the first row of the third column

of table 18 indicates that for a bank with $300 bill assets 80% of the total loss due to CF-CLBT is

caused by 7% of the individual CF-CLBT losses. In contrast, the third row of the first column in

table 19 indicates that for a bank with $600 bill assets, 80% of the total loss due to CF-CLBT

category is caused by only 0.5% of the individual CF-CLBT losses. Similar results hold for

CB-CLBT combination as well. Moreover, the first row of the fifth column in table 19 indicates

that for a bank with $600 bill assets, 99% of the total loss due to CF-CLBT category is caused

by only 1.83% of the individual CF-CLBT losses. This is an important result which should

serve as a warning to large banks about the heavy-tailedness of the risk in these particular

BL/ETs. Our results suggest that the one-loss-causes-ruin problem is relevant for small as well as

for large banks, but it is much more severe for large banks. The complexity of banking activity

at large banks can probably be the reason for this. Furthermore, results suggest that the problem

seems to be rooted in the CPBP event category. Hence, more care should be given when modelling

this type of risk.

Figure 10. The Lorenz curves of the loss distributions at a bank with 600 bill assets. Note: an equity
ratio 6.7% has been assumed to compute the Lorenz curve.

Table 18. Cumulative % of individual losses as the % of total losses.

% of Total Loss

Business Line Event Type 80% 90% 99%

CF CPBP 7.00% 10.79% 24.16%

CF OtherE 18.93% 27.45% 51.89%

CB CPBP 5.26% 7.86% 16.80%

CB OtherE 19.31% 27.30% 49.73%

PS, AS, AM CPBP 15.04% 22.22% 44.09%

PS, AS, AM OtherE 26.77% 37.55% 64.86%

OtherB CPBP 35.18% 47.73% 75.62%

OtherB OtherE 43.70% 57.27% 83.74%

Note: an equity ratio of 6.7% has been assumed to compute the above values.
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4.6.2 The Effect of Equity Ratio on Operational Loss Severity
In section 4.1.4 we hypothesized that the equity ratio can be used as a proxy to the risk culture

within a bank. At this point, we shall test the validity of that hypothesis by analyzing how equity

ratio affects the operational loss severity as suggested by the fitted model.

Table 20 and table 21 provides the fitted mean and the 99.9th percentile loss for banks with $500

bill assets and an equity ratio of 5%, 6.7%, and 10%. Both tables indicate that the severity of

operational losses are high for the bank with a low equity ratio. In particular, we find severity at the

99.9th percentilecould increase by around 40% to 70% (for certain BL/ET up to 75%, e.g., CF-CPBP)

when the equity ratio drops from the median ratio of 6.7% to 5%. Similarly, when the equity ratio

increases from 6.7% to 10% losses at the 99.9th percentile drop by around 40% to 60%.

The above results suggest that our initial hypothesis that the equity ratio may serve as a proxy for

the risk culture of a bank is valid. However, a word of caution is required here as the hypothesis may

not hold universally for all banks, since the equity ratio is not a direct measure of the risk culture of

a firm. Usually a low equity ratio does not necessarily mean a firm is too risky. It could well mean

that the management is efficient in investing the equity capital. Similarly a too high equity ratio

could be a sign of management wasting resources.

We conclude this section by providing a brief summary of the main inferences we gathered from the

fitted model and the issues we have raised so far. As discussed earlier, the estimated parameters of

the model suggest that the size of a bank is an important indicator of its operational loss severities.

In particular, model indicate there is a considerable variation in the tail index of the loss distribution

across banks of different sizes. This is an important result which may have a significant impact in

terms of capital calculation as well as risk management. As we have pointed out, the tail index for

certain BL/ET combinations can become less than 1 for very large banks. Although capital can be

computed using the VaR method under these conditions, the computed capital can be too high.

A possible solution for this is to implement a minimum probability threshold. The second issue one

needs to be careful of is that VaR is no longer subadditive when a, 1. Hence, one should not

compute the total required capital by adding up the VaR estimates of each business line. We find

these particular issues are more relevant to large banks than to small banks as the tail index for

small banks tends to be in the region of a. 2. Furthermore, the estimated parameters suggest that

Table 19. Cumulative % of individual losses as the % of total losses.

% of Total Loss

Business Line Event Type 80% 90% 99%

CF CPBP 0.50% 0.77% 1.83%

CF OtherE 12.85% 18.70% 36.80%

CB CPBP NA NA NA

CB OtherE 11.23% 15.90% 30.07%

PS, AS, AM CPBP 8.43% 12.48% 25.94%

PS, AS, AM OtherE 21.93% 30.84% 55.01%

OtherB CPBP 31.65% 43.00% 69.76%

OtherB OtherE 41.25% 54.17% 80.52%

Note: an equity ratio of 6.7% has been assumed to compute the above values.
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both small as well as large banks are subject to the one-loss-causes-ruin problem, but the exposure is

severe for large banks. Particularly, this raises the importance of scenario analysis as well as having

a sound crisis management system in place to handle catastrophic events.

5 Capital Calculation

This section provides a demonstration of the severity model at work by computing capital estimates

for several hypothetical banks as well as for two real banks by making simple assumptions about the

frequency distribution. The results show that the capital estimates are reasonable and consistent

with the industry standards.

5.1 Capital Estimates for Hypothetical Banks

In order to compute capital estimates one would need a frequency distribution for operational

losses. Here, we make the simple assumption that the loss frequency in each BL/ET category is

distributed as a Poisson random variables with a density function

PrðNj ¼ njÞ¼
lnj

j e�lj

nj!

Table 20. Estimated Average Loss ($ mill).

Equity Ratio

Business Line Event Type 5% 6.7% 10%

CF CPBP NA 122.8 17.1

CF OtherE 28.0 15.1 7.4

CB CPBP NA NA 14.5

CB OtherE 29.5 12.5 5.8

PS, AS, AM CPBP 55.9 22.6 9.2

PS, AS, AM OtherE 12.2 8.5 5.3

OtherB CPBP 6.8 5.4 3.9

OtherB OtherE 4.4 3.7 3.0

Table 21. Estimated Loss at the 99th Percentile ($ mill).

Equity Ratio

Business Line Event Type 5% 6.7% 10%

CF CPBP 4742 2724 1028

CF OtherE 1484 920 397

CB CPBP 3199 1886 745

CB OtherE 1056 670 301

PS, AS, AM CPBP 2116 1281 531

PS, AS, AM OtherE 740 480 224

OtherB CPBP 347 236 121

OtherB OtherE 155 112 62
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where nj is the number of losses above $ 1million and lj is the Poisson parameter of the jth BL/ET

category for j 5 1, y, 30. The maximum likelihood of parameter of lj is the sample mean of the loss

frequency in BL/ET category j. This makes the Poisson assumption particularly attractive in the current

context, since estimation becomes very easy as data on average frequency of losses is publicly available.

However, a limitation of the Poisson distribution is that its variance is equal to its mean. Hence, other

distributions such as Negative Binomial would be more suitable if one needs to allow for more

variation in the frequency model. However, it is a well known fact that for compound distributions of

the form S ¼
PN

i¼1 Xi, where, Xi are subexponential severities with distribution function F and the

frequency distribution given by Pr(N 5 n) 5 p(n), if there exist a constant v . 0 such thatX/
n¼0

ð1þ oÞnpðnÞo1 ð13Þ

then the aggregate loss distribution G is subexponential with tail behaviour given by

�GðsÞ ¼ EðNÞ �FðsÞ ð14Þ

In other words, for heavy tailed losses, the tail of the compound distribution is simply the expected

number losses times the tail of the severity given that frequency distribution satisfies the condition

given in eq. (13)13. This means capital requirement for heavy-tailed risk such as operational risk is

mainly driven by the expected number of losses, and therefore over-dispersion is not a major concern.

For this reason as well as for its simplicity the Poisson distribution remains a common distributional

assumption for modelling operational loss frequencies (see for example De Fontnouvelle et al., 2006;

De Fontnouvelle et al., 2007; Medova & Berg-Yuen, 2009). Thus, we believe the assumption is

reasonable for the purpose of demonstrating the severity model.

In practice, banks are required to model the dependence structure when computing capital

estimates. It is typical to assume dependence between frequencies while severities are assumed

independent. Due to data limitations we are unable to model the dependence between frequencies of

each business line-event type combination. Hence, we assume that the frequency distribution of

each BL/ET combination is independent. Although this is a strong assumption, Basel (2009) reports

that modelling of dependence at a typical bank results in a modest 8.3% increase in the economic

capital relative to the assumption of full independence. Therefore, we argue that the independence

assumption will not affect the results significantly.

Given our assumption that the frequency distribution of each BL/ET combination is independent,

the distribution of total frequency N ¼
P30

j¼1 nj has a Poisson distribution with a parameter

L ¼
P30

j¼1 lj. This is a direct consequence of the property that the sum of independent Poisson

random variables also has a Poisson distribution. To calibrate the parameter L, we used the results

published by the Basel Committee on the 2008 Loss Data Collection Exercise (LDCE) (Basel, 2009).

Table ILD9 in that paper reports that a typical bank experienced 0.013 losses per year of h1 mill (US

$1.58 mill) or more for each h1 bill (US $1.58 bill) in assets. Hence, it is reasonable to approximatebL ¼ 0:00823 for each US $1 bill in assets. Then, the parameter values of lj can be computed by

blj ¼

P
w
=
j

n
bL

where,
P

w
=
j is the sum of normalized weights given by eq. (6) for the jth BL/ET combination and n

is the total number of observations in the data sample. Table 22 provides the estimated values of blj

for a bank with $100 bill assets.

13 In fact it can be shown that the result given in (14) holds for both Poisson distribution as well as for

Negative Binomial distribution (see examples 1.3.10 and 1.3.11 of Embrechts et al., 1997).
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We computed the operational risk capital requirement for 21 hypothetical banks of various sizes

and equity ratios by using the above frequency model and the severity model G of section 4.3. The

capital estimates for the 21 banks are given in table 23. The results presented in the second row of

table 23 have been computed using the median equity ratio of 6.7%. Hence, the results given in the

second row can be considered as the required operational risk capital to cover losses above $1 mill

for a ‘‘typical’’ bank of a given size, as suggested by the fitted model. The 2008 LDCE of the Basel

Committee reports that the median ratio between the reported regulatory operational risk capital

and the total assets for a ‘‘typical’’ North American bank is 0.38% (Basel, 2009). The last row of

table 23 presents benchmark capital estimates based on this ratio. One could use these benchmark

estimates to compare the results presented in the second row of the table to test the reasonability of

the capital estimates provided by the fitted model. However, it should be noted that the benchmark

capital estimate is the required capital to cover the total operational risk of a bank, as implied by the

LDCE report, whereas the capital estimates of the first three rows in the table provide the required

amount of capital to cover losses exceeding $1 mill.

One can observe from table 24 that the capital estimates given by the fitted model for a ‘‘typical’’

bank with assets ranging from $200 bill to $700 bill is around 3% to 20% less than the industry

benchmark. This is expected, given that our estimates are the amount of capital needed to cover

Table 22. Estimates of l̂j for a bank with $100 bill assets.

Internal

fraud

External

fraud

Clients, Products

and Business

Practices

Execution, Delivery

and Process

Management

EPWS, DPA,

BDSF

Corporate Finance 5.1E-03 1.9E-03 4.4E-02 9.5E-03 5.9E-03

Trading and Sales 9.2E-03 5.7E-03 1.0E-01 2.0E-02 1.5E-02

Retail Banking 4.9E-02 6.3E-02 3.6E-02 1.0E-02 1.6E-02

Commercial

Banking

1.9E-02 5.4E-02 2.8E-02 4.8E-03 9.7E-03

Retail Brokerage 4.6E-02 6.1E-03 1.2E-01 1.3E-02 5.3E-02

PS, AS, AM 1.3E-02 6.9E-03 4.6E-02 7.4E-03 2.4E-03

Table 23. Capital Estimates (in $ mill) for Hypothetical Banks.

Total Assets ($ bill)

Assumption 200 300 400 500 600 700 2000

ER 5 5% 953 1,479 2,159 2,783 3,503 4,464 27,714

ER 5 6.7% 611 925 1,312 1,663 2,061 2,588 14,250

ER 5 10% 280 405 550 674 814 996 4,424

LDCE 760 1,140 1,520 1,900 2,280 2,660 7,600

Note: The first three rows of the table gives the capital estimates provided by the severity model G and the

frequency model presented in section 5 using 10mill years of simulations. The estimated values are the

amount of capital needed to cover losses exceeding $1mill. Additional capital may be required to cover losses

less than $1mill if the bank has not priced them into their fees and charges. The last row provides the

median (total) operational risk capital held by a typical bank in North America as implied by the ratios given

in table C1 of Basel’s LDCE report (2009).

Amandha Ganegoda and John Evans

94

https://doi.org/10.1017/S1748499512000267 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000267


losses above $1 mill, whereas the benchmark capital estimate is the amount of capital needed to

cover the total operational risk. Furthermore, our simplified assumption that the frequencies of each

BL/ET are independent, would reduce our capital estimates by around 8.3% as explained earlier.

Given these facts, we conclude that the capital estimates provided by our model for the first six

banks (i.e. banks with assets of $200 bill to $700 bill) are reasonable as well as consistent with

industry standards. However, the estimated capital for a bank with $2000 bill assets by our model is

$ 14.25 bill, which is 1.87 times larger than the benchmark estimate. Although the estimate is

significantly higher than the benchmark, it is in no means an unrealistic estimate. The ratios given in

table C1 of LDCE report (Basel, 2009) suggest that the 75th percentile of the regulatory capital

reported by a bank with $2000 bill assets was in the range of $11.6 bill to $16 bill.

The reason behind our capital estimates for large banks being significantly high are the infinite mean

models we obtained earlier for certain BL/ET categories in those banks. As discussed in subsection 4.6.1

a solution for high capital estimates yield by infinite mean models is to use a probability limit. We

tested several probability limits and found a limit of 1-in-10,000 years would yield capital estimates

which are consistent with the industry benchmark. The capital estimates after implementing the

probability limit is given in table 24. Note that the probability limit is only implemented when

simulating losses from infinite mean models. Hence, capital estimates do not change for small banks

in which severity models for all BL/ET categories had tail indices greater than one.

5.2 Backtesting for Two US Banks

In practice regulators require banks to backtest their operational risk models to test whether the

estimated capital from the model is sufficient to cover past loss experience. To see how our model

performs against such a test we carried out backtesting for Banks A and B of subsection 4.5. The

backtesting was carried out using the frequency model described in subsection 5.1 and the severity

model given in table 12 and table 13.

The plots of the logarithm of estimated capital and the total log-losses for bank A and B are given in

figure 11 and figure 12. The Y-axis of the plots has not been labelled to protect anonymity of the

banks. Both plots indicate that the estimated capital is sufficient to cover losses above $1 mill.

Table 24. Capital Estimates (in $ mill) for Hypothetical Banks after implementing a 1-in-10,000 year prob-

ability limit.

Total Assets ($ bill)

Assumption 200 300 400 500 600 700 2000

ER 5 5% 953 1,479 2,140 2,678 3,380 4,024 17,462

ER 5 6.7% 611 925 1,312 1,641 2,023 2,477 9,479

ER 5 10% 280 405 550 674 814 996 3,925

LDCE 760 1,140 1,520 1,900 2,280 2,660 7,600

Note: The first three rows of the table gives the capital estimates provided by the severity model G and the

frequency model presented in section 5 using 10mill years of simulations. The estimated values are the

amount of capital needed to cover losses exceeding $1mill. Additional capital may be required to cover losses

less than $1mill if the bank has not priced them into their fees and charges. The last row provides the

median (total) operational risk capital held by a typical bank in North America as implied by the ratios given

in table C1 of Basel’s LDCE report (2009).
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Furthermore, we find that under the null hypothesis of model being ‘correct’, non-rejection region

for number of exceptions (X) based on the Kupiec’s POF test (Kupiec, 1995) is 0rXr2 for the

95% confidence level and 0rXr1 for the 99% confidence level. The results of the backtest are

well within the non-rejection regions for the both confidence levels. Hence, we conclude that the

backtesting results further validate our severity model.

6 Conclusion and Discussion

One of the major challenges of quantifying operational risk for banks is addressing the issue of lack

of data. Most of the large operational losses are infrequent and therefore it is impossible to model

these losses by solely relying on bank level data. As a solution to this Basel II requires banks to use

Figure 11. Backtesting Results for Bank A.

Figure 12. Backtesting Results for Bank B.
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industry wide external data to complement their internal data. However, combining internal data

with external data raises further issues. In this paper we have demonstrated how external data

collected from various banks of different sizes and different unknown loss reporting thresholds can

be combined together to quantify the operational risk of a bank of a given size.

Two of the main challenges in combining data from different banks is the presence of scale bias and

reporting bias. We used a method based on extreme value theory developed by De Fontnouvelle

et al. (2006) to compute inverse probability weights to correct for reporting bias. Then using those

weights a regression analysis was carried out to determine the relationship between the loss severity

and the size of banks, in order to correct for the scale bias. Most of the previous work had studied

only the relationship between the mean of the log-losses and the size of a bank. We argue that a

model which only accounts for the scaling in the mean of the log-loss distribution would not be able

to capture the tail behaviour of operational losses properly, which is the main interest for capital

calculation. A good scaling model should be able to account for the variation in location, scale and

shape of the distribution across different business lines and event types. Hence, all the parameters of

the distribution should be tested for scaling properties. To achieve this we employed the recently

introduced GAMLSS framework to carry out the regression analysis. The model selection process

revealed that the operational losses are best explained by a log-gamma distribution with both

distributional parameters being related to the size of the bank.

We validated the fitted model by simulating losses for the US banking industry, and two individual

banks in the US. Tests demonstrated that the simulated losses follow the observed losses reasonably

well. Furthermore, a capital calculation exercise for several hypothetical banks by using simplified

assumptions about the frequency distribution revealed that the capital estimates provided by the

model is consistent with the industry standards. In addition, backtesting of the model using two

US banks also confirmed the validity of the model.

The results of this study suggest that the size of a bank is an important indicator of its operational

loss severities than previous research has suggested. In particular, the model indicates that there is a

considerable variation in the tail index of the loss distribution across banks of different sizes. We

find that for certain BL/ET combinations, 99th percentile loss can increase by up to 25% to 35%

when the size of a bank doubles.

An important observation we make is that the tail index for certain BL/ET categories can become

less than 1 for very large banks. That is, the loss distribution of certain BL/ET categories is

extremely heavy-tailed for very large banks. This can have significant implications for capital

calculation as well as for risk management as discussed in the text. In particular, the results show

that the loss distribution of CPBP events is extremely heavy-tailed and a significant proportion of

the total loss due to CPBP events is caused by a few individual catastrophic losses. This

phenomenon is referred to as the one-loss-causes-ruin problem and creates further challenges to

estimating the tail of the loss distribution. Although the use of external data as outlined in this paper

can improve the estimation of the tail of the loss distribution, given that catastrophes are high

degree unique events, the importance of using scenario analysis cannot be stressed enough in this

particular context. However, it should be noted also that scenario analysis also has its limitations

since dreaming up worst-case scenarios are often very difficult for a number of reasons. Therefore,

we stress the importance of having a system to monitor near-miss losses for early detection of

possible crises and having a well established crisis management system in addition to the risk

management system to assist a bank to steer through a catastrophic event.
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The scaling model developed in this study is of particular importance to banks, as it can be used to

complement their internal data and improve the estimates of the tail of the distribution. For

example, it is possible to estimate the tail index of the operational loss distribution of a particular

bank as â ¼ oâInt þ ð1�oÞâInd, where âInt is the estimate of the tail index given by the bank’s

internal data, âInd is the estimate of the tail index given by the proposed model using industry data,

and v is a credibility weight decided by the experts. The bank could assign a higher weight to the

internal estimate a
_

Int if it has satisfactory amount of high-quality data, however when the quality of

internal data is poor or not relevant due to a recent change in the operational environment such as a

merger or an acquisition, the bank will need to assign a higher weight to the external estimate âInd.

In practice, ad hoc procedures are often used to decide the credibility weights. However, it is also

possible to use a full credibility theory approach to combine the internal and external estimates as

proposed by Bühlmann et al. (2007) and Lambrigger et al. (2007). Another use of the proposed

model is that it can serve as a good starting point for building internal models and as a reference for

the banks as well as the regulators when examining the appropriate capital levels. We consider the

model is an improvement over the existing models found in the literature for two main reasons: 1) it

takes into account the scaling properties of all the parameters in the loss distribution rather than just

the location parameter, and 2) the scaling properties of the tail index are explicitly modelled, which

is more significant to the capital calculation rather than the mean of log-losses. However, a major

limitation of our model is that simulated losses are not sensitive to the internal controls of a bank.

Therefore it would be interesting to extend the model to include other explanatory variables that reflect

the quality of risk management and governance of individual banks. For example, variables such as the

annual risk management budget and the cost of employee training might be able to serve as proxies for

the quality of risk management and staff competence. The number of past fiduciary breaches and

regulatory fines may serve as proxies for the quality of corporate governance. We believe an extension of

our model which takes into account the internal controls would provide better capital estimates which

reflect the individual circumstances of the banks. However, in order to facilitate such study the industry

will need to be generous enough to share some of their confidential data with academia.
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Nešlehová, J., Embrechts, P. & Chavez-Demoulin, V. (2006). Infinite mean models and the LDA for

operational risk. Journal of Operational Risk, 1(1), 3–25.

R Development Core Team. (2010). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria.

Rigby, R.A. & Stasinopoulos, D.M. (2001). The GAMLSS project: a flexible approach to statistical

modelling. In B. Klein & L. Korsholm (Eds.), New Trends in Statistical Modelling:

Proceedings of the 16th International Workshop on Statistical Modelling. Odense, Denmark.

Rigby, R.A. & Stasinopoulos, D.M. (2005). Generalized additive models for location, scale

and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3),

507–554.

Rigby, R.A. & Stasinopoulos, D.M. (2010). A flexible regression approach using GAMLSS in R.

http://gamlss.org/images/stories/papers/book-2010-Athens.pdf [accessed 30-Jul-2012].
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